Gobi™ SDK—Developing Code to Connect, Locate, and Manage 3G/4G Data Devices

Monte Giles
Director Product Management, Qualcomm
Agenda

• Introduction to Gobi
• Moving from AT Commands to Common API
• Gobi API Benefits
• What can I do with the API?
• Q&A
Qualcomm: Driving Computing and Mobility

BRINGING COMPUTING TO MOBILE DEVICES

BRINGING MOBILITY TO COMPUTING DEVICES

2011 UPLiNQ CONFEERENCE

Where mobile links up.
Gobi Now Available > 100 Different Devices
Extending Wireless Leadership to All Connected Devices
Gobi API—Flexible and Scalable

Applications developed by:
1. Carriers
2. OEMs
3. Independent Software Vendors (ISVs)
 - Location-Aware, Tracking, Navigation
 - Security, Mobile Device Management

Flexible Interface

Driver

Gobi Compliant HW Qualcomm Chipsets

Value-Add Applications

C/C++ API

VBScript
Perl
Jscript CLI
WMI

Connect

Laptops/Netbooks
USB Dongles
Tablets E-Readers
Routers

Locate

Gobi API

Modem
GPS
NDIS

Manage

USB Bus Driver
Module Hardware (Gobi compliant)
Moving From AT Commands to Common APIs

• Historically, AT commands have been the primary method available to interface with cellular modem
• Qualcomm’s Gobi technology introduces a mobile broadband API which is common across
 – Air interface: CDMA, HSPA, HSPA+, and LTE
 – Operating System: Windows, Chrome OS, Android
• Qualcomm is encouraging the industry to move to common APIs such as the Gobi API to provide a better user experience
Challenges of Legacy AT Commands

1. Modality
2. Concurrency
3. Performance
4. Fragmentation
1. Modality

- Each AT command bus may be in one of two states
 1. Command state
 2. Data state
- When in “data state” the modem can no longer be accessed or managed
- Transition to “command state” requires non-standard in-band escape sequence
- Only one AT command may be issued at a time
2. Concurrency

• Only one app can use an AT command interface at a time. Requires an additional AT port
 – Apps that autostart under the covers can block other CMs
• Reality: multiple applications need to access the device interface at the same time
 – Connection Manager(s)
 – GPS application
 – SMS widget
 – Set-up Portal
 – Manageability client
 – EAP/SIM
 – VoIP client
 – VPN client
3. Performance

- Serial interface requires HDLC framing for data transfer which incurs significant overhead
- Dial-up networking (DUN) using PPP is not conducive for 3G/4G mobile broadband access
 - Circuit-switched model
 - Device appears as a landline modem to the OS and User
 - Requires the user or application to initiate all data connections
4. Fragmentation

- Different AT command models for each technology (UMTS, CDMA, LTE)
- Operator-specific AT commands
- Results in fragmentation, high SW development costs, and great effort to support 3G/4G connectivity
Introducing the Gobi™ API

• First mobile broadband API that is common across
 – Air interface: CDMA, HSPA, HSPA+, and LTE
 – OS: Windows, Chrome OS, Android
• Simultaneous data and control
• Highly optimized data path (802.3 or Raw IP)
• Flexible, scalable, and portable architecture
What is the Gobi SDK?

- The Windows Gobi SDK* provides a common set of C/C++ APIs with sample code for developing connection managers, GPS apps, and/or manageability solutions on wireless devices based on the following Qualcomm chipsets:

 MDM9600 MDM6600 MDM2000
 MDM9200 MDM6200 MDM1000
 MDM8220

Why Qualcomm?

- The Gobi API from Qualcomm provides support for the broadest range of 3G/4G modules in the industry allowing you to write once and reuse code across multiple platforms (tablets, notebooks and machine-to-machine devices) spanning multiple operating systems (Windows, Chrome OS, Android)

* Windows Gobi SDK is available at http://www.qdevnet.com
What Can I Do With the Gobi API?
Three High-level Use Cases—Gobi API

Connect
- Wireless Data Service (WDS)
 - CDMA
 - 1xRTT/EVDORevA/B
 - EDGE/GPRS
 - WCDMA
 - HSDPA/HSUPA
 - HSPA+/DC-HSPA+
 - LTE
- Network Access Service (NAS)
- SMS Service

Locate
- Position Determination Service (PDS)
 - Standalone GPS
 - Assisted GPS w/XTRA
- Win7 Location Sensor Support

Manage
- Device Management Service (DMS)
- Firmware Management*
- Card Application Toolkit (CAT)

* Supported on select EVDO/HSPA multimode devices only, refer to hardware specifications
Examples—Connect to 3G/4G Networks

Connect

- Wireless Data Service (WDS)
 - CDMA
 - 1xRTT/EVDO Rev A/B
 - EDGE/GPRS
 - WCDMA
 - HSDPA/HSUPA
 - HSPA+/DC-HSPA+
 - LTE
- Network Access Service (NAS)
- SMS Service

- Use the same APIs to start/stop data session regardless of air interface (EVDO, HSPA, LTE, etc…)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Externally Connected</td>
</tr>
<tr>
<td>RSSI (dB)</td>
<td>-78</td>
</tr>
<tr>
<td>Technology</td>
<td>HSDPA DL, HSUPA UL</td>
</tr>
<tr>
<td>Current RX Rate (bps)</td>
<td>240800</td>
</tr>
<tr>
<td>Current TX Rate (bps)</td>
<td>3440</td>
</tr>
<tr>
<td>Maximum RX Rate (bps)</td>
<td>14000000</td>
</tr>
<tr>
<td>Maximum TX Rate (bps)</td>
<td>20000000</td>
</tr>
<tr>
<td>Roaming Indicator</td>
<td>1</td>
</tr>
<tr>
<td>Connection Duration</td>
<td>01:52:29</td>
</tr>
<tr>
<td>Life Total Connection Duration</td>
<td>01:57:35</td>
</tr>
<tr>
<td>Life Total RX Bytes</td>
<td>15203177</td>
</tr>
<tr>
<td>Life Total TX Bytes</td>
<td>1504981</td>
</tr>
</tbody>
</table>

- Develop connection manager using same code base, reducing time-to-market and development costs

 StartDataSession()
 StopDataSession()
 GetConnectionRate()
 GetIPAddress()
 GetPacketStatus()
 GetDataBearerTechnology()
 GetByteTotals()
 GetSessionDuration()
Examples—Location-based Services

Locate

- Position Determination Service (PDS)
 - Standalone GPS
 - Assisted GPS w/ XTRA
- Win7 Location Sensor Support

- Qualcomm’s leading gpsOne® solution for smartphones is also available in laptops and tablets

- Use Gobi API to track physical device, setup geofence and alerts, provide navigation software, location-aware apps, and/or advanced geo-spatial systems for large enterprise/government
Examples—Mobile Device Management

Manage

- Device Management Service (DMS)
- Firmware Management*
- Card Application Toolkit (CAT)

- Manage connection details like data transferred and roaming usage to help control costs
- Provide Mobile Broadband reports including consolidated views into inventory and connectivity data across users, networks, and devices.
- Secure data on device w/ remote data wipe

1 Inventory Management

<table>
<thead>
<tr>
<th>Device Name</th>
<th>IMEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model ID</td>
<td>IMSI</td>
</tr>
<tr>
<td>Firmware revision</td>
<td>MIN</td>
</tr>
<tr>
<td>MEID</td>
<td>MDN</td>
</tr>
</tbody>
</table>

2 Mobile Device Management

- Carrier name(s)
- Carrier Select
- Usage: historical and real-time
- International roaming
- Remote Data Wipe

Gobi API

* Supported on select EVDO/HSPA multimode devices only, refer to hardware specifications
Conclusions

• Gobi API is the first mobile broadband API that is **common** across:
 – Air interface: CDMA, HSPA, HSPA+, and LTE
 – OS: Windows, Chrome OS, Android

• Use a common API to develop code to connect, locate, and manage 3G/4G devices

• Gobi SDK now available for download at http://www.qdevnet.com
Q&A

Dependent on carrier operator and 3G network availability

The Internet*, Wherever You Are™
Thank you!

Qualcomm is a registered trademark and registered service mark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners. Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law prohibited.

Product descriptions contained herein are subject to change from time to time without notice.

© 2011 QUALCOMM Incorporated. All rights reserved.
QUALCOMM Incorporated, 5775 Morehouse Drive, San Diego, CA 92121-1714