

F O U N D A T I O N

®

OPC Unified Architecture

Specification

Part 11: Historical Access

Version 1.00

January 5, 2007

OPC Unified Architecture, Part 11 iii Release 1.00

CONTENTS
Page

FOREWORD.. vi
AGREEMENT OF USE...vi
1 Scope.. 1
2 Reference documents .. 1
3 Terms, definitions, and abbreviations ... 1

3.1 OPC UA Part 1 terms.. 1
3.2 OPC UA Part 3 terms.. 2
3.3 OPC UA Part 4 terms.. 2
3.4 OPC UA Historical Access terms ... 2

3.4.1 Aggregate ... 2
3.4.2 Annotation .. 2
3.4.3 BoundingValues .. 2
3.4.4 HistoricalNode .. 2
3.4.5 HistoricalDataNode ... 3
3.4.6 HistoricalEventNode.. 3
3.4.7 Interpolated data ... 3
3.4.8 Modified values ... 3
3.4.9 Raw data .. 3
3.4.10 StartTime / EndTime ... 3
3.4.11 TimeDomain ... 4

3.5 Abbreviations and symbols ... 4
4 Concepts ... 5

4.1 General .. 5
4.2 Data representation .. 5
4.3 Timestamps .. 6
4.4 Bounding values and time domain ... 6
4.5 Changes in AddressSpace over time. .. 7
4.6 Historical Audit Events .. 8
4.7 Model ... 8

4.7.1 HistoricalDataNodes.. 8
4.7.2 HistoricalDataNodes Address Space Model ..10
4.7.3 HistoricalDataNodes Attributes ...10
4.7.4 HistoricalEventNodes ...11
4.7.5 HistoricalEventNodes Address Space model ...12
4.7.6 HistoricalEventNodes Attributes ...13

4.8 History Objects ..14
4.8.1 General ...14
4.8.2 HistoryServerCapabilitiesType..14
4.8.3 HistoryAggregateContainerType ...16
4.8.4 HistoryAggregateType..17

4.9 History DataType definitions ..18
4.9.1 Annotation DataType..18

5 Historical Access specific usage of Services ...20
5.1 General ...20
5.2 Historical Nodes StatusCodes ..20

5.2.1 Overview ...20

OPC Unified Architecture, Part 11 iv Release 1.00

5.2.2 Operation level result codes ...20
5.2.3 Historian Information Bits ...21
5.2.4 Semantics changed ..21

5.3 HistoryReadDetails parameters ..21
5.3.1 Overview ...21
5.3.2 ReadEventDetails structure ..22
5.3.3 ReadRawModifiedDetails structure ...23
5.3.4 ReadProcessedDetails structure...24
5.3.5 ReadAtTimeDetails structure ..25

5.4 HistoryData parameters ...26
5.4.1 Overview ...26
5.4.2 HistoryData type ..26
5.4.3 HistoryEvent type ...26

5.5 HistoryUpdateDetails parameter...26
5.5.1 Overview ...26
5.5.2 UpdataDataDetails structure...27
5.5.3 UpdateEventDetails structure ...28
5.5.4 DeleteRawModifiedDetails structure ...29
5.5.5 DeleteAtTimeDetails structure ..29
5.5.6 DeleteEventDetails structure ..30

5.6 Aggregate Details ..30
5.6.1 General ...30
5.6.2 Common characteristics ...30
5.6.3 Aggregate specific characteristics ..33

6 Client conventions ..57
6.1 How clients may request timestamps..57

OPC Unified Architecture, Part 11 1 Release 1.00

1 Scope

This specification is part of the overall OPC Unified Architecture specification series and
defines the information model associated with Historical Access (HA). It particularly includes
additional and complementary descriptions of the NodeClasses and Attributes needed for
Historical Access, additional standard Properties, and other information and behaviour.

The complete AddressSpace model including all NodeClasses and Attributes is specified in
[UA Part 3]. The predefined information model is defined in [UA Part 5]. The services to detect
and access historical data and events, and description of the ExtensibleParameter types are
specified in [UA Part 4].

2 Reference documents

[UA Part 1] OPC UA Specification: Part 1 – Concepts, Version 1.0 or later
http://www.opcfoundation.org/UA/Part1/

[UA Part 3] OPC UA Specification: Part 3 – Address Space Model, Version 1.0 or later
http://www.opcfoundation.org/UA/Part3/

[UA Part 4] OPC UA Specification: Part 4 – Services, Version 1.0 or later
http://www.opcfoundation.org/UA/Part4/

[UA Part 5] OPC UA Specification: Part 5 – Information Model, Version 1.0 or later
http://www.opcfoundation.org/UA/Part5/

[UA Part 7] OPC UA Specification: Part 7 – Profiles, Version 1.0 or later
http://www.opcfoundation.org/UA/Part7/

[UA Part 8] OPC UA Specification: Part 8 – Data Access, Version 1.0 or later
http://www.opcfoundation.org/UA/Part8/

[UA Part 9] OPC UA Specification: Part 9 – Alarm & Conditions, Version 1.0 or later
http://www.opcfoundation.org/UA/Part9/

3 Terms, definitions, and abbreviations

3.1 OPC UA Part 1 terms

The following terms defined in [UA Part 1] apply.

1) AddressSpace
2) Attribute
3) BrowseName
4) Event
5) Node
6) NodeId
7) Notification
8) Object
9) ObjectType

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part9/

OPC Unified Architecture, Part 11 2 Release 1.00

3.2 OPC UA Part 3 terms

The following terms defined in [UA Part 3] apply.
1) DataVariable
2) EventType
3) Property
4) Variable

3.3 OPC UA Part 4 terms
The following terms defined in [UA Part 4] apply.

1) ExtensibleParameter
2) StatusCode
3) ServerTimestamp
4) SourceTimestamp

3.4 OPC UA Historical Access terms

3.4.1 Aggregate

Provides summarized data values of process data.

An Aggregate is a way to produce a set of values derived from the raw data in the historian.
Clients may specify an Aggregate when using the ReadHistory service. Complete details of
the various standard Aggregates and their behaviour are outlined in Clause 5.6. Common
Aggregates include averages over a given time range, minimum over a time range and
maximum over a time range.

3.4.2 Annotation

An Annotation is a user entered comment that is associated with an item at a given instance
in time. There does not have to be a value stored at that time.

3.4.3 BoundingValues

BoundingValues are the values that are associated with the starting and ending time of an
interval specified when reading from the historian. BoundingValues are required by clients to
determine the starting and ending values when requesting raw data over a time range. If a raw
data value exists at the start or end point, it is considered the bounding value even though it
is part of the data request. If no raw data value exists at the start or end point, then the server
will determine the boundary value, which may require data from a data point outside of the
requested range. See Clause 4.4 for details on using BoundingValues.

3.4.4 HistoricalNode

A HistoricalNode is a term used in this document to represent any Object, Variable, Property
or View in the AddressSpace for which a client may read and/or update historical data or
events. The terms “HistoricalNode’s history” or “history of a HistoricalNode” will refer to the
time series data or events stored for this HistoricalNode where HistoricalNode is an Object,
Variable, Property or View. The term HistoricalNode refers to both HistoricalDataNodes and
HistoricalEventNodes, and is used when referencing aspects of the specification that apply to
accessing historical data and events.

OPC Unified Architecture, Part 11 3 Release 1.00

3.4.5 HistoricalDataNode

A HistoricalDataNode represents any Variable or Property in the AddressSpace for which a
client may read and/or update historical data. The terms “HistoricalDataNode’s history” or
“history of a HistoricalDataNode” will refer to the time series data stored for this
HistoricalNode where HistoricalNode is an Object, Variable, Property or View. Some
examples of such data are:

• device data (like temperature sensors)

• calculated data

• status information (open/closed, moving)

• dynamically changing system data (like stock quotes)

• diagnostic data

The term HistoricalDataNodes is used when referencing aspects of the specification that apply
to accessing historical data only.

3.4.6 HistoricalEventNode

A HistoricalEventNode represents any Object or View in the AddressSpace for which a client
may read and/or update historical events. The terms “HistoricalEventNode’s history” or
“history of a HistoricalEventNode” will refer to the time series events stored in some historical
system. Some examples of such data are:

• notifications

• system alarms

• operator action events

• system triggers (such as new orders to be processed)

The term HistoricalEventNode is used when referencing aspects of the specification that apply
to accessing historical events only.

3.4.7 Interpolated data

Interpolated data is data that is calculated from the data in the archive. An interpolated value
is calculated from the stored data points on either side of the requested timestamp.

3.4.8 Modified values

A modified value is a HistoricalDataNode’s value that has been changed (or deleted) after it
was stored in the historian. A lab data entry value is not a modified value, but if a user
corrects a lab value, the original value would be considered a modified value, and would be
returned during a request for modified values. Unless specified otherwise, all historical
services operate on the current, or most recent, value for the specified HistoricalDataNode at
the specified timestamp. Requests for modified values are used to access values that have
been superseded.

3.4.9 Raw data

Raw data is data that is stored within the historian for a HistoricalDataNode . The data may be
all data collected for the DataItem or it may be some subset of the data depending on the
historian and the storage rules invoked when the item values were saved.

3.4.10 StartTime / EndTime

The StartTime and EndTime specify the bounds of a history request and define the time
domain of the request. For all requests, a value falling at the end time of the time domain is
not included in the domain, so that requests made for successive, contiguous time domains
will include every value in the archive exactly once. See the examples in Clause 5.6.2.2

OPC Unified Architecture, Part 11 4 Release 1.00

3.4.11 TimeDomain

The interval of time covered by a particular request, or by a particular response. In general, if
the start time is earlier than or the same as the end time, the time domain is considered to
begin at the start time and end just before the end time; if the end time is earlier than the start
time, the time domain still begins at the start time and ends just before the end time, with time
"running backward" for the particular request and response. In both cases, any value which
falls exactly at the end time of the TimeDomain is not included in the TimeDomain. See the
examples in section 4.4. BoundingValues effect the time domain as described in section 4.4.

All timestamps which can legally be represented in a UtcTime DataType are valid timestamps,
and the server may not return an invalid argument result code due to the timestamp being
outside of the range for which the server has data. See [UA Part 3] for a description of the
range and granularity of this DataType. Servers are expected to handle out-of-bounds
timestamps gracefully, and return the proper StatusCodes to the clients

3.5 Abbreviations and symbols
DA Data Access
DCS Distributed Control System
HD Historical Data
PLC Programmable Logic Controller
UA Unified Architecture

OPC Unified Architecture, Part 11 5 Release 1.00

4 Concepts

4.1 General

The OPC UA Historical Access specification defines the representation of historical time
series data and historical event data in the OPC Unified Architecture. Included is the
specification of the representation of historical data and events in the OPC UA AddressSpace
and the definition of aggregates used in processed data retrieval.

4.2 Data representation

An OPC UA Server supporting Historical Access provides one or more OPC UA Clients with
transparent access to different historical data and/or historical event sources (e.g. process
historians, event historians etc.).

The historical data or events may be located in a proprietary data archive, database or a short
term buffer within memory. An OPC UA Server supporting Historical Access may or may not
provide historical data and events for some or all available Variables, Objects or Views within
the server AddressSpace. As with the other information models, the AddressSpace of an
OPC UA Server supporting Historical Access is accessed via the View or Query service sets.

An OPC UA Server supporting Historical Access provides a way to access or communicate to
a set of historical data and/or historical event sources. The types of sources available are a
function of the server implementation.

Figure 1 illustrates how the AddressSpace of a UA server might consist of a broad range of
different historical data and/or historical event sources.

Operator
Station 2

Operator
Display

Event
Logger, etc.

OPC UA HA Server

server client

OPC UA HA
Server

OPC DA
Server

OPC HDA
Server

Proprietary
Data Server

OPC A&E
Server

Figure 1 - Possible OPC UA Server supporting Historical Access

The server may be implemented as a stand alone OPC UA Server that collects data from
another OPC UA Server, a legacy OPC HDA Server, a legacy OPC DA Server, a legacy OPC
A&E Server or another data source. The clients that reference the OPC UA Server supporting
Historical Access for historical data may be simple trending packages that just desire values
over a given time frame or they may be complex reports that require data in multiple formats.

OPC Unified Architecture, Part 11 6 Release 1.00

4.3 Timestamps

The nature of OPC UA Historical Access requires that a single timestamp reference be used
to relate the multiple data points or events, and clients may request which timestamp will be
used as the reference. See [UA Part 4] for details on the TimestampsToReturn enumeration.
An OPC UA Server supporting Historical Access will treat the various timestamp settings as
described below.

For HistoricalDataNodes:

SOURCE Return the SourceTimestamp. SourceTimestamp is used to determine which
historical data values are returned.

SERVER Return the ServerTimestamp. ServerTimestamp is used to determine which
historical data values are returned.

BOTH Return both the SourceTimestamp and ServerTimestamp. SourceTimestamp is
used to determine which historical data values are returned.

NEITHER This is not a valid setting for any HistoryRead accessing HistoricalDataNodes.

For HistoricalEventNodes:

SOURCE Return the SourceTimestamp. SourceTimestamp is used to determine which
historical events are returned.

SERVER This is not valid setting for any HistoryRead accessing HistoricalEventNodes.
BOTH This is not valid setting for any HistoryRead accessing HistoricalEventNodes.
NEITHER This is not valid setting for any HistoryRead accessing HistoricalEventNodes.

Any reference to Timestamps through out this specification will represent either
ServerTimestamp or SourceTimestamp as dictated by the type requested in the ReadHistory
service. Some servers may not support historizing both SourceTimestamp and
ServerTimestamp, but it is expect that all servers will support historizing SourceTimestamp
(see [UA Part 7] for details on Server Profiles).

4.4 Bounding values and time domain

When accessing HistoricalDataNodes via the ReadHistory Service, requests can set a flag,
returnBounds, indicating that a BoundingValue are requested. For a complete description of
the extensible Parameter HistoryReadDetails that include all of these parameters see section
5.3. The concept of bounding values and how they affect the time domain that is requested
as part of the ReadHistory request is further explained in this section. This section also
provides examples of TimeDomains to further illustrate the expected behaviour.

When making a request for historical data using the ReadHistory Service, required
parameters include a startTime and endTime. These two parameters define the TimeDomain
of the ReadHistory request. This TimeDomain includes all values between the StartTime and
EndTime, and any value that falls exactly on the StartTime, but not any value that falls exactly
on the EndTime. For example, assuming bounding values are not requested, if data is
requested from 1:00 to 1:05, and then from 1:05 to 1:10, a value that exists at exactly 1:05
would be included in the second request, but not in the first.

Given that a historian has values stored at 5:00, 5:02, 5:03, 5:05 and 5:06, the data returned
from a RAW data call is given by Table 1. In the table, FIRST stands for a tuple with a value
of DateTime.Min, a timestamp of the specified StartTime, and a StatusCode of Bad_NoBound.
LAST stands for a tuple with a value of DateTime.Max, a timestamp of the specified EndTime,
and a StatusCode of Bad_NoBound

OPC Unified Architecture, Part 11 7 Release 1.00

Table 1 – Bounding Value Examples

Start Time End Time numValuesPer
Node

Bounds Data Returned

5:00 5:05 0 Yes 5:00, 5:02, 5:03, 5:05
5:00 5:05 0 No 5:00, 5:02, 5:03
5:01 5:04 0 Yes 5:00, 5:02, 5:03, 5:05
5:01 5:04 0 No 5:02, 5:03
5:05 5:00 0 Yes 5:05, 5:03, 5:02, 5:00
5:05 5:00 0 No 5:05, 5:03, 5:02
5:04 5:01 0 Yes 5:05, 5:03, 5:02, 5:00
5:04 5:01 0 No 5:03, 5:02
4:59 5:05 0 Yes FIRST, 5:00, 5:02, 5:03, 5:05
4:59 5:05 0 No 5:00, 5:02, 5:03
5:01 5:07 0 Yes 5:00, 5:02, 5:03, 5:05, 5:06, LAST
5:01 5:07 0 No 5:02, 5:03, 5:05, 5:06
5:00 5:05 3 Yes 5:00, 5:02, 5:03
5:00 5:05 3 No 5:00, 5:02, 5:03
5:01 5:04 3 Yes 5:00, 5:02, 5:03
5:01 5:04 3 No 5:02, 5:03
5:05 5:00 3 Yes 5:05, 5:03, 5:02
5:05 5:00 3 No 5:05, 5:03, 5:02
5:04 5:01 3 Yes 5:05, 5:03, 5:02
5:04 5:01 3 No 5:03, 5:02
4:59 5:05 3 Yes FIRST, 5:00, 5:02
4:59 5:05 3 No 5:00, 5:02, 5:03
5:01 5:07 3 Yes 5:00, 5:02, 5:03
5:01 5:07 3 No 5:02, 5:03, 5:05
5:00 DateTime.Max 3 Yes 5:00, 5:02, 5:03
5:00 DateTime.Max 3 No 5:00, 5:02, 5:03
5:00 DateTime.Max 6 Yes 5:00, 5:02, 5:03, 5:05, 5:06, LAST
5:00 DateTime.Max 6 No 5:00, 5:02, 5:03, 5:05, 5:06
DateTime.Min 5:06 3 Yes 5:06,5:05,5:03
DateTime.Min 5:06 3 No 5:06,5:05,5:03
DateTime.Min 5:06 6 Yes 5:06,5:05,5:03,5:02,5:00,FIRST
DateTime.Min 5:06 6 No 5:06, 5:05, 5:03, 5:02, 5:00
4:48 4:48 0 Yes FIRST,5:00
4:48 4:48 0 No NODATA
4:48 4:48 1 Yes FIRST
4:48 4:48 1 No NODATA
4:48 4:48 2 Yes FIRST,5:00
5:00 5:00 0 Yes 5:00,5:02
5:00 5:00 0 No 5:00
5:00 5:00 1 Yes 5:00
5:00 5:00 1 No 5:00
5:01 5:01 0 Yes 5:00, 5:02
5:01 5:01 0 No NODATA
5:01 5:01 1 Yes 5:00
5:01 5:01 1 No NODATA

4.5 Changes in AddressSpace over time.

Clients use the browse Services of the View Service Set to navigate through the
AddressSpace to discover the Properties supported by one or more specified Nodes. See
[UA Part 4] These Services provide the most current information about the AddressSpace. It

OPC Unified Architecture, Part 11 8 Release 1.00

is possible and probable that the AddressSpace of a Server will change over time (i.e.
TypeDefinitions may change, NodeIds may be modified, added or deleted).

Server developers and administrators need to be aware that modifying the AddressSpace may
impact a Client’s ability to access historical information. If the history for a HistoricalNode is
still required, but the HistoricalNode is no longer an active point, the object should be
maintained in the address space, with the appropriate Access Level attribute and Historizing
attribute settings (see [UA Part 3] for details on access levels).

4.6 Historical Audit Events

AuditEvents are generated as a result of an action taken on the server by a client of the
server. For example, in response to a client issuing a write to a Variable, the server would
generate an AuditEvent describing the Variable as the source and the user and client session
as the initiators of the Event.

Servers must generate events of the AuditUpdateEventType or a sub-type of this type for all
invocations of the HistoryUpdate service on any HistoricalNode. See [UA Part 3] and
[UA Part 5] for details on the AuditUpdateEventType Model. In the case where the
HistoryUpdate service is invoked to insert HistoricalEvents, the AuditUpdateEvent must
include the EventId of the inserted event and a description that indicates that the event was
inserted. All other updates must follow the guidelines provided in the AuditUpdateEventType
Model.

4.7 Model

4.7.1 HistoricalDataNodes

4.7.1.1 General

The Historical Data model defines additional ReferenceTypes, ModellingRules and
ObjectTypes. These descriptions also include required use cases for HistoricalDataNodes.

4.7.1.2 HasHistoricalConfiguration

The HasHistoricalConfiguration ReferenceType is a concrete ReferenceType and can be used
directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind a DataVariable or a Property to its
HistoricalConfigurationType Object. All DataVariables and Properties that expose historical
data must have exactly one HasHistoricalConfiguration reference.

The SourceNode of this ReferenceType must be a DataVariable or Property. The TargetNode
must be an Object of the ObjectType HistoricalConfigurationType.

Multiple DataVariables or Properties may reference the same HistoricalConfigurationType
Object.

4.7.1.3 OptionalNew

ModellingRules are an extendable concept in OPC UA; [UA Part 3] defines the rules “None”,
“Shared” and “New”. Some Historical Access properties, however, are optional and this part
therefore also uses OptionalNew ModellingRule. This ModellingRule is defined in [UA Part 8]

4.7.1.4 HistoricalConfigurationType

The Historical Access Data model extends the standard type model by defining an additional
ObjectType, the HistoricalConfigurationType This HistoricalConfigurationType defines the
general characteristics of a node that defines the historical configuration of any variable or
property that is defined to contain history. It is formally defined in Table 2.

OPC Unified Architecture, Part 11 9 Release 1.00

Table 2 – HistoricalConfigurationType Definition

Attribute Value
BrowseName HistoricalConfigurationType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the BaseObjectType defined in [UA Part 5]

HasProperty Variable Stepped Boolean PropertyType New
HasProperty Variable Definition String PropertyType Optional New
HasProperty Variable MaxTimeInterval Duration PropertyType Optional New
HasProperty Variable MinTimeInterval Duration PropertyType Optional New
HasProperty Variable ExceptionDeviation Double PropertyType Optional New
HasProperty Variable ExceptionDeviationFormat Enum PropertyType Optional New

Stepped specifies whether the historical data was collected in such a manner that it should be
displayed as interpolated (sloped Lines between point) or as Stepped (vertically-connected
horizontal lines between points) when raw data is examined. This property also effect how
some aggregates are calculated. A value of True indicates stepped mode. A value of False
indicates interpolated mode. The default value is False.

Definition is a vendor-specific, human readable string that specifies how the value of this
HistoricalDataNode is calculated. Definition is non-localized and will often contain an equation
that can be parsed by certain clients.

 Example: Definition ::= “(TempA – 25) + TempB”

MaxTimeInterval specifies the maximum interval between data points in the history repository
regardless of their value change (see [UA Part 4] for definition of Duration).

MinTimeInterval specifies the minimum interval between data points in the history repository
regardless of their value change (see [UA Part 4] for definition of Duration).

ExceptionDeviation specifies the minimum amount that the data for the HistoricalDataNode
must change in order for the change to be reported to the history database.

ExceptionDeviationFormat specifies how the ExceptionDeviation is determined. Its values
are defined in Table 3.

Table 3 – ExceptionDeviationFormat Values

Value Description

ABSOLUTE_VALUE_0 ExceptionDeviation is an absolute Value.
PERCENT_OF_RANGE_1 ExceptionDeviation is a percent of InstrumentRange (See [UA Part 8])
PERCENT_OF_VALUE_2 ExceptionDeviation is a percent of Value.

OPC Unified Architecture, Part 11 10 Release 1.00

4.7.2 HistoricalDataNodes Address Space Model

HistoricalDataNodes are always part of other Nodes in the AddressSpace. They are never
defined by themselves. A simple example of a container for HistoricalDataNodes would be a
“Folder Object”. But it can be an Object of any other type.

Figure 2 illustrates the basic AddressSpace model of a DataVariable that includes History.

Figure 2 – Representation of a Variable with History in the AddressSpace

Each Variable with history must have the Historizing attribute (see [UA Part 3]) defined and
include a HasHistoricalConfiguration reference. The HistoricalConfigurationType Instance
must define the stepped property, but may also define any of the optional properties.

Not every Variable in the AddressSpace might contain history data. To see if history data is
available, a client will look for the HistoryRead/Write states in the AccessLevel Attribute
(see [UA Part 3] for details on use of this Attribute).

Figure 2 only shows a subset of Attributes and Properties. Other Attributes as that are defined
for Variables in [UA Part 3], and in the following sections – may also be available.

4.7.3 HistoricalDataNodes Attributes

This section lists the Attributes of Variables that have particular importance for historical data.
They are specified in detail in [UA Part 3]. The following Attributes are particularly important
for HistoricalDataNodes.

• Value
• DataType
• AccessLevel
• Historizing

OPC Unified Architecture, Part 11 11 Release 1.00

Value is the value of the Variable. Its data type is defined by the DataType Attribute. This is
the Attribute for which historical data is collected. The AccessLevel attribute defines the
server’s basic ability to access history data for this Variable.

When a client requests the Value attribute, the server in addition always returns a StatusCode
(the quality and the server’s ability to access/provide the value) and a ServerTimestamp
and/or a SourceTimestamp. See [UA Part 4] for details on StatusCode and the meaning of
the two timestamps. Specific StatusCodes for HistoricalDataNodes are defined in Clause 5.2.

4.7.4 HistoricalEventNodes

4.7.4.1 General

The Historical Event model defines additional ReferenceTypes, ModellingRules and
ObjectTypes. These descriptions also include required use cases for HistoricalEventNodes.

4.7.4.2 HasHistoricalEventConfiguration

The HasHistoricalEventConfiguration ReferenceType is a concrete ReferenceType and can be
used directly. It is a subtype of NonHierarchicalReferences.

The semantics of this ReferenceType is to bind an Object which exposes an EventNotifier
that exposes historical events (i.e. has the EventNotifier Attribute for HistoryRead or
HistoryWrite set to one) to a HistoricalEventConfigurationType Object. All objects which
expose EventNotifiers that expose historical events must have exactly one
HasHistoricalEventConfiguration reference.

The SourceNode of this ReferenceType must be an Object which exposes a EventNotifier that
exposes historical events. The TargetNode must be an Object of the ObjectType
HistoricaEventlConfigurationType.

Multiple EventNotifiers may reference the same HistoricalEventConfigurationType Object.

4.7.4.3 OptionalNew

ModellingRules are an extendable concept in OPC UA; [UA Part 3] defines the rules “None”,
“Shared” and “New”. Some Historical Access properties, however, are optional and this part
therefore also uses OptionalNew ModellingRule. This ModellingRule is defined in [UA Part 8]

4.7.4.4 HistoricalEventConfigurationType

The Historical Access Event model extends the standard type model by defining an additional
ObjectType, the HistoricalEventConfigurationType This HistoricalEventConfigurationType
defines the general characteristics of a node that defines the historical configuration of any
Object that exposes an EventNotifier that exposes historical events. It is formally defined in
Table 4

Table 4 – HistoricalEventConfigurationType Definition

Attribute Value
BrowseName HistoricalEventConfigurationType
IsAbstract False
References NodeClass BrowseName ModellingRule
Subtype of the BaseObjectType defined in [UA Part 5]

GeneratesEvent ReferenceType HistoricalEvents01 OptionalNew

HistoricalEvents: The semantic of this ReferenceType is to relate EventTypes that are being
historized to the object that they are available from. This ReferenceType and any subtypes

OPC Unified Architecture, Part 11 12 Release 1.00

are intended to be used for discovery of types of historical Events in a server. They are not
required to be present for a server to historize Events. This ReferenceType is as described
in [UA Part 3]. This application of this ReferenceType further restricts the use as follows:

The SourceNode of this ReferenceType must be a Node that is of type
HistoricalEventConfigurationType

The TargetNode of this ReferenceType must be the EventType that is available as historical
events.

The Object of HistoricalEventConfigurationType can expose more then one of these
references. The resulting list of EventType Nodes (and there sub types) is the summary list
the types of Events that are available as historical events. A server that does not historize all
attributes associated with a given EventType should define a new EventType that describes
the attributes that are being historized and add a Reference to it from it's
HistoricalEventConfigurationType Object. The BrowseName of the reference can be any
name that is unique for the Object of HistoricalEventConfigurationType and follows the
naming requirements of BrowseNames. A user should review all GenerateEvent references in
the Object of HistoricalEventConfigurationType that is associated with the Object that is
exposing historical events

4.7.5 HistoricalEventNodes Address Space model

HistoricalEventNodes are Objects or Views in the AddressSpace that expose historical
Events. These Nodes are identified via the EventNotifier Attribute, and provide some
historical subset of the Events generated by the server.

Each HistoricalEventNode is represented by an Object or View with a specific set of
Attributes. Additional characteristics of HistoricalEventNodes are defined using Properties (i.e.
Variables that are referenced using HasProperty References). For a detailed description of
Variable and Properties see [UA Part 3]. This specification defines Properties that have been
found useful for a large range of historical event clients.

Not every Object or View in the AddressSpace may be a HistoricalEventNode. To qualify as
HistoricalEventNodes, a Node has to contain historical events. To see if historical events are
available, a client will look for the HistoryRead/Write states in the EventNotifier Attribute.
See [UA Part 3] for details on use of this Attribute.

OPC Unified Architecture, Part 11 13 Release 1.00

Figure 3 illustrates the basic AddressSpace model of an Event that includes History.

Server

BaseEventType

Instance

HasHistorical
 EventConfiguration

PlantArea1 Boiler1

HistoricalEventConfiguration1 HistoricalEventConfiguration2

HasHistorical
 EventConfiguration

HasHistorical
 EventConfiguration

MyHistoricalEventConfigurationType HistoricalEventConfigurationType

AuditEvent
Type

SystemEvent
Type

MyHistoricalSystem
EventType

YourHistoricalSystem
EventType

AuditSecurity
EventType

Auditupdate
EventType

AuditChannel
EventType

AuditSession
EventType

DeviceFailure
EventType

RefreshStart
EventType

RefreshEnd
EventType

RefreshRequired
EventType

MyDeviceFailure
EventType

MyHistoricalDevice
FailureEventType

MyHistoricalMyDevice
FailureEventType

YourHistoricalDevice
FailureEventType

YourHistoricalYourDevice
FailureEventType

GeneratesEvents

GeneratesEvents

GeneratesEvents

Type
Definitons

Figure 3 – Representation of an Event with History in the AddressSpace

4.7.6 HistoricalEventNodes Attributes

This section lists the Attributes of Objects or Views that have particular importance for
historical events. They are specified in detail in [UA Part 3]. The following Attributes are
particularly important for HistoricalEventNodes.

• EventNotifier
The EventNotifier Attribute is used to indicate if the Node can be used to read and/or update
historical Events.

OPC Unified Architecture, Part 11 14 Release 1.00

4.8 History Objects

4.8.1 General
OPC UA servers can support several different functionalities and capabilities. The following
standard Objects are used to expose these capabilities in a common fashion, and there are
several standard defined concepts that can be extended by vendors.

4.8.2 HistoryServerCapabilitiesType

The ServerCapabilitiesType Objects for any OPC UA Server supporting Historical Access
must contain a Reference to a HistoryServerCapabilitiesType Object.

The content of this BaseObjectType is already defined by its type definition in [UA Part 5]. The
Object extensions are formally defined in Table 5.

OPC Unified Architecture, Part 11 15 Release 1.00

Table 5 – HistoryServerCapabilitiesType Definition

Attribute Value
BrowseName HistoryServerCapabilitiesType
IsAbstract False
ArraySize -1
References Node Class Browse Name Data Type Type Definition Instantiation

Rule
HasProperty Variable AccessHistoryDataCapability Boolean PropertyType New
HasProperty Variable AccessEventsCapability Boolean PropertyType New
HasProperty Variable MaxReturnValues UInt32 PropertyType New
HasProperty Variable TreatUncertainAsBad Boolean PropertyType New
HasProperty Variable PercentDataBad UInt8 PropertyType New
HasProperty Variable PercentDataGood UInt8 PropertyType New
HasProperty Variable SteppedInterpolationMode Boolean PropertyType New
HasProperty Variable InsertDataCapability Boolean PropertyType New
HasProperty Variable ReplaceDataCapability Boolean PropertyType New
HasProperty Variable UpdateCapability Boolean PropertyType New
HasProperty Variable DeleteRawCapability Boolean PropertyType New
HasProperty Variable DeleteAtTimeCapability Boolean PropertyType New
HasProperty Object HistoryAggregates -- HistoryAggregateConta

inerType
New

All UA server that support Historical data access must include the HistoryServerCapabilities
as part of its ServerCapabilities. If any of these Properties do not contain a valid value, the
client application should use the default values.

The AccessHistoryDataCapability Variable defines if the server supports access to historical
data values. A value of True indicates the server supports access to history for
HistoricalNodes, a value of False indicates the server does not support access to history for
HistoricalNodes. The default value is False. At least one of AccessHistoryDataCapability or
AccessEventsCapability must have a value of True for the server to be a valid OPC UA Server
supporting Historical Access.

The AccessHistoryEventCapability Variable defines if the server supports access to historical
events. A value of True indicates the server supports access to history of events, a value of
False indicates the server does not support access to history of events. The default value is
False. At least one of AccessHistoryDataCapability or AccessEventsCapability must have a
value of True for the server to be a valid OPC UA Server supporting Historical Access.

The MaxReturnValues Variable defines maximum number of values that can be returned by
the server for each HistoricalNode accessed during a request. A value of 0 indicates that the
server forces no limit on the number of values it can return. It is valid for a server to limit the
number of returned values and return a continuation point even if MaxReturnValues = 0. For
example, it is possible that although the server does not impose any restrictions, the
underlying system may impose a limit that the server is not aware of. The default value is 0.

The TreatUncertainAsBad Variable indicates how the server treats data returned with a
StatusCode severity Uncertain with respect to aggregate calculations. A value of True
indicates the server considers the severity equivalent to Bad, a value of False indicates the
server considers the severity equivalent to Good. The default value is True.

The PercentDataBad Variable indicates the Maximum percentage of bad data in a given
interval above which would cause the StatusCode for the given interval for processed data
request to be set to Bad. (Uncertain is treated as defined above). For values equal to or
below this percentage the StatusCode would be Uncertain or Good. For details on which
aggregates use the PercentDataBad Variable, see the definition of each aggregate. The
default value is 0.

The PercentDataGood Variable indicates the minimum percentage of Good data in a given
interval which would cause the StatusCode for the given interval for the processed data
requests to be set to Good. For values below this percentage the StatusCode would be

OPC Unified Architecture, Part 11 16 Release 1.00

Uncertain or Bad. For details on which aggregates use the PercentDataGood Variable, see
the definition of each aggregate. The default value is 100.

The SteppedInterpolationMode Variable indicates how the server interpolates data when no
boundary value exists (i.e. interpolating into the future from the last known value). A value of
False indicates that the server will use a stepped format, and hold the last known value
constant. A value of True indicates the server will project the value using straight line
interpolation. The default value is False.

The InsertDataCapability Variable indicates support for the Insert capability. A value of True
indicates the server supports the capability to insert new values in history, but not overwrite
existing values. The default value is False.

The ReplaceDataCapability Variable indicates support for the Replace capability. A value of
True indicates the server supports the capability to replace existing values in history, but will
not insert new values. The default value is False.

The UpdateCapability Variable indicates support for the Update capability. A value of True
indicates the server supports the capability to insert new values into history if none exists, and
replace values that currently exist. The default value is False.

The DeleteRawCapability Variable indicates support for the delete raw values capability. A
value of True indicates the server supports the capability to delete raw values in history. The
default value is False.

The DeleteAtTimeCapability Variable indicates support for the delete at time capability. A
value of True indicates the server supports the capability to delete a value at a specified time.
The default value is False.

The HistoryAggregates Object defines the aggregate capabilities supported by the UA server.
This Object has ‘HasComponent’ references to zero or more HistoryAggregate Objects which
define a specific aggregate supported by the server. The HistoryAggregate Objects are
instances of the HistoryAggregateType ObjectType defined in Clause 4.8.3.

4.8.3 HistoryAggregateContainerType

This ObjectType defines a container for the standard OPC UA Server supporting Historical
Access and vendor aggregates supported by the UA server. This ObjectType is formally
defined in Table 6. . All servers that expose aggregates must define this ObjectType and
define the aggregates that it exposes.

Table 6 – HistoryAggregatesType Definition

Attribute Value
BrowseName HistoryAggregateContainerType
IsAbstract False
References Node

Class
BrowseName DataType Type

Definition
Mod.
Rule

Subtype of the BaseObjectType defined in [UA Part 5]

OPC Unified Architecture, Part 11 17 Release 1.00

4.8.4 HistoryAggregateType

This ObjectType defines an aggregate supported by a UA server. This object is formally
defined in Table 7.

Table 7 – HistoryAggregateType Definition

Attribute Value
BrowseName HistoryAggregateType
IsAbstract False
References Node

Class
BrowseName DataType Type

Definition
Mod.
Rule

Subtype of the BaseObjectType defined in [UA Part 5]

For the HistoryAggregateType, the Description Attribute (inherited from the Base NodeClass),
is mandatory. The Description Attribute provides a localized description of the aggregate

Table 8 outlines the BrowseName and Description for the standard aggregates.

OPC Unified Architecture, Part 11 18 Release 1.00

Table 8 – Standard HistoryAggregateType BrowseNames

BrowseName Description

 Interpolation Aggregate
Interpolative Do not retrieve an aggregate. This is used for retrieving interpolated Values.
 Data Averaging and Summation Aggregates
Average Retrieve the average data over the resample interval.
TimeAverage Retrieve the time weighted average data over the resample interval.

Total Retrieve the sum of the data over the resample interval.
TotalizeAverage Retrieve the totalized Value (time integral) of the data over the resample interval.
 Data Variation Aggregates
Minimum Retrieve the minimum Value in the resample interval.
Maximum Retrieve the maximum Value in the resample interval.
MinimumActualTime Retrieve the minimum value in the resample interval and the Timestamp of the minimum value.
MaximumActualTime Retrieve the maximum value in the resample interval and the Timestamp of the maximum value.
Range Retrieve the difference between the minimum and maximum Value over the sample interval.
 Counting Aggregates
AnnotationCount Retrieve the number of annotations in the interval.
Count Retrieve the number of raw Values over the resample interval.
DurationInState0 Retrieve the time (in seconds) a Boolean was in a 0 state
DurationInState1 Retrieve the time (in seconds) a Boolean was in a 1 state
NumberOfTransitions Retrieve the number of state changes a Boolean value experianced in the interval
 Time Aggregates
Start Retrieve the Value at the beginning of the resample interval. The time stamp is the time stamp

of the beginning of the interval.
End Retrieve the Value at the end of the resample interval. The time stamp is the time stamp of the

end of the interval.
Delta Retrieve the difference between the first and last Value in the resample interval.
 Data Quality Aggragates
DurationGood Retrieve the duration (in seconds) of time in the interval during which the data is good.
DurationBad Retrieve the duration (in seconds) of time in the interval during which the data is bad.
PercentGood Retrieve the percent of data (0 to 100) in the interval which has good StatusCode.
PercentBad Retrieve the percent of data (0 to 100) in the interval which has bad StatusCode.
WorstQuality Retrieve the worst StatusCode of data in the interval.

4.9 History DataType definitions

4.9.1 Annotation DataType

This DataType describes annotation information for the history data items. Its elements are
defined in Table 9.

Table 9 – Annotation Structure

Name Type Description
Annotation structure
 message String Annotation message or text
 userName String The user that added the annotation, as supplied by underlying system.
 annotationTime UtcTime The time the annotation was added. This will probably be different than the

SourceTimestamp

Its representation in the AddressSpace is defined in Table 10.

OPC Unified Architecture, Part 11 19 Release 1.00

Table 10 – Annotation Definition

Attributes Value
Browse Name Annotation

OPC Unified Architecture, Part 11 20 Release 1.00

5 Historical Access specific usage of Services

5.1 General

[UA Part 4] specifies all Services needed for OPC UA Historical Access. In particular:

• The Browse Service Set or Query Service Set to detect HistoricalNodes and their
configuration.

• The HistoryRead and HistoryUpdate Services of the Attribute Service Set to read and
update history of HistoricalNodes.

5.2 Historical Nodes StatusCodes

5.2.1 Overview
This section defines additional codes and rules that apply to the StatusCode when used for
HistoricalNodes.

The general structure of the StatusCode is specified in [UA Part 4]. It includes a set of
common operational result codes which also apply to historical data and/or events.

5.2.2 Operation level result codes
In OPC UA Historical Access the StatusCode is used to indicate the conditions under which a
Value or Event was stored, and thereby can be used as an indicator it’s usability. Due to the
nature of historical data and/or events, additional information beyond the basic quality and call
result code needs to be conveyed to the client. For example, whether the value is actually
stored in the data repository, was the result interpolated, were all data inputs to a calculation
of good quality, etc.

In the following, Table 11 contains codes with Bad severity indicating a failure; Table 12
contains codes with Uncertain severity indicating that the value has been retrieved under sub-
normal conditions. Table 13 contains Good (success) codes. It is Important to note, that these
are the codes that are specific for OPC UA Historical Access and supplement the codes that
apply to all types of data and are therefore defined in [UA Part 4] and [UA Part 8].

Table 11 – Bad operation level result codes

Symbolic Id Description

Bad_NoData No data exists for the requested time range or event filter

Bad_NoBound No data found to provide upper or lower bound value.

Bad_DataLost Data is missing due to collection started / stopped / lost.

Bad_EntryExists The data or event was not successfully inserted because a matching entry exists.

Bad_NoEntryExists The data or event was not successfully updated because no matching entry exists.

Bad_TimestampNotSupported The client requested history using a timestamp format the server does not support
(i.e requested ServerTimestamp when server only supports SourceTimestamp)

Table 12 – Uncertain operation level result codes

Symbolic Id Description

Uncertain_SubNormal The value is derived from multiple values and has less than the required number of Good values.

Table 13 – Good operation level result codes

Symbolic Id Description

Good_NoData No data exists for the requested time range or event filter.

Good_MoreData There is more data to be returned than could be returned in a single request.

Good_EntryInserted The data or event was successfully inserted into the historical database

OPC Unified Architecture, Part 11 21 Release 1.00

Good_EntryReplaced The data or event field was successfully replaced in the historical database

5.2.3 Historian Information Bits

These bits are set only when reading historical data of HistoricalDataNodes. They indicate
where the data value came from and provide information that affects how the client uses the
data value. Table 14 lists the bit settings which indicate the data location (i.e. is the value
stored in the underlying data repository, or is the value the result of data aggregation). These
bits are mutually exclusive.

Table 14 – Data Location

StatusCode Description
Raw A raw data value.
Calculated A data value which was calculated.
Interpolated A data value which was interpolated.

In the case where interpolated data is requested, and there is an actual raw value for that
timestamp, the server should set the ‘Raw’ bit in the StatusCode of that value.

Table 15 lists the bit settings which indicate additional important information about the data
values returned.

Table 15 – Additional Information

StatusCode Description
Partial A data value which was calculated with an incomplete interval.
Extra Data A raw data value that hides other data at the same timestamp.
Multiple Values Multiple values match the aggregate criteria (i.e. multiple minimum values or multiple worst quality at

different timestamps within the same interval)

The conditions under which these information bits are set depend on how the historical data
has been requested and state of the underlying data repository.

5.2.4 Semantics changed

The StatusCode in addition contains an informational bit called Semantics Changed. (See
[UA Part 4])

UA Servers that implement OPC UA Historical Access should not set this Bit, rather propagate
the StatusCode which has been stored in the data repository. Clients should be aware that
the returned data values may have this bit set.

5.3 HistoryReadDetails parameters

5.3.1 Overview

The HistoryRead service defined in [UA Part 4] can perform several different functions. The
historyReadDetails parameter is an Extensible Parameter that specifies which function to
perform and the details that are specific to that function. See [UA Part 4] for the definition of
Extensible Parameter. Table 16 lists the valid values for the parameterTypeId parameter
which specifies which function the HistoryRead service will perform, and what structure will be
contained in the parameterData field .

Table 16 – HistoryReadDetails parameterTypeId Values

Name Value Description parameterData
Structure

EVENTS 1 This parameter selects a set of events from the history database by
specifying a filter and a time domain for one or more Objects or Views.

ReadEventDetails
(See Clause 5.3.2)

OPC Unified Architecture, Part 11 22 Release 1.00

This parameter is only valid for Objects that have the EventNotifier
attribute set to TRUE (See [UA Part 3]).

RAW 2 This parameter selects a set of values from the history database by
specifying a time domain for one or more Variables

ReadRawModifiedDetails
(See Clause 5.3.3)

MODIFIED 3 This parameter selects a set of modified values from the history
database by specifying a time domain for one or more Variables. A
modified value is a value that has been replaced by another value at the
same timestamp in the history database. If there are multiple replaced
values the server must return all of them.
The server indicates that modified data exists by setting the ExtraData bit
in the StatusCode associated with a DataValues returned during a RAW,
PROCESSED, or ATTIME request.

ReadRawModifiedDetails
(See Clause 5.3.3)

PROCESSED 4 This parameter selects a set of aggregate values from the history
database by specifying a time domain for one or more Variables. This
function is intended to provide Values calculated with respect to the
resample interval. For example, this function can provide hourly
statistics such as Maximum, Minimum, Average, etc. for each item during
the specified time domain when resample interval is 1 hour.

ReadProcessedDetails
(See Clause 5.3.4)

ATTIME 5 This parameter selects a set of raw or interpolated values from the
history database by specifying a series of timestamps for one or more
Variables. This function is intended to provide values to correlate with
other values with a known timestamp. For example, the values of
sensors when lab samples were collected.

ReadAtTimeDetails
(See Clause 5.3.5)

5.3.2 ReadEventDetails structure

Table 17 defines the ReadEventDetails structure. Two of the three parameters,
numValuesPerNode, startTime, and endTime must be specified.

Table 17 – ReadEventDetails

Name Type Description
ReadEventDetails structure Specifies the details used to perform an event history read.
 numValuesPerNode Counter The maximum number of values returned for any node over the time range. If

only one time is specified, the time range must extend to return this number of
values. The default value of 0 indicates that there is no maximum.

 startTime UtcTime Beginning of period to read. The default value of DateTime.Min indicates that
there is no start time.

 endTime UtcTime End of period to read. The default value of DateTime.Min indicates that there is
no end time.

 filter EventFilter A filter used by the Server to determine which HistoricalEventNode should be
included. This parameter must be specified and at least one EventField is
required. The EventFilter parameter type is an extensible parameter type. It is
defined and used in the same manner as defined for monitored data items which
are specified [UA Part 4]. This filter also specifies the EventFields that are to be
returned as part of the request.

The EVENTS parameter reads the events from the history database for the specified time
domain for one or more HistoricalEventNodes. The events are filtered based on the filter
structure provided. This filter includes the eventFields that are to be returned. For a complete
description of filter refer to [UA Part 4], in particular MonitoredItems.

The time domain of the request is defined by startTime, endTime, and numValuesPerNode; at
least two of these must be specified. If endTime is less than startTime, or endTime and
numValuesPerNode alone are specified, the data will be returned in reverse order, with later
data coming first, as if time were flowing backward. If all three are specified, the call shall
return up to numValuesPerNode results going from startTime to endTime, in either ascending
or descending order depending on the relative values of startTime and endTime. If
numValuesPerNode is 0, then all the values in the range are returned. The default value is
used to indicate when startTime, endTime or numValuesPerNode is not specified.

It is specifically allowed for the startTime and the endTime to be identical. This allows the
client to request the event at a single instance in time. When the startTime and endTime are
identical, time is presumed to be flowing forward. If no data exists at the time specified then
the server must return the Good_NoData StatusCode.

If more than numValuesPerNode results exist within that time range, the StatusCode returned
for that Variable must be Good_MoreData, and the continuationPoint must be returned. When

OPC Unified Architecture, Part 11 23 Release 1.00

Good_MoreData is returned, clients wanting the next numValuesPerNode values should call
HistoryRead again with the continuationPoint.

For an interval in which no data exists, the corresponding StatusCode shall be Good_NoData.

The filter parameter is used to determine which historical events and their corresponding
fields are returned. It is possible that the fields of an EventType are available for real time
updating, but not available from the historian. In this case a StatusCode value will be
returned for any Event field that cannot be returned. The value of the StatusCode must be
Bad_NoData.

5.3.3 ReadRawModifiedDetails structure

5.3.3.1 ReadRawModifiedDetails structure Overview

Table 18 defines the ReadRawDetails structure. Two of the three parameters,
numValuesPerNode, startTime, and endTime must be specified.

Table 18 – ReadRawModifiedDetails

Name Type Description
ReadRawModifiedDetails Structure Specifies the details used to perform a “raw” or “modified” history read.
 isReadModified Boolean TRUE for MODIFIED, FALSE for RAW. Default value is FALSE.
 startTime UtcTime Beginning of period to read. Set to default value of DateTime.Min if no specific

start time is specified.
 endTime UtcTime End of period to read. Set to default value of DateTime.Min if no specific end

time is specified.
 numValuesPerNode Counter The maximum number of values returned for any node over the time range. If

only one time is specified, the time range must extend to return this number of
values. The default value 0 indicates that there is no maximum.

 returnBounds Boolean A boolean parameter with the following values :
 TRUE bounding values should be returned
 FALSE all other cases.

5.3.3.2 RAW usage
When this structure is used for reading Raw Values (isReadModified is set to False); it reads
the values, qualities, and timestamps from the history database for the specified time domain
for one or more HistoricalDataNodes. This parameter is intended for use by clients wanting
the actual data saved within the historian. The actual data may be compressed or may be all
data collected for the item depending on the historian and the storage rules invoked when the
item values were saved. When returnBounds is TRUE, the bounding values for the time
domain are returned. The optional bounding values are provided to allow clients to interpolate
values for the start and end times when trending the actual data on a display.

The time domain of the request is defined by startTime, endTime, and numValuesPerNode; at
least two of these must be specified. If endTime is less than startTime, or endTime and
numValuesPerNode alone are specified, the data will be returned in reverse order, with later
data coming first, as if time were flowing backward. If all three are specified, the call shall
return up to numValuesPerNode results going from startTime to endTime, in either ascending
or descending order depending on the relative values of startTime and endTime. If
numValuesPerNode is 0, then all the values in the range are returned. A default value of
DateTime.Min is used to indicate when startTime or endTime is not specified.

It is specifically allowed for the startTime and the endTime to be identical. This allows the
client to request just one value. When the startTime and endTime are identical, time is
presumed to be flowing forward. It is specifically not allowed for the server to return an
Bad_InvalidArgument StatusCode if the requested time domain is outside of the server's
range. Such a case shall be treated as an interval in which no data exists.

If more than numValuesPerNode results exist within that time range, the StatusCode entry for
that variable shall be Good_MoreData, and the continuationPoint will be set. When
Good_MoreData is returned, clients wanting the next numValuesPerNode values should call
ReadRaw again with the continuationPoint set.

OPC Unified Architecture, Part 11 24 Release 1.00

If bounding values are requested and a non-zero numValuesPerNode was specified, any
bounding values returned are included in the numValuesPerNode count. If
numValuesPerNode is 1, then only the start bound is returned (the End bound if reverse order
is needed). If numValuesPerNode is 2, the start bound and the first data point is returned
(the End bound if reverse order is needed).

When bounding values are requested and no bounding value is found, the corresponding
StatusCode entry will be set to Bad_NoBound, a timestamp equal to the start or end time, as
appropriate, and a value of Null. How far back or forward to look in history for bounding
values is server dependent.

For an interval in which no data exists, if bounding values are not requested, the
corresponding StatusCode must be Good_NoData. If bounding values are requested and one
or both exist, the result code returned is Success and the bounding value(s) are returned.

For cases where there are multiple values for a given timestamp, all but the most recent are
considered to be Modified values and the server must return the most recent value. If the
server returns a value which hides other values at a timestamp then it must set the ExtraData
bit in the StatusCode associated with that value.

5.3.3.3 MODIFIED usage
When this structure is used for reading Modified Values (isReadModified is set to true); it
reads the values, qualities, timestamps, user identifier, and timestamp of the modification from
the history database for the specified time domain for one or more HistoricalDataNodes.

The purpose of this function is to read values from history that have been modified/replaced.
If ReadRaw, ReadProcessed, or ReadAtTime has returned a StatusCode of with the
ExtraData bit set then there are values which have been superseded in the history database.
This parameter allows clients to read those values which were superseded. Only values that
have been modified/replaced or deleted are read by this function

The domain of the request is defined by startTime, endTime, and numValuesPerNode; at least
two of these must be specified. If endTime is less than startTime, or endTime and
numValuesPerNode alone are specified, the data shall be returned in reverse order, with later
data coming first. If all three are specified, the call shall return up to numValuesPerNode
results going from StartTime to EndTime, in either ascending or descending order depending
on the relative values of StartTime and EndTime. If more than numValuesPerNode results
exist within that time range, the StatusCode entry for that variable shall be Good_MoreData. If
numValuesPerNode is 0, then all the values in the range are returned.

If a value has been modified multiple times, all values for the time are returned. This means
that a timestamp can appear in the array more than once. The order of the returned values
with the same timestamp should be from most recent to oldest modified value, if startTime is
less than or equal to endTime. If endTime is less than startTime, the order of the returned
values will be from oldest modified value to most recent. It is server dependent whether
multiple modifications are kept or only the most recent.

5.3.4 ReadProcessedDetails structure

Table 19 defines the structure of the ReadProcessedDetails structure.

Table 19 – ReadProcessedDetails

Name Type Description
ReadProcessedDetails structure Specifies the details used to perform a “processed” history read

 startTime UtcTime Beginning of period to read.
 endTime UtcTime End of period to read.
 resampleInterval Duration Interval between returned aggregate values. The value 0 indicates that there is

no interval defined.
 aggregateType NodeId The NodeId of the HistoryAggregate object that indicates the aggregate to be

used when retrieving processed history. See for details.

OPC Unified Architecture, Part 11 25 Release 1.00

See Table 8 for possible NodeId values for the HistoryAggregateType parameter.

The PROCESSED function computes aggregate values, qualities, and timestamps from data
in the history database for the specified time domain for one or more HistoricalDataNodes.
The time domain is divided into subintervals of duration resampleInterval. The specified
aggregateType is calculated for each subinterval beginning with startTime by using the data
within the next resampleInterval.

For example, this function can provide hourly statistics such as Maximum, Minimum, Average,
etc. for each item during the specified time domain when resampleInterval is 1 hour.

The domain of the request is defined by startTime, endTime, and resampleInterval. All three
must be specified. If endTime is less than startTime, the data shall be returned in reverse
order, with later data coming first. If startTime and endTime are the same, the server shall
return Bad_InvalidArgument, as there is no meaningful way to interpret such a case.

The values used in computing the aggregate for each subinterval shall include any value that
falls exactly on the timestamp beginning the subinterval, but shall not include any value that
falls directly on the timestamp ending the subinterval. Thus, each value shall be included only
once in the calculation. If the time domain is in reverse order, we consider the later
timestamp to be the one beginning the subinterval, and the earlier timestamp to be the one
ending it. Note that this means that simply swapping the start and end times will not result in
getting the same values back in reverse order, as the subintervals being requested in the two
cases are not the same.

If the last subinterval computed is not a complete subinterval (the time domain of the request
is not evenly divisible by the resample interval), the last aggregate returned shall be based
upon that incomplete subinterval, and the corresponding StatusCode shall be PARTIAL.

For MinimumActualTime and MaximumActualTime, if more than one instance of the value
exists within a subinterval, which instance (time stamp) of the value returned is server
dependent. In any case, the server must set the MultipleValue bit in the StatusCode to let the
caller know that there are other timestamps with that value.

If resampleInterval is 0, the server must create one aggregate value for the entire time range.
This allows aggregates over large periods of time. A value with a timestamp equal to
endTime will be excluded from that aggregate, just as it would be excluded from a subinterval
with that ending time.

The timestamp returned with the aggregate must be the time at the beginning of the interval,
except where the aggregate specifies a different value.

For all Aggregates that do not specify otherwise the following rule applies to determining the
status associated with a given computed value. If the percentage of the values used in
computing the aggregate value that have Good quality meets or exceeds the
PercentDataGood parameter, the StatusCode of the aggregate must be Good. If the
percentage of the values used in computing the aggregate value that have Bad quality meets
or exceeds the PercentDataBad parameter, the StatusCode of the aggregate must be Bad.
Otherwise the StatusCode of the aggregate must be Uncertain_SubNormal.

If no data exists for a given HistoricalDataNode in any subinterval in the time domain, the
server shall return Bad_NoData in the StatusCode for that HistoricalDataNode.

If data does exist in at least one subinterval for that HistoricalDataNode, the server shall
return a timestamp, StatusCode, and value for each subinterval in the time domain.

5.3.5 ReadAtTimeDetails structure

Table 20 defines the ReadAtTimeDetails structure.

Table 20 – ReadAtTimeDetails

Name Type Description
ReadAtTimeDetails Structure Specifies the details used to perform an “at time” history read

 reqTimes [] UtcTime The entries define the specific timestamps for which values are to be read.

OPC Unified Architecture, Part 11 26 Release 1.00

The ATTIME parameter reads the values and qualities from the history database for the
specified timestamps for one or more HistoricalDataNodes. This function is intended to
provide values to correlate with other values with a known timestamp. For example, a client
may need to read the values of sensors when lab samples were collected.

The order of the values and qualities returned shall match the order of the time stamps
supplied in the request.

When no value exists for a specified timestamp, a value shall be interpolated from the
surrounding values to represent the value at the specified timestamp. The interpolation will
follow the same rules as the standard Interpolated aggregate as outlined in Clause 5.6.3.5

If a value is found for the specified timestamp, the server will set the StatusCode InfoBits to
be Raw. If the value is interpolated from the surrounding values, the server will set the
StatusCode InfoBits to be Interpolated.

5.4 HistoryData parameters

5.4.1 Overview

The HistoryRead service returns different types of data depending on whether the request
asked for the value attribute of a node or the history events of a node. The historyData is an
Extensible Parameter whose structure depends on the functions to perform for the
historyReadDetails parameter. See [UA Part 4] for details on Extensible Parameters.

5.4.2 HistoryData type

Table 21 defines the structure of the HistoryData used for the data to return in a HistoryRead.

Table 21 – HistoryData Details

Name Type Description
dataValue[] DataValue An array of values of history data for the node. The size of the array depends on

the requested data parameters.

5.4.3 HistoryEvent type

Table 22 – HistoryEvent Details

Name Type Description
historyEvent[] EventNotification An array of Event Notification data. The size of the array depends on the

requested data parameters.

5.5 HistoryUpdateDetails parameter

5.5.1 Overview

The HistoryUpdate service defined in [UA Part 4] can perform several different functions. The
historyUpdateDetails parameter is an Extensible Parameter that specifies which function to
perform and the details that are specific to that function. See [UA Part 4] for the definition of
Extensible Parameter. Table 23 lists the valid values for the parameterTypeId parameter
which specifies which function the HistoryUpdate service will perform, and what structure will
be contained in the parameterData field .

OPC Unified Architecture, Part 11 27 Release 1.00

Table 23 – HistoryUpdateDetails parameterTypeId Values

Name Value Description parameterData
Structure

INSERTDATA 1 This function inserts new values into the history database at the
specified timestamps for one or more HistoricalDataNodes.
The variable’s value is represented by a composite value defined by
the DataValue data type.

UpdateDataDetails
(See Clause 5.5.2)

REPLACEDATA 2 This function replaces existing values into the history database at the
specified timestamps for one or more HistoricalDataNodes. .
The variable’s value is represented by a composite value defined by
the DataValue data type.

UpdateDataDetails
(See Clause 5.5.2)

UPDATEDATA 3 This function inserts or replaces values into the history database at
the specified timestamps for one or more HistoricalDataNodes. .
The variable’s value is represented by a composite value defined by
the DataValue data type.

UpdateDataDetails
(See Clause 5.5.2)

INSERTEVENT 4 This function inserts new events into the history database for one or
more HistoricalEventNodes.

UpdateEventDetails
(See Clause 5.5.3)

REPLACEEVENT 5 This function replaces values of fields in existing events into the
history database for one or more HistoricalEventNodes.

UpdateEventDetails
(See Clause 5.5.3)

UPDATEEVENT 6 This function inserts new events or replaces values of fields in
existing events into the history database for one or more
HistoricalEventNodes.

UpdateEventDetails
(See Clause 5.5.3)

DELETERAW 7 This function deletes all values from the history database for the
specified time domain for one or more HistoricalDataNodes.

DeleteDataDetails
(See Clause 5.5.4)

DELETEMODIFIED 8 Some historians may store multiple values at the same Timestamp.
This function will delete specified values and qualities for the
specified timestamp for one or more HistoricalDataNodes. .

DeleteDataDetails
(See Clause 5.5.4)

DELETEATTIME 9 This function deletes all values in the history database for the
specified timestamps for one or more HistoricalDataNodes. .

DeleteAtTimeDetails
(See Clause 5.5.5)

DELETEEVENT 10 This function deletes events from the history database for the
specified filter for one or more HistoricalEventNodes.

DeleteEventDetails
(See Clause 5.5.6)

The HistoryUpdate service is used to update or delete both DataValues and Events. For
simplicity the term “entry” will be used to mean either DataValue or Event depending on the
context in which it is used. Auditing requirements for History services is described in
[UA Part 4]. This description assumes the user issuing the request and the server that is
processing the request supports Updating entries. See [UA Part 3] for a description of
Attributes that expose the support of Historical Updates.

5.5.2 UpdataDataDetails structure

5.5.2.1 UpdataDataDetails structure Overview

Table 24 defines the UpdateDataDetails structure.

Table 24 – UpdateDataDetails

Name Type Description
UpdateDataDetails Structure The details for insert, replace, and insert/replace history updates.
 performInsert Boolean TRUE means perform INSERT, FALSE means do not perform INSERT. Default

is FALSE.
 performReplace Boolean TRUE means perform REPLACE, FALSE means do not perform REPLACE.

Default is FALSE.
 nodeId NodeId Node id of the variable to be updated.
 updateValue historyData New value to be inserted or replaced

5.5.2.2 INSERTDATA usage
The INSERTDATA parameter inserts entries into the history database at the specified
timestamps for one or more HistoricalDataNodes. If an entry exists at the specified
timestamp, the new entry shall not be inserted; instead the StatusCode shall indicate
Bad_EntryExists.

OPC Unified Architecture, Part 11 28 Release 1.00

This function is intended to insert new entries at the specified timestamps; e.g., the insertion
of lab data to reflect the time of data collection.

5.5.2.3 REPLACEDATA usage
The REPLACEDATA parameter replaces entries in the history database at the specified
timestamps for one or more HistoricalDataNodes. If no entry exists at the specified
timestamp, the new entry shall not be inserted; otherwise the StatusCode shall indicate
Bad_NoEntryExists.

This function is intended to replace existing entries at the specified timestamp; e.g., correct
lab data that was improperly processed, but inserted into the history database.

5.5.2.4 UPDATEDATA usage
The UPDATEDATA parameter inserts or replaces entries in the history database for the
specified timestamps for one or more HistoricalDataNodes. If the item has a entry at the
specified timestamp, the new entry will replace the old one. If there is no entry at that
timestamp, the function will insert the new data.

This function is intended to unconditionally insert/replace values and qualities; e.g., correction
of values for bad sensors.

Good as a StatusCode for an individual entry is allowed when the server is unable to say
whether there was already a value at that timestamp. If the server can determine whether the
new entry replaces a entry that was already there, it should use Good_EntryInserted or
Good_EntryReplaced to return that information.

5.5.3 UpdateEventDetails structure

Table 24 defines the UpdateEventDetails structure.

Table 25 – UpdateEventDetails

Name Type Description
UpdateEventDetails Structure The details for insert, replace, and insert/replace history event updates.
 performInsert Boolean TRUE means perform INSERT, FALSE means do not perform INSERT.

Default is FALSE.
 performReplace Boolean TRUE means perform REPLACE, FALSE means do not perform

REPLACE. Default is FALSE.
 nodeId NodeId Node id of the Node to be updated.
 filter EventFilter If the history of Notification conforms to the EventFilter, the history of the

Notification is updated.
 eventData EventNotification Event Notification data to be inserted or updated.

5.5.3.1 INSERTEVENT usage
The INSERTEVENT parameter inserts entries into the event history database for one or more
HistoricalEventNodes. The whereClause parameter of the EventFilter must specify the
EventId Property. If any entry exists matching the specified filter, the new entry shall not be
inserted; instead StatusCode shall indicate Bad_EntryExists.

If the new entry is incomplete or not correctly specified in the EventNotification, the server
may return a StatusCode of Bad_InvalidArgument.

This function is intended to insert new entries; e.g., backfilling of historical events.

5.5.3.2 REPLACEEVENT usage
The REPLACEEVENT parameter replaces entries in the event history database for the
specified filter for one or more HistoricalEventNodes. The whereClause parameter of the
EventFilter must specify the EventId Property. If no entry exists matching the specified filter,
the new entry shall not be inserted; otherwise the StatusCode shall indicate
Bad_NoEntryExists.

If the new entry is incomplete or not correctly specified in the EventNotification, the server
may return a StatusCode of Bad_InvalidArgument.

OPC Unified Architecture, Part 11 29 Release 1.00

This function is intended to replace fields in existing event entries; e.g., correct event data
that contained incorrect data due to a bad sensor.

5.5.3.3 UPDATEEVENT usage
The UPDATEEVENT parameter inserts or replaces entries in the event history database for
the specified filter for one or more HistoricalEventNodes. The whereClause parameter of the
EventFilter must specify fields to uniquely identify the event (i.e. EventId or combination of
identifying fields). If any entry at exists matching the specified filter, the new event data will
replace the existing data. If no matching entry is found, the function will insert the new event.

This function is intended to unconditionally insert/replace events; e.g., synchronizing a backup
event database.

Good as a StatusCode for an individual entry is allowed when the server is unable to say
whether there was already an existing value. If the server can determine whether the new
entry replaces an existing, it should use Good_EntryInserted or Good_EntryReplaced to
return that information.

5.5.4 DeleteRawModifiedDetails structure

Table 26 defines the DeleteRawModifiedDetails structure.

Table 26 – DeleteRawModifiedDetails

Name Type Description
DeleteRawModifiedDetails structure The details for delete raw and delete modified history updates.
 isDeleteModified Boolean TRUE for MODIFIED, FALSE for RAW. Default value is FALSE.
 nodeId NodeId Node id of the variable for which history values are to be deleted.
 startTime UtcTime beginning of period to be deleted
 endTime UtcTime end of period to be deleted

The DELETERAW parameter deletes all raw entries from the history database for the
specified time domain for one or more HistoricalDataNodes.

The DELETEMODIFIED parameter deletes all modified entries from the history database for
the specified time domain for one or more HistoricalDataNodes.

These functions are intended to be used to delete data that has been accidentally entered into
the history database; e.g., deletion of data from a source with incorrect timestamps.

If no data is found in the time range for a particular HistoricalDataNode, the StatusCode for
that item is Bad_NoData.

5.5.5 DeleteAtTimeDetails structure

Table 27 defines the structure of the DeleteAtTimeDetails structure.

Table 27 – DeleteAtTimeDetails

Name Type Description
DeleteAtTimeDetails Structure The details for delete raw history updates
 nodeId NodeId Node id of the variable for which history values are to be deleted.
 reqTimes [] UtcTime The entries define the specific timestamps for which values are to be deleted.

The DELETEATTIME parameter deletes all entries in the history database for the specified
timestamps for one or more HistoricalDataNodes.

This parameter is intended to be used to delete specific data from the history database; e.g.,
lab data that is incorrect and cannot be correctly reproduced.

OPC Unified Architecture, Part 11 30 Release 1.00

5.5.6 DeleteEventDetails structure

Table 27 defines the structure of the DeleteEventDetails structure.

Table 28 – DeleteEventDetails

Name Type Description
DeleteEventDetails structure The details for delete raw and delete modified history updates.
 nodeId NodeId Node id of the variable for which history values are to be deleted.
 eventId[] ByteString An array of EventIds to identify which events are to be deleted.

The DELETEEVENT parameter deletes all event entries from the history database matching
the EventId for one or more HistoricalEventNodes.

If no events are found that match the specified filter for a HistoricalEventNode, the
StatusCode for that Node is Bad_NoData.

5.6 Aggregate Details

5.6.1 General

The purpose of this section is to detail the requirements and behavior for OPC UA Server
supporting Historical Access Aggregates. The intent is to standardize the OPC UA Server
supporting Historical Access Aggregates such that OPC UA Server supporting Historical
Access clients can reliably predict the results of an Aggregate computation and understand its
meaning. If users require custom functionality in the Aggregates, those Aggregates should be
written as custom vendor defined Aggregates.

The standard Aggregates must be as consistent as possible, meaning that each Aggregate’s
behavior must be similar to every other Aggregate’s behavior where input parameters, raw
data, and boundary conditions are similar. Where possible, the Aggregates should deal with
input and preconditions in a similar manner.

This section is divided up into two parts. The first sub section deals with Aggregate
characteristics and behavior that are common to all Aggregates. The remaining sub sections
deal with the characteristics and behavior of Aggregates that are aggregate-specific.

5.6.2 Common characteristics

5.6.2.1 Description

This subsection deals with aggregate characteristics and behavior that are common to all
aggregates.

5.6.2.2 Generating intervals

To read aggregates, OPC clients must specify three time parameters:

- start time (Start)

- end time (End)

- resample interval (Int)

The OPC server must use these three parameters to generate a sequence of time intervals
and then calculate an aggregate for each interval. This section specifies, given the three
parameters, which time intervals are generated. Table 29 out lines information on the
intervals for each Start and End time combination. Range is defined to be |End - Start|.

OPC Unified Architecture, Part 11 31 Release 1.00

All interval aggregates return a timestamp of the start of the interval unless otherwise noted
for the particular aggregate.

Table 29 – History Aggregate Interval Information

Start/End Time Resample Interval Resulting Intervals
Start = End Int = Anything No intervals. Returns a Bad_InvalidArgument StatusCode,

regardless of whether there is data at the specified time or not.
Start < End Int = 0 or Int ≥ Range One interval, starting at Start and ending at End. Includes

Start, excludes End, i.e., [Start, End).
Start < End Int ≠ 0, Int < Range, Int divides

Range evenly.
Range/Int intervals. Intervals are [Start, Start + Int), [Start + Int,
Start + 2 * Int),..., [End - Int, End).

Start < End Int ≠ 0, Int < Range, Int does not
divide Range evenly.

⎡Range/Int⎤ intervals. Intervals are [Start, Start + Int), [Start +
Int, Start + 2 * Int),..., [Start + (⎣Range/Int⎦ - 1)* Int, Start +
⎣Range/Int⎦ * Int), [Start + ⎣Range/Int⎦ * Int, End).
In other words, the last interval contains the “rest” that remains
in the range after taking away ⎣Range/Int⎦ intervals of size Int.

Start > End Int = 0 or Int ≥ Range One interval, starting at Start and ending at End. Includes
Start, excludes End, i.e., [End, Start).

Start > End Int ≠ 0, Int < Range, Int divides
Range evenly.

Range/Int intervals. Intervals are [Start - Int, Start], [Start – 2 *
Int, Start – Int),..., [End, End + Int).

Start > End Int ≠ 0, Int < Range, Int does not
divide Range evenly.

⎡Range/Int⎤ intervals. Intervals are [Start - Int, Start), [Start – 2
* Int, Start - Int),..., [Start - ⎣Range/Int⎦ * Int, Start – (
⎣Range/Int⎦ - 1)* Int), [End, Start - ⎣Range/Int⎦ * Int).
In other words, the last interval contains the “rest” that remains
in the range after taking away ⎣Range/Int⎦ intervals of size Int
starting at Start.

5.6.2.3 Data types

Table 8 outlines the valid data types for each aggregate. Some aggregates are intended for
numeric data types – i.e. integers or real/floating point numbers. Dates, strings, arrays, etc.
are not supported. Other aggregates are intended for digital data types – i.e. Boolean or
enumerations. In addition some aggregates may return results with a different datatype than
those used to calculate the aggregate. Table 8 also outlines the default data type returned for
each aggregate.

OPC Unified Architecture, Part 11 32 Release 1.00

Table 30 – Standard History Aggregate Data Type Information

BrowseName Valid Data Type Default Result Data Type

 Interpolation Aggregate

Interpolative Numeric Double
 Data Averaging Aggregates
Average Numeric Double
TimeAverage Numeric Double
Total Numeric Double
TotalizeAverage Numeric Double
 Data Variation Aggregates
Minimum Numeric Raw data type
Maximum Numeric Raw data type
MinimumActualTime Numeric Raw data type
MaximumActualTime Numeric Raw data type
Range Numeric Raw data type
 Counting Aggregates
AnnotationCount All Integer
Count All Integer
DurationInState0 Boolean Duration
DurationInState1 Boolean Duration
NumberOfTransitions Boolean Integer
 Time Aggregates
Start All Raw data type
End All Raw data type
Delta Numeric Raw data type
 Data Quality Aggregates
DurationGood All Duration
DurationBad All Duration
PercentGood All Double
PercentBad All Double
WorstQuality Numeric StatusCode

5.6.2.4 StatusCode calculation

For Aggregate values, the StatusCode for each returned aggregate shall be Good, if the
StatusCode for ALL values used in the aggregate was Good.

If the StatusCode of ANY value used in computing the aggregate was not Good, then the
server must use the TreatUncertainAsBad, PercentDataBad and PercentDataGood parameter
(see Clause 4.8.2) settings to determine the StatusCode of the resulting aggregate for the
interval. Some aggregates may explicitly define there own method of determining quality.

If the percentage of Good values in an interval is greater then or equal to the
PercentDataGood, the aggregate is considered Good.

If the percentage of Bad values in an interval is greater then or equal to the PercentDataBad,
the aggregate is considered Bad.

Since a value can be either Good or Bad only (Uncertain is defined as Good or Bad as per
TreatUncertainAsBad setting), percentage good = 100 – percentage bad. If a percentage
good (X) is in the following range Percentage bad < X < Percentage Good then the quality of
the aggregate is Uncertain_SubNormal.

OPC Unified Architecture, Part 11 33 Release 1.00

5.6.3 Aggregate specific characteristics

5.6.3.1 Description

This sub section deals with aggregate specific characteristics and behavior that is specific to
a particular aggregate.

5.6.3.2 Example aggregate data – Historian 1

For the purposes of examples consider a source historian with the following data:

Timestamp Value StatusCode Notes
Jan-01-2002 12:00:00 - Bad_NoData First archive entry, Point Created
Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:20 20 Raw, Good
Jan-01-2002 12:00:30 30 Raw, Good
Jan-01-2002 12:00:40 40 Raw, Bad Scan failed, Bad data entered
Jan-01-2002 12:00:50 50 Raw, Good
Jan-01-2002 12:01:00 60 Raw, Good
Jan-01-2002 12:01:10 70 Raw, Uncertain Value is flagged as questionable

Jan-01-2002 12:01:20 80 Raw, Good
Jan-01-2002 12:01:30 90 Raw, Good
 NULL No Data No more entries, awaiting next scan.

5.6.3.3 Example aggregate data – Historian 2

The following data is also included in a separate column to illustrate non-periodic data

OPC Unified Architecture, Part 11 34 Release 1.00

Timestamp Value StatusCode Notes
Jan-01-2002 12:00:00 - Bad_NoData First archive entry, Point Created
Jan-01-2002 12:00:02 10 Raw, Good
Jan-01-2002 12:00:25 20 Raw, Good
Jan-01-2002 12:00:28 25 Raw, Good
Jan-01-2002 12:00:39 30 Raw, Good
Jan-01-2002 12:00:42 40 Raw, Bad Bad quality data received, Bad data entered
Jan-01-2002 12:00:48 40 Raw, Good Received good StatusCode value
Jan-01-2002 12:00:52 50 Raw, Good
Jan-01-2002 12:01:12 60 Raw, Good
Jan-01-2002 12:01:17 70 Raw, Uncertain Value is flagged as questionable
Jan-01-2002 12:01:23 70 Raw, Good
Jan-01-2002 12:01:26 80 Raw, Good
Jan-01-2002 12:01:30 90 Raw, Good
 - No Data No more entries, awaiting next Value.

5.6.3.4 Example Conditions

For the purposes of all examples,

 Historian 1

1. TreatUncertainAsBad = False. Therefore Uncertain values are included in aggregate
call.

2. Stepped attribute = False. Therefore Linear interpolation is used between data points.

3. SteppedInterpolationMode = True. Therefore Stepped extrapolation is used at end
boundary conditions

OPC Unified Architecture, Part 11 35 Release 1.00

Historian 2

1. TreatUncertainAsBad = True. Therefore Uncertain values are treated as Bad, and not
included in the aggregate call.

2. Stepped attribute = False. Therefore Linear interpolation is used between data points.

3. SteppedInterpolationMode = True, Therefore Stepped extrapolation is used at end
boundary conditions

5.6.3.5 Interpolative

5.6.3.5.1 Description

In order for the interpolative aggregate to return meaningful data, there must be good values
at the boundary conditions. For the purposes of discussion we will use the terms good and
non-good. As discussed in the StatusCode section (See Clause 5.6.2.4), what is represented
by non-good is Server dependant. For some Servers non-good represents only Bad data, for
others it represents Bad and Uncertain data depending on the TreatUncertainAsBad setting.

When determining boundary conditions, the following rules must be followed:

o If the value at the requested time is non-good, the aggregate looks for good bounding
data within the intervals preceding and following the requested time. (In the case of
Stepped interpolation a bounding value following requested time is not required). If no
good data is found within the respective intervals, there is no bound and the aggregate
must return Bad_NoData. If no data exists within the respective intervals, the
aggregate will continue expanding the respective search intervals up to a maximum
equal to the requested time Range. If no data exists within the respective Ranges,
there is no bound and the aggregate must return Bad_NoData.

o The method of interpolation, either interpolated (sloped Lines between point) or as
Stepped (vertically-connected horizontal lines between points) is determined by the
Stepped attribute. See Clause 4.7.1.4

o If there is no end bound (i.e. future time), the value should be extrapolated forward in
time from the previous good value. The method of extrapolation, Stepped (i.e. hold
last value) or extrapolated (extend line based on preceding slope) will be server
dependant. This is indicated by the SteppedInterpolationMode property. See Clause
4.8.2.

o The aggregate should not extrapolate backwards in time. If there is no beginning
bound, it must return Bad_NoData. The trailing value should not be pulled backward in
time.

o If there happens to be a good raw value at the requested time, the raw value is
returned.

o If any non-good values are skipped in order to find the closest good value, the
aggregate will be Uncertain_Subnormal

o Unless otherwise indicated, StatusCodes are Good, Interpolated.

OPC Unified Architecture, Part 11 36 Release 1.00

The following examples demonstrate the various situations:

5.6.3.5.2 Interpolated data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-02 12:00:10 10 Raw, Good 13.5 Interpolated, Good Value2 –Interpolated between
values at 12:00:02 and 12:00:25

Jan-01-02 12:00:15 15 Interpolated, Good 15.7 Interpolated, Good Value2 –Interpolated between
values at 12:00:02 and 12:00:25

5.6.3.5.3 Interpolated data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-02 12:00:35 35 Interpolated, Uncertain 28.2 Interpolated, Good Value2 –Interpolated between
values at 12:00:28 and 12:00:39

Jan-01-02 12:00:40 40 Interpolated, Uncertain 31.1 Interpolated,
Uncertain

Raw Value is Bad, Value2 –
Interpolated between values at
12:00:39 and 12:00:48

Jan-01-02 12:00:45 45 Interpolated, Uncertain 36.7 Interpolated,
Uncertain

Bounding Value Bad, Value2 –
Interpolated between values at
12:00:39 and 12:00:48

Jan-01-02 12:00:50 50 Raw, Good 45 Interpolated, Good
Jan-01-02 12:00:55 55 Interpolated, Good 51.5 Interpolated, Good

5.6.3.5.4 Interpolated data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-02 12:01:20 80 Raw, Good 67.3* Interpolated,
Uncertain

Uncertain Values excluded.
Value2 –Interpolated between
values at 12:01:12 and 12:01:23

Jan-01-02 12:01:25 85 Interpolated, Good 76.7 Interpolated, Good
Jan-01-02 12:01:30 90 Raw, Good 90 Raw, Good
Jan-01-02 12:01:35 90 Interpolated, Uncertain 90 Interpolated,

Uncertain
Bounding Value at 12:01:30,
Extrapolated using stepped
method

* If Historian 2 had treated Uncertain values as Good. The value would be 70, interpolated
between 12:00:17 and 12:00:2323 and the quality would be “Interpolated,Good”.

5.6.3.5.5 Interpolated data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

OPC Unified Architecture, Part 11 37 Release 1.00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad 0 No Data, Bad No bounding Value, do not
extrapolate

Jan-01-2002 12:00:05 - No Data, Bad 11.3 Interpolated, Good Value 1 - No bounding value, do
not extrapolate
Value2 –Interpolated between
values at 12:00:02 and 12:00:25

Jan-01-2002 12:00:10 10 Raw, Good 13.5 Interpolated, Good Value2 –Interpolated between
values at 12:00:02 and 12:00:25

Jan-01-2002 12:00:15 15 Interpolated, Good 15.7 Interpolated, Good Value2 –Interpolated between
values at 12:00:02 and 12:00:25

5.6.3.6 Average

5.6.3.6.1 Description

The average aggregate adds up the values of all good raw data for each interval, and divides
the sum by the number of good values. If any non-good values are ignored in the
computation, the aggregate StatusCode will be determined using the StatusCode Calculation
(See Clause 5.6.2.4)

If no data exists for an interval, the StatusCode of the aggregate for that interval will be
Good_NoData.

All interval aggregates return timestamp of the start of the interval. Unless otherwise
indicated, StatusCodes are Good, Calculated.

5.6.3.6.2 Average data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Calculated, Good - No Data, Bad Value2-No Raw data in interval

Jan-01-2002 12:00:15 - No Data, Bad - No Data, Bad No Raw data in intervals

5.6.3.6.3 Average data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad 30 Calculated, Good
Jan-01-2002 12:00:40 - No Data, Bad - No Data, Bad Value1-Only Bad data in interval

Value 2- No data in interval

Jan-01-2002 12:00:45 - No Data, Bad 40 Calculated, Good Value 1- No data in interval

Jan-01-2002 12:00:50 50 Calculated, Good 50 Calculated, Good
Jan-01-2002 12:00:55 - No Data, Bad - No Data, Bad No data in intervals

5.6.3.6.4 Average data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

OPC Unified Architecture, Part 11 38 Release 1.00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:20 80 Calculated, Good 70 Calculated, Good
Jan-01-2002 12:01:25 - No Data, Bad 80 Calculated, Good Value 1- No data in interval

Jan-01-2002 12:01:30 90 Calculated, Good 90 Calculated, Good
Jan-01-2002 12:01:35 - No Data, Bad - No Data, Bad No data in intervals

5.6.3.6.5 Average data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad 10 Partial, Good Value1- No data in interval
Value2 - Partial interval :02-:05

Jan-01-2002 12:00:05 - No Data, Bad - No Data, Bad No data in intervals
Jan-01-2002 12:00:10 10 Calculated, Good - No Data, Bad Value 2- No data in interval

Jan-01-2002 12:00:15 - No Data, Bad - No Data, Bad No data in intervals

5.6.3.7 TimeAverage

5.6.3.7.1 Description

The time weighted average aggregate uses interpolation as described in the interpolated
section above to find the value of a point at the beginning and end of an interval. A straight
line is drawn between each raw value in the interval. The area under the line is divided by the
length of the interval to yield the average.

For Example:

Given:

Start: Jan-01-2002 12:00:10

End: Jan-01-2002 12:00:15

Interval: 00:00:05

Then:

Point1 = Good Raw value of 10 at 12:00:10

Point2 = interpolated value of 15 at 12:00:15, using bounding values at 12:00:10 and
12:00:20.

Area under the line is 62.5 (1/2 base*height + base*height). Interval is 5 seconds

TimeAverage = Area/interval = 12.5

If any of an interval’s raw values are non-good, they are ignored, and the aggregate
StatusCode for that interval is determined using the StatusCode Calculation (See Clause
5.6.2.4)

OPC Unified Architecture, Part 11 39 Release 1.00

All cases use the interpolated values determined in Cases outlined in section 5.6.3.5 for the
bounding values.

5.6.3.7.2 TimeAverage data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 12.5 Calculated, Good 14.5 Calculated,
Good

Area under the line between 12:00:10
and 12:00:15 divided by interval length of
5

Jan-01-2002 12:00:15 17.5 Calculated, Good 16.7 Calculated,
Good

5.6.3.7.3 TimeAverage data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:35 37.5 Calculated,
Uncertain

29.7 Calculated,
Uncertain

Value1– Interpolate values at :35 and :40
using bounds at :30 and :50
Value2– Interpolate values at :35 and :40
using bounds at :28 and :48
Uncertain means Bad Value ignored

Jan-01-2002 12:00:40 42.5 Calculated,
Uncertain

33.9 Calculated
Uncertain

Value1– Interpolate values at :40 and :45
using bounds at :30 and :50
Value2– Interpolate values at :40 and :45
using bounds at :39 and :48
Uncertain means Bad Value ignored

Jan-01-2002 12:00:45 47.5 Calculated,
Uncertain

40.9 Calculated
Uncertain

Value1– Interpolate value at :45 using
bounds at :30 and :50
Value2– Interpolate value at :45 using
bounds at :39 and :48
Interpolate Value at :50 using bounds at
:48 and :52
Uncertain means Bad Value ignored

Jan-01-2002 12:00:50 52.5 Calculated, Good 48.3 Calculated,
Good

Value1– Interpolate value at :55 using
bounds at :50 and 01:00
Value2– Interpolate value at :50 using
bounds at :48 and :52
Interpolate Value at :55 using bounds at
:52 and :01:12

Jan-01-2002 12:00:55 57.5 Calculated, Good 52.8 Calculated,
Good

Value1– Interpolate value at :55 using
bounds at :50 and 01:00
Value2– Interpolate value at :50 using
bounds at :48 and :52
Interpolate Value at :55 using bounds at
:52 and :01:12

5.6.3.7.4 TimeAverage data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

OPC Unified Architecture, Part 11 40 Release 1.00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:20 82.5 Calculated, Good 72.0 Calculated
Uncertain

Value1– Interpolate value at :25 using
bounds at :20 and :30
Value2– Interpolate value at :20 using
bounds at :16 and :23 (Uncertain value at
:17 is ignored by this historian)
Interpolate Value at :25 using bounds at :23
and :26

Jan-01-2002 12:01:25 87.5 Calculated, Good 83.3 Calculated,
Good

Value1– Interpolate value at :25 using
bounds at :20 and :30
Value2– Interpolate value at :25 using
bounds at :23 and :26

Jan-01-2002 12:01:30 90* Calculated,
Uncertain

90* Calculated,
Uncertain

Extrapolate Value at :35 using value at :30

Jan-01-2002 12:01:35 90* Calculated,
Uncertain

90* Calculated,
Uncertain

Extrapolate Values at :35 and :40 using
value at :30

* Stepped extrapolation is used at the boundary. Servers may opt to extrapolate data based
on the previous slope.

5.6.3.7.5 TimeAverage data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad 10.7 Partial,
Uncertain

Value1-No bounding value, do not
extrapolate. No data in the interval
Value2- Interpolate value at :05 using
bounds at :02 and :25
Use partial interval :02 to :05, with
interval of 3.

Jan-01-2002 12:00:05 - No Data, Bad 12.4 Calculated,
Good

Value1-No bounding value, do not
extrapolate. No data in the interval
Value2- Interpolate values at :05 and 10
using bounds at :02 and :25

Jan-01-2002 12:00:10 12.5 Calculated, Good 14.5 Calculated,
Good

Value1– Interpolate value at :15 using
bounds at :10 and :20
Value2– Interpolate values at :10 and :15
using bounds at :02 and :25

Jan-01-2002 12:00:15 17.5 Calculated, Good 16.7 Calculated,
Good

Value1– Interpolate value at :15 using
bounds at :10 and :20
Value2– Interpolate values at :15 and :20
using bounds at :02 and :25

5.6.3.8 Total

5.6.3.8.1 Description

The total aggregate adds up all the values of all good raw values for each interval. If any non-
good values are ignored in the computation, the aggregate StatusCode will be determined
using the StatusCode Calculation (See Clause 5.6.2.4).

If no data exists for an interval, the StatusCode of the aggregate for that interval will be
Good_NoData.

OPC Unified Architecture, Part 11 41 Release 1.00

Unless otherwise indicated, StatusCodes are Good, Calculated

5.6.3.8.2 Total data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-02 12:00:10 10 Raw, Good 10 Calculated, Good
Jan-01-02 12:00:15 0 Calculated, Good 0 Calculated, Good

5.6.3.8.3 Total data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-02 12:00:35 0 Calculated, Good 30 Calculated, Good
Jan-01-02 12:00:40 - No Data, Bad - No Data, Bad
Jan-01-02 12:00:45 - No Data, Bad 40 Calculated, Good
Jan-01-02 12:00:50 50 Calculated, Good 50 Calculated, Good
Jan-01-02 12:00:55 0 Calculated, Good 0 Calculated, Good

5.6.3.8.4 Total data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-02 12:01:20 80 Calculated, Good 70 Calculated, Good

Jan-01-02 12:01:25 0 Calculated, Good 80 Calculated, Good
Jan-01-02 12:01:30 90 Calculated, Good 90 Calculated, Good
Jan-01-02 12:01:35 - No Data, Bad - No Data, Bad

5.6.3.9 TotalizeAverage

5.6.3.9.1 Description

The TotalizeAverage aggregate performs the following calculation for each interval:

TotalizeAverage = time_weighted_avg * interval_length (sec)

Where:

 Time_weighted_avg is the result from the TimeAverage aggregate, using the interval
supplied to the TotalizeAverage call.

 Interval_length is the interval of the aggregate.

The resulting units would be normalized to seconds, i.e. [time_weighted_avg Units]*sec.

If any non-good values are ignored in the computation of an interval, the aggregate
StatusCode will be determined using the StatusCode Calculation (See Clause 5.6.2.4).

OPC Unified Architecture, Part 11 42 Release 1.00

All interval aggregates return timestamp of the start of the interval. Unless otherwise
indicated, StatusCodes are Good, Calculated

5.6.3.9.2 TotalizeAverage data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 12.5 Calculated, Good 72.5 Calculated,
Good

Area under the line between 12:00:10
and 12:00:15

Jan-01-2002 12:00:15 17.5 Calculated, Good 83.5 Calculated,
Good

5.6.3.10 Minimum

5.6.3.10.1 Description

The minimum aggregate is the same as the minimum actual time, except the timestamp of the
aggregate will always be the start of the interval for every interval.

Unless otherwise indicated, StatusCodes are Good, Calculated.

5.6.3.10.2 Minimum data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good - No Data, Bad
Jan-01-2002 12:00:15 - No Data, Bad - No Data, Bad

5.6.3.10.3 Minimum data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad 30 Calculated, Good
Jan-01-2002 12:00:40 - No Data, Bad 40 Calculated, Bad Value1- Only Bad data in

interval.
Jan-01-2002 12:00:45 - No Data, Bad 40 Calculated, Good
Jan-01-2002 12:00:50 50 Raw, Good 50 Calculated, Good
Jan-01-2002 12:00:55 - No Data, Bad - No Data, Bad

5.6.3.10.4 Minimum data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

OPC Unified Architecture, Part 11 43 Release 1.00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:20 80 Raw, Good 70 Calculated Good
Jan-01-2002 12:01:25 - No Data, Bad 80 Calculated Good
Jan-01-2002 12:01:30 90 Raw, Good 90 Raw, Good
Jan-01-2002 12:01:35 - No Data, Bad - No Data, Bad

5.6.3.10.5 Minimum data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad 10 Calculated Good
Jan-01-2002 12:00:05 - No Data, Bad - No Data, Bad
Jan-01-2002 12:00:10 10 Raw, Good - No Data, Bad
Jan-01-2002 12:00:15 - No Data, Bad - No Data, Bad

5.6.3.10.6 Minimum data with Partial Interval.

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:05 10 Raw, Good - No Data, Bad
Jan-01-2002 12:00:21 30 Partial, Good 20 Partial, Good

5.6.3.11 Maximum

5.6.3.11.1 Description

This aggregate is the same as the minimum, except the value is the maximum raw value
within the interval [s,e).

Unless otherwise indicated, StatusCodes are Good, Calculated.

5.6.3.11.2 Maximum data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good - No Data, Bad
Jan-01-2002 12:00:15 - No Data, Bad - No Data, Bad

5.6.3.11.3 Maximum data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

OPC Unified Architecture, Part 11 44 Release 1.00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad 30 Calculated, Good
Jan-01-2002 12:00:40 - No Data, Bad 40 Calculated, Bad Only Bad data in

interval.
Jan-01-2002 12:00:45 - No Data, Bad 40 Calculated, Good
Jan-01-2002 12:00:50 50 Raw, Good 50 Calculated, Good
Jan-01-2002 12:00:55 - No Data, Bad - No Data, Bad

5.6.3.11.4 Maximum data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:20 80 Raw, Good 70 Calculated Good
Jan-01-2002 12:01:25 - No Data, Bad 80 Calculated Good
Jan-01-2002 12:01:30 90 Raw, Good 90 Raw, Good
Jan-01-2002 12:01:35 - No Data, Bad - No Data, Bad

5.6.3.11.5 Maximum data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad 10 Calculated Good
Jan-01-2002 12:00:05 - No Data, Bad - No Data, Bad
Jan-01-2002 12:00:10 10 Raw, Good - No Data, Bad
Jan-01-2002 12:00:15 - No Data, Bad - No Data, Bad

5.6.3.11.6 Maximum data with Partial Interval.

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:05 10 Raw, Good - No Data, Bad
Jan-01-2002 12:00:21 30 Partial, Good 25 Partial, Good

5.6.3.12 MininumActualTime

5.6.3.12.1 Description

The minimum actual time aggregate retrieves the minimum good raw value within the interval
[s,e), and returns that value with the timestamp at which that value occurs. Note that if the
same minimum exists at more than one timestamp, the oldest one is retrieved, and the
StatusCode is set to MultiValues. If a non-good value is lower than the good minimum, the
StatusCode of the aggregate will be determined using the StatusCode Calculation (See
Clause 5.6.2.4).

Unless otherwise indicated, StatusCodes are Good,Raw. If no values are in the interval no
data is returned with a timestamp of the start of the interval. If only bad quality values are

OPC Unified Architecture, Part 11 45 Release 1.00

available then the status is returned as Bad, Raw, The value is indeterminate, since some
system may save bad values, but other may not.

5.6.3.12.2 MininumActualTime data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:15 - No Data, Bad No raw data in interval, do not interpolate

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:15 - No Data, Bad No raw data in interval, do not interpolate

5.6.3.12.3 MininumActualTime data with good bounding value with bad data in the
interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:40 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:45 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:50 50 Raw, Good
Jan-01-2002 12:00:55 - No Data, Bad No raw data in interval, do not interpolate

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:39 30 Raw, Good
Jan-01-2002 12:00:42 - Raw, Bad Only Bad data in interval
Jan-01-2002 12:00:48 40 Raw, Good
Jan-01-2002 12:00:52 50 Raw, Good
Jan-01-2002 12:00:55 - No Data, Bad No raw data in interval, do not interpolate

5.6.3.12.4 MininumActualTime data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:01:20 80 Raw, Good
Jan-01-2002 12:01:25 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:01:30 90 Raw, Good
Jan-01-2002 12:01:35 - No Data, Bad

OPC Unified Architecture, Part 11 46 Release 1.00

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:01:23 70 Raw, Good
Jan-01-2002 12:01:26 80 Raw, Good
Jan-01-2002 12:01:30 90 Raw, Good
Jan-01-2002 12:01:35 - No Data, Bad

5.6.3.12.5 MininumActualTime data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad
Jan-01-2002 12:00:05 - No Data, Bad
Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:15 - No Data, Bad

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:02 10 Raw, Good
Jan-01-2002 12:00:05 - No Data, Bad
Jan-01-2002 12:00:10 - No Data, Bad
Jan-01-2002 12:00:15 - No Data, Bad

5.6.3.12.6 MininumActualTime with Partial Interval.

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:30 30 Partial, Good

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:05 - No Data, Bad
Jan-01-2002 12:00:25 20 Partial, Good

5.6.3.13 MaximumActualTime

5.6.3.13.1 Description

This is the same as the minimum actual time aggregate, except that the value is the maximum
raw value within the interval [s,e). Note that if the same maximum exists at more than one
timestamp, the oldest one is retrieved, and the StatusCode is set to MultiValues

Unless otherwise indicated, StatusCodes are Good, Raw.

5.6.3.13.2 MaximumActualTime data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

OPC Unified Architecture, Part 11 47 Release 1.00

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:15 - No Data, Bad No raw data in interval, do not interpolate

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:15 - No Data, Bad No raw data in interval, do not interpolate

5.6.3.13.3 MaximumActualTime data with good bounding value with bad data in the
interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:40 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:45 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:00:50 50 Raw, Good
Jan-01-2002 12:00:55 - No Data, Bad No raw data in interval, do not interpolate

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:39 30 Raw, Good
Jan-01-2002 12:00:42 - No Data, Bad Only Bad data in interval
Jan-01-2002 12:00:48 40 Raw, Good
Jan-01-2002 12:00:52 50 Raw, Good
Jan-01-2002 12:00:55 - No Data, Bad No raw data in interval, do not interpolate

5.6.3.13.4 MaximumActualTime data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:01:20 80 Raw, Good
Jan-01-2002 12:01:25 - No Data, Bad No raw data in interval, do not interpolate
Jan-01-2002 12:01:30 90 Raw, Good
Jan-01-2002 12:01:35 - No Data, Bad

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:01:23 70 Raw, Good
Jan-01-2002 12:01:26 80 Raw, Good
Jan-01-2002 12:01:30 90 Raw, Good
Jan-01-2002 12:01:35 - No Data, Bad

OPC Unified Architecture, Part 11 48 Release 1.00

5.6.3.13.5 MaximumActualTime data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:00 - No Data, Bad
Jan-01-2002 12:00:05 - No Data, Bad
Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:15 - No Data, Bad

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:02 10 Raw, Good
Jan-01-2002 12:00:05 - No Data, Bad
Jan-01-2002 12:00:10 - No Data, Bad
Jan-01-2002 12:00:15 - No Data, Bad

5.6.3.13.6 MaximumActualTime with Partial Interval.

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:20 20 Raw, Good
Jan-01-2002 12:00:30 30 Partial, Good

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:05 - No Data, Bad
Jan-01-2002 12:00:28 25 Partial, Good

5.6.3.14 Range

5.6.3.14.1 Description

The range aggregate finds the difference between the raw maximum and raw minimum values
in the interval. If only one value exists in the interval, the range is zero. Note that the range is
always zero or positive.

If there are any non-good raw values in the interval, they are ignored, and the aggregate
StatusCode will be Uncertain_Subnormal.

All interval aggregates are returned with timestamp of the start of the interval. Unless
otherwise indicated, StatusCodes are Good, Calculated.

5.6.3.15 AnnotationCount

5.6.3.15.1 Description

This aggregate returns a count of all annotations.

OPC Unified Architecture, Part 11 49 Release 1.00

5.6.3.16 Count

5.6.3.16.1 Description

This aggregate retrieves a count of all the raw values within an interval. If one or more raw
values are non-good, they are not included in the count, and the aggregate StatusCode is
determined using the StatusCode Calculation (See Clause 5.6.2.4). If no good data exists for
an interval, the count is zero.

Unless otherwise indicated, StatusCodes are Good, Calculated

5.6.3.16.2 Count data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 1 Calculated, Good 0 Calculated, Good
Jan-01-2002 12:00:15 0 Calculated, Good 0 Calculated, Good

5.6.3.16.3 Count data with uncertain data in the interval.

Start: Jan-01-2002 12:00:50 End: Jan-01-2002 12:01:30 Interval: 00:00:00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:50 4* Calculated, Good 4 Calculated, Uncertain Value2 treats uncertain as
bad, which also changes
StatusCode

* For servers with TreatUncertainAsBad = True then the result would be 3.

5.6.3.17 DurationInState0

5.6.3.17.1 Description

This aggregate returns the time duration during the resample interval that the variable was in
the zero state. If one or more raw values are non-good, they are not included in the duration,
and the aggregate StatusCode is determined using the StatusCode Calculation (See Clause
5.6.2.4). If no good data exists for an interval, the duration is 0.

Unless otherwise indicated, StatusCodes are Good, Calculated

5.6.3.18 DurationInState1

5.6.3.18.1 Description

This aggregate returns the time duration during the resample interval that the variable was in
the one state. If one or more raw values are non-good, they are not included in the duration,
and the aggregate StatusCode is determined using the StatusCode Calculation (See Clause
5.6.2.4). If no good data exists for an interval, the duration is 0.

Unless otherwise indicated, StatusCodes are Good, Calculated

OPC Unified Architecture, Part 11 50 Release 1.00

5.6.3.19 NumberOfTransitions

5.6.3.19.1 Description

This aggregate returns a count of the number of transition the variable had during the
resample interval. If one or more raw values are non-good, they are not included in the
duration, and the aggregate StatusCode is determined using the StatusCode Calculation
(See Clause 5.6.2.4). If no good data exists for an interval, the number of transistions is 0.

Unless otherwise indicated, StatusCodes are Good, Calculated

5.6.3.20 Start

5.6.3.20.1 Description

The start aggregate retrieves the first raw value within the interval [s,e), and returns that value
with the timestamp at which that value occurs. If the value is non-good , than the StatusCode
of the aggregate will be Uncertain_Subnormal. Unless otherwise indicated, StatusCodes are
Good, Raw.

5.6.3.20.2 Start data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good
Jan-01-2002 12:00:15 - No Data, Bad Return Timestamp of the interval

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 - No Data, Bad Return Timestamp of the interval

Jan-01-2002 12:00:15 - No Data, Bad Return Timestamp of the interval

5.6.3.20.3 Start data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad
Jan-01-2002 12:00:40 40 Raw, Bad Raw Value (If Bad values are stored)

Jan-01-2002 12:00:45 - No Data, Bad
Jan-01-2002 12:00:50 50 Raw, Good
Jan-01-2002 12:00:55 - No Data, Bad

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

OPC Unified Architecture, Part 11 51 Release 1.00

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:39 30 Raw, Good First raw in :35-:40 at :39
Jan-01-2002 12:00:42 40 Raw, Bad Raw Value (If Bad values are stored)

Jan-01-2002 12:00:48 40 Raw, Good First raw in :45-:50 at :48
Jan-01-2002 12:00:52 50 Raw, Good First raw in :50-:55 at :52
Jan-01-2002 12:00:55 - No Data, Bad

5.6.3.20.4 Start data with partial intervals.

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good First raw in :05-:21 at :10
Jan-01-2002 12:00:30 30 Partial, Good First raw in :21-:35 at :30

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:25 - No Data, Bad No raw data in :05-:21 at :10
Jan-01-2002 12:00:25 20 Raw, Good First raw in :21-:35 at :25

5.6.3.21 End

5.6.3.21.1 Description

The end aggregate retrieves the last raw value within the interval [s,e), and returns that value
with the timestamp at which that value occurs. If the value is non-good , than the StatusCode
of the aggregate will be Uncertain_Subnormal.

Unless otherwise indicated, StatusCodes are Good, Raw.

5.6.3.21.2 End data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good Last raw in :10-:15 at :10
Jan-01-2002 12:00:15 - No Data, Bad Return Timestamp of the interval.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 - No Data, Bad Return Timestamp of the interval

Jan-01-2002 12:00:15 - No Data, Bad Return Timestamp of the interval

OPC Unified Architecture, Part 11 52 Release 1.00

5.6.3.21.3 End data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:35 - No Data, Bad
Jan-01-2002 12:00:40 40 Raw, Bad Raw Value (If Bad values are stored)

Jan-01-2002 12:00:45 - No Data, Bad
Jan-01-2002 12:00:50 50 Raw, Good
Jan-01-2002 12:00:55 - No Data, Bad

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:39 30 Raw, Good Last raw in :35-:40 at :39
Jan-01-2002 12:00:40 40 Raw, Bad Raw Value (If Bad values are stored)

Jan-01-2002 12:00:48 40 Raw, Good Last raw in :45-:50 at :48
Jan-01-2002 12:00:52 50 Raw, Good Last raw in :50-:55 at :52
Jan-01-2002 12:00:55 - No Data, Bad

5.6.3.21.4 End data with partial intervals.

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 1 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:10 10 Raw, Good Last raw in :05-:21 at :10
Jan-01-2002 12:00:30 30 Partial, Good Last raw in :21-:35 at :30

Start: Jan-01-2002 12:00:05 End: Jan-01-2002 12:00:35 Interval: 00:00:16

Historian 2 Timestamp
Value StatusCode

Notes

Jan-01-2002 12:00:25 - No Data, Bad No raw data in :05-:21 at :10
Jan-01-2002 12:00:28 25 Raw, Good Last raw in :21-:35 at :28

5.6.3.22 Delta

5.6.3.22.1 Description

The delta aggregate retrieves the difference between the earliest and latest good raw values
in an interval. If the last value is less than the first value, the result will be negative. If the last
value is the same as the first value, or if the last value is also the first value at the same
timestamp, the result will be zero. If the last value is greater than the first value, the result will
be positive.

If any non-good values exist earlier or later than the earliest and latest good values,
respectively, the aggregate is Uncertain_Subnormal.

All interval aggregates are returned with timestamp of the start of the interval. Unless
otherwise indicated, StatusCodes are Good, Calculated.

OPC Unified Architecture, Part 11 53 Release 1.00

5.6.3.23 DurationGood

5.6.3.23.1 Description

The duration good aggregate looks at the StatusCode of a bounding value of the interval to
determine what the StatusCode is at the beginning of the interval. If no bounding value exists,
the StatusCode is assumed to be bad at the start of the interval. This aggregate only
considers truly Good values. Uncertain values are not considered Good for purposes of
calculating this aggregate.

Whenever a raw value x with quality q is encountered from beginning to end within an interval,
the quality is considered to be q until the next value, y, is encountered, at which point the
quality becomes that of y, and so on.

The time is returned in seconds. No returned value will ever be Uncertain_Subnormal.

Each interval’s aggregate is returned with timestamp of the start of the interval. StatusCodes
are Good, Calculated

5.6.3.23.2 DurationGood data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 5 Calculated, Good 5 Calculated, Good
Jan-01-2002 12:00:15 5 Calculated, Good 5 Calculated, Good

5.6.3.23.3 DurationGood data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:35 5 Calculated, Good 5 Calculated, Good Value2-Good from :35 to :39.
Good :39 to :40

Jan-01-2002 12:00:40 0 Calculated, Good 2 Calculated, Good Value2-Good from :40 to :42.
Bad :42 to :45

Jan-01-2002 12:00:45 0 Calculated, Good 2 Calculated, Good Value2-Bad from :45 to :48.
Good :48 to :50

Jan-01-2002 12:00:50 5 Calculated, Good 5 Calculated, Good
Jan-01-2002 12:00:55 5 Calculated, Good 5 Calculated, Good

5.6.3.23.4 DurationGood data with no good end bounding value.

Start: Jan-01-2002 12:01:20 End: Jan-01-2002 12:01:40 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:20 5 Calculated, Good 2 Calculated, Good Value2-Uncertain from :20 to
:23. Good :23 to :25

Jan-01-2002 12:01:25 5 Calculated, Good 5 Calculated, Good
Jan-01-2002 12:01:30 5 Calculated, Good 5 Calculated, Good
Jan-01-2002 12:01:35 5 Calculated, Good 5 Calculated, Good

OPC Unified Architecture, Part 11 54 Release 1.00

5.6.3.23.5 DurationGood data with no good start bounding value.

Start: Jan-01-2002 12:00:00 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:00 0 Calculated, Good 3 Calculated, Good Value1-No bound, Bad from :00 to
:05
Value2-Bad from :00 to :02. Good
:02 to :05

Jan-01-2002 12:00:05 0 Calculated, Good 5 Calculated, Good Value1-No bound, Bad from :05 to
:10

Jan-01-2002 12:00:10 5 Calculated, Good 5 Calculated, Good
Jan-01-2002 12:00:15 5 Calculated, Good 5 Calculated, Good

5.6.3.23.6 DurationGood data with uncertain data in the interval.

Start: Jan-01-2002 12:01:00 End: Jan-01-2002 12:01:30 Interval: 00:00:00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:00 20* Calculated, Good 25* Calculated,
Good

Value1-Uncertain from :10 to :20
Value1-Uncertain from :12 to :17

* Uncertain data should not be counted as good.

5.6.3.24 DurationBad

5.6.3.24.1 Description

The duration bad aggregate looks at the quality of a bounding value of the interval to
determine what the quality is at the beginning of the interval. If no bounding value exists, the
quality is assumed to be bad at the start of the interval. This aggregate only considers truly
Bad values. Uncertain values are not considered bad for purposes of calculating this
aggregate.

Whenever a raw value x with quality q is encountered from beginning to end within an interval,
the quality is considered to be q until the next value, y, is encountered, at which point the
quality becomes that of y, and so on.

The time is returned in seconds. No returned value will ever be uncertain or subnormal.

Each interval’s aggregate is returned with timestamp of the start of the interval. StatusCodes
are Good, Calculated.

Duration Bad is not simply the interval minus duration good, since the interval uncertain data.

5.6.3.24.2 DurationBad data with good bounding value.

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

OPC Unified Architecture, Part 11 55 Release 1.00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:10 0 Calculated, Good 0 Calculated, Good
Jan-01-2002 12:00:15 0 Calculated, Good 0 Calculated, Good

5.6.3.24.3 DurationBad data with good bounding value with bad data in the interval.

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:00:35 0 Calculated, Good 0 Calculated, Good
Jan-01-2002 12:00:40 5 Calculated, Good 3 Calculated, Good
Jan-01-2002 12:00:45 5 Calculated, Good 3 Calculated, Good
Jan-01-2002 12:00:50 0 Calculated, Good 0 Calculated, Good
Jan-01-2002 12:00:55 0 Calculated, Good 0 Calculated, Good

5.6.3.24.4 DurationBad data with uncertain data in the interval.

Start: Jan-01-2002 12:01:00 End: Jan-01-2002 12:01:30 Interval: 00:00:00

Historian 1 Historian 2 Timestamp
Value StatusCode Value StatusCode

Notes

Jan-01-2002 12:01:00 0 Calculated, Good 0 Calculated, Good

5.6.3.25 PercentGood

5.6.3.25.1 Description

This aggregate performs the following calculation:

percent_good = duration_good / interval_length * 100

Where:

 duration_good is the result from the DURATIONGOOD aggregate, calculated using the
interval supplied to PERCENTGOOD call.

 Interval_length is the interval of the aggregates.

No returned value will ever be uncertain or subnormal.

Each interval’s aggregate is returned with timestamp of the start of the interval. StatusCodes
are Good, Calculated.

The interval_length is the entire sample interval, regardless of quality.

5.6.3.26 PercentBad

5.6.3.26.1 Description

This aggregate performs the following calculation:

OPC Unified Architecture, Part 11 56 Release 1.00

percent_bad = duration_bad / interval_length * 100

Where:

 duration_good is the result from the DURATIONBAD aggregate, calculated using the
interval supplied to PERCENTBAD call.

 Interval_length is the interval of the aggregates.

No returned value will ever be uncertain or subnormal.

Each interval’s aggregate is returned with timestamp of the start of the interval. StatusCodes
are Good, Calculated.

The interval_length is the entire sample interval, regardless of quality.

5.6.3.27 WorstQuality

5.6.3.27.1 Description

This aggregate returns the worst quality of the raw values in the interval. That is, Bad status
are worse than Uncertain, which are worse than Good. No distinction is made between the
specific reasons for the status.

This aggregate returns the worst StatusCode as the value of the aggregate.

The timestamp is always the start of the interval. The StatusCodes are Good, Calculated.

OPC Unified Architecture, Part 11 57 Release 1.00

6 Client conventions

6.1 How clients may request timestamps

The OPC HDA COM based specifications allowed clients to programmatically request
historical time periods as absolute time (Jan 01, 2006 12:15:45) or a string representation of
relative time (NOW -5M). The OPC UA specification does not allow for using a string
representation to pass date/time information using the standard services.

OPC UA client applications that wish to visually represent date/time in a relative string format
must convert this string format to UTC DateTime values before sending requests to the UA
server. It is recommended that all OPC UA clients use the syntax defined in this section to
represent relative times in their user interfaces.

The time is considered to be a relative time local to the server. This means that all times are
given in UTC time, computed from the current time on the server's local clock. The format for
the relative time is:

 keyword+/-offset+/-offset…

where keyword and offset are as specified in the table below. Whitespace is ignored. The
time string must begin with a keyword. Each offset must be preceded by a signed integer that
specifies the number and direction of the offset. If the integer preceding the offset is
unsigned, the value of the preceding sign is assumed (beginning default sign is positive). The
keyword refers to the beginning of the specified time period. DAY means the timestamp at the
beginning of the current day (00:00 hours, midnight), MONTH means the timestamp at the
beginning of the current month, etc.
For example, “DAY -1D+7H30M” could represent the start time for data requested for a daily

report beginning at 7:30 in the morning of the previous day (DAY = the first
timestamp for today, -1D would make it the first timestamp for yesterday, +7H would
take it to 7 a.m. yesterday, +30M would make it 7:30 a.m. yesterday (the + on the
last term is carried over from the last term).

Similarly, “MONTH-1D+5H” would be 5 a.m. on the last day of the previous month, “NOW-
1H15M” would be an hour and fifteen minutes ago, and “YEAR+3MO” would be the
first timestamp of April 1 this year.

Resolving relative timestamps is based upon what Microsoft has done with Excel, thus for
various questionable time strings, we have these results:

10-Jan-2001 + 1 MO = 10-Feb-2001

29-Jan-1999 + 1 MO = 28-Feb-1999

31-Mar-2002 + 2 MO = 30-May-2002

29-Feb-2000 + 1 Y = 28-Feb-2001

In handling a gap in the calendar (due to different numbers of days in the month, or in the
year), when one is adding or subtracting months or years:

 Month: if the answer falls in the gap, it is backed up to the same time of day on the last day
of the month.

Year: if the answer falls in the gap (February 29), it is backed up to the same time of day on
February 28.

OPC Unified Architecture, Part 11 58 Release 1.00

Note that the above does not hold for cases where one is adding or subtracting weeks or
days, but only when adding or subtracting months or years, which may have different
numbers of days in them.

Note that all keywords and offsets are specified in uppercase.

Table 31 –Time Keyword Definitions

Keyword Description
NOW The current UTC time as calculated on the server.
SECOND The start of the current second.
MINUTE The start of the current minute.
HOUR The start of the current hour.
DAY The start of the current day.
WEEK The start of the current week.
MONTH The start of the current month.
YEAR The start of the current year.

Table 32 –Time Offset Definitions

Offset Description
S Offset from time in seconds.
M Offset from time in minutes.
H Offset from time in hours.
D Offset from time in days.
W Offset from time in weeks.
MO Offset from time in months.
Y Offset from time in years.

	1
	1 Scope
	2 Reference documents
	3 Terms, definitions, and abbreviations
	3.1 OPC UA Part 1 terms
	3.2 OPC UA Part 3 terms
	3.3 OPC UA Part 4 terms
	3.4 OPC UA Historical Access terms
	3.4.1 Aggregate
	3.4.2 Annotation
	3.4.3 BoundingValues
	3.4.4 HistoricalNode
	3.4.5 HistoricalDataNode
	3.4.6 HistoricalEventNode
	3.4.7 Interpolated data
	3.4.8 Modified values
	3.4.9 Raw data
	3.4.10 StartTime / EndTime
	3.4.11 TimeDomain

	3.5 Abbreviations and symbols

	4 Concepts
	4.1 General
	4.2 Data representation
	4.3 Timestamps
	4.4 Bounding values and time domain
	4.5 Changes in AddressSpace over time.
	4.6 Historical Audit Events
	4.7 Model
	4.7.1 HistoricalDataNodes
	4.7.1.1 General
	4.7.1.2 HasHistoricalConfiguration
	4.7.1.3 OptionalNew
	4.7.1.4 HistoricalConfigurationType

	4.7.2 HistoricalDataNodes Address Space Model
	4.7.3 HistoricalDataNodes Attributes
	4.7.4 HistoricalEventNodes
	4.7.4.1 General
	4.7.4.2 HasHistoricalEventConfiguration
	4.7.4.3 OptionalNew
	4.7.4.4 HistoricalEventConfigurationType

	4.7.5 HistoricalEventNodes Address Space model
	4.7.6 HistoricalEventNodes Attributes

	4.8 History Objects
	4.8.1 General
	4.8.2 HistoryServerCapabilitiesType
	4.8.3 HistoryAggregateContainerType
	4.8.4 HistoryAggregateType

	4.9 History DataType definitions
	4.9.1 Annotation DataType

	5 Historical Access specific usage of Services
	5.1 General
	5.2 Historical Nodes StatusCodes
	5.2.1 Overview
	5.2.2 Operation level result codes
	5.2.3 Historian Information Bits
	5.2.4 Semantics changed

	5.3 HistoryReadDetails parameters
	5.3.1 Overview
	5.3.2 ReadEventDetails structure
	5.3.3 ReadRawModifiedDetails structure
	5.3.3.1 ReadRawModifiedDetails structure Overview
	5.3.3.2 RAW usage
	5.3.3.3 MODIFIED usage

	5.3.4 ReadProcessedDetails structure
	5.3.5 ReadAtTimeDetails structure

	5.4 HistoryData parameters
	5.4.1 Overview
	5.4.2 HistoryData type
	5.4.3 HistoryEvent type

	5.5 HistoryUpdateDetails parameter
	5.5.1 Overview
	5.5.2 UpdataDataDetails structure
	5.5.2.1 UpdataDataDetails structure Overview
	5.5.2.2 INSERTDATA usage
	5.5.2.3 REPLACEDATA usage
	5.5.2.4 UPDATEDATA usage

	5.5.3 UpdateEventDetails structure
	5.5.3.1 INSERTEVENT usage
	5.5.3.2 REPLACEEVENT usage
	5.5.3.3 UPDATEEVENT usage

	5.5.4 DeleteRawModifiedDetails structure
	5.5.5 DeleteAtTimeDetails structure
	5.5.6 DeleteEventDetails structure

	5.6 Aggregate Details
	5.6.1 General
	5.6.2 Common characteristics
	5.6.2.1 Description
	5.6.2.2 Generating intervals
	5.6.2.3 Data types
	5.6.2.4 StatusCode calculation

	5.6.3 Aggregate specific characteristics
	5.6.3.1 Description
	5.6.3.2 Example aggregate data – Historian 1
	5.6.3.3 Example aggregate data – Historian 2
	5.6.3.4 Example Conditions
	5.6.3.5 Interpolative
	5.6.3.5.1 Description
	5.6.3.5.2 Interpolated data with good bounding value.
	5.6.3.5.3 Interpolated data with good bounding value with bad data in the interval.
	5.6.3.5.4 Interpolated data with no good end bounding value.
	5.6.3.5.5 Interpolated data with no good start bounding value.

	5.6.3.6 Average
	5.6.3.6.1 Description
	5.6.3.6.2 Average data with good bounding value.
	5.6.3.6.3 Average data with good bounding value with bad data in the interval.
	5.6.3.6.4 Average data with no good end bounding value.
	5.6.3.6.5 Average data with no good start bounding value.

	5.6.3.7 TimeAverage
	5.6.3.7.1 Description
	5.6.3.7.2 TimeAverage data with good bounding value.
	5.6.3.7.3 TimeAverage data with good bounding value with bad data in the interval.
	5.6.3.7.4 TimeAverage data with no good end bounding value.
	5.6.3.7.5 TimeAverage data with no good start bounding value.

	5.6.3.8 Total
	5.6.3.8.1 Description
	5.6.3.8.2 Total data with good bounding value.
	5.6.3.8.3 Total data with good bounding value with bad data in the interval.
	5.6.3.8.4 Total data with no good end bounding value.

	5.6.3.9 TotalizeAverage
	5.6.3.9.1 Description
	5.6.3.9.2 TotalizeAverage data with good bounding value.

	5.6.3.10 Minimum
	5.6.3.10.1 Description
	5.6.3.10.2 Minimum data with good bounding value.
	5.6.3.10.3 Minimum data with good bounding value with bad data in the interval.
	5.6.3.10.4 Minimum data with no good end bounding value.
	5.6.3.10.5 Minimum data with no good start bounding value.
	5.6.3.10.6 Minimum data with Partial Interval.

	5.6.3.11 Maximum
	5.6.3.11.1 Description
	5.6.3.11.2 Maximum data with good bounding value.
	5.6.3.11.3 Maximum data with good bounding value with bad data in the interval.
	5.6.3.11.4 Maximum data with no good end bounding value.
	5.6.3.11.5 Maximum data with no good start bounding value.
	5.6.3.11.6 Maximum data with Partial Interval.

	5.6.3.12 MininumActualTime
	5.6.3.12.1 Description
	5.6.3.12.2 MininumActualTime data with good bounding value.
	5.6.3.12.3 MininumActualTime data with good bounding value with bad data in the interval.
	5.6.3.12.4 MininumActualTime data with no good end bounding value.
	5.6.3.12.5 MininumActualTime data with no good start bounding value.
	5.6.3.12.6 MininumActualTime with Partial Interval.

	5.6.3.13 MaximumActualTime
	5.6.3.13.1 Description
	5.6.3.13.2 MaximumActualTime data with good bounding value.
	5.6.3.13.3 MaximumActualTime data with good bounding value with bad data in the interval.
	5.6.3.13.4 MaximumActualTime data with no good end bounding value.
	5.6.3.13.5 MaximumActualTime data with no good start bounding value.
	5.6.3.13.6 MaximumActualTime with Partial Interval.

	5.6.3.14 Range
	5.6.3.14.1 Description

	5.6.3.15 AnnotationCount
	5.6.3.15.1 Description

	5.6.3.16 Count
	5.6.3.16.1 Description
	5.6.3.16.2 Count data with good bounding value.
	5.6.3.16.3 Count data with uncertain data in the interval.

	5.6.3.17 DurationInState0
	5.6.3.17.1 Description

	5.6.3.18 DurationInState1
	5.6.3.18.1 Description

	5.6.3.19 NumberOfTransitions
	5.6.3.19.1 Description

	5.6.3.20 Start
	5.6.3.20.1 Description
	5.6.3.20.2 Start data with good bounding value.
	5.6.3.20.3 Start data with good bounding value with bad data in the interval.
	5.6.3.20.4 Start data with partial intervals.

	5.6.3.21 End
	5.6.3.21.1 Description
	5.6.3.21.2 End data with good bounding value.
	5.6.3.21.3 End data with good bounding value with bad data in the interval.
	5.6.3.21.4 End data with partial intervals.

	5.6.3.22 Delta
	5.6.3.22.1 Description

	5.6.3.23 DurationGood
	5.6.3.23.1 Description
	5.6.3.23.2 DurationGood data with good bounding value.
	5.6.3.23.3 DurationGood data with good bounding value with bad data in the interval.
	5.6.3.23.4 DurationGood data with no good end bounding value.
	5.6.3.23.5 DurationGood data with no good start bounding value.
	5.6.3.23.6 DurationGood data with uncertain data in the interval.

	5.6.3.24 DurationBad
	5.6.3.24.1 Description
	5.6.3.24.2 DurationBad data with good bounding value.
	5.6.3.24.3 DurationBad data with good bounding value with bad data in the interval.
	5.6.3.24.4 DurationBad data with uncertain data in the interval.

	5.6.3.25 PercentGood
	5.6.3.25.1 Description

	5.6.3.26 PercentBad
	5.6.3.26.1 Description

	5.6.3.27 WorstQuality
	5.6.3.27.1 Description

	6 Client conventions
	6.1 How clients may request timestamps

