

Микросхема приемопередатчика по стандарту RS-485 5559ИН28У, К5559ИН28У, К5559ИН28УК

ТП – технологическая перемычка

XX – год выпуска

YY – неделя выпуска

Основные параметры микросхемы:

- Напряжение источника питания от 3,0 до 5,5 B;
- Скорость передачи данных до 30 Мбит/с;
- Синфазное напряжение шины данных от -7 до 12 В;
- Защита от перегрева;
- Защита от короткого замыкания;

• Температурный диапазон:

Обозначение	Диапазон
5559ИН28У	минус 60 – 125 °C
К5559ИН28У	минус 60 – 125 °C
К5559ИН28УК	0 – 70 °C

Тип корпуса:

8-ми выводной металлокерамический корпус H02.8-1B

Общее описание и области применения

Микросхемы интегральные 5559ИН28У (далее — микросхемы) предназначены для использования в аппаратуре специального назначения, в качестве приемопередатчика по стандарту RS-485 со скоростью передачи данных до 30 Мбит/с.

Описание выводов

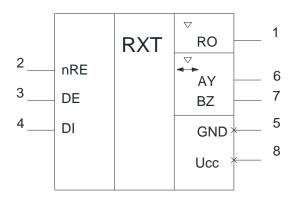


Рисунок 1 – Условно-графическое обозначение

Таблица 1 – Описание выводов микросхемы

Вывод корпуса	Контактная площадка кристалла	Условное обозна- чение	Функциональное назначение выводов
1	1	RO	Выход приемника
2	2	nRE	Разрешение выхода приемника. Активный низкий логический уровень
3	3	DE	Разрешение выхода передатчика. Активный высокий логический уровень
4	4	DI	Вход передатчика
5	5, 6	GND	Общий
6	7	AY	Прямой вход приемника, прямой выход передатчика
7	8	BZ	Инверсный вход приемника, инверсный выход передатчика
8	9, 10	Ucc	Питание

Структурная блок-схема микросхемы

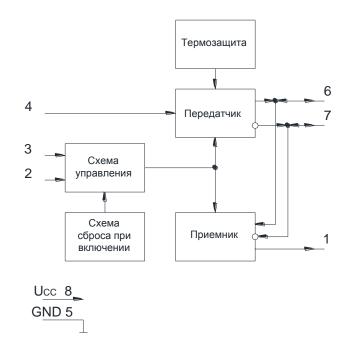


Рисунок 2 – Структурная блок-схема микросхемы

Примечание — Все элементы схемы имеют электрическую связь с соответствующими контактными площадками. Общий — 5, Питание — 8.

Описание функционирования микросхемы

Микросхема функционирует в четырех режимах, описанных ниже.

RS-485 передатчик

Выходы передатчика имеют ограничение скорости нарастания/спада выходного сигнала для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине. Таким образом, обеспечивается стабильная передача информации.

В схеме реализовано 2 механизма защиты выходов передатчика: по максимальному выходному току и по рассеиваемой мощности, которые активизируются в случаях неправильного использования схемы приемопередатчика, замыкания выходов передатчика на шины питания и «общий», а так же при возникновении конфликтных ситуаций (попытки одновременной передачи данных несколькими приемопередатчикам).

Схема термозащиты срабатывает при температуре кристалла более 140 °C и переводит схему передатчика в состояние «Выключено». Таблица истинности работы передатчика микросхемы приведена ниже (Таблица 2).

	Входы		Вых	оды
nRE	DE	DI	BZ	AY
Х	1	1	0	1
Х	1	0	1	0
Х	0	Х	Высокое выходное на выводах АУ и В	

Таблица 2 – Таблица истинности работы передатчика

RS-485 приемник

Выход приемника находится в состоянии высокого логического уровня, когда входы приемника замкнуты или не подключены (обрыв), или когда они подключены к согласованной шине, на которой все подключенные передатчики находятся в состоянии с высоким выходным сопротивлением. Данная особенность достигается смещением входного дифференциального порогового напряжения приемника в диапазон от минус 50 мВ до минус 200 мВ, что не противоречит требованиям стандарта. Благодаря этому не требуется использование внешних (fail-safe) резисторов. Таблица истинности работы приемника микросхемы приведена ниже (Таблица 3).

На входе приемника имеется формирователь входного сигнала, гистерезис которого обеспечивает невосприимчивость приемника к быстро меняющимся входным дифференциальным сигналам, а также сигналам с очень медленными скоростями нарастания/спада.

Таблица 3 –	Таблица	истинности	работы	приемника
-------------	---------	------------	--------	-----------

	Входы		Выходы
nRE	DE	AY-BZ	RO
0	Χ	≥ минус 200 мВ	1
0	X	≤ минус 200 мВ	0
0	X	Обрыв/замыкание	1
1	1	Х	Высокое выходное сопротивление на выходе RO
1	0	Х	Высокое выходное сопротивление на выводах АҮ, ВZ и RO. Режим «Выключено» (SHDN)

Входной импеданс приемника RS-485 по стандарту не должен быть меньше 12 кОм (одна единица нагрузки, 1 U.L.), стандартный передатчик способен работать на 32 единицы нагрузки. Входной импеданс данного приемопередатчика составляет 1/8 единицы нагрузки (менее 96 кОм), что позволяет параллельно подключить к шине до 256 эквивалентных приемопередатчиков. Также допустима комбинация на шине данных приемопередатчиков с приемопередатчиками, имеющими другой входной импеданс.

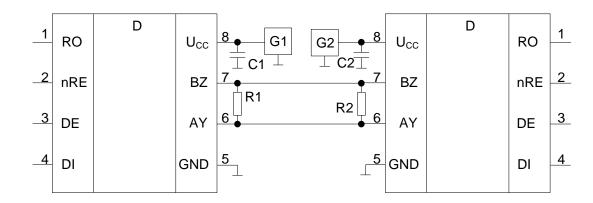
Микросхема в режиме «Выключено» (Shutdown)

При подаче на входы DE и nRE логических сигналов «0» и «1», соответственно, микросхема переходит в режим "Выключено" (Shutdown), с током потребления не более 3 мкА. Схема не переходит в этот режим, если период времени присутствия комбинации DE=«0» и nRE=«1» на входах меньше 50 нс. Для гарантированного переключения время удержания комбинации DE=«0» и nRE=«1» на входах должно быть не менее 700 нс.

Микросхема в режиме «Горячей замены»

когда контроллер начальный момент времени, на CO приемопередатчика, подключенным к шине, подается питание, либо когда питание на микросхемы подается одновременно с подключением шине, К управляющий схемой приемопередатчика, переходит в стадию инициализации. В течение этого периода, выходы контроллера находятся в состоянии с высоким выходным сопротивлением и не способны управлять входами приемопередатчика DE и nRE. В тоже время токи утечки выходов контроллера способны перевести управляющие входы приемопередатчика в активное состояние, что может привести к ошибочному включению выхода передатчика и/или выхода приемника. Дополнительно паразитные емкости печатной платы так же могут «подтянуть» напряжение на входах DE и nRE к потенциалам U_{CC} и GND. Дифференциальные помехи в шине, вызванные подключением, могут привести к ошибкам, а также к полному нарушению передачи информации по шине.

Схема данного приемопередатчика имеет режим «Горячей замены» (hot-swap), который заключается в том, что при подаче напряжения питания на схему, в начальный период времени длительностью не менее 7 мкс, активизируется схема «подтяжки» входов DE и nRE в неактивное состояние с токовой способностью 1,5 мА. По окончанию неактивного состояния схема оставляет входы подтянутыми с токовой


способностью 0,5 мА до появления активного состояния на входе. При появлении активного состояния на управляющем входе схема «подтяжки» отключается, обеспечивая «прозрачный» режим управления работой схемы приемопередатчика.

Максимальная длина шины

Максимальная длина шины по стандарту RS-485 составляет 1 200 м. В случае превышения данной длины следует использовать повторители.

Типовая схема включения микросхемы


```
D — включаемая микросхема, 5559ИН28У; 
G1, G2 — источник постоянного напряжения, U_{CC} = (3,0-5,5) В;
```

C1, C2 — конденсаторы, C1 = C2= не менее 0,1 мк $\Phi \pm 20$ %;

R1, R2 – резисторы, $R1 = R2 = 120 \, Om.$

Рисунок 3 – Типовая схема включения микросхем

Примечание — Микросхемы должны использоваться в линии передачи, согласованной с обоих концов резисторами номиналом 120 Ом.

Предельно-допустимые характеристики

Таблица 4 – Предельно-допустимые и предельные режимы эксплуатации микросхем

	a ze	Норма параметра				
Наименование параметра, единица измерения	квенно значен раметр	Предельно- допустимый режим		Предельный режим		
	Бу 060 па	не менее	не более	не менее	не более	
Напряжение источника питания, В	U _{cc}	3,0	5,5	минус 0,3	6,0	
Входное напряжение низкого уровня на входах nRE, DE и DI, B	U _{IL}	0	0,8	минус 0,3	_	
Входное напряжение высокого уровня на входах nRE, DE и DI, В	U _{IH}	2,2	U _{cc}	ı	U _{cc} +0,3	
Входное напряжение приемника, В	U_{I_R}	минус 7	12	минус 8	13	
Дифференциальное пороговое напряжение приемника, В, при: минус 7 В ≤ U _{L R} ≤ 12 В	U _{TH}	минус 200	200	-	-	
Скорость передачи данных, Кбит/с	f _{DR}	_	30 000	_		

Примечание – Не допускается одновременное воздействие нескольких предельных режимов.

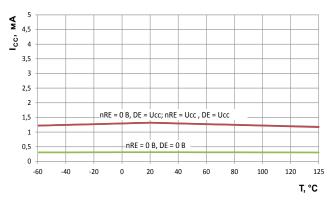
Стойкость к воздействию статического электричества – не менее 2 кВ.

Электрические параметры

Таблица 5 – Электрические параметры микросхем

Наименование параметра,	ное чение етра	_	ома метра	атура ı, °C
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °C
Выходное дифференциальное напряжение передатчика, B, при: Ucc = 4,5 B, R_L = 54 Oм, R_L = 100 Ом при: Ucc = 3,0 B, R_L = 54 Oм, R_L = 100 Ом	U _{O_D}	1,5 1,3	U _{cc}	25, 125, минус 60
Изменение выходного дифференциального напряжения передатчика, В	$\Delta U_{O_{D}}$	_	0,2	25, 125, минус 60
Выходное синфазное напряжение передатчика, B, при: R_L = 54 Ом, R_L = 100 Ом	U _{oc}	-	3	25, 125, минус 60
Изменение выходного синфазного напряжения передатчика, B, при: R_L = 54 Ом; R_L = 100 Ом	ΔU _{oc}	-	0,2	25, 125, минус 60
Выходное напряжение высокого уровня приемника, В, при: I _O = минус 1 мА	U _{OH}	U _{CC} - 0,6	_	25, 125, минус 60
Выходное напряжение низкого уровня приемника, В, при: I _O = 1 мА	U _{OL}	_	0,4	25, 125, минус 60
Ток потребления, мА, при: $U_{nRE} = 0$ B, $U_{DE} = U_{CC}$, без нагрузки $U_{nRE} = U_{CC}$, $U_{DE} = U_{CC}$, без нагрузки $U_{nRE} = 0$ B, $U_{DE} = 0$ B, без нагрузки	I _{cc}	-	30	25, 125, минус 60
Входной ток высокого/ низкого уровня, мкА, на выводах nRE, DE и DI	I _{IH} I _{IL}	минус 1	1	25, 125, минус 60
Ток короткого замыкания выхода передатчика, мА, при: $7 \text{ B} \leq U_{AY}(U_{BZ}) \leq 12 \text{ B}$ (3 B \leq U _{cc} $<$ 4,5 B)		20	250	
при: минус 7 B \leq U _{AY} (U _{BZ}) \leq U _{CC} (3 B \leq U _{CC} $<$ 4,5 B)	I _{OS_D}	минус 250	минус 20	25, 125,
при: $7 \text{ B} \le U_{AY}(U_{BZ}) \le 12 \text{ B}$ (4,5 B $\le U_{CC} \le 5,5 \text{ B}$)		35	250	минус 60
при: минус 7 B \leq U _{AY} (U _{BZ}) \leq U _{CC} (4,5 B \leq U _{CC} \leq 5,5 B)		минус 250	минус 35	

Наименование параметра,	іное іение этра	Нор парам	атура ı, °С	
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °C
Выходной ток приемника в состоянии «Выключено», мкА	I _{OZ_R}	минус 1	1	25, 125, минус 60
Ток короткого замыкания выхода приемника, мА, при: 0 B ≤ U _{RO} < U _{CC}	I _{OS_R}	минус 110	110	25, 125, минус 60
Ток потребления в состоянии «Выключено», мА (приемник и передатчик выключены)	I _{SHDN} 1)	_	2	25, 125, минус 60
Ток утечки на входе приемника, мкА	I _{L_R}	минус 100	125	25, 125, минус 60
Время задержки распространения сигнала приемника при включении/ выключении, нс	t _{PLH_R} t _{PHL_R}	_	200	25, 125, минус 60
Разность задержек распространения сигнала приемника, нс, t _{PLH_R} - t _{PHL_R}	t _{SKEW_R}	_	30	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого уровня, мкс, при: U _{nRE} = 0 В (приемник включен)	t _{PZH_D}	-	10	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние низкого уровня, мкс, при: U _{nRE} = 0 В (приемник включен)	t _{PZL_D}	-	10	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния высокого уровня в состояние «Выключено», нс, при: U _{nRE} = 0 В (приемник включен)	t _{PHZ_D}	-	100	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния низкого уровня в состояние «Выключено», нс, при: U _{nRE} = 0 В (приемник включен)	t _{PLZ_D}	-	100	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого уровня, мкс, при: U _{nRE} = U _{CC} (приемник выключен)	t _{PZH_D(SHDN)}	-	10	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние низкого уровня, мкс, при: U _{nRE} = U _{CC} (приемник выключен)	t _{PZL_D(SHDN)}	-	10	25, 125, минус 60


Наименование параметра,	іное іение этра	Ној паран	arypa , °C	
единица измерения, режим измерения	Буквенное обозначени параметра	не менее	не более	Температура среды, °С
Время задержки распространения сигнала приемника при переходе из состояния «Выключено» в состояние высокого уровня, мкс, при: U _{DE} = U _{CC} (передатчик выключен)	t _{PZH_R(SHDN)}	-	10	25, 125, минус 60
Время задержки распространения сигнала приемника при переходе из состояния «Выключено» в состояние низкого уровня, мкс, при: U _{DE} = U _{CC} (передатчик выключен)	t _{PZL_R(SHDN)}	-	10	25, 125, минус 60
Время задержки распространения сигнала			25	25,
передатчика при включении/ выключении, нс, при: C_L = 50пФ, R_L =54Ом (3B ≤ U_{cc} < 4,5B) при: C_L = 50пФ, R_L =54Ом (4,5B ≤ U_{cc} ≤ 5,5B)	t _{PLH_D} t _{PHL_D}	_	15	25, 125, минус 60

Примечания:

- 1 «Выключено» состояние высокого импеданса выходов приемника и передатчика:
 - для выхода RO приемника при nRE =«1»;
 - для выходов AY и BZ передатчика при DE=«0».
- 2 n в названии вывода обозначает активный низкий уровень сигнала.

Типовые зависимости

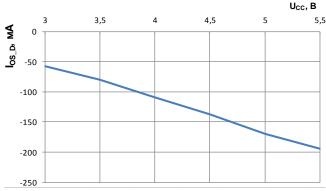
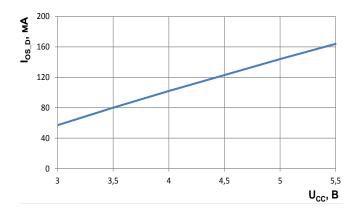



Рисунок 4 – Зависимость тока потребления, I_{CC} , без нагрузки от температуры при: U_{CC} = 5,5 B

Рисунок 5 – Зависимость тока короткого замыкания выхода передатчика, I_{OS_D} , от напряжения источника питания при $U_{AY}(U_{BZ})$ = минус 7 В

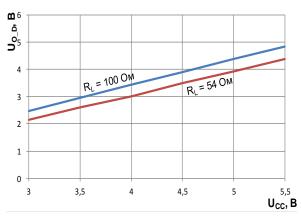
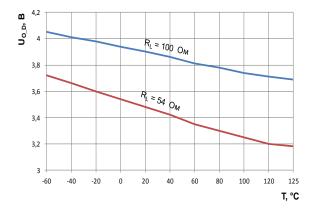



Рисунок 6 – Зависимость тока короткого замыкания выхода передатчика, I_{OS_D}, от напряжения источника питания при U_{AY}(U_{BZ}) = 12 В

Рисунок 7 – Зависимость выходного дифференциального напряжения передатчика, U_{O_D,} от напряжения источника питания

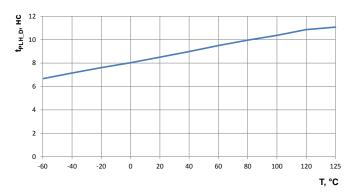
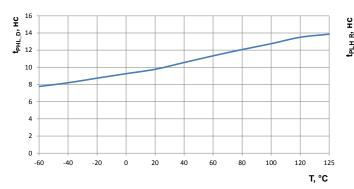
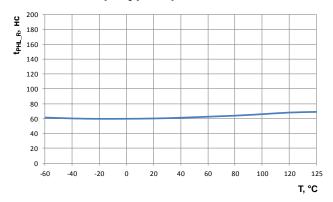



Рисунок 8 – Зависимость выходного дифференциального напряжения передатчика, $U_{\text{O}_{-}\text{D}}$, от температуры при: U_{CC} = 3,0 B

Рисунок 9 – Зависимость времени задержки распространения сигнала передатчика при включении, t_{PLH_D} , от температуры при: U_{CC} = 3,0 B



200 180 160 140 120 100 80 60 40 20 -60 -40 -20 0 20 40 60 80 100 120 125 T, °C

Рисунок 10 – Зависимость времени задержки распространения сигнала передатчика при выключении, t_{PHL_D} , от температуры при: U_{CC} = 3,0 B

Рисунок 11 – Зависимость времени задержки распространения сигнала приемника при выключении, t_{PLH_R} , от температуры при: U_{cc} = 3,0 B

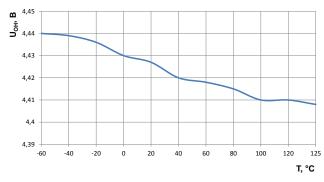
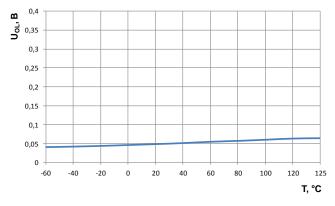



Рисунок 12 – Зависимость времени задержки распространения сигнала приемника при включении, t_{PHL_R} , от температуры при: U_{CC} = 3,0 B

Рисунок 13 – Зависимость выходного напряжения высокого уровня приемника, U_{OH}, от температуры при: U_{CC} = 3,0 В

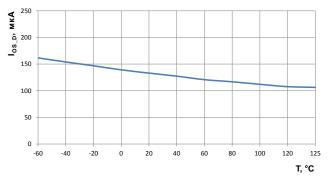


Рисунок 14 – Зависимость выходного напряжения низкого уровня приемника, U_{OL} , от температуры при: U_{CC} = 3,0 В

Рисунок 15 – Зависимость тока короткого замыкания выхода передатчика, I_{OS_D} , от температуры при $U_{AY}(U_{BZ})$ = 12 В

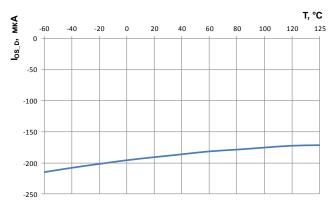
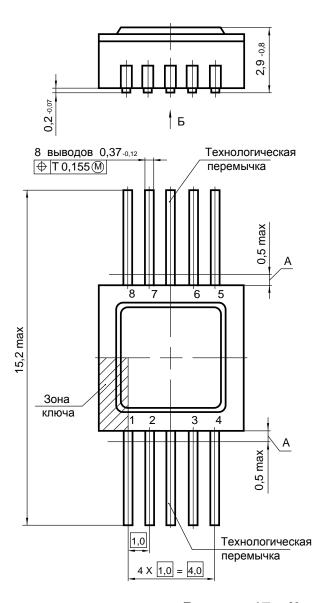
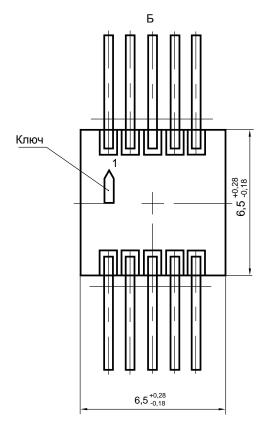




Рисунок 16 – Зависимость тока короткого замыкания выхода передатчика, I_{OS_D} , от температуры при $U_{AY}(U_{BZ})$ = минус 7 В

Габаритный чертеж микросхемы

- 1. А-зона не контролируемая по толщине и ширине вывода.
- 2. Форма ключа не регламентируется.
- 3. Нумерация выводов показана условно.

Рисунок 17 – Корпус Н02.8-1В

Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон
5559ИН28У	ИН28	H02.8-1B	минус 60 – 125 °C
К5559ИН28У	К ИН28	H02.8-1B	минус 60 – 125 °C
К5559ИН28УК	К ИН28 •	H02.8-1B	0 – 70 °C

Примечания:

Микросхемы с приемкой «ВП» маркируются ромбом.

Микросхемы с приемкой «ОТК» маркируются буквой «К».

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.04.2014	1.0.0	Введена впервые	
2.	22.04.2014	1.1.0	Исправлено значение входа АҮ-ВZ в таблице 3. Исправлены значения R _L на рисунках 21, 22. Исправлены значения номиналов резисторов для типовой схемы включения.	3, 5, 10, 11
3	27.05.2014	2.0.0	Добавлен типономинал К5559ИН28УК. Исправлена маркировка.	По тексту
4	08.08.2014	2.1.0	Корректировка в соответствии с ТУ и КД	По тексту
5	21.10.2014	2.2.0	Заменен рисунок 4	12