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ABOUT ADSP-BF592 SILICON ANOMALIES
These anomalies represent the currently known differences between revisions of the Blackfin®ADSP-BF592 product(s) and the
functionality specified in the ADSP-BF592 data sheet(s) and the Hardware Reference book(s).

SILICON REVISIONS

A silicon revision number with the form "-x.x" is branded on all parts. The implementation field bits <15:0> of the DSPID core MMR
register can be used to differentiate the revisions as shown below.

Silicon REVISION DSPID<15:0>

0.1 0x0001

0.0 0x0000

APPLICABILITY

Each anomaly applies to specific silicon revisions. See Summary or Detailed List for affected revisions.

ANOMALY LIST REVISION HISTORY

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

Date Anomaly List Revision Data Sheet Revision Additions and Changes

07/19/2010 A PrA Initial Revision
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SUMMARY OF SILICON ANOMALIES
The following table provides a summary of ADSP-BF592 anomalies and the applicable silicon revision(s) for each anomaly.

No. ID Description 0.0 0.1

  1 05000074 Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported x x

  2 05000119 DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops x x

  3 05000122 Rx.H Cannot Be Used to Access 16-bit System MMR Registers x x

  4 05000245 False Hardware Error from an Access in the Shadow of a Conditional Branch x x

  5 05000254 Incorrect Timer Pulse Width in Single-Shot PWM_OUT Mode with External Clock x x

  6 05000265 Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks x x

  7 05000310 False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory x x

  8 05000366 PPI Underflow Error Goes Undetected in ITU-R 656 Mode x x

  9 05000426 Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors x x

 10 05000461 False Hardware Error when RETI Points to Invalid Memory x x

 11 05000473 Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15 x x

 12 05000477 TESTSET Instruction Cannot Be Interrupted x x

 13 05000493 TWI Data Hold Time (tHD;DAT) May Violate the Minimum I2C Specification x .

Key: x = anomaly exists in revision
          . = Not applicable
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DETAILED LIST OF SILICON ANOMALIES
The following list details all known silicon anomalies for the ADSP-BF592 including a description, workaround, and identification of
applicable silicon revisions.

1.  05000074 - Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported:

DESCRIPTION:
A multi-issue instruction with dsp32shiftimm in slot 1 and a P register store in slot 2 is not supported. It will cause an exception.

The following type of instruction is not supported because the P3 register is being stored in slot 2 with a dsp32shiftimm in slot 1:

    R0 = R0 << 0x1 || [ P0 ] = P3 || NOP;      // Not Supported - Exception 
 
This also applies to rotate instructions:

    R0 = ROT R0 by 0x1 || [ P0 ] = P3 || NOP;  // Not Supported - Exception
 
Examples of supported instructions:

    R0 = R0 << 0x1 || [ P0 ] = R1 || NOP;
    R0 = R0 << 0x1 || R1 = [ P0 ] || NOP;
    R0 = R0 << 0x1 || P3 = [ P0 ] || NOP;
    R0 = ROT R0 by R0.L || [ P0 ] = P3 || NOP;
 

WORKAROUND:
In assembly programs, separate the multi-issue instruction into 2 separate instructions.   This workaround may be built into the
development tool chain and/or into the operating system source code. For tool chains and operating systems supported by Analog
Devices (VisualDSP++, VDK, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon Anomaly Tools Support" help page in
the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.0,  0.1

2.  05000119 - DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops:

DESCRIPTION:
After completion of a Peripheral Receive DMA, the DMAx_IRQ_STATUS:DMA_RUN bit will be in an undefined state.

WORKAROUND:
The DMA interrupt and/or the DMAx_IRQ_STATUS:DMA_DONE bits should be used to determine when the channel has completed
running.

APPLIES TO REVISION(S):
0.0,  0.1
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3.  05000122 - Rx.H Cannot Be Used to Access 16-bit System MMR Registers:

DESCRIPTION:
When accessing 16-bit system MMR registers, the high half of the data registers may not be used.  If a high half register is used, incorrect
data will be written to the system MMR register, but no exception will be generated. For example, this access would fail:

    W[P0] = R5.H;   // P0 points to a 16-bit System MMR
 

WORKAROUND:
Use other forms of 16-bit transfers when accessing 16-bit system MMR registers. For example:

    W[P0] = R5.L;   // P0 points to a 16-bit System MMR
    R4.L = W[P0];
    R3 = W[P0](Z);
    W[P0] = R3;
 
This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon
Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.0,  0.1
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4.  05000245 - False Hardware Error from an Access in the Shadow of a Conditional Branch:

DESCRIPTION:
If a load accesses reserved or illegal memory on the opposite control flow of a conditional jump to the taken path, a false hardware error
will occur.

The following sequences demonstrate how this can happen:

Sequence #1:
For the "predicted not taken" branch, the pipeline will load the instructions that sequentially follow the branch instruction that was
predicted not taken. By the pipeline design, these instructions can be speculatively executed before they are aborted due to the branch
misprediction. The anomaly occurs if any of the three instruction slots following the branch contain loads which might cause a hardware
error:

    BRCC X [predicted not taken]
    R0 = [P0];     // If any of these three loads accesses non-existent 
    R1 = [P1];     // memory, such as external SDRAM when the SDRAM
    R2 = [P2];     // controller is off, then a hardware error will result.
 

Sequence #2:
For the "predicted taken" branch, the one instruction slot at the destination of the branch cannot contain an access which might cause a
hardware error:

    BRCC X (BP)
    Y: ...
       ...
    X: R0 = [P0];  // If this instruction accesses non-existent memory,
                   // such as external SDRAM when the SDRAM controller
                   // is off, then a hardware error will result.
 

WORKAROUND:
If you are programming in assembly, it is necessary to avoid the conditions described above.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon
Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.0,  0.1
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5.  05000254 - Incorrect Timer Pulse Width in Single-Shot PWM_OUT Mode with External Clock:

DESCRIPTION:
If a Timer is in PWM_OUT mode AND is clocked by an external clock as opposed to the system clock (i.e., clocked by a signal applied to
either PPI_CLK or a flag pin) AND is in single-pulse mode (PERIOD_CNT = 0), then the generated pulse width may be off by +1 or -1 count.
All other modes are not affected by this anomaly.

WORKAROUND:
The suggested workaround is to use continuous mode instead of the single-pulse mode. You may enable the timer and immediately
disable it again. The timer will generate a single pulse and count to the end of the period before effectively disabling itself. The generated
waveform will be of the desired length.

If PULSEWIDTH is the desired width, the following sequence will produce a single pulse:

    TIMERx_CONFIG = PWM_OUT|CLK_SEL|PERIOD_CNT|IRQ_ENA;  // Optional: PULSE_HI|TIN_SEL|EMU_RUN
    TIMERx_PERIOD = PULSEWIDTH + 2;                      // Slightly bigger than the width
    TIMERx_WIDTH  = PULSEWIDTH;
    TIMER_ENABLE  = TIMENx;
    TIMER_DISABLE = TIMDISx;
    <wait for interrupt (at end of period)>
 

APPLIES TO REVISION(S):
0.0,  0.1
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6.  05000265 - Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks:

DESCRIPTION:
A noisy board environment combined with slow input edge rates on external SPORT receive (RSCLK) and transmit clocks (TSCLK) may
cause a variety of observable problems. Unexpected high frequency transitions on the RSCLK/TSCLK can cause the SPORT to recognize an
extra noise-induced glitch clock pulse.

The high frequency transitions on the RSCLK/TSCLK are most likely to be caused by noise on the rising or falling edge of external serial
clocks. This noise, coupled with a slowly transitioning serial clock signal, can cause an additional bit-clock with a short period due to high
sensitivity of the clock input. A slow slew rate input allows any noise on the clock input around the switching point to cause the clock
input to cross and re-cross the switching point. This oscillation can cause a glitch clock pulse in the internal logic of the serial port.

Problems which may be observed due to this glitch clock pulse are:

• In stereo serial modes, this will show up as missed frame syncs, causing left/right data swaps.
• In multichannel mode, this will show up as MFD counts appearing inaccurate or skipped frames.
• In Normal (Early) Frame sync mode, data words received will be shifted right one bit. The MSB may be incorrectly captured in sign
extension mode.
• In any mode, received or transmitted data words may appear to be partially right shifted if noise occurs on any input clocks between the
start of frame sync and the last bit to be received or transmitted.

In Stereo Serial mode (bit 9 set in SPORTx_RCR2), unexpected high frequency transitions on RSCLK/TSCLK can cause the SPORT to miss
rising or falling edges of the word clock. This causes left or right words of Stereo Serial data to be lost. This may be observed as a Left/
Right channel swap when listening to stereo audio signals. The additional noise-induced bit-clock pulse on the SPORT's internal logic
results in the FS edge-detection logic generating a pulse with a smaller width and, at the same time, prevents the SPORT from detecting
the external FS signal during the next ‘normal' bit-clock period. The FS pulse with smaller width, which is the output of the edge-detection
logic, is ignored by the SPORT's sequential logic. Due to the fact that the edge detection part of the FS-logic was already ‘triggered', the
next ‘normal' RSCLK will not detect the change in RFS anymore. In I2S/EIAJ mode, this results in one stereo sample being detected/
transferred as two left/right channels, and all subsequent channels will be word-swapped in memory.

In multichannel mode, the mutlichannel frame delay (MFD) logic receives the extra sync pulse and begins counting early or double
counting (if the count has already begun). A MFD of zero can roll over to 15, as the count begins one cycle early.

In early frame sync mode, if the noise occurs on the driving edge of the clock the same cycle that FS becomes active, the FS logic receives
the extra runt pulse and begins counting the word length one cycle early. The first bit will be sampled twice and the last bit will be
skipped.

In all modes, if the noise occurs in any cycle after the FS becomes active, the bit counting logic receives the extra runt pulse and advances
too rapidly. If this occurs once during a work unit, it will finish counting the word length one cycle early. The bit where the noise occurs
will be sampled twice, and the last bit will be skipped.

WORKAROUND:
1) Decrease the sensitivity to noise by increasing the slew rate of the bit clock or make the rise and fall times of serial bit clocks short, such
that any noise around the transition produces a short duration noise-induced bit-clock pulse. This small high-frequency pulse will not
have any impact on the SPORT or on the detection of the frame-sync. Sharpen edges as much as possible, if this is suitable and within EMI
requirements.
2) If possible, use internally generated bit-clocks and frame-syncs.
3) Follow good PCB design practices. Shield RSCLK with respect to TSCLK lines to minimize coupling between the serial clocks.
4) Separate RSCLK, TSCLK, and Frame Sync traces on the board to minimize coupling which occurs at the driving edge when FS switches.

A specific workaround for problems observed in Stereo Serial mode is to delay the frame-sync signal such that noise-induced bit-clock
pulses do not start processing the frame-sync. This can be achieved if there is a larger serial resistor in the frame-sync trace than the one in
the bit-clock trace. Frame-sync transitions should not cross the 50% point until the bit-clock crosses the 10% of VDD threshold (for a
falling edge bit-clock) or the 90% threshold (for a rising edge bit-clock).

To improve immunity to noise, optional hysteresis can be enabled for input pins by setting the appropriate bits in the PORTx_HYSTERESIS
register.

APPLIES TO REVISION(S):
0.0,  0.1
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7.  05000310 - False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory:

DESCRIPTION:
Fetches at the boundary of either reserved memory or L1 Instruction cache memory (if instruction cache enabled) which is covered by a
valid CPLB cause a false Hardware Error (External Memory Addressing Error).

WORKAROUND:
Leave at least 76 bytes free before any boundary with a reserved memory space.  This will prevent false hardware errors from occurring.

Note that this anomaly also happens on the boundary of L1_code_cache if instruction cache is enabled.

APPLIES TO REVISION(S):
0.0,  0.1

8.  05000366 - PPI Underflow Error Goes Undetected in ITU-R 656 Mode:

DESCRIPTION:
If the PPI port is configured in ITU-R 656 Output Mode, the FIFO Underrun bit (UNDR in PPI_STATUS) does not get set when a PPI FIFO
underrun occurs. An underrun can happen due to limited bandwidth or the PPI DMA failing to gain access to the bus due to arbitration
latencies.

WORKAROUND:
None.

APPLIES TO REVISION(S):
0.0,  0.1
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9.  05000426 - Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors:

DESCRIPTION:
A false hardware error is generated if there is an indirect jump or call through a pointer which may point to reserved or illegal memory on
the opposite control flow of a conditional jump to the taken path. This commonly occurs when using function pointers, which can be
invalid (e.g., set to -1). For example:

    CC = P2 == -0x1; 
    IF CC JUMP skip; 
    CALL (P2);
  skip: 
    RTS; 
 
Before the IF CC JUMP instruction can be committed, the pipeline speculatively issues the instruction fetch for the address at -1 (0xffffffff)
and causes the false hardware error. It is a false hardware error because the offending instruction is never actually executed. This can
occur if the pointer use occurs within two instructions of the conditional branch (predicted not taken), as follows:

    BRCC X [predicted not taken]
    Y: JUMP (P-reg);  // If either of these two p-regs describe non-existent
       CALL (P-reg);  // memory, such as external SDRAM when the SDRAM
    X: RTS;           // controller is off, then a hardware error will result.
 

WORKAROUND:
If instruction cache is on or the ICPLBs are enabled, this anomaly does not apply.

If instruction cache is off and ICPLBs are disabled, the indirect pointer instructions must be 2 instructions away from the branch
instruction, which can be implemented using NOPs:

    BRCC X [predicted not taken]
    Y: NOP;          // These two NOPs will properly pad the indirect pointer
       NOP;          // used in the next line.
       JUMP (P-reg);
       CALL (P-reg);
    X: RTS;
 

APPLIES TO REVISION(S):
0.0,  0.1
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10.  05000461 - False Hardware Error when RETI Points to Invalid Memory:

DESCRIPTION:
When using CALL/JUMP instructions targeting memory that does not exist, a hardware error condition will be triggered. If interrupts are
enabled, the Hardware Interrupt (IRQ5) will fire. Since the RETI register will have an invalid location in it, it must be changed before
executing the RTI instruction, even if servicing a different interrupt. Consider the following sequence:

    P2.L = LO (0xFFAFFFFC);  // Load Address in Illegal Memory to P2
    P2.H = HI (0xFFAFFFFC);
    CALL(P2);                // Call to Bad Address Generates Hardware Error IRQ5
    ....
 
    IRQ5_code:               // Hardware Error Interrupt Routine
    RAISE 14;                // (1)
    RTI;                     // (2)
 
    IRQ14_code:
    [--SP] = ( R7:0, P5:0 ); // (3)
    [--SP] = RETI;           // (4)
    ....
 
When the hardware error occurs, the program counter points to the invalid location 0xFFAFFFFC, which is loaded into the RETI register
during the service of the IRQ5 hardware error event. When the RTI instruction (2) is executed, a fetch of the instruction pointed to by the
RETI register, which is an illegal address, is requested before hardware sees the level 14 interrupt pending. This fetch causes another
hardware error to be latched, even though this instruction is not executed. Execution will go to IRQ14 (3). As soon as interrupts are re-
enabled (4), the pending hardware error will fire.

WORKAROUND:
1. Ensure that code doesn't jump to or call bad pointers.

2. Always set the RETI register when returning from a hardware error to something that will not cause a hardware error on the memory
fetch.

APPLIES TO REVISION(S):
0.0,  0.1
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11.  05000473 - Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15:

DESCRIPTION:
A SPORT receive underflow error can be erroneously triggered when the SPORT serial length is greater than 16 bits and an interrupt
occurs as the access is initiated to the 32-bit SPORTx_RX register. Internally, two accesses are required to obtain the 32-bit data over the
internal 16-bit Peripheral Access Bus, and the anomaly manifests when the first half of the access is initiated but the second is held off due
to the interrupt. Application code vectors to service the interrupt and then issues the read of the SPORTx_RX register again when it
subsequently resumes execution after the interrupt has been serviced. The previous read that was interrupted is still pending awaiting
the second half of the 32-bit access, but the SPORT erroneously sends out two requests again. The first access completes the previous
transaction, and the second access generates the underflow error, as it is now attempting to make a read when there is no new data
present.

WORKAROUND:
The anomaly does not apply when using valid serial lengths up to 16 bits, so setting SLEN < 16 is one workaround.

When the length of the serial word is 17-32 bits (16 <= SLEN < 32), accesses to the SPORTx_RX register must not be interrupted, so
interrupts must be disabled around the read. In C:

    int temp_IMASK;
 
    temp_IMASK = cli();
    RX_Data = *pSPORT0_RX;
    sti(temp_IMASK);
 
In assembly:

    P0.H = HI(SPORT0_RX);
    P0.L = LO(SPORT0_RX);
 
    CLI R0;
    R1 = [P0];
    STI R0;
 

APPLIES TO REVISION(S):
0.0,  0.1
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12.  05000477 - TESTSET Instruction Cannot Be Interrupted:

DESCRIPTION:
When the TESTSET instruction gets interrupted, the write portion of the TESTSET may be stalled until after the interrupt is serviced. After
the ISR completes, application code continues by reissuing the previously interrupted TESTSET instruction, but the pending write
operation is completed prior to the new read of the TESTSET target data, which can lead to deadlock conditions.

For example, in a multi-threaded system that utilizes semaphores, thread A checks the availability of a semaphore using TESTSET. If this
original TESTSET operation tested data with a low byte of zero (signifying that the semaphore is available), then the write portion of
TESTSET sets the MSB of the low byte to 1 to lock the semaphore. When this anomaly occurs, the write doesn't happen until TESTSET is re-
issued after the interrupt is serviced. Therefore, thread A writes the byte back out with the lock bit set and then immediately reads that
value back, now erroneously indicating that the semaphore is locked. Provided the semaphore was actually still free when TESTSET was
reissued, this means that the semaphore is now permanently locked because thread A thinks it was locked already, and any other threads
that subsequently pend on the same semaphore are being locked out by thread A, which will now never release it.

WORKAROUND:
The TESTSET instruction must be made uninterruptible to avoid this condition:

    CLI R0;
    TESTSET(P0);
    STI R0;
 
There is no workaround other than this, so events that cannot be made uninterruptible, such as an NMI or an Emulation event, will always
be sensitive to this issue. Additionally, due to the need to disable interrupts, User Mode code cannot implement this workaround.

APPLIES TO REVISION(S):
0.0,  0.1

13.  05000493 - TWI Data Hold Time (tHD;DAT) May Violate the Minimum I2C Specification:

DESCRIPTION:
The TWI Data Hold Time (tHD;DAT) may be less than the I2C minimum specification of 0ns.

WORKAROUND:
None

APPLIES TO REVISION(S):
0.0
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