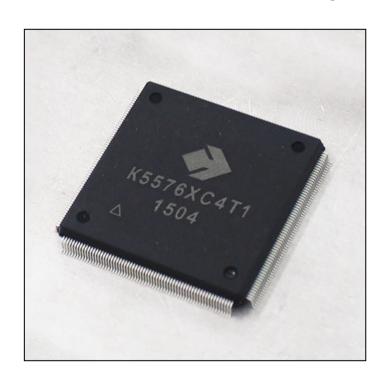


### ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО


# «ВОРОНЕЖСКИЙ ЗАВОД ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ - СБОРКА»

ИЗДЕЛИЯ В СТАДИИ РАЗРАБОТКИ И/ИЛИ ОСВОЕНИЯ

# МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ К5576ХС4Т1

**Микросхемы интегральные К5576XC4T1** с возможностью многократного изменения конфигурации в металлопластмассовом корпусе.

| Напряжение питания ядра, В                                                                                | $1.8 \pm 5\%$                |
|-----------------------------------------------------------------------------------------------------------|------------------------------|
| Напряжение питания периферии, В                                                                           | $3,3 \pm 0,3$                |
| Диапазон температур окружающей среды, °С                                                                  | от минус 60<br>до плюс 125   |
| Число эквивалентных вентилей                                                                              | 200 000                      |
| Объем встроенной памяти, Кбит                                                                             | 96                           |
| Количество логических элементов                                                                           | 9 984                        |
| Количество выводов, программируемых пользователем                                                         | 176                          |
| Программируемый режим циклической перезаписи конфигурационной памяти (SCRUBBING)                          | да                           |
| Программируемый режим верификации конфигурационной памяти без выхода из рабочего состояния (VERIFICATION) | да                           |
| Режимы последовательной и параллельной загрузки конфигурации ПЛИС по специальному загрузочному порту      | да                           |
| Функциональный аналог                                                                                     | EPF10K200S(E)                |
| Среда конфигурирования                                                                                    | MAX + Plus II или Quartus II |
| Корпус                                                                                                    | PQFP256                      |



394033, Россия, г. Воронеж, Ленинский пр-т, 119а Тел./факс: (473) 223-69-51, тел./факс: (473) 223-69-16 www.vzpp-s.ru, market@vzpp-s.ru

Таблица 1 – Значения электрических параметров микросхем при приемке и поставке

| Наименование параметра,                             |                   |       |         | Температура                   |            |
|-----------------------------------------------------|-------------------|-------|---------|-------------------------------|------------|
| единица измерения, режим                            | обозначение       | не    | не      | среды, °С                     | Примечание |
| измерения                                           | параметра         | менее | более   | ереды, с                      |            |
| Выходное напряжение                                 | $U_{\mathrm{OL}}$ |       |         |                               | 1          |
| низкого уровня, В,                                  |                   | -     | 0,55    |                               |            |
| $U_{CC1} = 1.71 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.0 \text{ B}, I_{OL} = 4.0 \text{ MA}$  |                   |       |         |                               |            |
| Выходное напряжение                                 | U <sub>OH</sub>   |       |         | 1                             |            |
| высокого уровня, В,                                 |                   | 2,2   | -       |                               |            |
| $U_{CC1} = 1,71 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.0 \text{ B}, I_{OL} = -4.0 \text{ MA}$ |                   |       |         |                               |            |
| Ток потребления ядра, мА                            | $I_{CC1}$         | -     | 20      |                               | 1          |
| $U_{CC1} = 1,89 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_I = 0 \text{ B}$        |                   |       |         |                               |            |
|                                                     |                   |       |         |                               |            |
| $U_{CC1} = 1,89 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_I = 3.6 \text{ B}$      |                   |       |         |                               |            |
| Ток потребления периферии,                          | $I_{CC2}$         |       |         |                               | 1          |
| мА                                                  |                   | -     | 20      |                               |            |
| $U_{CC1} = 1,89 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_{I} = 0 \text{ B}$      |                   |       |         |                               |            |
|                                                     |                   |       |         | $-60 \pm 3$                   |            |
| $U_{CC1} = 1.89 B,$                                 |                   |       |         | 25 ±10                        |            |
| $U_{CC2} = 3.6 \text{ B}, U_I = 3.6 \text{ B}$      |                   |       |         | $\frac{23 \pm 10}{125 \pm 5}$ |            |
| Входной ток низкого уровня,                         | ${ m I}_{ m IL}$  | 4.0   |         |                               | 1, 2       |
| мкА,                                                |                   | -10   | =       |                               |            |
| $U_{CC1} = 1,89 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_{IL} = 0 \text{ B}$     | _                 |       |         | <br> -                        |            |
| Входной ток высокого                                | $I_{IH}$          |       | 10      |                               |            |
| уровня, мкА,                                        |                   | -     | 10      |                               |            |
| $U_{CC1} = 1,89 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_{IL} = 0 \text{ B}$     | <b>.</b>          |       |         | -                             | 1.2        |
| Выходной ток в состоянии                            | $I_{OZ}$          | -10   | 10      |                               | 1, 3       |
| «Выключено», мкА,                                   |                   | -10   | 10      |                               |            |
| $U_{CC1} = 1.89 B,$                                 |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_O = 0 \text{ B}$        |                   |       |         |                               |            |
| H _ 1 80 D                                          |                   |       |         |                               |            |
| $U_{CC1} = 1.89 \text{ B},$                         |                   |       |         |                               |            |
| $U_{CC2} = 3.6 \text{ B}, U_0 = 3.6 \text{ B}$      | 4                 |       |         | -                             | 1          |
| Длительность тактового                              | $t_{ m DRR}$      |       |         |                               | 1          |
| интервала межрегистровой                            |                   | _     | 17,2    |                               |            |
| пересылки, нс,                                      |                   |       | _ · ·,_ |                               |            |
| $U_{CC1} = 1,71 \text{ B}, U_{CC2} = 3,0 \text{ B}$ |                   |       |         |                               |            |

#### Примечания

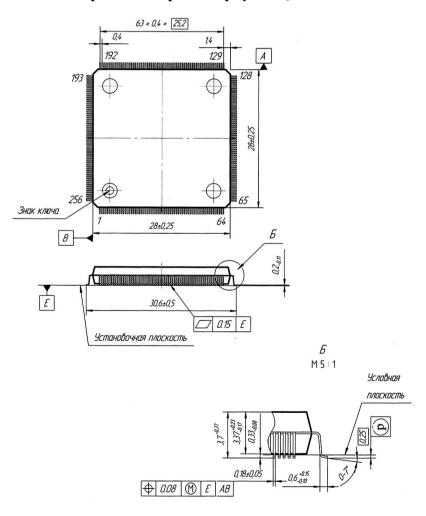

- 1. Контролируется после конфигурирования ПЛИС при отключенных режимах «Pull-Up», «Pull-Down», «Bus-Hold» на пользовательских входах и входах/выходах.
- 2. Контролируется на пользовательских входах.
- 3. Контролируется на пользовательских входах/выходах.

Таблица 2 – Значения предельно допустимых режимов эксплуатации микросхем

| Наименование параметра             | Буквенное                  | устимый режим |          |  |
|------------------------------------|----------------------------|---------------|----------|--|
| режима, единица измерения          | обозначение                | не менее      | не более |  |
| режима, единица измерения          | параметра                  | HC MCHCC      | пс оолсс |  |
| Напряжение питания ядра, В         | $U_{CC1}$                  | 1,71          | 1,89     |  |
| Напряжение питания периферии, В    | $U_{CC2}$                  | 3,0           | 3,6      |  |
| Входное напряжение низкого         | $\mathrm{U}_{\mathrm{IL}}$ |               |          |  |
| уровня, В                          |                            | 0             | 0,8      |  |
| Входное напряжение высокого        | $ m U_{IH}$                |               |          |  |
| уровня, В                          |                            | 2,0           | 3,6      |  |
| Напряжение, прикладываемое к       | $\mathrm{U}_{\mathrm{OZ}}$ |               |          |  |
| выходу в состоянии «Выключено»,    |                            |               |          |  |
| В                                  |                            | 0             | 3,6      |  |
| Выходной ток низкого уровня 1,     | $I_{OL}$                   |               |          |  |
| мА                                 |                            | -             | 4        |  |
| Выходной ток высокого уровня 1,    | $I_{OH}$                   |               |          |  |
| мА                                 |                            | -4            | -        |  |
| Ток по выводу питания $^{2)}$ , мА | $I_{VCC}$                  | -             | -        |  |
| Ток по общему выводу $^{2}$ , мА   | $I_{GND}$                  | -             | -        |  |
| Емкость нагрузки, пФ               | $C_{L}$                    | -             | -        |  |

<sup>1)</sup> Для пользовательских выводов.

### Габаритный чертеж корпуса PQFP256



# Срок окончания ОКР – 12.2015г.

<sup>2)</sup> По каждому отдельному выводу микросхемы, подключенному к источнику питания ядра или периферии.