
CrossWorks for ARM Reference Manual

Version: 2.3.1.2013030700.17606

1997-2013 Rowley Associates Ltd.

CrossWorks for ARM Reference Manual

2

CrossWorks for ARM Reference Manual Contents

3

Contents
Introduction ... 31

What is CrossWorks? ... 32

What we don't tell you ... 33

Activating your product .. 34

Text conventions ... 36

Additional resources ... 38

Release notes .. 39

CrossStudio Tutorial ... 55

Activating CrossWorks .. 57

Managing support packages ... 59

Creating a project ... 62

Managing files in a project ... 68

Setting project options .. 72

Building projects ... 74

Exploring projects .. 77

Using the debugger ... 88

Low-level debugging .. 94

Debugging externally built applications ... 98

CrossStudio User Guide .. 103

CrossStudio standard layout ... 104

Menu bar ... 105

Title bar .. 106

Status bar .. 107

CrossWorks for ARM Reference Manual Contents

4

Editing workspace ... 109

Docking windows .. 110

Dashboard ... 111

CrossStudio help and assistance ... 112

Creating and managing projects .. 114

Solutions and projects .. 115

Creating a project .. 118

Adding existing files to a project ... 119

Adding new files to a project ... 120

Removing a file, folder, project, or project link ... 121

Project macros .. 122

Building your application ... 124

Creating variants using configurations .. 126

Project properties ... 128

Unique properties ... 129

Aggregate properties .. 130

Configurations and property values .. 131

Dependencies and build order .. 133

Linking and section placement .. 134

Using source control ... 137

Source control capabilities .. 138

Choosing your source-control provider .. 139

Connecting to the source-control system .. 140

Opening a project from source control ... 141

Files source-control status ... 142

Source-control operations ... 143

Adding files to source control ... 144

Checking files out .. 145

Checking files in ... 146

Undoing a check out .. 147

Getting the latest version .. 148

Showing differences between files ... 149

Merging files .. 150

Source-control explorer .. 151

Source-control properties .. 152

Visual SourceSafe provider ... 153

SourceOffSite provider .. 154

Subversion provider ... 155

CVS provider .. 157

Package management .. 159

Exploring your application ... 163

CrossWorks for ARM Reference Manual Contents

5

Project explorer .. 164

Source navigator window .. 169

Symbol browser ... 171

Memory usage window .. 176

Editing your code ... 179

Basic editing ... 180

Moving the insertion point .. 181

Selecting text .. 182

Adding text .. 183

Deleting text ... 184

Using the clipboard ... 185

Undo and redo ... 186

Drag and drop .. 187

Searching .. 188

Advanced editing .. 189

Indenting source code .. 190

Commenting out sections of code .. 191

Changing letter case ... 192

Indenting .. 193

Bookmarks .. 194

Find and Replace window ... 196

Clipboard-ring window ... 198

Regular expressions ... 200

Debugging windows ... 202

Locals window .. 203

Globals window .. 205

Watch window .. 207

Register window .. 210

Memory window .. 213

Breakpoints window .. 216

Call Stack window ... 220

Threads window ... 223

Execution Profile window .. 227

Trace window .. 228

Debug file search editor ... 229

Breakpoint expressions ... 231

Debug expressions .. 232

Utility windows .. 233

Output window .. 234

Properties window .. 235

Targets window .. 236

CrossWorks for ARM Reference Manual Contents

6

Terminal emulator window ... 240

Script Console window ... 241

Debug Immediate window .. 242

Downloads window .. 243

Latest News window .. 244

Memory-map editor .. 245

Environment options dialog .. 248

Building Environment Options .. 249

Debugging Environment Options .. 251

IDE Environment Options .. 254

Programming Language Environment Options ... 259

Source Control Environment Options .. 263

Text Editor Environment Options .. 265

Windows Environment Options .. 269

ARM target support ... 272

Target startup code .. 273

Startup code .. 275

memory-map files ... 278

Project configurations ... 280

Target script file ... 283

Program loading .. 287

Debug Capabilities .. 288

Trace Capabilities .. 291

Target interfaces ... 293

ARM Simulator target interface .. 295

CrossConnect Target Interface .. 296

Segger J-Link Target Interface ... 298

Olimex ARM-USB-OCD Target Interface .. 299

Amontec JTAGkey Target Interface ... 301

P&E UNIT Interface DLL Target Interface .. 303

ST-LINK Target Interface .. 304

ST-LINK/V2 Target Interface ... 305

Kinetis OSJTAG Target Interface ... 306

Stellaris ICDI Target Interface .. 307

Macraigor Wiggler (20 and 14 pin) Target Interface .. 308

Generic FT2232 Target Interface .. 310

Generic Target Interface ... 313

C Library User Guide .. 315

Floating point .. 316

Single and double precision ... 317

Multithreading ... 319

CrossWorks for ARM Reference Manual Contents

7

Thread safety in the CrossWorks library ... 320

Implementing mutual exclusion in the C library ... 321

Input and output .. 322

Customizing putchar .. 323

Complete API reference ... 328

<assert.h> .. 329

__assert .. 330

assert .. 331

<cross_studio_io.h> ... 332

debug_abort ... 335

debug_break ... 336

debug_clearerr ... 337

debug_enabled .. 338

debug_exit ... 339

debug_fclose ... 340

debug_feof .. 341

debug_ferror ... 342

debug_fflush ... 343

debug_fgetc .. 344

debug_fgetpos ... 345

debug_fgets .. 346

debug_filesize .. 347

debug_fopen .. 348

debug_fprintf ... 349

debug_fprintf_c ... 350

debug_fputc .. 351

debug_fputs .. 352

debug_fread .. 353

debug_freopen .. 354

debug_fscanf .. 355

debug_fscanf_c .. 356

debug_fseek .. 357

debug_fsetpos ... 358

debug_ftell ... 359

debug_fwrite .. 360

debug_getargs ... 361

debug_getch ... 362

debug_getchar ... 363

debug_getd ... 364

debug_getenv .. 365

debug_getf .. 366

CrossWorks for ARM Reference Manual Contents

8

debug_geti ... 367

debug_getl ... 368

debug_getll ... 369

debug_gets .. 370

debug_getu ... 371

debug_getul .. 372

debug_getull ... 373

debug_kbhit .. 374

debug_loadsymbols .. 375

debug_perror .. 376

debug_printf ... 377

debug_printf_c .. 378

debug_putchar .. 379

debug_puts ... 380

debug_remove ... 381

debug_rename ... 382

debug_rewind .. 383

debug_runtime_error ... 384

debug_scanf .. 385

debug_scanf_c ... 386

debug_system .. 387

debug_time ... 388

debug_tmpfile .. 389

debug_tmpnam ... 390

debug_ungetc .. 391

debug_unloadsymbols ... 392

debug_vfprintf ... 393

debug_vfscanf .. 394

debug_vprintf ... 395

debug_vscanf ... 396

<ctype.h> .. 397

isalnum .. 398

isalpha .. 399

isblank .. 400

iscntrl .. 401

isdigit .. 402

isgraph ... 403

islower .. 404

isprint ... 405

ispunct ... 406

isspace .. 407

CrossWorks for ARM Reference Manual Contents

9

isupper ... 408

isxdigit ... 409

tolower ... 410

toupper .. 411

<errno.h> .. 412

EDOM .. 413

EILSEQ .. 414

ERANGE ... 415

__errno .. 416

errno ... 417

<float.h> .. 418

DBL_DIG .. 419

DBL_EPSILON .. 420

DBL_MANT_DIG ... 421

DBL_MAX .. 422

DBL_MAX_10_EXP .. 423

DBL_MAX_EXP .. 424

DBL_MIN ... 425

DBL_MIN_10_EXP ... 426

DBL_MIN_EXP ... 427

DECIMAL_DIG ... 428

FLT_DIG ... 429

FLT_EPSILON ... 430

FLT_EVAL_METHOD ... 431

FLT_MANT_DIG .. 432

FLT_MAX ... 433

FLT_MAX_10_EXP ... 434

FLT_MAX_EXP ... 435

FLT_MIN .. 436

FLT_MIN_10_EXP .. 437

FLT_MIN_EXP .. 438

FLT_RADIX .. 439

FLT_ROUNDS ... 440

<intrinsics.h> ... 441

__breakpoint ... 446

__cdp .. 447

__cdp2 .. 448

__clrex .. 449

__clz .. 450

__dbg ... 451

__disable_fiq ... 452

CrossWorks for ARM Reference Manual Contents

10

__disable_interrupt .. 453

__disable_irq ... 454

__dmb .. 455

__dsb .. 456

__enable_fiq .. 457

__enable_interrupt .. 458

__enable_irq .. 459

__fabs ... 460

__fabsf .. 461

__get_APSR .. 462

__get_BASEPRI ... 463

__get_CONTROL .. 464

__get_CPSR .. 465

__get_FAULTMASK ... 466

__get_PRIMASK .. 467

__isb .. 468

__ldc .. 469

__ldc2 ... 470

__ldc2_noidx ... 471

__ldc2l .. 472

__ldc2l_noidx .. 473

__ldc_noidx ... 474

__ldcl .. 475

__ldcl_noidx .. 476

__ldrbt .. 477

__ldrex ... 478

__ldrexb .. 479

__ldrexd .. 480

__ldrexh .. 481

__ldrht .. 482

__ldrsbt .. 483

__ldrsht .. 484

__ldrt .. 485

__mcr .. 486

__mcr2 ... 487

__mcrr .. 488

__mcrr2 .. 489

__mrc .. 490

__mrc2 ... 491

__mrrc .. 492

__mrrc2 .. 493

CrossWorks for ARM Reference Manual Contents

11

__nop .. 494

__pld ... 495

__pli ... 496

__qadd ... 497

__qadd16 .. 498

__qadd8 .. 499

__qasx .. 500

__qdadd .. 501

__qdbl .. 502

__qdsub ... 503

__qflag ... 504

__qsax .. 505

__qsub ... 506

__qsub16 .. 507

__qsub8 ... 508

__rbit .. 509

__rev ... 510

__rev16 .. 511

__revsh .. 512

__sadd16 ... 513

__sadd8 ... 514

__sasx ... 515

__sel .. 516

__set_APSR .. 517

__set_BASEPRI .. 518

__set_CONTROL ... 519

__set_CPSR ... 520

__set_FAULTMASK ... 521

__set_PRIMASK .. 522

__sev ... 523

__shadd16 .. 524

__shadd8 .. 525

__shasx .. 526

__shsax .. 527

__shsub16 .. 528

__shsub8 ... 529

__smlabb .. 530

__smlabt .. 531

__smlad ... 532

__smladx ... 533

__smlalbb ... 534

CrossWorks for ARM Reference Manual Contents

12

__smlalbt .. 535

__smlald .. 536

__smlaldx .. 537

__smlaltb .. 538

__smlaltt ... 539

__smlatb .. 540

__smlatt ... 541

__smlawb .. 542

__smlawt ... 543

__smlsd .. 544

__smlsdx ... 545

__smlsld .. 546

__smlsldx .. 547

__smuad .. 548

__smuadx ... 549

__smulbb .. 550

__smulbt ... 551

__smultb ... 552

__smultt .. 553

__smulwb ... 554

__smulwt ... 555

__smusd .. 556

__smusdx .. 557

__sqrt .. 558

__sqrtf .. 559

__ssat .. 560

__ssat16 ... 561

__ssax ... 562

__ssub16 ... 563

__ssub8 .. 564

__stc .. 565

__stc2 ... 566

__stc2l .. 567

__stc_noidx .. 568

__stcl ... 569

__strbt .. 570

__strex .. 571

__strexb ... 572

__strexd ... 573

__strexh ... 574

__strht .. 575

CrossWorks for ARM Reference Manual Contents

13

__strt ... 576

__swp ... 577

__swpb ... 578

__sxtab16 ... 579

__sxtb16 .. 580

__uadd16 .. 581

__uadd8 ... 582

__uasx .. 583

__uhadd16 ... 584

__uhadd8 .. 585

__uhasx .. 586

__uhsax .. 587

__uhsub16 .. 588

__uhsub8 .. 589

__uqadd16 ... 590

__uqadd8 .. 591

__uqasx ... 592

__uqsax ... 593

__uqsub16 .. 594

__uqsub8 .. 595

__usad8 ... 596

__usad8a ... 597

__usat ... 598

__usat16 .. 599

__usax .. 600

__usub8 ... 601

__uxtab16 ... 602

__uxtb16 ... 603

__wfe .. 604

__wfi ... 605

__yield .. 606

<iso646.h> .. 607

and ... 608

and_eq ... 609

bitand ... 610

bitor .. 611

compl .. 612

not ... 613

not_eq .. 614

or .. 615

or_eq ... 616

CrossWorks for ARM Reference Manual Contents

14

xor .. 617

xor_eq .. 618

<itm.h> ... 619

ITM_channel_enabled ... 620

ITM_send_byte ... 621

ITM_send_half_word ... 622

ITM_send_pc ... 623

ITM_send_word ... 624

<libarm.h> .. 625

libarm_dcc_read .. 626

libarm_dcc_write ... 627

libarm_disable_fiq .. 628

libarm_disable_irq .. 629

libarm_disable_irq_fiq .. 630

libarm_enable_fiq ... 631

libarm_enable_irq .. 632

libarm_enable_irq_fiq .. 633

libarm_get_cpsr ... 634

libarm_isr_disable_irq .. 635

libarm_isr_enable_irq ... 636

libarm_mmu_flat_initialise_level_1_table .. 637

libarm_mmu_flat_initialise_level_2_small_page_table .. 638

libarm_mmu_flat_set_level_1_cacheable_region ... 639

libarm_mmu_flat_set_level_2_small_page_cacheable_region ... 640

libarm_restore_irq_fiq .. 641

libarm_run_dcc_port_server ... 642

libarm_set_cpsr ... 643

libarm_set_fiq ... 644

libarm_set_irq .. 645

<limits.h> .. 646

CHAR_BIT .. 647

CHAR_MAX ... 648

CHAR_MIN .. 649

INT_MAX ... 650

INT_MIN ... 651

LLONG_MAX .. 652

LLONG_MIN ... 653

LONG_MAX .. 654

LONG_MIN .. 655

SCHAR_MAX .. 656

SCHAR_MIN ... 657

CrossWorks for ARM Reference Manual Contents

15

SHRT_MAX ... 658

SHRT_MIN ... 659

UCHAR_MAX ... 660

UINT_MAX .. 661

ULLONG_MAX ... 662

ULONG_MAX ... 663

USHRT_MAX .. 664

<locale.h> .. 665

lconv ... 666

localeconv .. 668

setlocale .. 669

<math.h> ... 670

acos ... 673

acosf .. 674

acosh ... 675

acoshf ... 676

asin .. 677

asinf ... 678

asinh ... 679

asinhf .. 680

atan ... 681

atan2 ... 682

atan2f ... 683

atanf .. 684

atanh ... 685

atanhf ... 686

cbrt .. 687

cbrtf ... 688

ceil .. 689

ceilf .. 690

cos .. 691

cosf .. 692

cosh ... 693

coshf ... 694

exp ... 695

expf ... 696

fabs .. 697

fabsf .. 698

floor ... 699

floorf ... 700

fmax .. 701

CrossWorks for ARM Reference Manual Contents

16

fmaxf ... 702

fmin ... 703

fminf .. 704

fmod .. 705

fmodf .. 706

fpclassify ... 707

frexp .. 708

frexpf .. 709

hypot .. 710

hypotf ... 711

isfinite ... 712

isinf .. 713

isnan ... 714

isnormal .. 715

ldexp ... 716

ldexpf ... 717

log .. 718

log10 ... 719

log10f ... 720

logf .. 721

modf .. 722

modff .. 723

pow .. 724

powf .. 725

scalbn ... 726

scalbnf .. 727

signbit .. 728

sin ... 729

sinf ... 730

sinh .. 731

sinhf .. 732

sqrt .. 733

sqrtf ... 734

tan .. 735

tanf .. 736

tanh ... 737

tanhf ... 738

<setjmp.h> .. 739

longjmp ... 740

setjmp .. 741

<stdarg.h> .. 742

CrossWorks for ARM Reference Manual Contents

17

va_arg .. 743

va_copy ... 744

va_end ... 745

va_start .. 746

<stddef.h> ... 747

NULL ... 748

offsetof .. 749

ptrdiff_t ... 750

size_t ... 751

wchar_t .. 752

<stdio.h> ... 753

getchar ... 754

gets .. 755

printf ... 756

putchar .. 761

puts ... 762

scanf .. 763

snprintf .. 767

sprintf ... 768

sscanf .. 769

vprintf .. 770

vscanf ... 771

vsnprintf .. 772

vsprintf .. 773

vsscanf ... 774

<stdlib.h> .. 775

EXIT_FAILURE .. 777

EXIT_SUCCESS .. 778

RAND_MAX .. 779

abs ... 780

atexit ... 781

atof .. 782

atoi ... 783

atol ... 784

atoll ... 785

bsearch .. 786

calloc ... 787

div .. 788

div_t .. 789

exit ... 790

free .. 791

CrossWorks for ARM Reference Manual Contents

18

itoa ... 792

labs .. 793

ldiv ... 794

ldiv_t ... 795

llabs ... 796

lldiv .. 797

lldiv_t .. 798

lltoa ... 799

ltoa ... 800

malloc ... 801

qsort .. 802

rand ... 803

realloc ... 804

srand ... 805

strtod .. 806

strtof ... 807

strtol .. 808

strtoll .. 810

strtoul ... 812

strtoull .. 814

ulltoa ... 815

ultoa .. 816

utoa ... 817

<string.h> .. 818

memccpy .. 820

memchr ... 821

memcmp ... 822

memcpy ... 823

memmove .. 824

mempcpy .. 825

memset .. 826

strcasecmp ... 827

strcasestr ... 828

strcat ... 829

strchr ... 830

strcmp .. 831

strcpy .. 832

strcspn .. 833

strdup ... 834

strerror ... 835

strlcat .. 836

CrossWorks for ARM Reference Manual Contents

19

strlcpy ... 837

strlen ... 838

strncasecmp .. 839

strncasestr .. 840

strncat .. 841

strnchr .. 842

strncmp ... 843

strncpy ... 844

strndup .. 845

strnlen .. 846

strnstr ... 847

strpbrk ... 848

strrchr ... 849

strsep .. 850

strspn .. 851

strstr .. 852

strtok .. 853

strtok_r .. 854

<time.h> .. 855

asctime ... 856

asctime_r .. 857

clock_t .. 858

ctime ... 859

ctime_r ... 860

difftime .. 861

gmtime .. 862

gmtime_r .. 863

localtime ... 864

localtime_r ... 865

mktime ... 866

strftime .. 867

time_t ... 869

tm ... 870

<wchar.h> ... 871

WCHAR_MAX .. 873

WCHAR_MIN .. 874

WEOF .. 875

wchar_t .. 752

wcscat ... 876

wcschr .. 877

wcscmp .. 878

CrossWorks for ARM Reference Manual Contents

20

wcscpy .. 879

wcscspn ... 880

wcsdup ... 881

wcslen .. 882

wcsncat .. 883

wcsnchr .. 884

wcsncmp ... 885

wcsncpy ... 886

wcsnlen .. 887

wcsnstr ... 888

wcspbrk ... 889

wcsrchr ... 890

wcsspn ... 891

wcsstr ... 892

wcstok .. 893

wcstok_r .. 894

wint_t ... 895

wmemccpy ... 896

wmemchr .. 897

wmemcmp ... 898

wmemcpy ... 899

wmemmove ... 900

wmempcpy .. 901

wmemset .. 902

wstrsep .. 903

C++ Library User Guide .. 905

Standard template library .. 907

Subset API reference ... 908

<new> - memory allocation ... 909

operator delete ... 910

operator new ... 911

set_new_handler .. 912

LIBMEM User Guide .. 913

Using the LIBMEM library ... 914

Light version of LIBMEM ... 917

Writing LIBMEM drivers ... 918

LIBMEM loader library .. 922

Complete API reference ... 924

<libmem.h> .. 925

LIBMEM_ADDRESS_IN_RANGE .. 930

LIBMEM_ADDRESS_IS_ALIGNED .. 931

CrossWorks for ARM Reference Manual Contents

21

LIBMEM_ALIGNED_ADDRESS .. 932

LIBMEM_CFI_CMDSET_AMD_EXTENDED ... 933

LIBMEM_CFI_CMDSET_AMD_STANDARD .. 934

LIBMEM_CFI_CMDSET_INTEL_EXTENDED .. 935

LIBMEM_CFI_CMDSET_INTEL_STANDARD ... 936

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED ... 937

LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD .. 938

LIBMEM_CFI_CMDSET_NONE .. 939

LIBMEM_CFI_CMDSET_RESERVED ... 940

LIBMEM_CFI_CMDSET_SST_PAGE_WRITE .. 941

LIBMEM_CFI_CMDSET_WINBOND_STANDARD ... 942

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD .. 943

LIBMEM_INLINE .. 944

LIBMEM_KB .. 945

LIBMEM_MB ... 946

LIBMEM_RANGE_OCCLUDES_RANGE .. 947

LIBMEM_RANGE_OVERLAPS_RANGE ... 948

LIBMEM_RANGE_WITHIN_RANGE ... 949

LIBMEM_STATUS_CFI_ERROR .. 950

LIBMEM_STATUS_ERROR ... 951

LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW .. 952

LIBMEM_STATUS_INVALID_DEVICE .. 953

LIBMEM_STATUS_INVALID_PARAMETER ... 954

LIBMEM_STATUS_INVALID_RANGE .. 955

LIBMEM_STATUS_INVALID_WIDTH .. 956

LIBMEM_STATUS_LOCKED .. 957

LIBMEM_STATUS_NOT_IMPLEMENTED .. 958

LIBMEM_STATUS_NO_DRIVER .. 959

LIBMEM_STATUS_SUCCESS .. 960

LIBMEM_STATUS_TIMEOUT ... 961

LIBMEM_VERSION_NUMBER .. 962

_libmem_driver_functions_t .. 963

_libmem_driver_handle_t ... 964

_libmem_driver_paged_write_ctrlblk_t ... 965

_libmem_ext_driver_functions_t ... 966

_libmem_flash_info_t ... 967

_libmem_geometry_t .. 968

_libmem_sector_info_t .. 969

libmem_busy_handler_fn ... 970

libmem_busy_handler_fn_t ... 971

libmem_cfi_get_info ... 972

CrossWorks for ARM Reference Manual Contents

22

libmem_crc32 ... 973

libmem_crc32_direct ... 974

libmem_driver_crc32_fn_t .. 975

libmem_driver_erase_fn_t .. 976

libmem_driver_fill_fn_t .. 977

libmem_driver_flush_fn_t ... 978

libmem_driver_inrange_fn_t ... 979

libmem_driver_lock_fn_t .. 980

libmem_driver_page_write_fn_t ... 981

libmem_driver_paged_write ... 982

libmem_driver_paged_write_fill .. 983

libmem_driver_paged_write_flush ... 984

libmem_driver_paged_write_init .. 985

libmem_driver_read_fn_t ... 986

libmem_driver_unlock_fn_t ... 987

libmem_driver_write_fn_t .. 988

libmem_drivers .. 989

libmem_enable_timeouts ... 990

libmem_erase ... 991

libmem_erase_all .. 992

libmem_fill ... 993

libmem_flush .. 994

libmem_foreach_driver .. 995

libmem_foreach_driver_fn_t ... 996

libmem_foreach_sector ... 997

libmem_foreach_sector_fn_t ... 998

libmem_foreach_sector_in_range .. 999

libmem_foreach_sector_in_range_ex ... 1000

libmem_get_driver .. 1001

libmem_get_driver_sector_size ... 1002

libmem_get_geometry_size .. 1003

libmem_get_number_of_regions ... 1004

libmem_get_number_of_sectors .. 1005

libmem_get_sector_info ... 1006

libmem_get_sector_number ... 1007

libmem_get_sector_size .. 1008

libmem_get_ticks ... 1009

libmem_get_ticks_fn .. 1010

libmem_get_ticks_fn_t .. 1011

libmem_lock ... 1012

libmem_lock_all .. 1013

CrossWorks for ARM Reference Manual Contents

23

libmem_read .. 1014

libmem_register_am29f200b_driver ... 1015

libmem_register_am29f200t_driver .. 1016

libmem_register_am29f400bb_driver .. 1017

libmem_register_am29f400bt_driver ... 1018

libmem_register_am29fxxx_driver .. 1019

libmem_register_am29lv010b_driver ... 1020

libmem_register_cfi_0001_16_driver ... 1021

libmem_register_cfi_0001_8_driver .. 1022

libmem_register_cfi_0002_16_driver ... 1023

libmem_register_cfi_0002_8_driver .. 1024

libmem_register_cfi_0003_16_driver ... 1025

libmem_register_cfi_0003_8_driver .. 1026

libmem_register_cfi_amd_driver .. 1027

libmem_register_cfi_driver .. 1029

libmem_register_cfi_intel_driver .. 1030

libmem_register_driver ... 1032

libmem_register_ram_driver .. 1033

libmem_register_sst39xFx00A_16_driver ... 1034

libmem_register_st_m28w320cb_driver ... 1035

libmem_register_st_m28w320ct_driver .. 1036

libmem_set_busy_handler ... 1037

libmem_ticks_per_second .. 1038

libmem_unlock .. 1039

libmem_unlock_all ... 1040

libmem_write ... 1041

<libmem_loader.h> .. 1042

LIBMEM_RPC_LOADER_FLAG_PARAM .. 1043

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE ... 1044

LIBMEM_RPC_LOADER_MAGIC_NUMBER ... 1045

libmem_dcc_loader_set_param_fn_t .. 1046

libmem_dcc_loader_start ... 1047

libmem_dcc_rpc_loader_exit .. 1048

libmem_dcc_rpc_loader_start .. 1050

libmem_rpc_loader_exit ... 1052

libmem_rpc_loader_start ... 1054

Tasking Library User Guide .. 1057

Overview .. 1058

Tasks .. 1060

Event sets .. 1063

Semaphores .. 1067

CrossWorks for ARM Reference Manual Contents

24

Mutexes .. 1069

Message queues ... 1071

Byte queues .. 1074

Timers and interrupts .. 1077

Global interrupts control ... 1078

Timer support ... 1079

Interrupt service routines .. 1080

Memory areas .. 1081

Task scheduling example ... 1083

ARM implementation details .. 1085

Cortex-M implementation details .. 1088

CTL Revisions ... 1090

Complete API reference .. 1093

<ctl.h> .. 1094

CTL_BYTE_QUEUE_t .. 1097

CTL_ERROR_CODE_t .. 1098

CTL_EVENT_SET_t .. 1099

CTL_EVENT_WAIT_TYPE_t .. 1100

CTL_MEMORY_AREA_t ... 1101

CTL_MESSAGE_QUEUE_t ... 1102

CTL_MUTEX_t ... 1103

CTL_SEMAPHORE_t ... 1104

CTL_STATE_t ... 1105

CTL_TASK_t ... 1106

CTL_TIMEOUT_t ... 1107

CTL_TIME_t .. 1108

ctl_byte_queue_init .. 1109

ctl_byte_queue_num_free ... 1110

ctl_byte_queue_num_used ... 1111

ctl_byte_queue_post .. 1112

ctl_byte_queue_post_multi ... 1113

ctl_byte_queue_post_multi_nb ... 1114

ctl_byte_queue_post_nb .. 1115

ctl_byte_queue_receive .. 1116

ctl_byte_queue_receive_multi ... 1117

ctl_byte_queue_receive_multi_nb ... 1118

ctl_byte_queue_receive_nb .. 1119

ctl_byte_queue_setup_events ... 1120

ctl_current_time .. 1121

ctl_events_init .. 1122

ctl_events_pulse ... 1123

CrossWorks for ARM Reference Manual Contents

25

ctl_events_set_clear .. 1124

ctl_events_wait ... 1125

ctl_get_current_time .. 1126

ctl_global_interrupts_disable ... 1127

ctl_global_interrupts_enable .. 1128

ctl_global_interrupts_set .. 1129

ctl_handle_error .. 1130

ctl_increment_tick_from_isr .. 1131

ctl_interrupt_count ... 1132

ctl_last_schedule_time .. 1133

ctl_memory_area_allocate ... 1134

ctl_memory_area_free ... 1135

ctl_memory_area_init .. 1136

ctl_memory_area_setup_events ... 1137

ctl_message_queue_init .. 1138

ctl_message_queue_num_free .. 1139

ctl_message_queue_num_used .. 1140

ctl_message_queue_post ... 1141

ctl_message_queue_post_multi .. 1142

ctl_message_queue_post_multi_nb .. 1143

ctl_message_queue_post_nb ... 1144

ctl_message_queue_receive ... 1145

ctl_message_queue_receive_multi .. 1146

ctl_message_queue_receive_multi_nb .. 1147

ctl_message_queue_receive_nb ... 1148

ctl_message_queue_setup_events .. 1149

ctl_mutex_init .. 1150

ctl_mutex_lock .. 1151

ctl_mutex_unlock ... 1152

ctl_reschedule_on_last_isr_exit ... 1153

ctl_semaphore_init .. 1154

ctl_semaphore_signal .. 1155

ctl_semaphore_wait .. 1156

ctl_task_die ... 1157

ctl_task_executing ... 1158

ctl_task_init ... 1159

ctl_task_list .. 1160

ctl_task_remove .. 1161

ctl_task_reschedule ... 1162

ctl_task_restore ... 1163

ctl_task_run ... 1164

CrossWorks for ARM Reference Manual Contents

26

ctl_task_set_priority .. 1165

ctl_task_switch_callout .. 1166

ctl_time_increment .. 1167

ctl_timeout_wait ... 1168

ctl_timeslice_period .. 1169

Utilities Reference .. 1171

Compiler driver ... 1172

File naming conventions ... 1173

Command-line options ... 1174

-ansi (Warn about potential ANSI problems) ... 1175

-ar (Archive output) ... 1176

-arch (Set ARM architecture) ... 1177

-be (Big Endian) ... 1178

-c (Compile to object code, do not link) .. 1179

-d (Define linker symbol) .. 1180

-D (Define macro symbol) .. 1181

-e (Set entry point symbol) .. 1182

-E (Preprocess) ... 1183

-exceptions (Enable C++ Exception Support) .. 1184

-fabi (Floating Point Code Generation) .. 1185

-fpu (Set ARM FPU) .. 1186

-F (Set output format) .. 1187

-g (Generate debugging information) .. 1188

-g1 (Generate minimal debugging information) ... 1189

-help (Display help information) ... 1190

-io (Select I/O library implementation) ... 1191

-I (Define user include directories) ... 1192

-I- (Exclude standard include directories) .. 1193

-J (Define system include directories) ... 1194

-K (Keep linker symbol) ... 1195

-L (Set library directory path) ... 1196

-l- (Do not link standard libraries) .. 1197

-make (Make-style build) .. 1198

-M (Display linkage map) .. 1199

-n (Dry run, no execution) .. 1200

-nostderr (No stderr output) ... 1201

-o (Set output file name) ... 1202

-oabi (Use oabi compiler) ... 1203

-O (Optimize output) .. 1204

-printf (Select printf capability) ... 1205

-rtti (Enable C++ RTTI Support) .. 1206

CrossWorks for ARM Reference Manual Contents

27

-R (Set section name) .. 1207

-scanf (Select scanf capability) ... 1208

-sd (Treat double as float) .. 1209

-Thumb (Generate Thumb code) ... 1210

-v (Verbose execution) ... 1211

-w (Suppress warnings) ... 1212

-we (Treat warnings as errors) .. 1213

-Wa (Pass option to tool) .. 1214

-x (Specify file types) .. 1215

-y (Use project template) .. 1216

-z (Set project property) .. 1217

CrossBuild .. 1218

Building with a CrossStudio project file ... 1219

Building without a CrossStudio project file .. 1221

Command-line options ... 1222

-batch (Batch build) ... 1223

-config (Select build configuration) ... 1224

-clean (Remove output files) ... 1225

-define (Define macro) ... 1226

-echo (Show command lines) .. 1227

-file (Build a named file) .. 1228

-packagesdir (Specify packages directory) ... 1229

-project (Specify project to build) ... 1230

-property (Set project property) .. 1231

-rebuild (Always rebuild) .. 1232

-show (Dry run, don't execute) ... 1233

-solution (Specify solution to build) .. 1234

-studiodir (Specify CrossStudio directory) .. 1235

-template (Specify project template) .. 1236

-type (Specify project type) ... 1237

-verbose (Show build information) .. 1238

CrossLoad .. 1239

Command line debugging .. 1241

Managing breakpoints ... 1242

Displaying state .. 1245

Locating the current context .. 1247

Controlling execution ... 1249

Command-line options ... 1250

-break (Stop execution at symbol) ... 1251

-config (Specify build configuration) ... 1252

-debug (Enter command line debugging) .. 1253

CrossWorks for ARM Reference Manual Contents

28

-eraseall (Erase all flash memory) ... 1254

-filetype (Specify load file type) ... 1255

-help (Display help) ... 1256

-listfiletypes (Display supported load file types) .. 1257

-listprops (Display target properties) .. 1258

-listtargets (Display supported target interfaces) .. 1259

-loadaddress (Set load address) .. 1260

-loader (Specify loader configuration) .. 1261

-nodifferential (Inhibit differential download) .. 1262

-nodisconnect (Inhibit target disconnection) .. 1263

-nodownload (Inhibit download) .. 1264

-noverify (Inhibit verification) ... 1265

-packagesdir (Specify package directory) ... 1266

-project (Specify project name) ... 1267

-quiet (Be silent) ... 1268

-script (Execute debug script) ... 1269

-serve (Run semihosting server) .. 1270

-setprop (Set target interface property) .. 1271

-solution (Specify solution file) .. 1272

-studiodir (Specify Studio directory) ... 1273

-target (Specify target interface) ... 1274

-verbose (Display additional status) .. 1275

CrossScript .. 1276

Command-line options ... 1277

-define (Define global variable) ... 1278

-help (Show usage) .. 1279

-load (Load script file) .. 1280

-define (Verbose output) .. 1281

CrossScript classes .. 1282

Example uses ... 1283

Embed ... 1284

Header file generator ... 1285

Using the header generator ... 1286

Command line options ... 1288

-regbaseoffsets (Use offsets from peripheral base) .. 1289

-nobitfields (Inhibit bitfield macros) .. 1290

Package generator .. 1291

Appendices .. 1293

Technical .. 1294

File formats .. 1294

Memory Map file format ... 1295

CrossWorks for ARM Reference Manual Contents

29

Section Placement file format .. 1297

Project file format .. 1299

Project Templates file format ... 1300

Property Groups file format .. 1302

Package Description file format .. 1304

External Tools file format ... 1308

Property categories .. 1311

General Build Properties ... 1311

Combining Project Properties .. 1313

Compilation Properties .. 1314

Debugging Properties .. 1320

Externally Built Executable Project Properties .. 1328

File and Folder Properties .. 1329

Library Project Properties ... 1331

Executable Project Properties .. 1332

Staging Project Properties ... 1336

Macros .. 1337

System Macros ... 1337

Build Macros ... 1339

Script classes ... 1341

BinaryFile ... 1341

CWSys .. 1342

Debug .. 1343

ElfFile .. 1345

TargetInterface .. 1346

WScript .. 1350

CrossWorks for ARM Reference Manual Contents

30

CrossWorks for ARM Reference Manual Introduction

31

Introduction
This guide is divided into a number of sections:

Introduction
Covers installing CrossWorks on your machine and verifying that it operates correctly, followed by a brief

guide to the operation of the CrossStudio integrated development environment, debugger, and other

software supplied in the CrossWorks package.

CrossStudio Tutorial
Describes how to get started with CrossStudio and runs through all the steps from creating a project to

debugging it on hardware.

CrossStudio User Guide
Contains information on how to use the CrossStudio development environment to manage your projects,

build, and debug your applications.

Tasking Library User Guide
Contains documentation on using the CrossWorks tasking library to write multi-threaded applications.

C Library User Guide
Contains documentation for the functions in the standard C library supplied in CrossWorks.

ARM target support
Contains a description of system files used for startup and debugging of ARM applications.

Target interfaces
Contains a description of the support for programming ARM microcontrollers.

CrossWorks for ARM Reference Manual Introduction

32

What is CrossWorks?
CrossWorks for ARM is a complete C/C++ development system for Cortex, ARM, and XScale microprocessors

that runs on Windows, Mac OS, Linux, and Solaris. It comprises the ARM GCC C/C++ compiler, the CrossWorks C

Library and the CrossStudio integrated development environment.

GNU Compiler Collection

CrossWorks for ARM comes with a pre-built version of the GNU Compiler Collection (GCC) C and C++ compiler,

assembler, linker and other tools to enable you to immediately begin developing applications for ARM.

CrossWorks C Library

CrossWorks for ARM has its own royalty-free ANSI and ISO C compliant C library that has been specifically

designed for use within embedded systems.

CrossStudio IDE

CrossWorks for ARM is a streamlined integrated development environment for building, testing, and deploying

your applications. CrossStudio provides:

• Source Code Editor: A powerful source code editor with multi-level undo and redo, makes editing your

code a breeze.

• Project System: A complete project system organizes your source code and build rules.

• Build System: With a single key press you can build all your applications in a solution, ready for them to be

loaded onto a target microcontroller.

• Debugger and Flash Programming: You can download your programs directly into Flash and debug them

seamlessly from within the IDE using a wide range of target interfaces.

• Help system: The built-in help system provides context-sensitive help and a complete reference to the

CrossStudio IDE and tools.

• Core Simulator: As well as providing cross-compilation technology, CrossWorks provides a PC-based

fully functional simulation of the target microcontroller core so you can debug parts of your application

without waiting for hardware.

• Utilities: A set of tools for generating output files in multiple formats and a command line facility for

flashing your applications onto the target board provide the final stage of the software development

system.

CrossWorks for ARM Reference Manual Introduction

33

What we don't tell you
This documentation does not attempt to teach the C or assembly language programming; rather, you should

seek out one of the many introductory texts available. And similarly the documentation doesn't cover the ARM

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides

These are must-have books for any C programmer:

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,

Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

The original C bible, updated to cover the essentials of ANCI C (1990 version).

• Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood

Cliffs, NJ, USA. ISBN 0-13-109802-0.

A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

• ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your

national standards body or directly from ISO at http://www.iso.ch/.

ARM microcontrollers

For ARM technical reference manuals, specifications, user guides and white papers, go to:

• http://www.arm.com/Documentation.

GNU compiler collection

For the latest GCC documentation, news and downloads, go to:

• http://gcc.gnu.org/.

http://www.iso.ch/
http://www.arm.com/Documentation
http://gcc.gnu.org/

CrossWorks for ARM Reference Manual Introduction

34

Activating your product
Each copy of CrossWorks must be licensed and registered before it can be used. Each time you purchase a

CrossWorks license, you, as a single user, can use CrossWorks on the computers you need to develop and deploy

your application. This covers the usual scenario of using both a laptop and desktop and, optionally, a laboratory

computer.

Evaluating CrossWorks

If you are evaluating CrossWorks on your computer, you must activate it. To activate your software for

evaluation, follow these instructions:

• Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.

• Run the CrossStudio application.

• Choose Tools > License Manager.

• Click "Evaluate CrossWorks". If you have a default mailer, click the By Mail button.

• Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.

• If you don't have a default mailer, select the text underneath "Activation request".

• Send the registration key to the e-mail address license@rowley.co.uk.

By return you will receive an activation key. To activate CrossWorks for evaluation, do the following:

• Run the CrossStudio application.

• Choose Tools > License Manager.

• Click Activate CrossWorks.

• Type in or paste the returned activation key into the dialog and click Install License.

If you need more time to evaluate CrossWorks, simply request a new evaluation key when the issued one expires

or is about to expire.

After purchasing CrossWorks

When you purchase CrossStudio, either directly from ourselves or through a distributor, you will be issued a

Product Key which uniquely identifies your purchase

To permanently activate your software:

• Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.

• Run the CrossStudio application.

• Choose Tools > License Manager.

• If you have a default mailer, click the By Mail button.

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for ARM Reference Manual Introduction

35

• Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.

• If you don't have a default mailer, select the text underneath "Activation request".

• Send the registration key to the e-mail address license@rowley.co.uk.

By return you will receive an activation key. Then, complete the activation process:

• Run the CrossStudio application.

• Choose Tools > License Manager.

• Click Activate CrossWorks.

• Type in or paste the returned activation key into the dialog and click Install License.

As CrossWorks is licensed per developer, you can install the software on any computer that you use such as a

desktop, laptop, and laboratory computer, but on each of these you must go through activation using your

issued product key.

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for ARM Reference Manual Introduction

36

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often

see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see

references to the Standard toolbar which is positioned at the top of the CrossStudio window, just below the

menu bar on Windows and Linux.

When you are directed to select an item from a menu in CrossStudio, we use the form menu-name > item-name.

For instance, File > Save means that you need to click the File menu in the menu bar and then select the Save

item. This form extends to items in sub-menus, so File > Open With Binary Editor has the obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. CrossStudio uses

standard Windows and Mac OS keyboard accelerators wherever possible.

Windows, Linux, and Solaris have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P

means that you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that

you should hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are ? (command), ? (option), ? (control), and ? (shift). Generally there is a

one-to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrl is ?, Alt is ?, and

Shift is ?. CrossStudio on Mac OS has its own set of unique key sequences using ? (control) that have no direct

Windows equivalent.

CrossStudio on Windows, Solaris, and Linux also uses key chords to expand the set of accelerators. Key chords

are key sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means that you

should type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by Ctrl+Z.

Mac OS does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the

computer: for example, pieces of C text, commands to the operating system, or responses from the computer.

In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which

should be used. For example, this is the format of one kind of compilation command:

hcl source-file

This means that the command consists of:

• The word hcl, typed exactly like that.

• A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

CrossWorks for ARM Reference Manual Introduction

37

Whenever commands to and responses from the computer are mixed in the same example, the commands

(i.e. the items which you enter) will be presented in this typeface. For example, here is a dialog with the

computer using the format of the compilation command given above:

c:\crossworks\examples>hcl -v myprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the

computer responds with the rest.

CrossWorks for ARM Reference Manual Introduction

38

Additional resources
With software as complex as CrossWorks, it's almost inevitable that you will need assistance at some point. Along

with the documentation that comes with CrossWorks for ARM, there are a variety of other resources you can use

to find out more.

CrossWorks for ARM website

• http://www.rowley.co.uk/arm/index.htm

Support

If you need some help working with CrossWorks, or if something you consider a bug, go to:

• http://rowley.zendesk.com/

You can subscribe to our RSS newsfeed here:

• http://www.rowley.co.uk/rss.xml

Suggestions

If you have any comments or suggestions regarding the software or documentation, you can make suggestions

on our UserVoice forum:

• http://rowley.uservoice.com/

Finding your way around

CrossStudio is a complex program in many ways, but we have tried to simplify it so that it's easy to use. It's very

easy to get started and CrossStudio scales well to complex multi-programmer projects that need to manage

large code bases and the inevitable software variants.

In the tutorial you were presented with a whistle-stop tour of CrossStudio to get you up and running. Here we

dig deeper into the corners of CrossStudio so you can get the best from it.

http://www.rowley.co.uk/arm/index.htm
http://rowley.zendesk.com/
http://www.rowley.co.uk/rss.xml
http://rowley.uservoice.com/

CrossWorks for ARM Reference Manual Introduction

39

Release notes

Release 2.3.1

Highlights

• Keil ULINK2 supported in CMSIS-DAP mode. Limited testing with this device reveals it works adequately

well in both JTAG and SWD modes on high speed USB connections.

Build

• Added runoffset attribute to section placement file.

• Updated the EABI GCC/BINUTILS tools build to use GCC ARM Embedded 4.7-2012-q4-major source

release. Please note that the 4.7 compiler has introduced new optimizations which may result in larger

programs - if the size of the program is an issue, set the Code Generation Options > Optimization Level

project property to Optimize For Size to make the compiler generate smaller code and set the Library

Options > Library Optimization project property to Small to make the linker use the libraries that have

been optimized for size.

• Removed USE_PROCESS_STACK from thumb_crt0.s: you may need to add a .stack_process program

section if you have a project-local section placement file.

CrossStudio

• Improved performance of CrossStudio when managing long bookmark lists.

• Fixed slow population of Source Navigator list view (Incident #5911).

• Updated GCC diagnostic parser to deal with GCC 4.6 diagnostics.

• Updated GCC diagnostic parser to better deal with errors reported in C++ files.

• Eliminated status bar flash that can occur in rare circumstances.

• Defer history window refresh if the window is not visible.

• Build system now outputs a message when build has failed and 'keep going on error' has been enabled.

• Using Ctrl+Wheel to zoom the HTML browser now works in the same way as Internet Explorer and

Chrome.

• Changes to the project through the Project Manager dialog are now reflected to the Project Explorer

when settings are shown under the node (Incident #5829).

• Fixed column size problems in Project Manager when changing views (Incident #4965).

• Better handling of codec selection when files are loaded and saved (Incident #5798).

• Fixed crash when using 'File > Open CrossStudio' to open folders on Mac OS X.

• Code editor now marks file as modified if inconsistent line endings have been corrected.

• Added BinaryFile script class.

• Find in files now uses 'Look in files matching' field when doing a solution/project search.

CrossWorks for ARM Reference Manual Introduction

40

• Fixed project location resetting when project name is modified in the 'New Project' dialog.

• Added back 'Reload Dynamic Folder' to project window context menu.

• Recursive dynamic folders now create subfolders.

• Target processor selection dialog now highlights current selection.

• Removed Alt+9 accelerator for Threads as it conflicts with regular keystrokes on German keyboards.

Debug

• Fixed J-Link Speed target property setting speed to value in Hz rather than kHz.

• Fixed error reporting when connecting to Stellaris-ICDI target interface with no target available.

• Debugger does a better job at backtracing when no debug information is available.

• Added Enable Adaptive Clocking property to J-Link target interface.

• Added CPU - Current Context to registers window that tracks the register values the debugger is located

to.

• Fixed Download File and Verify File on right click context menu in targets window.

Library

• Fix wchar_t to unsigned (Incident #5979).

• Fixed bug in realloc() when reducing the size of an existing allocation (Incident #6006).

CTL

• CTL for Cortex-M now requires use of the process stack. You will need to allocate a process stack size for

CTL projects.

Release 2.3.0

Build

• Build only enables debug option to assembler when debug level is level 2. This fixes a problem

introduced in 2.2 resulting in assembly code files in the libraries being built with debug.

• Added new placement file CortexM/flash_to_ram_placement2.xml enabling booting from flash into two

RAM banks.

• Section placement macros can now be used in program section start address.

• Reinstated Cortex-M 'ARM/Thumb Interworking' project property for backwards compatibility reasons.

• Added support for Cortex-M0+.

• Right click disassembly on the project window now uses the architecture and core of project.

• Added Keep Preprocessor Output project property.

• Added library project templates for ARM core types.

• Fixed build when Use Inherited Value has been used.

• Updated GCC/BINUTILS tools build to use GCC ARM Embedded 4.6-2012-q4-update source release.

CrossWorks for ARM Reference Manual Introduction

41

CrossStudio

• Memory usage window no longer requires run sections to have the name suffix '_run'.

• Fixed rename box artefact when closing a register group (Incident #3852).

• Help > Contents window is now categorized.

• Fixed font dialog not updating sample text (Incident #5474).

• Fix open on-error location of text files using ISO-8859 encoding (Incident #5798).

• Package Manager and New Project dialog have been rewritten for enhanced display.

• Added filter capability to Solution Explorer.

• Enhanced Find Window output shows number of matches in each file.

• All IDE 'flashing' appearance during redraw is now significantly reduced.

• Major headings in list views now span all columns and are no longer truncated when columns are resized.

• Added Auto Surround editor configuration option to enable or disable automatically surrounding text

when there is an active selection.

• Added Auto Comment editor configuration option to enable or disable automatically swapping the line

comments when there is an active selection.

• Revert to Source Navigator's Go To Definition rather than clang indexer.

• Package manager update now installs missing or out-of-date associated packages.

• Fixed initial colour of binary diff window.

• Fixed colouring of diff window.

• Improved performance of diff window.

• Fixed 'Send e-mail' button in license manager (Mac OS X only).

• Fixed opening of object files in binary editor when an 'undefined reference' error occurs.

• Added Package Dependencies project property.

• Legacy packages are now always displayed in package manager if installed.

• Package manager now defaults to upgrading dependent packages when installing a new package.

• Register group selector now scrolls if it is larger than the width of the display.

• Dynamic folders are now created in one operation - fixing a crash when adding a dynamic folder to an

existing folder.

• Fixed handling of & in filenames in the project explorer.

• Target & Connect menu can now search for targets by name; Ctrl+Shift+T is accelerator to Target

Connect menu.

Debug

• Debugger replace non printable characters in display strings with C string equivalents.

• Fixed use of TargetInterface.setMaximumJTAGFrequency when used with a J-Link.

• Support for J-Link on MacOS.

• Target connections using ST-Link/V2 can now display FP registers.

• Fixed crash when target auto-disconnects on debug_exit with EABI build.

• Added debug project property Debug Dependent Projects which enables dependent projects to be

downloaded and debugged over a single target interface connection.

CrossWorks for ARM Reference Manual Introduction

42

• Added Target > Switch Project to switch the debugger to a specific project.

• Added debug project properties that specify the initial breakpoint settings. The environment equivalents

are now the default values for these project properties.

• Fixed displaying C member variables.

• Added support for CMSIS-DAP target interface for Cortex-M targets only.

• The Target | Loader properties Erase All, Erase All Timeout, Loader Timeout and No Load Sections

have been moved to Project | Target Loader properties. Target properties Processor Stop Timeout and

Restrict Memory Accesses have been moved to Project | Target Control properties.

• Added Project | Target Control | Connect With Reset property.

• Simple support for No Load Sections (now) project property. This will work for sections that aren't

merged with adjacent sections .e.g .eeprom.

• Added support for ETM/ETB and MTB tracing.

• Fixed setting Cortex-M MSP/PSP and CFBP register values.

• Fixed invalidating caches on Feroceon devices.

• Co-processor registers can be displayed on Feroceon devices.

• Added Default to target interface property Target Interface Type which will set the target interface type

based on the core type of the selected project on connect.

• Added SYSTICK timer simulation in Cortex-M simulator - note that the timer will tick at the instruction

execution rate.

• Added vector catch support for V6M.

• The getPartName script is now called before ROM table identification on connect.

• The Debug | Restart function is now greyed out for projects that do not use a loader i.e. RAM projects.

• Added support for Dwarf address ranges which are used when C++ exceptions support is enabled.

• Fixed interpretation of Dwarf const4 operations.

• Fixed watch window updating of timer refreshed variables when watch window is not visible.

Library

• Fixed mktime when presented with out-of-bounds member values (incident #2722).

• 32-bit signed and unsigned division performance improved for all architectures.

• Added __aeabi_memcpy{8,4}, __aeabi_memmove{8,4}, __aeabi_memset{8,4} and __aeabi_memclr{8,4}

functions to the C library.

• Added __gnu_thumb1_case_* functions to ARM library build configurations.

• Fixed __aeabi_ldivmod for v6M architecture.

• Fixed __vfprintf which sometimes over-eagerly swaps to floating format when using %g.

• sprintf and friends print -inf for negative infinity.

• Fixed printing zero in %u and other integer formats using width/precision unsupported mode (incident

#4944).

• Added paged write helper functions to LIBMEM library.

• Fixed definition of UINT8_C in stdint.h.

CrossWorks for ARM Reference Manual Introduction

43

CTL

• Fixed rescheduling from ctl_byte/message_queue_post when notempty event flag is used.

• (V)FP architecture builds (V5TE VFP, V6 VFP, V7A VFPv3-D32, V7EM FPv4-SP-D16 and V7R VFPv3-D16) of

CTL now implement saving and restoring the (V)FP registers. You will need to increase the stack sizes of

threads to accomodate this.

• Removed 'ctl_enter_isr_fp()' and 'ctl_exit_isr_fp()' functions since the Cortex-M4 FP hardware state saving

is now supported.

• Succesfully calling 'ctl_events_wait()', 'ctl_mutex_lock()', 'ctl_semaphore_wait()' will return immediately

i.e. not cause a reschedule.

Miscellaneous

• Fixed Qt settings files being saved with root ownership when installer run using sudo (Unix only).

• Fixed crash when FTDI device is assigned to Parallels (Mac OS X only).

• Improved CrossStudio startup speed when many packages are installed.

• Packages now downloaded using content delivery network by default.

• Added an -eraseall option to crossload.

• Removed Solaris product build.

• Added Linux armv7l product build.

Release 2.2.0

• Release of new drag-and-dock system; HUDs are now removed.

• Drag windows by the title bar to new dock sites or to tear them off; hold Ctrl down when dragging to

prevent docking.

• Configurable title bar with option of wrapping dock title buttons.

• Addition of a dock site in the central area for side-by-side editing.

• Capability to drop bookmarks in a selection of colors.

• Alt-Left-Click in the margin of a code editor brings up a bookmark drop selector.

• Ctrl+F brings up incremental find; a second Ctrl+F brings up the standard Find dialog.

• Refined the look of the Dashboard.

• Better property editing dialogs.

• Added Error List window (View > Error List, Ctrl+Alt+E) which is a summary of the last set of build

diagnostics.

• Files in the Project Explorer can be tagged to provide a visual highlight.

• Added editable Recent Files, Recent Projects lists.

• Added Tasks and Favorites lists for users to customize with links.

• Bookmarks from the Bookmarks, Recent Files, Recent Projects, Favorites, and Tasks windows can be

dragged to any other bookmark window.

CrossWorks for ARM Reference Manual Introduction

44

• Clicking the header fields of the Recent Files, Recent Projects, Favorites, Tasks, and Error List window

will sort and group the items in the list. Clicking the leftmost header will cycle through a number of useful

sorting/grouping arrangements.

• Any dock site can host editors, including torn-off dock sites.

• Package documentation automatically appears in the Help > Contents window.

• Fixed Tools > Options so that search box works.

• Experimental addition of an Office-like ribbon.

• Current execution context is displayed in the editor when debugging.

• Addition of external tools; use File > Open CrossStudio > External Tools Configuration.

• External tools can run over any file, folder, project, or solution from the Open With meuu.

• Search in Project and Search in Solution use Search Dependencies setting.

• Sentinel USB tokens now work under Linux (Ubuntu 8.04 and 10.04 tested with Sentinel USB Daemon

v7.5.2).

• Fixed bug in CrossScript ElfFile class peek and CRC32 functions.

• Release notes and license agreement now appear in Mac OS X Lion installer.

• Fixed inttypes.h to align with the standard.

• Added support for CodeRed Red Probe+.

• Faster memcpy and memset.

• Added CrossStudio launcher.

• Changed TI text file output to use 4-nibble addresses if they can.

• Hovering over a warning or error icon in the margin brings up diagnostic tooltip.

• Fixed DNS bug causing downloads to hang.

Build

• Supplied build of GCC 4.6.2 based on GCC ARM Embedded source code.

• Default weak __getchar and __putchar symbols are now provided in *_crt0.s to avoid linker problems

when 'Enabled Unused Symbol Removal' is set to 'No'.

• Added 'v6', 'v7A' and 'v7R' option to 'ARM Architecture' project property.

• Added 'ARM1136J-S', 'ARM1136JF-S', 'Cortex-R4', 'Cortex-R4F', 'Cortex-A8' and 'Cortex-A9' options to 'ARM

Core Type' project property.

• Added 'VFPv3-D32' and VFPv3-D16' options to 'ARM FPU Type' project property.

• Added 'ARM Advanced SIMD Type' code generation project property.

• Added library variants for new architectures/FPU combinations.

• debug_putchar now returns -1 on error.

• Added 'Supply Absolute File Path' project property.

• The 'Clean' and 'Build' command lines for "Externally Built Executable' project types can contain spaces.

Debug

• Added 'Get Part Name Script' project property to enable the target script to supply a part name for the

connected device.

CrossWorks for ARM Reference Manual Introduction

45

• Added 'Match Part Name Script' project property to enable the target script to check the connected

device matches the 'Target' property group of the project.

• Fixed usage of 'Debug.wait()' in crossload -debug -script.

• Fixed crossload -debug when executable filename is provided on the command line.

• Fixed exit status returned by crossload when crossload -debug -script is used and the script calls

debug.quit().

• Added 'Debug.stopped()' method to crossload debug object.

• 'Kinetis OSJTAG' target interface no longer requires osbdm-jm60.dll.

• 'Kinetis OSJTAG' target interface now supported on MacOS.

• Improved memory read/write performance of 'ST-LINK' target interface.

• New 'ST-LINK/V2' target interface that supports ST-LINK/V2 on Linux/MacOS/Win and doesn't require

STLinkUSBDriver.dll.

• Fixed debugger setting initial stack pointer value on 'ST-LINK' target interfaces.

• Added ROM table detection for Cortex-M4.

• Added CONTROL bit[2] to CFBP register display on v7EM processors.

• Generic target interfaces now have a host property to stop the error messages that occurred trying to

load nonexistent .dll files.

• J-Link target interface now looks in Windows registry for DLL if path has not been specified.

• Added support for FT232H devices.

• New 'Stellaris ICDI' target interface for the ICDI on the LM4F232H board.

• Fixed debugIO implementation detection when project has been built with 'Enabled Unused Symbol

Removal' set to 'No'.

• Added 'ARM11' option to 'ARM Debug Interface' project propety.

• Added ARM11, Cortex-R and Cortex-A debug support to Wiggler, FTDI2232 and CrossConnect target

interfaces.

• Added VFPv3 capabilities to the ARM simulator.

• Better support for displaying variables with incomplete types (i.e. types defined in a different compilation

unit). C++ classes with virtual functions manifested this problem.

• Support for expanding arrays/structs in the watch window when the processor is running.

• Added debug support for big endian Cortex-M as implemented in the TI TMS470M i.e. code and debug

registers are little endian, data is big endian.

CTL

• Added 'ctl_enter_isr_fp()' and 'ctl_exit_isr_fp()' which can be used to save the ABI specified VFP registers

on entry/exit of an exception that uses the VFP registers.

• Added ctl sample and support code to show how to save/restore the VFP registers on context switch.

CrossStudio

• Fixed crash using escape key to select default dialog button.

• Added 'Reload Dynamic Folder' to project window context menu.

CrossWorks for ARM Reference Manual Introduction

46

• Fixed crash when 'Remove Dynamic Folder' was used with one of it's files open in the editor.

Command Line Tools

• Added a tool 'cc' that can be used for command line building.

Release 2.1.2
• Didn't happen.

Release 2.1.1

Build

• Fixed build of (undocumented) memcpy_fast function.

• Added word based memcpy to crt0.s.

Debug

• Fixed SWD with J-Link.

• Renamed J-Link target interface to stop it disappearing when v2.0 has been run.

• Added debugging project property 'Do Not Use bkpt Instruction'.

• Fixed Size enumeration of Memory_region CP15 registers of ARM946E-S in registers window.

• Fixed VFP register groups appearing in registers window on targets without VFP.

• Fixed disassembly of Cortex-M msr/mrs instructions

• Fixed simulator reset (lack of) after loader has run.

• Unused global variables that have been removed are not displayed.

• Added Refresh option to disassembly window - use this if your program copies code.

CrossStudio

• Target now disconnected when solution is closed.

Release 2.1.0

Build

• Now using GCC version 4.6.0.

• Changed the default value of the project property 'Enable Unused Symbol Removal' to be 'Yes'. This is

now required if you are using the CrossWorks supplied libraries.

• Added build project property 'GCC Target' to specify that the ARM EABI toolchain and library are to be

used. The default value of this project property can be modified by the build environment option 'Default

GCC Target' so you don't need to set it for each project.

CrossWorks for ARM Reference Manual Introduction

47

• Added 'v7EM' option to 'ARM Architecture' project property.

• Added 'ARM946E-S', 'ARM968E-S' and 'Cortex-M4' options to 'ARM Core Type' project property.

• Added 'FPv4-SP-D16' option to 'ARM FPU Type' project property. Set this if your Cortex-M4 has a

hardware floating point unit.

• Added 'Hard' option to 'ARM FP ABI Type'.

• Added linker option 'Library Optimization' to enable you to select 'Fast' or 'Small' library variant builds.

• Added compiler project property 'No Common' to specify that global data isn't put into the COMMON

section, this is set by default.

• Added build project property 'Treat double as float'. Use this if you use floats rather than doubles to avoid

floating point literals defaulting to double precision.

• Added linker project property 'Allow Multiple Symbol Definition' to allow a link to complete if multiply

defined symbols are detected. The reorganization of the CrossWorks libraries may require this to be set

on an existing projects.

• Added linker project property 'Printf Supported' that specifies if printf should be linked in. The default

value of this project property can be modified by the build environment option 'Link In Printf Default'.

• Added linker project property 'Scanf Supported' that specifies if scanf should be linked in. The default

value of this project property can be modified by the build environment option 'Link In Scanf Default'.

• Added linker project property 'DebugIO Supported' that specifies if debugIO should be linked in. The

default value of this project property can be modified by the build environment option 'Link In debugIO

Default'.

• Added linker project property 'Emit Relocations' which enables the debugger to load the executable to a

different load address.

• Library variants are now built for hard floating point (ARM EABI only).

• Library variants are now built for double as float (ARM EABI only).

• Library variants are now built with both Fast and Small optimisation levels.

• Added new intrinsics.h file to enable access to ARM/Cortex-M instruction set from C code.

• Added 'strcasecmp', 'strncasecmp' and 'strndup' to <string.h>.

• Added flash_tcm_placement.xml and tcm_placement.xml section placement files.

• Added support for 'end_symbol' and 'address_symbol' properties to ProgramSection nodes in section

placement and memory map files.

• Added '.ARM.exidx' ProgramSection node to standard placement files.

• thumb_crt0.s no longer initialises heap if size is less than 8 bytes.

• For EABI builds crt0.s and thumb_crt0.s align stackpointers to 8 bytes.

• Fixed ldexp for all big-endian targets.

• Fixed big-endian v6m double precision multiply, divide and conversion to/from single precision.

• Fixed v6m long long shift helper functions.

Debug

• Added 'Download File' and 'Verify File' to Target menu.

• Debug expression parser now supports 'addressof(filename, linenumber)' operator.

CrossWorks for ARM Reference Manual Introduction

48

• Added entry into targets window context menu to select the particular target to connect to. Supported

on CrossConnect and J-Link target interfaces only.

• Added 'isLittleEndian', 'getEntryPoint', 'findProgram' and 'getSection' to ElfFile JavaScript class.

• Added debugger project property 'TAP Reset Script' that can be called to reset the TAP.

• Added JavaScript setDebugInterfaceProperty 'be32_swap' to support big endian (BE-32) Cortex-M

devices.

• ROM table is now decoded when connecting to Cortex-M device.

• Fixed setting/clearing software breakpoints on ARM920T with caches enabled.

• Segger J-Link now supported as a generic debug interface.

• J-Link and ST-Link target interfaces now use the "Target Control Options > Target Interface Type" target

property to determine whether to use JTAG or SWD.

• Improved error message when loader detects an unsupported FLASH device.

• Fix erase, lock and unlock operations.

• Added 'No Oscillator' option to frequencies property group.

• The 'Olimex ARM-USB-OCD' target interface now supports ARM-USB-OCD-H devices.

• Added debugger project property 'Load Offset' to change the load address the debugger loads the

executable to. The executable should be built with 'Emit Relocations' for this to work.

• Added debugger project property 'Load Offset Symbol Limit' to limit the relocations that are patched.

• Added debugger support for accessing FP registers on Cortex-M4 devices.

• Added separate 'Kinetis OSJTAG' and 'P&E UNIT Interface DLL' target interfaces.

• Fixed displaying arrays bigger than the size of the array.

CTL

• ctl_timeslice_period is now always used and is set to the maximum by default.

• ctl_global_interrupts_disable returns the enabled state.

• ctl_global_interrupts_disable/ctl_global_interrupts_enable now implemented using compiler intrinsics.

• ctl threads.js now shows the number of bytes of stack left.

• For EABI builds stackpointers are 8 byte aligned.

CrossStudio

• Improved new breakpoint dialogs.

• Improved dynamic folder dialog.

• Added 'Show File Count on Folder' to project explorer environment options.

• Added 'Keep Going On Error' to build environment options.

• Added 'Default Text File Encoding' to text editor environment options.

• Added 'Search Dependencies' to file search environment options.

• Added environment options to specify the file extensions for object and executable files.

• New project wizard now works correctly when PackagesDir contains Unicode characters.

• Fixed package manager prompting for installation directory unnecessarily when installing packages.

• Removed documentation references to the memory map editor.

CrossWorks for ARM Reference Manual Introduction

49

Command Line Tools

• CrossBuild now has the -keepgoing option to keep building after error.

• CrossLoad: Fixed the calling of connect scripts. Private configurations can now be specified. The -config

option is no longer required if project has only one configuration.

• The -D command line option to CrossBuild doesn't modify the user environment, the global macro is

defined for the execution of the program only.

Release 2.0.11

• Added support for P&E Microcomputer Systems Kinetis OSJTAG target interface.

• Added TargetInterface.getRegister and TargetInterface.setRegister JavaScript functions to get and set

registers in Cortex debug access points.

• Fixed reschedule problem using ctl_message_queue_post_multi_nb,

ctl_message_queue_receive_multi_nb, ctl_byte_queue_post_multi_nb,

ctl_byte_queue_receive_multi_nb from an ISR.

• Fixed CTL_TIMEOUT_DELAY timeouts when used with ctl_message_queue_post_multi,

ctl_message_queue_receive_multi, ctl_byte_queue_post_multi and ctl_byte_queue_receive_multi.

• Pre-compile and pre-link commands now stop build immediately if an error exit code is returned.

• Added KrisTech KT-LINK target interface

• Fixed Linux/Mac OS X/Solaris channel B support on FT2232 target interfaces

• Register and bitfield definitions in the memory map can now include descriptions.

• stdbool.h can now be included by C++ source code.

Release 2.0.10

• Fixed 'SVC is not permitted on this architecture' error when assembling Cortex-M3 'svc' instruction.

Release 2.0.9

• Fixed problem setting stack pointer to non word aligned value with ST-LINK.

• Fixed CrossLoad downloading a file twice when the file has been specified on the command line.

• Improved display of linker error messages.

• CTL - fixed priority restore on mutex unlock when higher priority waiting task has timed out.

• Debugger - support for 0b numbers on expressions.

• Fixed hyperlink to LIBMEM loader library in target support documentation.

• Now using BINUTILS version 2.21.

CrossWorks for ARM Reference Manual Introduction

50

Release 2.0.8

• Save Solution As.. now reloads the saved solution.

• CrossScript ElfFile.peekBytes and ElfFile.crc32 functions now work across program sections.

• Project window context menu target operations (Program, Erase, Verify) support Debugger Options |

Additional Load File and External Build Options | Load Address properties.

• Added support for breakpoint chaining on ARM7/ARM9 targets by setting the action in the breakpoint

edit dialog when connected to the target.

• Removed breakpoint chaining documentation from breakpoint window.

• Added a Debug Capabilities section to the ARM target support documentation.

• Fixed problem with timeout when ctl_task_reschedule is called from an isr.

• Linker script generator now supplies default inputsections for well known sections enabling simplification

of section placement files.

• The first section in Cortex_M section placement files now have a macro settable start address to enable

memory to be reserved at the beginning of memory segments.

• Added Cortex_M flash_to_ram_placement file which enables a program to be loaded into flash and then

copied into RAM for execution.

• Added tbss and tdata sections to standard section placement files to implement thread local storage.

• Removed unused section placement files.

• Added debugger support for displaying thread local storage allocated variables.

• Added environment option (set by default) to disassemble to UAL assembler mnemonics.

• Support for SEGGER J-Link on Linux (requires the appropriate jlinkarm.so from SEGGER).

• Support for ST-LINK on Windows (requires the appropriate STLinkUSBDriver.dll from STMicroelectronics).

• Added support for assembly code files with .arm file extension.

• Added Remove Dynamic Folder on the project explorer right click context menu.

• Now using GCC version 4.4.5.

• Added -load and -define options to CrossLoad.

• Fixed loader timeout when running lpc2000 project on simulator.

• New file dialog no longer appends extension if it already exists.

• Fixed data valued breakpoints with value > 255.

• Right click on the project window shows the target and placement menus when the property groups file

is specific to a configuration.

• Linux version of license manager now uses Ethernet addresses of adapters that are not activated.

• Fixed simulator execution of Thumb2 PC relative load when PC is not word aligned.

• Fixed additional options from file project properties not releasing file when build is complete.

• Status bar messages can now be copied to clipboard.

• CrossLoad can now use CrossStudio target interfaces.

• Added -x option to mkpkg.

• Fixed memory map file caching when downloading and not debugging.

• Fixed mis-optimization of ECMAScript IR which caused '<' to fail in some cases.

• Added new filter feature to register window.

CrossWorks for ARM Reference Manual Introduction

51

• Fixed 'Go To Included File' so that it ignores comments.

Release 2.0.7

• Fixed executing ARM7/ARM9 loaders compiled in Thumb mode.

• Fixed loader erase operations timing out too early.

• Fixed header files that caused STL compilation problems.

Release 2.0.6

• Fixed debug attach when using debug handler.

• Added breakpoint debugIO implementation for v4(t) architecture. This extends and uses the v4(t)

software breakpoint implementation. The v4(t) ARM software breakpoint instructions are now 0xdfffdfff

and 0xdffedffe. The v4(t) Thumb software breakpoint instructions are now 0xdfff and 0xdffe.

• Fixed bugs in simulator Thumb sbc and pop {pc} instructions.

• Debugger support for displaying anonymous structs/unions.

• Support for data-valued breakpoints on Cortex-M3 e.g x==3.

• The Olimex ARM-USB-TINY target interface now supports ARM-USB-TINY-H as well.

• Support for ignore count on breakpoints.

• CrossBuild implements 1.5/1.6/1.7 build compatibility environment settings.

• Fixed crash when setting a breakpoint after breakpoint group has been deleted from breakpoint window.

• Fixed debugger support for setting software breakpoints when MMU/caches are enabled on ARM926EJS

parts.

• Memory usage window now copes with overlapped sections when computing the amount of memory

used.

• Added debugger support for accessing coprocessor registers without debug handler.

• Fixed ctl_mutex documentation examples.

• Improved ARM920T/ARM926EJS debug support when using Segger JLINK.

• Fixed crash when threads.js file is missing.

• Fixed lock up on Mac OS version when file is modified externally.

• Fixed code editor jumping to start of file when Outline window is active.

• CrossConnect and Wiggler target interfaces now support SWD (with adaptor).

• Fixed bugs when using CrossLoad -serve option.

• Improved Cortex-M verify performance.

• Improved V6M floating point performance.

• Now using GCC version 4.4.4.

• File > Open now opens file browser in a sensible place.

• Reworked some alert notification dialogs.

• Documentation for a subset of header files now generated automatically by internal tools.

CrossWorks for ARM Reference Manual Introduction

52

• Improvements in License Manager dialog on Mac OS.

Release 2.0.5

• Added support for Cortex-M0.

• Now using GCC version 4.4.3.

• Fixed ARM7/ARM9 debug handler overwriting supervisor mode registers.

• Fixed debugger displaying references to class members.

• FT2232 target interfaces now support SWD.

• Added debug_enabled() function that returns true if the application is being debugged.

• Added environment option to specify the default debugIO implementation.

• Modified breakpoint implementation of debugIO so that it doesn't use memory locations.

• Fixed J-Link executing ARM7/ARM9/XScale RPC loaders built in Thumb mode.

• Improved Thumb-2 disassembly.

• Added a "No Load Sections" target property.

• Added a "Gap Fill Value" linker property.

• Enhancements to the threads window
o The filename of the threads script need not be fixed as threads.js it can now be specified using the

Threads Script file type property.
o The threads script can specify the set of displayed columns.
o Can be sorted by clicking on a column.
o Gives a better indication of the selected thread.
o The threads script can be written so that the register state of a thread is retrieved when the thread is

selected.
o The threads script has access to the TargetInterface object.

• The Target Script has access to the CWSys object.

• Improved variable display of C++ classes.

• Fixed display of const void * and volatile void * parameters in call stack window.

Release 2.0.4

• Added $(StudioDir)/targets/Cortex_M/flash_placement2.xml file for Cortex-M3 parts with external/

multiple RAM memories.

• Added INITIALIZE_SECONDARY_SECTIONS to $(StudioDir)/src/thumb_crt0.s for Cortex-M parts with

external/multiple memories.

• Fixed start debugging using Debug | Step Into on Cortex-M targets.

• libmem_cfi_get_info() now correctly returns to read array mode on Cortex-M3.

• Fixed the StrataFlash CFI LIBMEM driver so that it will write correctly to Flash with a write buffer greater

than 255 words.

CrossWorks for ARM Reference Manual Introduction

53

• Support for selection of Ethernet or USB interface of J-Link Pro

• The generic FT2232 target interface will now allow multiple PIDs to be specified.

• The Luminary USB Debug interface will now work with devices with a USB PID of 0xBCDA.

• Amontec JTAGkey and Olimex ARM_USB_OCD nTRST signal now default to push-pull.

• Fixed decimal display in registers window.

• On Cortex-M parts hardware breakpoints are now used on read-only addresses that aren't in code space

e.g external flash.

• Modified debug_load_symbols to take an extra parameter that is the name of a function to break on.

• The filename passed to debug_load_symbols is now crossworks macro expanded.

• The debugger fixes up data addresses on executables that have been dynamically loaded.

• The symbol browser now updates on start/stop debugging and when debug_load_symbols/

debug_unload_symbols is used for dynamic code loading.

• Fixed a problem with breakpoints when using the linked in debug handler.

• Fixed the debugger locating to files opened using the symbols browser window when debugging

externally built executables.

• The ARM FP ABI property can have the None value in which case the -mfloat-abi and -mfpu options are

not supplied to the compiler.

• The environment option to not supply the -mpfu option to the compiler has been removed.

• Now using GCC version 4.4.2 and BINUTILS version 2.20.

Release 2.0.3

• File names in projects can now have embedded periods, e.g. "foo.bar.c".

• New File dialog now supports embedded periods in file names.

• Fix stack and heap sections occupying space in ELF file.

• Fix Thumb-2 step out and backtrace.

• Fixed editor crash when editing doxygen style comments.

• Debug actions are now available on the disassembly window toolbar.

• Additional assembler/compiler/linker options properties can now be held in a file referenced by new

project properties.

• Added debug_load_symbols/debug_unload_symbols functions to enable debugging of dynamically

loaded applications.

• Disassembler now displays data sections as hex (rather than trying to disassemble).

• Terminal emulator can (and does) set DTR signal on connect.

• Terminal emulator supports ansi clear display sequence and \r.

• On windows hosts terminal emulator port property can be right clicked to select the list of available COM

ports.

• Added -docgen option to cpphtml tool to enable html to be generated from structured comments.

• Added XScale exception vector synchronization - see XScale CPU support package documentation for

more information.

CrossWorks for ARM Reference Manual Introduction

54

Release 2.0.2

• Added Hitex LPC-Stick target interface.

• Cortex-M C runtime startup code now sets up SP to point to __stack_end__ in FLASH configuration

allowing FLASH applications to be re-located away from 0x00000000.

• Fixed J-Link Cortex-M3 support.

• Fixed CrossConnect timeout when using adaptive clocking detection on Cortex-M3 devices that partially

support RTCK.

Release 2.0.1

• A customer produced executable generated with ARM RVCT 3.1 compiler appears to have an incomplete

debug_aranges section which caused symbolic debugging to not work. For executables that are

produced by ARM RVCT 3.1 the debugger has been modified to generate the equivalent of the

debug_aranges section at startup. Depending on the size of the application this is not a quick operation

and as such slows down the debugger startup.

• Decoding of the Cortex-M3 control[0] bit in the registers window fixed.

• The Restrict Memory Accesses target property now defaults to No.

• Fixed Replace inactive replace button in Replace dialog.

• Fixed thumb_crt0.s so that it builds for Cortex-M1 projects.

• Added ctl_isr function prototypes to $(StudioDir)/include/ctl_api.h and $(StudioDir)/ctl/include/ctl_api.h

files.

Release 2.0

Start over.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

55

CrossStudio Tutorial
In this tutorial, we will take you through activating your copy of CrossWorks; installing support packages; and

creating, compiling, and debugging a simple application using the built-in simulator.

Note

If you're viewing this tutorial from within the CrossWorks help Browser window, you may find it more

convenient to view using an external web browser so you can still see the entire CrossWorks window. To do so,

simply right-click on the help content in the CrossWorks Browser and choose Open in External Browser.

In this section

Activating CrossWorks
Describes how to activate your copy of CrossWorks by obtaining and installing an activation key for

evaluation.

Managing support packages
Describes how to download, install, and view CPU-support and board-support packages.

Creating a project
Describes how to start a project, select your target processor, and other common options.

Managing files in a project
Describes how to add existing and new files to a project and how to remove items from a project.

Setting project options
Describes how to set options on project items and how inheritance works for project settings.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

56

Building projects
Describes how to build a project, correct compilation and linkage errors, and find out how big your

applications are.

Exploring projects
Describes how to use the Project Explorer and Symbol Browser to learn how much memory your project

takes and how to navigate among the files that make up the project.

Using the debugger
Describes the debugger and how to find and fix problems at a high level when executing your application.

Low-level debugging
Describes how to use debugger features to debug your program at the machine level by watching registers

and tracing instructions.

Debugging externally built applications
Describes how to use the debugger to debug externally built applications.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

57

Activating CrossWorks
Each copy of CrossWorks must be registered and activated before it will build projects or download and debug

applications. In this tutorial, we are going to use CrossStudio's License Manager dialog to request an evaluation

activation key and, after the key is received, to activate CrossWorks.

If you have already activated your copy of CrossWorks, you can skip this page.

Requesting an evaluation activation key (with a default e-mail client)

To receive an evaluation activation key that is valid for 30 days:

• Choose Tools > License Manager.

• Click the Evaluate CrossWorks option.

• Choose whether to lock the license to your computer's MAC address or to your system's primary disk.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

58

• Send the e-mail containing the registration key to license@rowley.co.uk. If your development system

does not have a default e-mail client, copy the activation request and paste it into an e-mail to this

address.

Choosing which hardware to lock to is a matter of personal choice. If you lock to your primary disk and then

replace that disk drive, reformat it, or upgrade the operating system, CrossWorks may need to be reactivated.

If you lock to a network adapter and the network adapter fails and is replaced, then CrossWorks will require

reactivation.

When we receive your registration key we will send an activation key back to your e-mail's reply address. You

then will use the activation key to unlock and activate CrossWorks.

Activating CrossWorks

When you receive your activation key from us, you can activate CrossWorks as follows:

• Choose Tools > License Manager.

• Click the Activate CrossWorks option.

• Enter the activation key you have received from us.

• Click Install License.

• The new activation should now be visible in the list of Installed licenses. Click Close to close the License

Manager window.

Note

If you request an activation key outside office hours, there may be a delay processing the registration. If this is

the case, you can continue the tutorial until you reach the Building projects section—you will need to activate

CrossWorks before you can build.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

59

Managing support packages
Before a project can be created, a CPU-support or board-support package suitable for the device you are

targeting must be installed. A support package is a single, compressed file that can contain project templates,

system files, example projects, and documentation for a particular target.

In this tutorial, we are going to use the Generic ARM CPU Support Package to create our project. This will

allow us to create a project that will run on CrossWorks' ARM simulator. To create a project that would run on

hardware, you would need to install and use support packages suitable for that target hardware but, for the

purposes of this tutorial, we'll just target the simulator.

Note that the Generic ARM CPU Support Package project templates can be used to target real hardware for

devices that don't currently have a suitable support package; however, it is highly likely that you will need to

modify memory map files, startup code, reset scripts, and the loader program in order to support the target.

This is outside the scope of this tutorial but, should you wish to do this, see the documentation included in the

Generic ARM CPU Support Package for more information.

If you have already installed this support package, you can skip this page.

Downloading and installing a support package

To download and install a support package:

• Choose Tools > Manage Packages.

• Select the Generic ARM CPU Support Package entry.

• (To select more packages to download and install at the same time, you can control-click the additional

packages.)

CrossWorks for ARM Reference Manual CrossStudio Tutorial

60

• Right-click the selected package and choose to Install Selected Packages.

• Click the Next button and you will be presented with a list of actions the package manager is going to

carry out.

• Click Next again to download and install the support package.

• Upon successful completion, you will see a list of the newly installed packages. Click Finish.

Viewing installed support packages

To view the installed support packages:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

61

• Choose Tools > Show Installed Packages to list the support packages you have installed on your system.

You should see the name of the Generic ARM CPU Support Package you just installed.

• Click Generic ARM CPU Support Package to view the support package page in the CrossStudio

Browser window. This page provides more information about the support package and links to any

documentation, example projects, and system files that may be included in the package.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

62

Creating a project
To start developing an application, first create a new project. To create a new project:

• Choose File > New Project or press Ctrl+Shift+N

The New Project dialog appears. This dialog displays the set of project types (Categories) and project templates.

)

We'll create a project to develop our application in C:

1. In the Categories pane, select the Generic > ARM7 Board

2. From the list in the Project Templates pane, select the An executable for a generic ARM7 processor that

supports only running from RAM located at address 0x00000000

3. In the Name text field, type Tutorial to assign that as the new project's name.

4. You can use the Location text field or the Browse button to locate where you want to save the project in

your local file system.

5. Click Next.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

63

Here you can customize the project by altering a number of common project properties, such as an additional

file format to be output when the application is linked and what library support to include if you use printf and

scanf. After the project is created, you can change these settings in the Project Explorer as needed.

1. You can double-click a project property or its value to display either a drop-down menu of potential, valid

values or a text field in which you can type arbitrary values. For our tutorial, the default values are fine.

2. Click Next to display a list of the files CrossStudio will add to this project be default. You can uncheck any

file you plan to add manually or that you know will not be needed.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

64

The Links to system files group shows the links to CrossStudio system files that will be created in the project.

Because these files are links, the default behavior is that they will be shared with other projects—so modifying

one will affect all projects containing similar links. To prevent accidental modification, these files are created

as read-only. Should you wish to modify a shared file without affecting other projects, first import it into the

project. (Importing a shared file will be demonstrated later in this tutorial.) See Creating and managing projects

for more information on project links.

The Project files pane shows the files that will be copied into the project. Because these files are copied to the

project directory, they can be modified without affecting any other project.

If you uncheck an item, that file is not linked to, or created in, the project. We will leave all items checked for the

moment.

1. Click Next to view the default configurations that will be added to the project. Again, you can uncheck

any you know will not be needed but, for this tutorial, we will leave the defaults unchanged.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

65

Here you can specify the default configurations that will be added to the project. See Creating and managing

projects for more information on project configurations.

1. Click Finish to complete the new project's creation.

This will create a project for a generic ARM 7 device with RAM located at address 0x00000000. This is

fine, because we are going to run this example on the simulator. ARM hardware, however, is rarely so

accommodating because memory will be mapped at different addresses, target-specific startup code may be

required to initialize peripherals, different techniques need to be employed to reset the target, and target-

specific loader applications are required to program flash memory. To create a project to run on hardware, you

should instead select a template from the project type matching your target—that will create a project with the

memory maps, startup code, reset script, and a flash loader for your target.

The Project Explorer shows the overall structure of your project. To invoke it, do one of the following:

• Choose View > Project Explorer.

—or—

CrossWorks for ARM Reference Manual CrossStudio Tutorial

66

• Type Ctrl+Alt+P.

This is what our project looks like in the Project Explorer:

The project name is shown in bold to indicate it is the active project (and, in our case, the only project). If you

have more than one project, you can set the active project by using the drop-down box on the Build tool bar or

by right-clicking the desired project's name in the Project Explorer to display the shortcut menu with the Set as

Active Project command.

The files are arranged into two groups; click the + symbol next to the project name to reveal them:

• Source Files contains the main source files for your application, typically header files, C files, and

assembly code files. You may want to add files with other extensions or documentation files in HTML

format, for instance.

• System Files contains links to source files that are not part of the project but are required when the

project is built and run. In this case, the system files are: crt0.s — the C run-time startup, written in

assembly code

CrossWorks for ARM Reference Manual CrossStudio Tutorial

67

sram_placement.xml placement file — describes how program sections should be placed in memory

segments

Standard_ARM_RAM_Only_MemoryMap.xml — a memory map file that describes a target's

memory segments

Standard_ARM_Startup.s — contains the target-specific start code and exception vectors

Standard_ARM_Target.js — contains the target-specific target script that tells the debugger how

to reset the target and what to do when the processor stops or starts

Files stored outside the project's home directory (with a small purple shortcut indicator at the bottom left of the

icon, as above.

These folders have nothing to do with directories on disk, they are simply a means to group related files in the

Project Explorer. You can create new folders and specify filters for them based on the project files' extensions;

thereafter, when you add a new file to the project, it will be shown in the Project Explorer folder whose filter

matches the new file's extension.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

68

Managing files in a project
We'll now set up the example project with some files that demonstrate features of the CrossStudio IDE. For this,

we will add one pre-prepared file and one new file to the project.

Adding an existing file to a project

To add one of the existing tutorial files to the project:

• Choose Project > Add Existing File.

—or—

• In the Project Explorer, right-click the Tutorial project node.

• Choose Add Existing File from the shortcut menu.

In response, CrossStudio displays a standard file-locator dialog. Use it to navigate to the CrossStudio installation

directory, then to the tutorial folder, where you should select the fact.c file.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

69

Click Open to add the file to the project. The Project Explorer will list fact.c in the Project Items' Source Files

folder, with a shortcut arrow because the file is not in the project's home directory. Rather than edit the file in the

tutorial directory, we'll put a copy of it into the project's home directory:

• In the Project Explorer, right-click the fact.c node.

• From the pop-up menu, click Import.

The shortcut arrow disappears from the fact.c node, indicating that our working version of that file is now in

our Tutorial project's home directory.

We can open a file for editing by double-clicking the node in the Project Explorer. For example, double-clicking

fact.c opens it in the code editor:

Adding a new file to a project

Our project isn't complete, because fact.c is only part of an application. To our project we'll add a new C file

that will contain the main() function. To add a new file to the project, do the following:

• Choose File > New to open the New File dialog.

—or—

• On the Project Explorer tool bar, click the Add New File button.

—or—

• In the Project Explorer, right-click the Tutorial node.

• Choose Add New File from the shortcut menu.

—or—

CrossWorks for ARM Reference Manual CrossStudio Tutorial

70

• Type Ctrl+N.

The New File dialog appears.

• In the Categories pane, select C C++ to indicate the general type of file.

• In the Templates pane, select the C File (.c) option to further specify the kind of file we will be adding.

• In the Name edit box, type main.

The dialog box will now look like this:

Click OK to add the new file.

CrossStudio opens the new file in the code editor. Rather than type the program from scratch, we'll add it from a

file stored on disk. With the new, empty main.c in the foreground:

• Choose Edit > Insert File or press Ctrl+K, Ctrl+I.

• Using the resulting file-selection dialog, navigate to the tutorial directory.

• Select the main.c file.

• Click OK.

Your main.c file should now look like this:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

71

Next, we'll set up some project options.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

72

Setting project options
Up to this point, you have created a simple project. In this section, we will set some options for that project.

You can set project options on any node of a solution. That is, you can set options on a solution-wide basis, on

a project-wide basis, on a project-group basis, or on an individual-file basis. For instance, options you set on a

solution are inherited by all projects in that solution, by all groups in each of those projects, and by all files in

each of those groups. If you set an option further down in the hierarchy, that setting will be inherited by nodes

that are children of (or grandchildren of, etc.) that node. This provides a powerful way to customize and manage

your projects.

Adding a C preprocessor definition

In this instance, we will define a C preprocessor definition that will apply to the entire Tutorial project. This means

every file in the project will inherit our new definition. If, however, we were to later add other projects to the

solution, they would not inherit the definition; if we wanted that, we could set the property on the solution node

rather than the project node.

To set a C preprocessor definition on the project node:

• Right-click the Tutorial project in the Project Explorer and select Properties from the menu—the Project

Manager dialog appears.

• Click the Configuration drop-down and change to the Common configuration (it is one of the "Private

Configurations").

• Scroll down the list as necessary to click the Preprocessor Options > Preprocessor Definitions property.

Double-click the property name or value field, or click the ... symbol to display the empty Preprocessor

Definitions window, and in that window type the definition DEFINE_ME.

The dialog box will now look like this:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

73

Notice that, when you change between Debug and Release configurations, the code generation options

change. This dialog shows the options used when building a project (or anything in a project) in a given

configuration. Because we put the above, new definition in the Common configuration, both Debug and

Release configurations will use this setting. We could, however, set the definition to be different in Debug and

Release configurations if we wanted to pass different definitions into debug and release builds.

Now click OK to accept the changes made to the project.

Using the Properties Window

If you click on the project node, the Properties Window will show the properties of the project—all were

inherited from the solution. If you modify a property when the project node is selected, you'll find that its value

is highlighted because you have overridden the property value inherited from the solution. To restore the

inherited value of a property that was changed, right-click the property and select Use Inherited Value.

Next, we'll build the project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

74

Building projects
Now that the project is created and set up, it's time to build it. There are some deliberate errors in the program

that we need to correct; doing that is the next step in this tutorial.

Setting the build configuration

The first thing to do is set the active build configuration you want to use:

• Select ARM RAM Debug from the Active Configuration .

This means we are going to use a build configuration that generates ARM code, will run from RAM, and

generates code with debug information and no optimization, so it can be debugged. If we wanted to produce

production code with no debug information and optimization enabled, we could use the ARM RAM Release

configuration. However, because we are going to use the debugger, we shall use the ARM RAM Debug

configuration.

Building the project

To build the project:

• Choose Build > Build Tutorial.

—or—

• On the Build tool bar, click the Build Active Project button.

—or—

• Type F7.

Alternatively, to build the Tutorial project using a shortcut menu:

• In the Project Explorer, right-click the Tutorial project node.

• Select Build from the shortcut menu.

CrossStudio starts compiling the project files, but stops after detecting an error. The Output window shows the

Transcript, which contains the errors found in the project:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

75

Correcting compilation and linkage errors

The file main.c contains two errors. After compilation, CrossStudio moves the cursor to the line containing

the first reported error and displays an error message in the Output window. (You can change this behavior by

modifying the Text Editor > Editing Options > Enable Popup Diagnostics environment option using the Tools

> Options dialog.)

To correct the error, change the return type of factorial from void to int in its prototype.

To move the cursor to the line containing the next error, type F4 or choose Search > Next Location. The cursor is

now positioned at the debug_printf statement, which is missing a terminating semicolon—add the semicolon

to the end of the line. Using F4 again reveals that we have corrected all errors.

Pressing F4 again wraps around and moves the cursor to the first error, and you can use Shift+F4 or Search >

Previous Location to move back through errors. Now that the errors are corrected, build the project again by

pressing F7. The Transcript shows there still is a problem.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

76

The remaining error is a linkage error. Double-click fact.c in the Project Explorer to open it for editing and

change the two occurrences of fact to factorial. Rebuild the project—this time, the project compiles

correctly:

A summary of the memory used by the project is displayed at the end of the build log. The results for your

application may be different, so don't worry if they don't match.

In the next sections, we'll explore the characteristics of the newly built project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

77

Exploring projects
Now that the project has no errors and builds correctly, we can turn our attention to uncovering exactly how our

application fits in memory and how to navigate around it.

Using Project Explorer features

The Project Explorer is the central focus for arranging your source code into projects, and it's a good place to

show ancillary information gathered when CrossStudio builds your applications. This section will cover features

the Project Explorer offers to give you an overview of your project.

Project code and data sizes

Developers are always interested in how much memory their applications use, especially when they are working

with small, embedded microcontrollers. The Project Explorer can display the code and data sizes for each

project and individual source file that successfully compiled. To view this information, use the Options pop-up

menu on the Project Explorer tool bar to ensure that Statistics Column is checked.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

78

When the Statistics Column option is checked, the Project Explorer displays two additional columns, Code and

Data.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

79

The Code column displays the total code space required for the project. The Data column displays the total

data space required. The code and data sizes shown for each C and assembly source file are estimates, but good

ones. Because the linker removes any unreferenced code and data, and performs a number of optimizations, the

sizes for the linked project may not be the sum of the sizes of each individual file. The code and data sizes for the

project, however, are accurate. As already mentioned, your numbers may not match these exactly.

Dependencies

The Project Explorer is very versatile: not only can you display the code and data sizes for each element of a

project and for the project as a whole, you can also configure it to show the dependencies for a file. As part of

the compilation process, CrossStudio finds and records the relationships between files—that is, it finds which

files depend upon other files. CrossStudio uses these known relationships when it builds the project again, to

minimize the amount of work required to bring the project up to date.

To show the dependencies for a project, use the Options button on the Project Explorer tool bar to ensure that

either Dependencies Under Node or Dependencies In Folder is checked. Once checked, dependent files are

shown as sub-nodes of the file that depends on them.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

80

In this case, main.c is dependent upon cross_studio_io.h because it includes it with an #include

directive. It is also dependent on __crossworks.h because that is included by cross_studio_io.h. You

can open the files in an editor by double-clicking them, so having dependencies turned on is an effective way of

navigating to and summarizing the files a source file includes.

Output files

It is useful to know the output files when compiling and linking the application, and CrossStudio can display this

information, too. To turn on output-file display, click the Project Explorer tool bar's Options button and verify

that Output Files Folder option is checked in the menu. Once checked, output files are shown in an Output Files

folder under the node that generates them. Click that folder's + symbol to expand the view of the output files.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

81

In the above figure, we can see that the files fact.o and main.o are object files, produced by compiling

their corresponding source files. The linker script Tutorial.ld, the map file Tutorial.map, and the linked

executable Tutorial.elf are produced by the linker. As a convenience, double-clicking an object file or a

linked executable file in the Project Explorer will open an editor showing the disassembled contents of the file.

Disassembling a project or file

You can disassemble a project either by double-clicking the corresponding file in the Project Explorer, as

described above, or by using the Disassemble tool.

To disassemble a project or file:

• Right-click the appropriate project or file in the Project Explorer.

• From the shortcut menu, choose Disassemble.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

82

CrossStudio then opens a new read-only editor showing the disassembled listing. If you change your project

and rebuild it, thereby causing a change in the object or executable file, the disassembly updates to keep the

display's contents synchronized with the file on disk.

Using Memory Usage Window features

The Memory Usage window can be used to view a graphical summary of how memory was used in each

memory segment of a linked application.

To display the memory usage:

• Choose View > Memory Usage or press Ctrl+Alt+Z.

For the Tutorial project, the Memory Usage window shows this:

From this, you can see:

• The SRAM segment is located at 0x00000000.

• The SRAM segment is 64KB in length.

• There is 59.3KB of unused memory in the SRAM segment.

If you expand the SRAM segment by clicking it, CrossStudio will display all the program sections contained

within the segment:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

83

CrossWorks for ARM Reference Manual CrossStudio Tutorial

84

Using Symbol Browser features

For a more-detailed view of how your application is laid out in memory than the Memory Usage window

provides, you can use the Symbol Browser. It allows you to navigate your application, see which data objects

and functions have been linked into your application, what their sizes are, which section they are in, and where

they are placed in memory.

To activate the Symbol Browser:

• Choose Project > Symbol Browser or press Ctrl+Alt+Y.

Drilling down into the application

The Tutorial project shows this in the Symbol Browser:

From this, you can see sections and their sizes. For example, the .vectors section containing the ARM exception

vectors is placed in memory between address 0x00000000 and 0x0000003B.

• The .init section containing the system startup code is placed in memory

• The .text section containing the program code is placed in memory

• The .rodata section containing read-only data is placed in memory

• The .heap section is 1024 bytes in length and is located at 0x00000880. Linker > Heap Size project

property.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

85

• The .stack section which contains the User/System mode stack is 1024 Linker > Stack Size properties.

• The .stack_irq section which contains the IRQ mode stack is 256 bytes in

• The .stack_fiq section which contains the FIQ mode stack is 256 bytes in

To drill down, open the CODE node by double-clicking it: CrossStudio displays the individual functions that have

been placed in memory and their sizes:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

86

CrossWorks for ARM Reference Manual CrossStudio Tutorial

87

Here, we can see that main is 100 bytes in size and is placed in memory between addresses 0000029C and

000002FF, inclusive, and that factorial is 80 bytes and occupies addresses 0000024C through 0000029B. Just as

in the Project Explorer, if you double-click a function, CrossStudio moves the cursor to the line containing the

definition of that function, so you can easily use the Symbol Browser to navigate around your application.

Printing Symbol Browser contents

You can print the contents of the Symbol Browser by selecting its window and choosing Print from the File

menu, or Print Preview if you want to see what it will look like before printing. CrossStudio prints only the

columns you have selected for display, and prints items in the order displayed in the Symbol Browser, so you

can choose which columns to print and how to print symbols by configuring the Symbol Browser display.

We have touched on only some of the features the Symbol Browser offers; to learn more, refer to Symbol

Browser, where it is described in detail.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

88

Using the debugger
Our sample application, which we have just compiled and linked, is now built and ready to run. In this section,

we'll concentrate on downloading and debugging this application, and on using the features of CrossStudio to

see how it performs.

Getting set up

Before running your application, you need to select the target to run it on. Choose Target > Targets to list in the

Targets window each target interface that is defined. You will use these to connect CrossStudio to a target. For

this tutorial, you'll be debugging on the simulator, not hardware, to simplify matters.

To connect to the simulator:

• Choose Target > Connect > ARM Simulator.

—or—

• Choose View > Targets to activate the Targets window.

• In the Targets window, double-click ARM Simulator.

After connecting, the ARM Simulator target is shown in the status bar:

The color of the target-status LED in the status bar changes according to what CrossStudio and the target are

doing:

• White — No target is connected.

• Yellow — Target is connected.

• Solid green — Target is free running, not under control of CrossStudio or the debugger.

• Flashing green — Target is running under control of the debugger.

• Solid red — Target is stopped at a breakpoint or because execution is paused.

• Flashing red — CrossStudio is programming the application into the target.

Double-clicking the Target Status will show the Targets window, if it is not already visible.

The core simulator target can accurately count the cycles spent executing your application, so the status bar

shows a cycle counter. If you connect a target that cannot provide performance information, the cycle counter

panel is hidden. Double-clicking the Cycle Counter panel will reset the cycle counter to zero.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

89

Setting a breakpoint

CrossStudio will run a program until it hits a breakpoint. We'll place a breakpoint on the call to debug_printf

in main.c. To set the breakpoint, move the cursor to the line containing debug_printf and Choose Debug >

Toggle Breakpoint or press F9.

Alternately, you can set a breakpoint without changing the cursor's position by clicking in the gutter of the line

to set the breakpoint on.

The gutter displays an icon on lines where breakpoints are set. The Breakpoints window updates to show where

each breakpoint is set and whether it's set, disabled, or invalid—you can find more detailed information in the

Breakpoints window section. The breakpoints you set are stored in a session file associated with the project, so

your breakpoints are remembered if you exit and re-run CrossStudio.

Starting the application

To start the application, Choose Debug > Start or press F5.

The workspace will change from the standard Editing workspace to the Debugging workspace. You can choose

which windows to display in each of these workspaces and manage them independently. CrossStudio loads the

active project into the target and places the breakpoints you have set. During loading, the Target Log in the

Output Window shows its progress and any problems:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

90

The program stops at our breakpoint and a yellow arrow in the gutter indicates where the program is paused.

Step into the factorial function by selecting Debug > Step Into, by typing F11, or by clicking the Step Into

button on the Debug tool bar.

Now step to the first statement in the function by selecting Debug > Step Over, by typing F10, or by clicking the

Step Over button on the Debug tool bar.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

91

You can step out of a function by choosing Debug > Step Out, by typing Shift+F11, or by clicking the Step Out

button on the Debug tool bar. You can also step to a specific statement by choosing Debug > Run To Cursor. To

allow your application to run to the next breakpoint, choose Debug > Go.

Note that, when single-stepping, you may step into a function whose source code the debugger cannot locate.

In such cases, the debugger will display the instructions of the application; you can step out to get back to

source code or continue to debug at the instruction-code level. There may be cases in which the debugger

cannot display the instructions; in such cases, you will be informed of this with a dialog and you should step out.

Inspecting data

Being able to control execution isn't very helpful if you can't look at the values of variables, registers, and

peripherals. Hovering the mouse cursor over a variable will show its value as a data tip:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

92

You can configure CrossStudio to display data tips in a variety of formats at the same time using the

Environment Options dialog. You can also use the Autos, Locals, Globals, Watch, and Memory windows to view

variables and memory. These windows are described in CrossStudio User Guide.

The Call Stack window shows the function calls that have been made but have not yet finished executing, that is

the list of active functions.

To display the call stack:

item Choose Debug > Call Stack or press Ctrl+Alt+S.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

93

You can learn more about this in the Call Stack window section.

Program output

The Tutorial application uses the function debug_printf to output a string to the Debug Terminal in the

Output window. The Debug Terminal appears automatically whenever something is written to it—press F5 to

continue program execution and you will notice that the Debug Terminal appears. In fact, the program runs

forever, writing the same messages over and over again. To pause the program, select Debug > Break or type

Ctrl+. (control-period).

In the next section, we'll cover low-level debugging at the machine level.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

94

Low-level debugging
This section describes how to debug your application at the register and instruction level. Debugging at a high

level is fine, but sometimes you need to look more closely into the way your program executes to track down the

causes of difficult-to-find bugs. CrossStudio provides the tools you need to do so.

Setting up again

Next, we'll run the sample application again and look at how it executes at the machine level. If you haven't done

so already, stop the program executing by typing Shift+F5, by selecting Debug > Stop, or by clicking the Stop

Debugging button on the Debug tool bar. Now, run the program until it stops at the first breakpoint again.

You can see the current processor state in the Register windows. To show the first Registers window:

• Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

The Registers window can be used to view CPU and peripheral registers. To display the state of the registers for

the active processor mode, use the Registers 1 window's Register Groups menu to select CPU - Current Mode.

This view is displaying the registers for the active processor mode. You can also display the entire set of ARM

registers: to do this, select CPU - All from the Register Groups menu. Your registers window will look something

like this:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

95

There are four register windows, so you can open and display four sets of CPU and peripheral registers at the

same time. You can configure which registers and peripherals to display in the Registers windows individually.

As you single-step the program, the contents of the Registers window updates and any change in a register

value is highlighted in red.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

96

Disassembly

The Disassembly window can be used to debug your program at the instruction level. It displays a disassembly

of the instructions around the currently located instruction, interleaved with the source code of the program, if

the source is available. When the Disassembly window has focus, all single-stepping is done one instruction at a

time. This window also allows you to set breakpoints by clicking in the gutter of lines containing instructions on

which you want to set a breakpoint.

Stopping and starting debugging

• You can stop debugging using Debug > Stop or Shift+F5.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

97

• To restart debugging without reloading the program, you can use Debug > Debug From Reset. Note

that, when you debug from reset, no loading takes place; it is expected that your program resets any data

values as necessary as part of its startup.

• You can attach the debugger to a running target, other than a simulator, using Target > Attach

Debugger.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

98

Debugging externally built applications
This section describes how to debug applications that were not built by CrossStudio. To keep things simple, we

shall use the application we just built as our externally built application.

Start by creating a new, externally built executable project:

• Choose File > New Project or press Ctrl+Shift+N.

The New Project dialog appears. It displays the set of project types and project templates.

We'll create an externally built executable project:

• In the Categories pane, select the Generic > ARM7 Board project type.

• In the Project Templates pane, select the An externally built executable for a generic ARM7 processor

icon, which selects the type of project to add.

• Type Externally_Built_Tutorial in the Name field, which names the project.

• You can use the Location field or the Browse button to locate where you want the project to be created.

• Click OK.

Once created, the project-setup wizard prompts you for the executable file you want to use.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

99

In the Executable File field, type the path to the Tutorial.elf executable file we generated earlier. For

example, if the project was created in the C:/CrossWorks Projects/Tutorial directory and was

built using the ARM RAM Debug configuration, the path to the executable file will be C:/CrossWorks

Projects/Tutorial/ARM RAM Debug/Tutorial.elf.

Clicking Next displays the files that will be added to the project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

100

The Project files group shows the files that will be copied into the project. The only files used are the memory

map file, which describes the memory layout used by the application, and the script used to reset and control

the target. For the debugging session to work correctly, each of these files must match and be appropriate for

the application you are debugging.

Clicking Next displays the configurations that will be added to the project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

101

Complete the project creation by clicking Finish.

You will be prompted as to whether you want to overwrite the existing memory map and target script. Click No

to keep the existing files.

Now you have created the externally built executable project. You should be able to use the debugger just as we

did earlier in the tutorial.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

102

CrossWorks for ARM Reference Manual CrossStudio User Guide

103

CrossStudio User Guide
This is the user guide for the CrossStudio integrated development environment (IDE). The CrossStudio IDE

consists of:

• a project system to organize your source files

• a build system to build your applications

• programmer aids to navigate and work effectively

• a target programmer to download applications into RAM or flash

• a debugger to pinpoint bugs

CrossWorks for ARM Reference Manual CrossStudio User Guide

104

CrossStudio standard layout
CrossStudio's main window is divided into the following areas:

• Title bar: Displays the name of the current solution.

• Menu bar: Menus for editing, building, and debugging your program.

• Toolbars: Frequently used actions are quickly accessible on toolbars below the menu bar.

• Editing area: A tabbed view of any open editor windows and the HTML viewer.

• Docked windows: CrossStudio has many windows that dock to the left, right, or below the editing area.

You can configure which windows will be visible, and their placement, when editing and debugging.

• Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

105

Menu bar
The menu bar contains menus for editing, building, and debugging your program. You can navigate menus

using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.

—or—

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.

2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

2. Use the Left and Right keys to display the required menu.

3. Use the Up or Down key to select the required command or submenu. Press Enter to execute a selected

command.

4. Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlined—its shortcut key. So, to

activate a menu using the keyboard:

• While holding down the Alt key, type the desired menu's shortcut key.

After the menu appears, you can navigate it using the cursor keys:

• Use Up and Down to move up and down the list of menu items.

• Use Esc to cancel a menu.

• Use Right or Enter to open a submenu.

• Use Left or Esc to close a submenu and return to the parent menu.

• Type the underlined letter in a command's name to execute that command.

CrossWorks for ARM Reference Manual CrossStudio User Guide

106

Title bar
The first item shown in the title bar is CrossStudio's name. Because CrossStudio can be used to target different

processors, the name of the target processor family is also shown, to help you distinguish between instances of

CrossStudio when debugging multi-processor or multi-core systems.

The filename of the active editor follows CrossStudio's name; you can configure the presentation of this filename

as described below.

After the filename, the title bar displays status information on CrossStudio's state:

• [building] — CrossStudio is building a solution, building a project, or compiling a file.

• [run] — An application is running under control of CrossStudio's debugger.

• [break] — The debugger is stopped at a breakpoint.

• [autostep] — The debugger is single stepping the application without user interaction (autostepping).

CrossWorks for ARM Reference Manual CrossStudio User Guide

107

Status bar
At the bottom of the window, the status bar contains useful information about the current editor, build status,

and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Target device status

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

CrossWorks for ARM Reference Manual CrossStudio User Guide

108

Caret position Indicates the cursor position in the editor window.
For text files, the caret position pane displays the
line number and column number of the cursor in the
active window; when editing binary files, it displays the
address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

• Choose View > Status Bar.

• From the status bar menu, select the panels to display and deselect the ones you want hidden.

—or—

• Right-click the status bar.

• From the status bar menu, select the panels to display and deselect the ones you want to hide.

To show or hide the status bar:

• Choose View > Status Bar.

• From the status bar menu, select or deselect the Status Bar item.

You can choose to hide or display the size grip when CrossStudio's main window is not maximized. (The size grip

is never shown in full-screen mode or when maximized.)

To show or hide the size grip

• Choose View > Status Bar.

• From the status bar menu, select or deselect the Size Grip item.

CrossWorks for ARM Reference Manual CrossStudio User Guide

109

Editing workspace
The main area of CrossStudio is the editing workspace. It contains any files being edited, the on-line help

system's HTML browser, and the Dashboard.

CrossWorks for ARM Reference Manual CrossStudio User Guide

110

Docking windows
CrossStudio has a flexible docking system you can use to position windows as you like them. You can dock

windows in the CrossStudio window or in the four head-up display windows. CrossStudio will remember the

position of the windows when you leave the IDE and will restore them when you return.

Window groups

You can organize CrossStudio windows into window groups. A window group has multiple windows docked

in it, only one of which is active at a time. The window group displays the active window's title for each of the

windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

• Press and hold the left mouse button over the title of the window you wish to move.

• Drag the window over the window group to dock in.

• Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

CrossStudio remembers the dock position and visibility of each window in each perspective. The most common

use for this is to lay your windows out in the Standard perspective, which is the perspective used when you are

editing and not debugging. When CrossStudio starts to debug a program, it switches to the Debug perspective.

You can now lay out your windows in this perspective and CrossStudio will remember how you laid them them

out. When you stop debugging, CrossStudio will revert to the Standard perspective and that window layout;

when you return to Debug perspective on the next debug session, the windows will be restored to how you laid

them out in that perspective.

CrossStudio remembers the layout of windows, in all perspectives, such that they can be restored when you run

CrossStudio again. However, you may wish to revert back to the standard docking positions; to do this:

• Choose Window > Reset Window Layout.

Some customers are accustomed to having the Project Explorer on the left or the right, depending upon which

version of Microsoft Visual Studio they commonly use. To quickly switch the CrossStudio layout to match your

preferred Visual Studio setup:

• Choose Window > Reverse Workspace Layout.

CrossWorks for ARM Reference Manual CrossStudio User Guide

111

Dashboard
When CrossStudio starts, it presents the Dashboard, a collection of panels that provide useful information, one-

click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before CrossWorks is fully functional—for instance,

whether you need to activate CrossWorks, install packages, and so on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer

version is available. You can install each new package individually by clicking the Install button under each

notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the

appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds to which you have subscribed. Clicking a

link will display the published article in an external web browser. You can manage your feed subscriptions to by

clicking the Manage Feeds link at the end of the News panel and pinning the feeds in the Favorites window—

you are only subscrbed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

CrossWorks for ARM Reference Manual CrossStudio User Guide

112

CrossStudio help and assistance
CrossStudio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, CrossStudio provides a longer description in the status bar when you hover over a

button or menu item.

Online manual
CrossStudio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using CrossStudio

CrossStudio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

• Click to select the item with which you want assistance.

• Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the cursor over a word and press F1, the

help-system page most likely to be useful is displayed in the HTML browser. This a great way to quickly find the

help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the CrossWorks documentation and gives a way to search through

them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

113

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

• Choose Help > Search.

• Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in

order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

CrossWorks for ARM Reference Manual CrossStudio User Guide

114

Creating and managing projects
A CrossStudio project is a container for everything required to build your applications. It contains all the assorted

resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to

organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-

management tasks.

CrossWorks for ARM Reference Manual CrossStudio User Guide

115

Solutions and projects
To develop a product using CrossStudio, you must understand the concepts of projects and solutions.

• A project contains and organizes everything you need to create a single application or a library.

• A solution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,

and to load them onto the target ready for debugging.

In your CrossWorks project, you…

• …organize build-system inputs for building a product.

• …add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension

hzp, that contain an XML description of your project. See Project file format for a description of the project-file

format.

Projects

The projects you create within a solution have a project type CrossStudio uses to determine how to build the

project. The project type is selected when you use the New Project dialog. The available project types depend

on the CrossWorks variant you are using, but the following are present in most CrossWorks variants:

• Executable: — a program that can be loaded and executed.

• Externally Built Executable: — an executable that was not built by CrossWorks.

• Library: — a group of object files collected into a single file (sometimes called an archive).

• Object File: — the result of a single compilation.

• Staging: — a project that will apply a user-defined command to each file in a project.

• Combining: — a project that can be used to apply a user-defined command when any files in a project

have changed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

116

Properties and configurations

Properties are attached to project nodes. They are usually used in the build process, for example, to define

C preprocessor symbols. You can assign different values to the same property, based on a configuration: for

example, you can assign one value to a C preprocessor symbol for release and a different value for a debug

build.

Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions

to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a

file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement

files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of

related products, are managed in a CrossStudio project. A project can also contain files that are not directly used

by CrossStudio to build a product but contain information you use during development, such as documentation.

You edit source files during development using CrossStudio's built-in text editor, and you organize files into a

target (described next) to define the build-system inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files

placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project

directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to

the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project

directory or to $(StudioDir), the full, absolute pathname is used.

The project system will allow (with a warning) duplicate files to be put into a project.

The project system uses a file's extension to determine the appropriate build action to perform on the file:

• A file with the extension .c will be compiled by a C compiler.

• A file with the extension .s or .asm will be compiled by an assembler.

• A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

• A file with the object-file extension .o or .hzo will be linked.

• A file with the library-file extension .a or .hza will be linked.

CrossWorks for ARM Reference Manual CrossStudio User Guide

117

• A file with the extension .xml will be opened and its file type determined by the XML document type.

• Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type property with the Common configuration selected in

the Properties window, which enables files with non-standard extensions to be compiled by the project system.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For

example, you could have a solution that builds a library together with a stub test driver executable. You can

link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit CrossWorks, details of your current session are stored in a session file. Session files are text files,

with the file extension hzs, that contain details such as which files you have opened in the editor and what

breakpoints you have set in the Breakpoint window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

118

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. In the New Project wizard, select the type of project you wish to create and specify where it will be

placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the

solution directory. The project system will use the project directory as the current directory when it builds your

project. Once complete, the Project Explorer displays the new solution, project, and files contained in the

project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.

3. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

119

Adding existing files to a project
You can add existing files to a project in a number of ways.

To add existing files to the active project:

• Choose Project > Add Existing File.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.

• Click OK.

The selected files are added to the folders whose filter matches the extension of each of the files. If no filter

matches a file's extension, the file is placed underneath the project node.

To add existing files to a specific project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add Existing File.

To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

CrossWorks for ARM Reference Manual CrossStudio User Guide

120

Adding new files to a project
You can add new files to a project in a number of ways.

To add new files to the active project:

• Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add New File.

When adding a new file, CrossStudio displays the New File dialog, from which you can choose the type of file

to add, its filename, and where it will be stored. Once created, the new file is added to the folder whose filter

matches the extension of the newly added file. If no filter matches the newly added file extension, the new file is

placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add New File.

The new file is added to the folder without using filter matching.

CrossWorks for ARM Reference Manual CrossStudio User Guide

121

Removing a file, folder, project, or project link
You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,

using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does

not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.

2. Choose Edit > Delete or press Del.

—or—

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

CrossWorks for ARM Reference Manual CrossStudio User Guide

122

Project macros
You can use macros to modify the way the project system refers to files.

Macros are divided into four classes:

• System macros defined by CrossStudio relay information about the environment, such as paths to

common directories.

• Global macros are saved in the environment and are shared across all solutions and projects. Typically,

you would set up paths to libraries and any external items here.

• Project macros are saved as project properties in the project file and can define values specific to the

solution or project in which they are defined.

• Build macros are generated by the project system when you build your project.

System macros

System macros are defined by CrossStudio itself and as such are read-only. System macros can be used in project

properties, environment settings and to refer to files. See System macros list for the list of System macros.

Global macros

To define a global macro:

1. Choose Project > Macros.

2. Select the Global tab.

3. Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:

1. Choose Project > Macros.

2. Select the Project tab.

3. Select the solution or project to which the macro should apply.

4. Set the macro using the syntax name = replacement text.

Alternatively, you can set the project macros from the Properties window:

1. Select the appropriate solution/project in the Project Explorer.

2. In the Properties window's General Options group, select the Macros property.

3. Click the ellipsis button on the right.

4. Set the macro using the syntax name = replacement text.

CrossWorks for ARM Reference Manual CrossStudio User Guide

123

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the

list of build macros.

Using macros

You can use a macro for a project property or environment setting by using the $(macro) syntax. For example,

the Object File Name property has a default value of $(IntDir)/$(InputName)$(OBJ).

CrossWorks for ARM Reference Manual CrossStudio User Guide

124

Building your application
CrossStudio builds your application using the resources and build rules it finds in your solution.

When CrossStudio builds your application, it tries to avoid building files that have not changed since they were

last built. It does this by comparing the modification dates of the generated files with the modification dates

of the dependent files together with the modification dates of the properties that pertain to the build. But if

you are copying files, sometimes the modification dates may not be updated when the file is copied—in this

instance, it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale CrossStudio currently is using by setting the Environment Properties > Build

Settings > Show Build Information property. To see the build commands themselves, set the Environment

Properties > Build Settings Echo Build Command property.

You may have a solution that contains several interdependent projects. Typically, you might have several

executable projects and some library projects. The Project Dependencies dialog specifies the dependencies

between projects and to see the effect of those dependencies on the solution build order. Note that

dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the

Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder

contains the list of newly generated files and the files from which they were generated. To see if one of files

can be decoded and displayed in the editor, right-click the file to see if the View command is available on the

shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all

executable files built in the solution.

When CrossStudio builds projects, it uses the values set in the Properties window. To generalize your builds, you

can define macro values that are substituted when the project properties are used. These macro values can be

defined globally at the solution and project level, and can be defined on a per-configuration basis. You can view

and update the macro values using Project > Macros.

The combination of configurations, properties with inheritance, dependencies, and macros provides a very

powerful build-management system. However, such systems can become complicated. To understand the

implications of changing build settings, right-click a node in the Project Explorer and select Properties to view a

dialog that shows which macros and build steps apply to that project node.

To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

—or—

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

125

To build a single project:

1. Select the required project in the Project Explorer.

2. Choose Build > Build or press F7.

—or—

1. Right-click the project in the Project Explorer.

2. Choose Build.

To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.

—or—

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted

in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.

You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

CrossWorks for ARM Reference Manual CrossStudio User Guide

126

Creating variants using configurations
CrossStudio provides a facility to build projects in various configurations. Project configurations are used to

create different software builds for your projects.

A configuration defines a set of project property values. For example, the output of a compilation can be put

into different directories, dependent upon the configuration. When you create a solution, some default project

configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler

options for debug builds will differ from those of a release build: a debug build will set options so the project can

be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its

speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit properties from other configurations. This provides a single point of change for definitions

common to several configurations. A particular property can be overridden in a particular configuration to

provide configuration-specific settings.

When a solution is created, two configurations are generated — Debug and Release — and you can create

additional configurations by choosing Build > Build Configurations. Before you build, ensure that the

appropriate configuration is set using Build > Set Active Build Configuration or, alternatively, the Active

Configuration combo box in the Project Explorer. You should also ensure that the appropriate build properties

are set in the Properties window.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or

select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The

New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

CrossWorks for ARM Reference Manual CrossStudio User Guide

127

Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

CrossWorks for ARM Reference Manual CrossStudio User Guide

128

Project properties
For solutions, projects, folders, and files, properties can be defined that are used by the project system in

the build process. These property values can be viewed and modified by using the Properties window in

conjunction with the Project Explorer. As you select items in the Project Explorer, the Properties window will

list the set of relevant properties.

Some properties are only applicable to a given item type. For example, linker properties are only applicable to

a project that builds an executable file. However, other properties can be applied either at the file, project, or

solution project node. For example, a compiler property can be applied to a solution, project, or individual file.

By setting a property at the solution level, you enable all files of the solution to use that property's value.

CrossWorks for ARM Reference Manual CrossStudio User Guide

129

Unique properties
A unique property has one value. When a build is done, the value of a unique property is the first one defined

in the project hierarchy. For example, the Treat Warnings As Errors property could be set to Yes at the solution

level, which would then be applicable to every file in the solution that is compiled, assembled, and linked. You

can then selectively define property values for other project items. For example, a particular source file may have

warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that particular file.

Note that, when the Properties window displays a project property, it will be shown in bold if it has been

defined for unique properties. The inherited or default value will be shown if it hasn't been defined.

solution — Treat Warnings As Errors = Yes
 project1 — Treat Warnings As Errors = Yes
 file1 — Treat Warnings As Errors = Yes
 file2 — Treat Warnings As Errors = No
 project2 — Treat Warnings As Errors = No
 file1 — Treat Warnings As Errors = No
 file2 — Treat Warnings As Errors = Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/file1 Yes

project1/file2 No

project2/file1 No

project2/file2 Yes

CrossWorks for ARM Reference Manual CrossStudio User Guide

130

Aggregate properties
An aggregating property collects all the values defined for it in the project hierarchy. For example, when a C

file is compiled, the Preprocessor Definitions property will take all the values defined at the file, project, and

solution levels. Note that the Properties window will not show the inherited values of an aggregating property.

solution — Preprocessor Definitions = SolutionDef
 project1 — Preprocessor Definitions =
 file1 — Preprocessor Definitions =
 file2 — Preprocessor Definitions = File1Def
 project2 — Preprocessor Definitions = ProjectDef
 file1 — Preprocessor Definitions =
 file2 — Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/file1 SolutionDef

project1/file2 SolutionDef, File1Def

project2/file1 SolutionDef, ProjectDef

project2/file2 SolutionDef, ProjectDef, File2Def

CrossWorks for ARM Reference Manual CrossStudio User Guide

131

Configurations and property values
Property values are defined for a configuration so you can have different values for a property for different

builds. A given configuration can inherit the property values of other configurations. When the project system

requires a property value, it checks for the existence of the property value in current configuration and then in

the set of inherited configurations. You can specify the set of inherited configurations using the Configurations

dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration

allows you to set property values that will apply to all configurations you create. You can select the Common

configuration using the Configurations combo box of the properties window. If you are modifying a property

value of your project, you almost certainly want each configuration to inherit it, so ensure that the Common

configuration is selected.

If the property is unique, the build system will use the one defined for the particular configuration. If the

property isn't defined for this configuration, the build system uses an arbitrary one from the set of inherited

configurations.

If the property is still undefined, the build system uses the value for the Common configuration. If it is still

undefined, the build system tries to find the value in the next higher level of the project hierarchy.

solution [Common] — Preprocessor Definitions = CommonSolutionDef

solution [Debug] — Preprocessor Definitions = DebugSolutionDef

solution [Release] — Preprocessor Definitions = ReleaseSolutionDef

project1 - Preprocessor Definitions =

file1 - Preprocessor Definitions =

file2 [Common] — Preprocessor Definitions = CommonFile1Def

file2 [Debug] — Preprocessor Definitions = DebugFile1Def

project2 [Common] — Preprocessor Definitions = ProjectDef

file1 — Preprocessor Definitions =

file2 [Common] - Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration…

File Setting

project1/file1 CommonSolutionDef, DebugSolutionDef

project1/file2 CommonSolutionDef,
DebugSolutionDef,CommonFile1Def, DebugFile1Def

project2/file1 CommonSolutionDef, DebugSolutionDef, ProjectDef

project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

…and the files will be compiled with these Preprocessor Definitions when in Release configuration:

CrossWorks for ARM Reference Manual CrossStudio User Guide

132

File Setting

project1/file1 CommonSolutionDef, ReleaseSolutionDef

project1/file2 CommonSolutionDef, ReleaseSolutionDef,
CommonFile1Def

project2/file1 CommonSolutionDef, ReleaseSolutionDef, ProjectDef

project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

CrossWorks for ARM Reference Manual CrossStudio User Guide

133

Dependencies and build order
You can set up dependency relationships between projects using the Project Dependencies dialog. Project

dependencies make it possible to build solutions in the correct order and, where the target permits, to load

and delete applications and libraries in the correct order. A typical usage of project dependencies is to make

an executable project dependent upon a library executable. When you elect to build the executable, the build

system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project properties and, as such, can be defined differently based upon the

selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the

projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would

result if any of those projects were selected. In this way, CrossStudio prevents you from constructing circular

dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are

loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded

before the applications that use them, and you can ensure this happens by making the application dependent

upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed

before the libraries on which they depend.

CrossWorks for ARM Reference Manual CrossStudio User Guide

134

Linking and section placement
Executable programs consist of a number of sections. Typically, there are program sections for code, initialized

data, and zeroed data. There is often more than one code section and they must be placed at specific addresses

in memory.

To describe how the program sections of your program are positioned in memory, the CrossWorks project

system uses memory-map files and section-placement files. These XML-formatted files are described in Memory

Map file format and Section Placement file format. They can be edited with the CrossWorks text editor. The

memory-map file specifies the start address and size of target memory segments. The section-placement file

specifies where to place program sections in the target's memory segments. Separating the memory map from

the section-placement scheme enables a single hardware description to be shared across projects and also

enables a project to be built for a variety of hardware descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM

could look something like this in the memory-map editor.

<Root name="Device1">
 <MemorySegment name="FLASH" start="0x10000000" size="0x10000" />
 <MemorySegment name="SRAM" start="0x20000000" size="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will

list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors

and .text sections in the FLASH segment would look like this:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

Note that the order of section placement within a segment is top down; in this example .vectors is placed at

lower addresses than .text.

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,

alternatively, they can be specified in the project's linker properties.

You can create a new program section using either the assembler or the compiler. For the C/C++ compiler, this

can be achieved using __attribute__ on declarations. For example:

void foobar(void) __attribute__ ((section(".foo")));

CrossWorks for ARM Reference Manual CrossStudio User Guide

135

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,

constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options properties.

You can now place the section into the section placement file using the editor so that it will be located after the

vectors sections as follows:

<Root name="Flash Section Placement" >
 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".foo" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

If you are modifying a section-placement file that is supplied in the CrossWorks distribution, you will need to

import it into your project using the Project Explorer.

Sections containing code and constant data should have their load property set to Yes. Some sections don't

require any loading, such as stack sections and zeroed-data sections; such sections should have their load

property set to No.

Some sections that are loaded then need to be copied to sections that aren't yet loaded. This is required for

initialized data sections and to copy code from slow memory regions to faster ones. To do this, the runin

attribute should contain the name of a section in the section-placement file to which the section will be copied.

For example, initialized data is loaded into the .data_load section and then is copied into the .data_run section

using:

<Root name="Flash Section Placement" >
 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 <ProgramSection name=".data_load" load="Yes" runin="data_run" />
 </MemorySegment>
 <MemorySegment name="SRAM" >
 <ProgramSection name=".data_run" load="No" />
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

The startup code will need to copy the contents of the .data_load section to the .data_run section. To enable

this, symbols are generated marking the start and end addresses of each section. For each section, a start symbol

called __section-name_start__ and an end symbol called __section-name_end__ are generated. These symbols

can be used to copy the sections from their load positions to their run positions.

For example, the .data_load section can be copied to the data_run section using the following call to memcpy.

/* Section image located in flash */
extern const unsigned char __data_load_start__[];
extern const unsigned char __data_load_end__[];

CrossWorks for ARM Reference Manual CrossStudio User Guide

136

/* Where to locate the section image in RAM. */
extern unsigned char __data_run_start__[];
extern unsigned char __data_run_end__[];

/* Copy image from flash to RAM. */
memcpy(__data_run_start__,
 __data_load_start__,
 __data_load_end__ - __data_load_start__);

CrossWorks for ARM Reference Manual CrossStudio User Guide

137

Using source control
Source control is an essential tool for individuals or development teams. CrossStudio integrates with several

popular source-control systems to provide this feature for files in your CrossWorks projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided

by CrossWorks aims to be provider independent.

CrossWorks for ARM Reference Manual CrossStudio User Guide

138

Source control capabilities
The source-control integration capability provides:

• Connecting to the source-control database (sometimes called a repository) and mapping files in the

CrossWorks project to those in source control.

• Showing the source-control status of files in the project.

• Adding files in the project to source control. This operation is called Add To Source Control.

• Fetching files in the project from source control. This operation is called Get Latest Version.

• Locking and unlocking files in the project for editing. The lock operation is called Check Out. The unlock

operation is called Undo Check Out. These are optional for some source-control providers.

• Comparing a file in the project with the latest version in source control. This operation is called Show

Differences.

• Merging a file in the project with the latest version in source control with reference to the original version.

This operation is called Merge and requires an external, three-way merge tool.

• Committing changes made to project files into source control. This operation is called Check In.

CrossWorks for ARM Reference Manual CrossStudio User Guide

139

Choosing your source-control provider
The source-control system you are using must be enabled.

To enable a provider:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Source Control Provider to the appropriate provider.

4. Set the provider-specific options.

5. Set Enable Source Code Control Integration to Yes.

Note: The source-control provider information is stored in the CrossWorks global environment, so you can only

use one provider for all your CrossWorks projects.

CrossWorks for ARM Reference Manual CrossStudio User Guide

140

Connecting to the source-control system
You must connect each CrossWorks project individually to the source-control system.

To connect to the source-control system:

• Choose VCS > Connect.

The login dialog that appears enables you to specify your user name and password, and to select the source-

control database. These details will be saved in the session file (the password is encrypted) so you won't need to

specify this information each time the project is loaded.

To map files in the project to those in the source-control system, specify a local root directory and the

corresponding directory in source control (called the remote root). Once you have provided this information,

the files in your project that are within the local root directory are considered to be in, or can be added to, source

control.

After the login dialog, you will be presented with a dialog where you specify the local and remote roots. The

local root can be selected using a directory browser and the remote root can be selected using the source-

control explorer. With both browsers, you can create new directories—such as when starting a new project or if

you don't have any projects in source control.

CrossWorks for ARM Reference Manual CrossStudio User Guide

141

Opening a project from source control
To fetch a project in source control to a local directory:

1. Choose Source Control > Open Solution. This will show the login dialog and then the source-control

explorer.

2. Select a CrossWorks project file (the extension is .{hzp}) using the file list of the source-control explorer.

3. Use the mappings dialog that appears to specify the local root directory, i.e., where you want the project

files to go.

4. A dialog will list the files to get from source control and, after confirmation, those files are fetched and the

project file is loaded into CrossWorks.

CrossWorks for ARM Reference Manual CrossStudio User Guide

142

Files source-control status
Determining the source-control status of a file can be an expensive operation. CrossWorks will do this when:

• A file node is selected by the Project Explorer.

• The source-control status is displayed in the Project Explorer and the file node is visible there, too.

• Before a recursive source-control operation.

• After a source-control operation.

A file will be in one of the following states:

• Controlled: The file is in source control.

• Not Controlled: The file is not in source control.

• Checked Out: The file is checked out.

• Old: The file is older than the most-recent version in source control.

• Checked Out and Old: Both of the above.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing Project > Source Control > Refresh Status.

CrossWorks for ARM Reference Manual CrossStudio User Guide

143

Source-control operations
Source-control operations can be performed on single files or recursively on multiple files in the Project

Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's

shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the

Project Explorer shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

144

Adding files to source control

To add a single file to the source-control system:

1. In the Project Explorer, right-click a file.

2. Choose Add To Source Control.

3. Optionally, add a comment to help distinguish this version of the file later.

4. Click OK.

To add multiple files to the source-control system:

1. In the Project Explorer, right-click a solution, project, or folder.

2. Choose Add To Source Control (Recursive).

3. The dialog will list the files that can be added, i.e., those whose status is Not Controlled.

4. In that dialog, you can deselect any files you don't want to add to source control.

5. You may optionally add a comment.

6. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

145

Checking files out

To check out a single file in the project:

1. In the Project Explorer, right-click the file to check out.

2. Choose Check Out.

3. Add a comment.

4. Click OK.

To check out multiple files in the project:

1. In the Project Explorer, right-click the solution, project, or folder to check out.

2. Choose Source Control > Check Out (Recursive).

The dialog box will list the files that can be checked out, i.e., ones whose status is Controlled.

1. In the dialog, deselect the files you do not wish want to check out and add a comment.

2. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

146

Checking files in

To check in a single file:

1. In the Project Explorer, right-click the file to check in.

2. Choose Source Control > Check In.

3. Enter an optional comment.

4. Click OK.

To check in multiple files:

1. In the Project Explorer, right-click a solution, project, or folder.

2. From the shortcut menu, choose Source Control > Check In (Recursive).

The dialog box will list the files that can be checked in.

1. In the dialog, deselect the items you do not wish to check in and add a comment.

2. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

147

Undoing a check out

To undo the check out of a single file:

1. In the Project Explorer, right-click a file node.

2. Choose Source Control > Undo Check Out.

To undo check out of multiple files:

1. In the Project Explorer, right-click a solution, project, or folder.

2. Choose Source Control > Undo Check Out (Recursive).

The dialog box will list the files that have a status of Checked Out and are therefore eligible for this operation.

1. In the dialog, deselect the files you do not wish to revert.

2. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

148

Getting the latest version

To get the latest version of a single file:

1. In the Project Explorer, right-click the file to get.

2. Choose Source Control > Get Latest Version.

To get the latest version of multiple files:

1. In the Project Explorer, right-click a solution, project, or folder.

2. Choose Source Control > Get Latest Version (Recursive).

The dialog will list the files that have a status of Controlled, Checked Out or Old.

1. In the dialog, you can deselect the files you don't want to get.

2. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

149

Showing differences between files
To show the differences between the file in the project and the version checked into source control, do the

following:

1. In the Project Explorer, right-click the file.

2. From the shortcut menu, choose Source Control > Show Differences.

You can use an external diff tool in preference to the built-in CrossWorks diff tool. To define the diff command

line CrossWorks generates, choose Tools > Options > Source Control > Diff Command Line. The command line

is defined as a list of strings to avoid problems with spaces in arguments. The diff command line can contain the

following macros:

• $(localfile): The filename of the file in the project.

• $(remotefile): The filename of the latest version of the file in source control.

• $(localname): A display name for $(localfile).

• $(remotename): A display name for $(remotefile).

CrossWorks for ARM Reference Manual CrossStudio User Guide

150

Merging files
To use merging, you must have a merge tool. To define the merge command line CrossWorks generates, choose

Tools > Options > Source Control > Merge Command Line. The command line is defined as a list of strings to

avoid problems with spaces in arguments. The merge command line can contain the following macros:

• $(localfile): The filename of the file in the project.

• $(remotefile): The filename of the latest version of the file in source control.

• $(commonfile): The filename of the version of the file you originally edited and the file which will be

produced by the merge tool.

• $(localname): A display name for $(localfile).

• $(remotename): A display name for $(remotefile).

• $(commonname): A display name for $(commonfile).

To merge the file in the project and the version checked into source control:

1. In the Project Explorer, right-click the file node.

2. Choose Source Control > Merge.

When the external tool has finished, if $(commonfile) has been modified, you will be asked if you want to

overwrite the file in the project with $(commonfile).

CrossWorks for ARM Reference Manual CrossStudio User Guide

151

Source-control explorer
The Source Control Explorer dialog is used when selecting the remote root directory and when Project >

Source Control > Open Solution From is selected.

To activate the Source Control Explorer:

• Choose VCS > Explorer.

The Source Control Explorer lists the directories and files in source control. You can use the directory side of the

dialog to create new directories and to refresh the list, if that is required by the source-control provider.

CrossWorks for ARM Reference Manual CrossStudio User Guide

152

Source-control properties
When a file in the project is in source control, the Properties window shows the following properties in the

Source Control Options group:

Property Description

Checked Out
If Yes, the file is checked out by you to the project
location; if No, the file is not checked out.

Different If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

File Path The pathname of the file in the source-control system.

Local Revision The revision number/name of the local file.

Old Version If Yes, the file in the project location is an old version
compared to the latest version in the source-control
system.

Provider Status The source-control provider status of the file.

Remote Revision The revision number/name of the most-recent version
in source control.

Status The source-control status of the file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

153

Visual SourceSafe provider
The Visual SourceSafe source-control provider is implemented using the SourceSafe OLE Automation interface

provided in ssapi.dll. The two versions of ssapi.dll are supported by CrossWorks, they can be identified (using the

OLE/COM Object Viewer of Visual Studio) as:

• Visual SourceSafe 6.0 Type Library (Ver 5.1)

• Visual SourceSafe 8.0 Type Library (Ver 5.2)

Other versions have not been tested. If you get an error when connecting to the database, try registering the

type library using the DOS command regsvr32 ssapi.dll.

Provider-specific options

The following environment options are supported:

Property Description

Exclusive Checkout If Yes, check outs will be exclusive.

Connecting to the source-control system

When connecting to source control, the working directory of the SourceSafe root $ is used to initially set the

file mappings. Subsequently, the provider will not change the working directory of SourceSafe or refer to it for

operations.

Source-control operations

In general, all CrossWorks source-control operations map directly to SourceSafe operations with default flag

behavior.

The Add To Source Control operation will create SourceSafe projects, if they don't exist.

Source-control operations are performed one file at a time, there are no recursive SourceSafe project operations.

CrossWorks for ARM Reference Manual CrossStudio User Guide

154

SourceOffSite provider
The SourceGear SourceOffsite source-control provider has been tested with SourceOffSite Classic 3.5.3 server.

Provider-specific options

The following environment options are supported:

Property Description

Home Directory
The directory to the servers subdirectory in your
SOS client installation.

Port The port number used by your SOS server.

Server The name or IP address of the computer running the
SOS server.

Connecting to the source-control system

When connecting to source control, the working directory of the SourceSafe root $ is used initially to set the

file mappings. Subsequently, the provider will not change the working directory of SourceSafe or refer to it for

operations.

Source-control operations

For each server connection, SourceOffSite maintains a file that has control information about the local files that

have been fetched. The SourceOffSite provider will keep this file updated as it performs single-file operations.

However, to update the project and files list, you will need to use the directory list's shortcut menu to choose

VCS > Refresh Status.

In general, all CrossWorks source-control operations map directly to SourceSafe operations with default flag

behavior.

The Add To Source Control operation will create SourceSafe projects, if they don't exist.

The operations are performed one file at a time, i.e., there are no recursive SourceSafe project operations.

CrossWorks for ARM Reference Manual CrossStudio User Guide

155

Subversion provider
The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description

Executable The path to the svn executable.

Lock Supported If Yes, check out and undo check out operations
are supported. Check out will issue the svn lock
command; check in and undo check out will issue the
svn unlock command.

Repository URL The Subversion URL to the repository.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote

root, a svn checkout -N command will be issued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The CrossWorks source-control operations have been implemented using SVN commands. There are no multiple

file operations, each operation is done on a single file and is committed as part of the operation.

Operation Command

Get Status
svn status --show-updates for local
directories that are in SVN control. svn info for
directories in the repository.

Add To Source Control svn add and svn commit for each directory not in
SVN control. svn add and svn commit for the file.

Get Latest svn update -N for each directory not in SVN
control. Optional removal of the local file for overwrite
case and svn update.

Check Out Optional removal of the local file for overwrite case
and svn update. svn lock to lock the file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

156

Undo Check Out svn unlock to unlock the file. Optional svn
update to get the latest version.

Check In svn commit for the file.

Source Control Explorer svn list with a remote root. svn mkdir to create
directories in the repository.

CrossWorks for ARM Reference Manual CrossStudio User Guide

157

CVS provider
The CVS source-control provider has been tested with CVSNT 2.5.03. The CVS source-control provider uses the

CVS rls command to browse the repository—this command is implemented in CVS 1.12 but usage of ‘.’ as the

root of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description

CVSROOT The CVSROOT value to access the repository.

Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands
are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-
out operation will issue the cvs unedit command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs login command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote

root, a cvs checkout -l -d command will be issued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The CrossWorks source-control operations have been implemented using CVS commands. There are no

multiple-file operations, each operation is done on a single file and committed as part of the operation.

Operation Command

Get Status
cvs status and optional cvs editors for local
directories in CVS control. cvs rls -e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file. cvs commit for the file and
directories.

Get Latest cvs update -l -d for each directory not in CVS
control. cvs update to merge the local file. cvs
update -C to overwrite the local file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

158

Check Out Optional cvs update -C to get the latest version.
cvs edit to lock the file.

Undo Check Out cvs unedit to unlock the file. Optional cvs
update to get the latest version.

Check In cvs commit for the file.

Source Control Explorer cvs rls -e with a remote root starting with ‘.’. cvs
import to create directories in the repository.

CrossWorks for ARM Reference Manual CrossStudio User Guide

159

Package management
Additional target-support functions can be added to, and removed from, CrossWorks with packages.

A CrossWorks package is an archive file containing a collection of target-support files. Installing a package

involves copying the files it contains to an appropriate destination directory and registering the package with

CrossWorks's package system. Keeping target-support files separate from the main CrossWorks installation

allows us to support new hardware and issue bug fixes for existing hardware-support files between CrossWorks

releases, and it allows third parties to develop their own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:

• Choose Tools > Manage Packages.

In some situations, such as using CrossWorks on a computer without Internet access or when you want to

install packages that are not on the Rowley Associates website, you cannot use the Package Manager to install

packages and it will be necessary to manually install them.

To manually install a package:

1. Choose Tools > Packages > Manually Install Packages.

2. Select the package file(s) you want to install.

3. Click Open to install the packages.

Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

CrossWorks for ARM Reference Manual CrossStudio User Guide

160

To activate the Package Manager:

• Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

• Click on the disclosure icon near the top-right corner of the dialog.

• Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

• Display All — Show all packages irrespective of their status.

• Display Not Installed — Show packages that are available but are not currently installed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

161

• Display Installed — Only show packages that are installed.

• Display Updates — Only show packages that are installed but are not up-to-date because a newer

version is available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

• Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been

downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

1. Choose Tools > Packages > Install Package (this is equivalent to choosing Tools > Manage Packages

and setting the status filter to Display Not Installed).

2. Select the package or packages you wish to install.

3. Right-click the selected packages and choose Install Selected Packages from the shortcut menu.

4. Click Next; you will be see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will install the selected packages.

6. When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to

$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

1. Choose Tools > Packages > Update Packages (this is equivalent to clicking Tools > Package Manager

and setting the status filter to Display Updates).

2. Select the package or packages you wish to update.

3. Right-click the selected packages and choose Update Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will update the package(s).

6. When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

162

To remove a package:

1. Choose Tools > Packages > Remove Packages (this is equivalent to choosing Tools > Package Manager

and setting the status filter to Display Installed).

2. Select the package or packages you wish to remove.

3. Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will remove the package(s).

6. When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1. Choose Tools > Packages > Reinstall Packages (this is equivalent to choosing Tools > Package Manager

and setting the status filter to Display Installed).

2. Select the package or packages you wish to reinstall.

3. Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will reinstall the packages.

6. When the operation is complete, click Finish to close the Package Manager.

CrossWorks for ARM Reference Manual CrossStudio User Guide

163

Exploring your application
In this section, we discuss the CrossStudio tools that help you examine how your application is built.

CrossWorks for ARM Reference Manual CrossStudio User Guide

164

Project explorer
The Project Explorer is the user interface of the CrossWorks project system. It organizes your projects and files

and provides access to the commands that operate on them. A toolbar at the top of the window offers quick

access to commonly used commands for the selected project node or the active project. Right-click to reveal a

shortcut menu with a larger set of commands that will work on the selected project node, ignoring the active

project.

The selected project node determines what operations you can perform. For example, the Compile operation

will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files

in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

• Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations

The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Single click
Select the node. If the node is already selected and
is a solution, project, or folder node, a rename editor
appears.

Double click Double-clicking a solution node or folder node will
open/close the node. Double-clicking a project node
sets it as the active project. Double-clicking a file opens
the file with the default editor for that file's type.

Toolbar commands

The following buttons are on the toolbar:

Button Description

Adds a new file to the active project using the New File
dialog.

Adds existing files to the active project.

Removes files, folders, projects, and links from the
project.

Creates a new folder in the active project.

CrossWorks for ARM Reference Manual CrossStudio User Guide

165

Menu of build operations.

Disassembles the active project.

Menu of Project Explorer options.

Displays the properties dialog for the selected item.

Shortcut menu commands

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item Description

Build and Batch Build
Build all projects under the solution in the current or
batch build configuration.

Rebuild and Batch Rebuild Rebuild all projects under the solution in the current or
batch build configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add New Project Add a new project to the solution.

Add Existing Project Create a link from an existing solution to this solution.

Paste Paste a copied project into the solution.

Remove Remove the link to another solution from the solution.

Rename Rename the solution node.

Source Control Operations Source-control operations on the project file and
recursive operations on all files in the solution.

Edit Solution As Text Create an editor containing the project file.

Save Solution As Change the filename of the project file—note that the
saved project file is not reloaded.

Properties Show the Properties dialog with the solution node
selected.

For projects:

Item Description

Build and Batch Build
Build the project in the current or batch build
configuration.

CrossWorks for ARM Reference Manual CrossStudio User Guide

166

Rebuild and Batch Rebuild Reuild the project in the current or batch build
configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
project in the current or batch build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
project in the current or batch build configuration.

Link Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set As Active Project Set the project to be the active project.

Debugging Commands For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

Memory-Map Commands For Executable project types that don't have memory-
map files in the project and have the memory-map file
project property set, there are commands to view the
memory-map file and to import it into the project.

Section-Placement Commands For Executable project types that don't have section-
placement files in the project but have the section-
placement file project property set, there are
commands to view the section-placement file and to
import it into the project.

Target Processor For Executable and Externally Built Executable project
types that have a Target Processor property group, the
selected target can be changed.

Add New File Add a new file to the project.

Add Existing File Add an existing file to the project.

New Folder Create a new folder in the project.

Cut Cut the project from the solution.

Copy Copy the project from the solution.

Paste Paste a copied folder or file into the project.

Remove Remove the project from the solution.

Rename Rename the project.

Source Control Operations Source-control, recursive operations on all files in the
project.

Find in Project Files Run Find in Files in the project directory.

Properties Show the Project Manager dialog and select the
project node.

CrossWorks for ARM Reference Manual CrossStudio User Guide

167

For folders:

Item Description

Add New File Add a new file to the folder.

Add Existing File Add an existing file to the folder.

New Folder Create a new folder in the folder.

Cut Cut the folder from the project or folder.

Copy Copy the folder from the project or folder.

Paste Paste a copied folder or file into the folder.

Remove Remove the folder from the project or folder.

Rename Rename the folder.

Source Control Operations Source-control recursive operations on all files in the
folder.

Compile Compile each file in the folder.

Properties Show the properties dialog with the folder node
selected.

For files:

Item Description

Open Edit the file with the default editor for the file's type.

Open With Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Select in File Explorer Create a operating system file system window with the
file selected.

Compile Compile the file.

Export Build Create an editor window containing the commands to
compile the file in the active build configuration.

Exclude From Build Set the Exclude From Build property to Yes for this
project node in the active build configuration.

Disassemble Disassemble the output file of the compile into an
editor window.

Preprocess Run the C preprocessor on the file and show the
output in an editor window.

Cut Cut the file from the project or folder.

Copy Copy the file from the project or folder.

Remove Remove the file from the project or folder.

Import Import the file into the project.

Source Control Operations Source-control operations
on the file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

168

Properties Show the properties dialog with the file node selected.

CrossWorks for ARM Reference Manual CrossStudio User Guide

169

Source navigator window
One of the best ways to find your way around your source code is using the Source Navigator. It parses the

active project's source code and organizes classes, functions, and variables in various ways.

The main part of the Source Navigator window provides an overview of your application's functions, classes,

and variables.

CrossStudio displays these icons to the left of each object:

Icon Description

A C or C++ structure or a C++ namespace.

A C++ class.

A C++ member function declared private or a
function declared with static linkage.

A C++ member function declared protected.

A C++ member function declared public or a
function declared with extern linkage.

A C++ member variable declared private or a
variable declared with static linkage.

A C++ member variable declared protected.

A C++ member variable declared public or a variable
declared with extern linkage.

To activate the Source Navigator:

• Choose Tools > Source Navigator or press Ctrl+Alt+N.

Re-parsing after editing

The Source Navigator does not update automatically, only when you ask it to.

To parse source files manually, click the Refresh button on the Source Navigator toolbar.

CrossStudio re-parses any changed files and updates the Source Navigator with the changes. Progress

information and any errors are sent to the Source Navigator Log in the Output window when parsing.

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or

variables. Each object is placed into a folder according to its type.

CrossWorks for ARM Reference Manual CrossStudio User Guide

170

To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.

2. Choose Group By Type

CrossWorks for ARM Reference Manual CrossStudio User Guide

171

Symbol browser
The Symbol Browser shows useful information about your linked application and complements the information

displayed in the Project Explorer window. You can select different ways to filter and group the information in

the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser

to drill down to see the size and location of each part of your program. The way symbols are sorted and grouped

is saved between runs; so, when you rebuild an application, CrossStudio automatically updates the Symbol

Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

Groups symbols by source filename.

Groups symbols by symbol type (equates, functions,
labels, sections, and variables).

Groups symbols by the section where they are defined.

Moves the cursor to the statement that defined the
symbol.

Determines what columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an

application. CrossStudio displays the following icons to the left of each symbol:

Icon Description

Private Equate A private symbol not defined relative
to a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.

Public Function A public function symbol.

Private Label A private data symbol, defined relative
to a section.

Public Label A public data symbol, defined relative to
a section.

Section A program section.

CrossWorks for ARM Reference Manual CrossStudio User Guide

172

Choosing what to show

To activate the Symbol Browser window:

• Choose Project > Symbol Browser or press Ctrl+Alt+Y.

You can choose to display the following fields for each symbol:

• Value: The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.

For absolute or symbolic equates, this will be the value of the symbol.

• Range: The range of addresses the code or data item covers. For code symbols that correspond to high-

level functions, the range is the range of addresses used for that function's code. For data addresses that

correspond to high-level static or extern variables, the range is the range of addresses used to store that

data item. These ranges are only available if the corresponding source file was compiled with debugging

information turned on: if no debugging information is available, the range will simply be the first address

of the function or data item.

• Size: The size, in bytes, of the code or data item. The Size column is derived from the Range of the

symbol: if the symbol corresponds to a high-level code or data item and has a range, Size is calculated

as the difference between the start and end addresses of the range. If a symbol has no range, the size

column is blank.

• Section: The section in which the symbol is defined. If the symbol is not defined within a section, the

Section column is blank.

• Type: The high-level type for the data or code item. If the source file that defines the symbol is compiled

with debugging information turned off, type information is not available and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use

the Field Chooser button on the Symbol Browser toolbar.

To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.

2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.

Symbols that are absolute or are not defined within a section are grouped beneath ‘(No Section)’.

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. From the pop-up menu, choose Group By Section.

CrossWorks for ARM Reference Manual CrossStudio User Guide

173

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.

When you group symbols by type, each symbol is classified as one of the following:

• An Equate has an absolute value and is not defined as relative to, or inside, a section.

• A Function is defined by a high-level code sequence.

• A Variable is defined by a high-level data declaration.

• A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is

defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging

information, are grouped beneath ‘(Unknown)’.

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those

symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides

an editable combobox} you can use to specify the symbols you'd like displayed. You can type ‘*’ to match a

sequence of zero or more characters and ‘?’ to match exactly one character.

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a

symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all

CrossWorks for ARM Reference Manual CrossStudio User Guide

174

high-level language symbols with an underscore character, so the variable extern int u or the function

void fn(void) have low-level symbol names _u and _fn. The Symbol Browser uses the low-level symbol

name when displaying and filtering, so you must type the leading underscore to match high-level symbols.

To display symbols that start with a common prefix:

• Type the desired prefix text into the combo box, optionally followed by a "*".

For instance, to display all symbols that start with "i2c_", type "i2c_" and all matching symbols are displayed—

you don't need to add a trailing "*" in this case, because it is implied.

To display symbols that end with a common suffix:

• Type ‘*’ into the combo box, followed by the required suffix.

For instance, to display all symbols that end in ‘_data’, type ‘*_data’ and all matching symbols are displayed—in

this case, the leading ‘*’ is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging

information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.

2. On the Symbol Browser toolbar, click Go To Definition.

—or—

1. Right-click the symbol in the list of symbols.

2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.

2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

175

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

1. Choose Project > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.

3. Ensure the Size field is checked in the Field Chooser button's menu.

4. Ensure that the filter on the Symbol Browser toolbar is empty.

5. Click on the Size field in the header to sort by data size.

6. The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

1. Choose Project > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.

3. Ensure the Range and Size fields are checked in the Field Chooser button's menu.

4. Read the section sizes and ranges of each section in the application.

CrossWorks for ARM Reference Manual CrossStudio User Guide

176

Memory usage window
The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or

data.

To activate the Memory Usage window:

• Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.

If the executable file has not been linked by CrossStudio, memory-usage information may not be available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.

To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and

choose Show Memory Sections from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

177

Each bar represents an entire memory segment. Green represents the area of the segment that contains the

program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed

in a segment is larger than the segment size. When this happens, the segment and section bars represents the

total memory used, green areas represent the code or data within the segment, and red areas represent code or

data placed outside the segment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

178

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location

of specific objects within memory, use the Symbol browser.

CrossWorks for ARM Reference Manual CrossStudio User Guide

179

Editing your code
CrossStudio has a built-in editor that allows you to edit text, but some features make it particularly well suited to

editing code.

You can open multiple code editors to view or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.

You can open a code editor in several ways, some of which are:

• By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the

shortcut menu.

• Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

• Code pane: The area where you edit code. You can set options that affect the code pane's text indents,

tabs, drag-and-drop behavior, and so forth.

• Margin gutter: A gray area on the left side of the code editor where margin indicators such as breakpoints,

bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of

code.

• Horizontal and vertical scroll bars: You can scroll the code pane horizontally and vertically to view code

that extends beyond the edges of the pane.

CrossWorks for ARM Reference Manual CrossStudio User Guide

180

Basic editing
This section is a whirlwind tour of the basic editing features CrossStudio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word

processors. For code that is part of a project, the project's programming language support provides syntax

highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

CrossWorks for ARM Reference Manual CrossStudio User Guide

181

Moving the insertion point
The most common way to navigate through text is to use use the keyboard's cursor keys, the scroll bars, or the

mouse's scroll wheel.

The keystrokes most commonly used to navigate through a document are:

Keystroke Description

Up Moves the insertion point up one line

Down Moves the insertion point down one line

Left Moves the insertion point left one character

Right Moves the insertion point right one character

Home Moves the insertion point to the first character on the
line; pressing Home a second time moves the insertion
point to the leftmost column

End Moves the insertion point to the end of the line

PageUp Moves the insertion point up one page

PageDown Moves the insertion point down one page

Ctrl+Left Moves the insertion point left one word

Ctrl+Right Moves the insertion point right one word

Ctrl+Home Moves the insertion point to the start of the document

Ctrl+End Moves the insertion point to the end of the document

Alt+Up Moves the insertion point up five lines

Alt+Down Moves the insertion point down five lines

Ctrl+Up Scrolls the document up one line in the window
without moving the insertion point

Ctrl+Down Scrolls the document down one line in the window
without moving the insertion point

CrossWorks for ARM Reference Manual CrossStudio User Guide

182

Selecting text
You can select text by using the keyboard or the mouse.

To select text with the keyboard:

• Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.

2. Drag the mouse to mark the selection.

3. Release the left mouse button to end selection.

CrossWorks for ARM Reference Manual CrossStudio User Guide

183

Adding text
The editor has two text-input modes:

• Insertion mode: As you type on the keyboard, text is entered at the insertion point and any text to the

right of the cursor is shifted along. A visual indication of insertion mode is that the cursor is a flashing line.

• Overstrike mode: As you type on the keyboard, text at the insertion point is replaced with your typing. A

visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert

mode. To configure the cursor appearance, choose Tools > Options.

To toggle between insertion and overstrike mode:

• Click Insert.

If overstrike mode is enabled, the OVR status indicator will be enabled and the cursor will change to the

overstrike cursor.

To add or insert text:

1. Move the insertion point to the place text is to be inserted.

2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to put the editor into overstrike mode.

CrossWorks for ARM Reference Manual CrossStudio User Guide

184

Deleting text
The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Deletes the character before the insertion point

Delete Deletes the character after the insertion point

Ctrl+Backspace Deletes one word before the insertion point

Ctrl+Delete Deletes one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.

2. Press Delete as many times as needed.

—or—

1. Place your cursor at the end of the letter or word you want to delete.

2. Press Backspace as many times as needed.

To delete text that spans more than a few characters:

1. Select the text you want to delete.

2. Press Delete or Backspace to delete it.

CrossWorks for ARM Reference Manual CrossStudio User Guide

185

Using the clipboard

To copy selected text to the clipboard:

• Choose Edit > Copy or press Ctrl+C.

The Windows standard key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:

• Choose Edit > Cut or press Ctrl+X.

The Windows standard key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:

• Choose Edit > Paste or press Ctrl+V.

The Windows standard key sequence Shift+Ins also inserts the clipboard content at the insertion point.

CrossWorks for ARM Reference Manual CrossStudio User Guide

186

Undo and redo
The editor has an Undo facility to undo previous editing actions. The Redo feature can be used to re-apply

previously undone actions.

To undo one editing action:

• Choose Edit > Undo or press Ctrl+Z.

The Windows standard key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Undo button.

2. Select the editing operations to undo.

To undo all edits:

• Choose Edit > Advanced > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:

• Choose Edit > Redo or press Ctrl+Y.

The Windows standard key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

• Choose Edit > Advanced > Redo All or press Ctrl+K, Ctrl+Y.

CrossWorks for ARM Reference Manual CrossStudio User Guide

187

Drag and drop
You can select text, then drag it to another location. You can drop the text at a different location in the same

window or in another one.

To drag and drop text:

1. Select the text you want to move.

2. Press and hold the mouse button to drag the selected text to where you want to place it.

3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging

the text: the cursor changes to indicate a copy operation. Press the Esc key while dragging text to cancel the

drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.

2. Click Text Editor.

3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

CrossWorks for ARM Reference Manual CrossStudio User Guide

188

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.

To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and

Shift+Tab or Shift+F3 to move to the previous match.

CrossWorks for ARM Reference Manual CrossStudio User Guide

189

Advanced editing
You can do anything using its basic code-editing features, but the CrossStudio text editor has a host of labor-

saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

CrossWorks for ARM Reference Manual CrossStudio User Guide

190

Indenting source code
The editor can increase or decrease the indentation level of a selection.

To increase indentation of selected text:

• Choose Selection > Increase Line Indent or press Tab.

To decrease indentation of selected text:

• Choose Selection > Decrease Line Indent or press Shift+Tab.

CrossWorks for ARM Reference Manual CrossStudio User Guide

191

Commenting out sections of code

To comment selected text:

• Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:

• Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

CrossWorks for ARM Reference Manual CrossStudio User Guide

192

Changing letter case
The editor can change the case of the current word or the selection. The editor will change the case of the

selection, if there is a selection, otherwise it will change the case of word at the insertion point.

To change text to uppercase:

• Choose Selection > Make Uppercase or press Ctrl+Shift+U.

This changes, for instance, ‘Hello’ to ‘HELLO’.

To change text to lowercase:

• Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, ‘Hello’ to ‘hello.’

To switch between uppercase and lowercase:

• Choose Selection > Switch Case.

This changes, for instance, ‘Hello’ to ‘hELLO.’

With large software teams or imported source code, sometimes identifiers don't conform to your local coding

style. To assist in conversion between two common coding styles for identifiers, CrossStudio's editor offers the

following two shortcuts:

To change from split case to camel case:

• Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance ‘this_is_wrong’ to ‘thisIsWrong.’

To change from camel case to split case:

• Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance ‘thisIsWrong’ to ‘this_is_wrong.’

CrossWorks for ARM Reference Manual CrossStudio User Guide

193

Indenting
The editor uses the Tab key to increase or decrease the indentation level. The indentation size can be changed

in the Language Properties pane of the editor's Properties window, as can all the indent-related features listed

below.

To change the indentation size:

1. Set the Indent Size property for the required language.

The editor can optionally use tab characters to fill whitespace when indenting. The use of tabs for filling

whitespace can be selected in the editor's Language settings.

To select tab or space fill when indenting:

1. Set the Use Tabs property for the required language. Note: changing this setting does not add or remove

existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation

assistance:

• None: The indentation of the source code is left to the user.

• Indent: This is the default. The editor maintains the current indentation level. When you press Return or

Enter, the editor moves the insertion point down one line and indented to the same level as the now-

previous line.

• Smart: The editor analyzes the source code to compute the appropriate indentation level for each line.

You can change how many lines before the cursor position will be analyzed for context. The smart-indent

mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:

To change the indentation mode:

1. Set the Indent Mode property for the required language.

To change whether opening braces are indented in smart-indent mode:

1. Set the Indent Opening Brace property for the required language.

To change whether closing braces are indented in smart-indent mode:

1. Set the Indent Closing Brace property for the required language.

To change the number of previous lines used for context in smart-indent mode:

1. Set the Indent Context Lines property for the required language.

CrossWorks for ARM Reference Manual CrossStudio User Guide

194

Bookmarks
To edit a document elsewhere and then return to your current location, add a bookmark.

Dropping bookmarks

To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A temporary bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

You will also find the Toggle Bookmark button in the Text Edit toolbar.

Moving through bookmarks you've set

You can move through the bookmarks you've set in the current document or in all documents:

Keystroke Description

F2 Moves to the next bookmark in the current document

BookmarkOrevInDocument Moves to the previous bookmark in the current
document

Ctrl+Q, F2 Moves to the first bookmark in the current document

Ctrl+Q, Shift+F2 Moves to the last bookmark in the current document

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.

2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point is moved to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point is moved to the last bookmark in the document.

Removing bookmarks

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.

CrossWorks for ARM Reference Manual CrossStudio User Guide

195

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark has been removed.

To remove all bookmarks in a document:

• Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

CrossWorks for ARM Reference Manual CrossStudio User Guide

196

Find and Replace window
The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the find-and-replace window:

• Choose Search > Find And Replace or press Ctrl+Alt+F.

To find text in a single file:

• Select Current Document in the context combo box.

• Enter the string to be found in the text edit input.

• If the search will be case sensitive, set the Match case option.

• If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or

end of the line, on both sides of the string being searched for—set the Whole word option.

• If the search string is a regular expression, set the Use regexp option.

• Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

• Click the Replace button on the toolbar.

• Enter the string to search for into the Find what input.

• Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

• If the search will be case sensitive, set the Match case option.

• If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or

end of the line, on both sides of the string being searched for—set the Match whole word option.

• If the search string is a regular expression, set the Use regular expression option.

• Click the Find Next button to find next occurrence of the string, then click the Replace button to replace

the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

• Click the Find In Files button on the toolbar.

• Enter the string to search for into the Find what input.

• Select the appropriate option in the Look in input to select whether to carry out the search in all open

documents, all documents in the current project, all documents in the current solution, or all files in a

specified folder.

• If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

CrossWorks for ARM Reference Manual CrossStudio User Guide

197

• If the search will be case sensitive, set the Match case option.

• If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or

end of the line, on both sides of the string being searched for—set the Match whole word option.

• If the search string is a regular expression, set the Use regular expression option.

• Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

• Click the Replace In Files button on the toolbar.

• Enter the string to search for into the Find what input.

• Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

• Select the appropriate option in the Look in input to select whether you want to carry out the search

and replace in all open documents, all documents contained in the current project, all documents in the

current solution, or all files in a specified folder.

• If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

• If the search will be case sensitive, set the Match case option.

• If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or

end of the line, on both sides of the string being searched for—set the Match whole word option.

• If the search string is a regular expression, set the Use regular expression option.

• Click the Replace All button to replace all occurrences of the string in the specified files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

198

Clipboard-ring window
The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The

clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using

the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're

working with many documents and need to cut and paste between them.

To activate the clipboard ring:

• Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.

—or—

• Right-click the toolbar area to display the View menu.

• Choose Clipboard Ring from the shortcut menu.

To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current

item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one

you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces

the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The

item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item

again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste an item from the clipboard ring into the current document:

1. Move the cursor to where you want to paste the item into the document.

2. Display the pop-up menu of the item to paste by clicking the arrow on the right of the item.

3. Choose Paste.

—or—

1. Make the item you want to paste the current item by clicking it.

2. Move the cursor to where you want to paste the item into the document.

3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the cursor to where you want to paste

the items and do one of the following:

CrossWorks for ARM Reference Manual CrossStudio User Guide

199

• Choose Edit > Clipboard Ring > Paste All.

—or—

• On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:

1. Display the pop-up menu of the item to delete by clicking the arrow at the right of the item.

2. Choose Delete.

To remove all items from the clipboard ring:

• Choose Edit > Clipboard > Clear Clipboard.

—or—

• On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows button to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or

deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

CrossWorks for ARM Reference Manual CrossStudio User Guide

200

Regular expressions
The editor can search and replace text using regular expressions. A regular expression is a string that uses

special characters to describe and reference patterns of text. The regular expression system used by the editor

is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular

Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the CrossStudio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters
c or h. A range can be specified using the ‘-’ character;
e.g., ‘[0-27-9]’ matches if the character is 0, 1, 2, 7 8, or
9. A range can be negated using the ‘^’ character; e.g.,
‘[^a-z]’ matches if the character is anything other than
a lowercase alphabetic character.

\c Match the literal character c. For example, you would
use ‘*’ to match the character ‘*’.

\a Match ASCII bell character (ASCII code 7).

\f Match ASCII form feed character (ASCII code 12).

\n Match ASCII line feed character (ASCII code 10).

\r Match ASCII carriage return character (ASCII code 13).

\t Match ASCII horizontal tab character (ASCII code 9).

\v Match ASCII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

. Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

CrossWorks for ARM Reference Manual CrossStudio User Guide

201

? Match zero or one occurrences of the preceding
expression.

{n} Match n occurrences of the preceding expression.

{n,} Match at least n occurrences of the preceding
expression.

{,m} Match at most m occurrences of the preceding
expression.

{n,m} Match at least n and at most m occurrences of the
preceding expression.

^ Beginning of line.

$ End of line.

\b Word boundary.

\B Non-word boundary.

(e) Capture expression e.

\n Back-reference to nth captured text.

Examples

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what" "Replace With" Description

u\w.d

Search for any-length string
containing one or more word
characters beginning with the
character ‘u’ and ending in the
character ‘d’.

^.*;$ Search for any lines ending in a
semicolon.

(typedef.+\s+)(\S+); \1TEST_\2; Find C type definition and insert the
string ‘TEST’ onto the beginning of
the type name.

CrossWorks for ARM Reference Manual CrossStudio User Guide

202

Debugging windows
This section describes the windows you can use to debug your application.

CrossWorks for ARM Reference Manual CrossStudio User Guide

203

Locals window
The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode
character.

Sets the range displayed in the active Memory window
to where the selected item is stored.

Sorts the variables alphabetically by name.

Sorts the variables numerically by address or register
number (default).

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents

of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call

Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the

active stack frame. Items that have changed since they were previously displayed are highlighted in red.

To activate the Locals window:

• Choose Debug > Locals or press Ctrl+Alt+L.

When you select a variable in the main part of the display, the display-format button highlighted on the Locals

window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

• Right-click the item to change.

• From the shortcut menu, choose the desired display format.

CrossWorks for ARM Reference Manual CrossStudio User Guide

204

—or—

• Click the item to change.

• On the Locals window toolbar, select the desired display format.

To modify the value of a local variable:

• Click the value of the local variable to modify.

• Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

—or—

• Right-click the value of the local variable to modify.

• From the shortcut menu, select one of the commands to modify the local variable's value.

CrossWorks for ARM Reference Manual CrossStudio User Guide

205

Globals window
The Globals window displays a list of all variables that are global to the program. The operations available on the

entries in this window are the same as the Watch window, except you cannot add or delete variables from the

Globals window.

Globals window user interface

The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode
character.

Sets the range displayed in the active memory window
to where the selected item is stored.

Sorts the variables alphabetically by name.

Sorts the variables numerically by address or register
number (default).

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the

program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and

new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

• Choose Debug > Other Windows > Globals or press Ctrl+Alt+G.

CrossWorks for ARM Reference Manual CrossStudio User Guide

206

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals

window toolbar changes to show the item's display format.

To change the display format of a global variable:

• Right-click the item to change.

• From the shortcut menu, choose the desired display format.

—or—

• Click the item to change.

• On the Globals window toolbar, select the desired display format.

To modify the value of a global variable:

• Click the value of the global variable to modify.

• Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

CrossWorks for ARM Reference Manual CrossStudio User Guide

207

Watch window
The Watch window provides a means to evaluate expressions and to display the results of those expressions.

Typically, expressions are just the name of a variable to be displayed, but they can be considerably more

complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the

expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode
character.

Sets the range displayed in the active memory window
to the address where the selected item is stored.

Sorts the watch items alphabetically by name.

Sorts the watch items numerically by address or
register number (default).

Remove the selected watch item.

Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description

View pointer or array as a null-terminated string.

View pointer or array as an array.

View pointer value.

Set watch value to zero.

Set watch value to one.

CrossWorks for ARM Reference Manual CrossStudio User Guide

208

Increment watched variable by one.

Decrement watched variable by one.

Negated watched variable.

Invert watched variable.

View the properties of the watch value.

You can view details of the watch item using the Properties window.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address
The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program

stops on a breakpoint, or single steps, and whenever you traverse the call stack. Items that have changed since

they were previously displayed are highlighted in red.

CrossWorks for ARM Reference Manual CrossStudio User Guide

209

To activate the Watch window:

• Choose Debug > Other Windows > Watch > Watch 1 or press Ctrl+T, W, 1.

You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch

window toolbar changes to show the item's display format.

To change the display format of an expression:

• Right-click the item to change.

• From the shortcut menu, choose the desired display format.

—or—

• Click the item to change.

• On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug

session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the

shortcut menu. A pointer can be interpreted as:

• a null-terminated ASCII string

• an array

• an integer

• dereferenced

To modify the value of an expression:

• Click the value of the local variable to modify.

• Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

—or—

• Right-click the value of the local variable to modify.

• From the shortcut menu, choose one of the commands to modify the variable's value.

CrossWorks for ARM Reference Manual CrossStudio User Guide

210

Register window
The Register windows show the values of both CPU registers and the processor's special function or peripheral

registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have

hundreds of special function registers or peripheral registers, so CrossStudio provides four register windows. You

can configure each register window to display one or more register groups for the processor being debugged.

A Register window has a toolbar and a main data display.

Button Description

Displays the CPU, special function register, and
peripheral register groups.

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode
character.

Force reads a register, ignoring the access property of
the register.

Updates the selected register group.

Sets the active memory window to the address and
size of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the

program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the

registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:

• Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

CrossWorks for ARM Reference Manual CrossStudio User Guide

211

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The

selected context can be:

• The register state the CPU stopped in.

• The register state when a function call occurred using the Call Stack window.

• The register state of the currently selected thread using the the Threads window.

• The register state you supplied with the Debug > Locate operation.

To display a group of CPU registers:

• On the Registers window toolbar, click the Groups button.

• From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or

peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built

with. If there is no memory-map file associated with a project, the Registers window will show only the CPU

registers.

To display a special function or peripheral register:

• On the Registers toolbar, click the Groups button.

• From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the

Registers window toolbar changes to show the item's display format.

To change the display format of a register:

• Right-click the item to change.

• From the shortcut menu, choose the desired display format.

—or—

• Click the item to change.

• On the Registers window toolbar, select the desired display format.

CrossWorks for ARM Reference Manual CrossStudio User Guide

212

Modifying register values

To modify the value of a register:

• Click the value of the register to modify.

• Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0b, and

octal numbers with 0.

—or—

• Right-click the value of the register to modify.

• From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

CrossWorks for ARM Reference Manual CrossStudio User Guide

213

Memory window
The Memory windows show the contents of the connected target's memory areas.

To activate the first Memory window:

• Choose Debug > Other Windows > Memory > Memory 1 or press Ctrl+T, M, 1.

There are four memory window in total and you can display other memory windows similarly.

The memory window does not show the complete address space of the target; instead you must enter both

the start address and the number of bytes to display. You can specify the start address and size using debugger

expressions, which enables you to position the memory display at the start address of a variable or to use a value

in a register. You can also specify whether you want the expressions to be evaluated each time the Memory

window is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update

each time your program stops on a breakpoint after a or single step, and whenever you traverse the call stack. If

any values that were previously displayed have changed, they are highlighted in red.

Memory window user interface

The Memory window has a toolbar and a main data display.

Button Description

Address Start address to display (a debugger expression).

Size Number of bytes to display (a debugger expression).

Select binary display.

Select octal display.

Select unsigned decimal display.

Select signed decimal display.

Select hexadecimal display.

Select byte display, which includes an ASCII display.

Select 2-byte display.

Select 4-byte display.

Evaluate the address and size expressions, and update
the Memory window.

Move the data display up one line.

CrossWorks for ARM Reference Manual CrossStudio User Guide

214

Move the data display down one line.

Move the data display up by Size bytes.

Move the data display down by Size bytes.

Left-click operations

The following operations are available by left-clicking the mouse:

Action Description

Single Click

First click selects the line, second click selects the
displayed memory value. Once the memory value is
selected, it can be modified by entering a new value.
Note that the input radix is the same as the display
radix; i.e., 0x is not required to specify a hex number.

Shortcut menu commands

The shortcut menu contains the following commands:

Action Description

Auto Evaluate
Re-evaluate Address and Size each time the Memory
window is updated.

Set Number of Columns Set the number of columns to display, the default
being 8.

Access Memory By Display Width Access memory in terms of the display width.

Export To Binary Editor Create a binary editor with the current Memory
window contents.

Save As Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Load From Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Using the memory window

Display formats

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

CrossWorks for ARM Reference Manual CrossStudio User Guide

215

You can change a value in the Memory window by clicking the value to change and editing it as a text field.

Note that, when you modify memory values, you need to prefix hexadecimal numbers with 0x, binary numbers

with 0b, and octal numbers with 0.

Saving memory contents

You can save the displayed contents of the Memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas

Instruments TXT file.

To save the current state of memory to a file:

• Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

• Right-click the main memory display.

• From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

• Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

• Right-click the main memory display.

• Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

CrossWorks for ARM Reference Manual CrossStudio User Guide

216

Breakpoints window
The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

• Enable, disable, and delete existing breakpoints.

• Add new breakpoints.

• Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular

project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level

breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout

The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Creates a new breakpoint using the New Breakpoint
dialog.

Toggles the selected breakpoint between enabled and
disabled states.

Removes the selected breakpoint.

Moves the cursor to the statement at which the
selected breakpoint is set.

Deletes all breakpoints.

Disables all breakpoints.

Enables all breakpoints.

Creates a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints have been set and the state they are in. You

can organize breakpoints into folders, called breakpoint groups.

CrossStudio displays these icons to the left of each breakpoint:

Icon Description

CrossWorks for ARM Reference Manual CrossStudio User Guide

217

Enabled breakpoint An enabled breakpoint will stop
your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

• Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

• In the Breakpoints window, click the breakpoint to delete.

• From the Breakpoints window toolbar, click the Delete Breakpoint} button.

To edit the properties of a breakpoint:

• In the Breakpoints window, right-click the breakpoint to edit.

• Choose Edit Breakpoint from the shortcut menu.

• Edit the breakpoint in the New Breakpoint dialog.

• To toggle the enabled state of a breakpoint:

• In the Breakpoints window, right-click the breakpoint to enable or disable.

• Choose Enable/Disable Breakpoint from the shortcut menu.

—or—

• In the Breakpoints window, click the breakpoint to enable or disable.

• Press Ctrl+F9.

CrossWorks for ARM Reference Manual CrossStudio User Guide

218

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints

that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

• From the Breakpoints window toolbar, click the New Breakpoint Group button.

—or—

• From the Debug menu, choose Breakpoints then New Breakpoint Group.

—or—

• Right-click anywhere in the Breakpoints window.

• Choose New Breakpoint Group from the shortcut menu.

In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

• In the Breakpoints window, right-click the breakpoint group to make active.

• Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

• In the Breakpoints window, right-click the breakpoint group to delete.

• Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

• In the Breakpoints window, right-click the breakpoint group to enable.

• Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

• In the Breakpoints window, right-click the breakpoint group to disable.

• Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

CrossWorks for ARM Reference Manual CrossStudio User Guide

219

To delete all breakpoints:

• Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.

—or—

• On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:

• Choose Breakpoints > Enable All Breakpoints.

—or—

• On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:

• Choose Breakpoints > Disable All Breakpoints.

—or—

• On the Breakpoints window toolbar, click the Disable All Breakpoints button.

CrossWorks for ARM Reference Manual CrossStudio User Guide

220

Call Stack window
The Call Stack window displays the list of function calls (stack frames) that were active when program execution

halted. When execution halts, CrossStudio populates the call-stack window from the active (currently executing)

task. For simple, single-threaded applications not using the CrossWorks tasking library, there is only a single

task; but for multi-tasking programs that use the CrossWorks Tasking Library, there may be any number of tasks.

CrossStudio updates the Call Stack window when you change the active task in the Threads window.

The Call Stack window has a toolbar and a main call-stack display.

Button Description

Moves the cursor to where the call was made to the
selected frame.

Sets the debugger context to the selected stack frame.

Moves the debugger context down one stack to the
called function.

Moves the debugger context up one stack to the
calling function.

Selects the fields to display for each entry in the call
stack.

Sets the debugger context to the most recent stack
frame and moves the cursor to the currently executing
statement.

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point

when program execution halted. The most recent stack frame is displayed at the bottom of the list and the

oldest is displayed at the top of the list.

CrossStudio displays these icons to the left of each function name:

Icon Description

Indicates the stack frame of the current task.

Indicates the stack frame selected for the debugger
context.

Indicates that a breakpoint is active and when the
function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

CrossWorks for ARM Reference Manual CrossStudio User Guide

221

Showing the call-stack window

To activate the Call Stack window:

• Choose Debug > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and

values. You can configure the Call Stack window to show varying amounts of information for each stack frame.

By default, CrossStudio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.

2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:

• In the Call Stack window, double-click the stack frame to move to.

—or—

• In the Call Stack window, select the stack frame to move to.

• On the Call Stack window's toolbar, click the Switch To Frame button.

—or—

• In the Call Stack window, right-click the stack frame to move to.

• Choose Switch To Frame from the shortcut menu.

The debugger moves the cursor to the statement where the call was made. If there is no debug information for

the statement at the call location, CrossStudio opens a disassembly window at the instruction.

To move the debugger context up one stack frame:

• On the Call Stack window's toolbar, click the Up One Stack Frame button.

—or—

CrossWorks for ARM Reference Manual CrossStudio User Guide

222

• On the Debug Location toolbar, click the Up One Stack Frame button.

—or—

• Press Alt+-.

The debugger moves the cursor to the statement where the call was made. If there is no debug information for

the statement at the call location, CrossStudio opens a disassembly window at the instruction.

To move the debugger context down one stack frame:

• On the Call Stack window's toolbar, click the Down One Stack Frame button.

—or—

• On the Debug Location toolbar, click the Down One Stack Frame button.

—or—

• Press Alt++.

The debugger moves the cursor to the statement where the call was made. If there is no debug information for

the statement at the call location, CrossStudio opens a disassembly window at the instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

• In the Call Stack window, click the stack frame on the function to stop at on return.

• On the Build toolbar, click the Toggle Breakpoint button.

—or—

• In the Call Stack window, click the stack frame on the function to stop at on return.

• Press F9.

—or—

• In the Call Stack window, right-click the function to stop at on return.

• Choose Toggle Breakpoint from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

223

Threads window
The Threads window displays the set of executing contexts on the target processor structured as a set of

queues.

To activate the Threads window:

• Choose Debug > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type

property is "Threads Script" (or is called threads.js) and is in the project that is being debugged.

When debugging starts, the threads script is loaded and the function init() is called to determine which

columns are displayed in the Threads window.

When the application stops on a breakpoint, the function update() is called to create entries in the Threads

window corresponding to the columns that have been created together with the saved execution context

(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

context—to put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script

The threads script controls the Threads window with the Threads object.

The methods Threads.setColumns and Threads.setSortByNumber can be called from the

function init().

function init()
{
 Threads.setColumns("Name", "Priority", "State", "Time");
 Threads.setSortByNumber("Time");
}

The above example creates the named columns Name>, Priority, State, and Time in the Threads window, with

the Time column sorted numerically rather than alphabetically.

If you don't supply the function init() in the threads script, the Threads window will create the default

columns Name, Priority, and State.

The methods Threads.clear(), Threads.newqueue(), and Threads.add() can be called from the

function update().

The Threads.clear() method clears the Threads window.

The Threads.newqueue() function takes a string argument and creates a new, top-level entry in the

Threads window. Subsequent entries added to this window will go under this entry. If you don't call this, new

entries will all be at the top level of the Threads window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

224

The Threads.add() function takes a variable number of string arguments, which should correspond to the

number of columns displayed by the Threads window. The last argument to the Threads.add() function

should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can

be supplied a call to the threads script function getregs(handle), which will return an array when the

thread is selected in the Threads window. The array containing the registers should have elements in the same

order in which they are displayed in the CPU Registers display—typically this will be in register-number order,

e.g., r0, r1, and so on.

function update()
{
 Threads.clear();
 Threads.newqueue("My Tasks");
 Threads.add("Task1", "0", "Executing", "1000",
 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
 Threads.add("Task2", "1", "Waiting", "2000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
}

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the

methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use the

JavaScript method Debug.evaluate("expression"), which will evaluate the string argument as a debug

expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.

So, if you have structs in the application as follows…

struct task {
 char *name;
 unsigned char priority;
 char *state;
 unsigned time;
 struct task *next;
 unsigned registers[17];
 unsigned thread_local_storage[4];
};

struct task task2 =
{
 "Task2",
 1,
 "Waiting",
 2000,
 0,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },
 { 0,1,2,3 }
};

struct task task1 =
{
 "Task1",
 0,
 "Executing",
 1000,
 &task2,

CrossWorks for ARM Reference Manual CrossStudio User Guide

225

 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },
 { 0,1,2,3 }
};

…you can update() the Threads window using the following:

task1 = Debug.evaluate("task1");
Threads.add(task1.name, task1.priority, task1.state, task1.time, task1.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug.evaluate("&task1");
while (next)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next=xt.next;
 }

Note that, if the threads script goes into an endless loop, the debugger—and consequently CrossStudio—will

become unresponsive and you will need to kill CrossStudio using a task manager. Therefore, the above loop is

better coded as follows:

var next = Debug.evaluate("&task1");
var count=0;
while (next && count > 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next=xt.next;
 count++;
 }

You can speed up the Threads window update by not supplying the registers of the thread to the

Threads.add() function. To do this, you should supply a handle/pointer to the thread as the last argument to

the Threads.add() function. For example:

var next = Debug.evaluate("&task1");
var count=0;
while (next && count > 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, next);
 next=xt.next;
 count++;
 }

When the thread is selected, the Threads window will call getregs(x) in the threads script. That function

should return the array of registers, for example:

function getregs(x)
{
 return Debug.evaluate("((struct task*)"+x+")->registers");
}

CrossWorks for ARM Reference Manual CrossStudio User Guide

226

If you use thread local storage, implementing the gettls(x) function enables you to return an expression for

the debugger to evaluate when the base address of the thread local storage is accessed, for example:

function gettls(x)
{
 return "((struct task*)"+x+")->thread_local_storage";
}

CrossWorks for ARM Reference Manual CrossStudio User Guide

227

Execution Profile window
The Execution Profile window shows a list of source locations and the number of times those source locations

have been executed. This window is only available for targets that support the collection of jump trace

information.

To activate the Execution Profile window:

• Choose Debug > Other Windows > Execution Profile.

The count value displayed is the number of times the first instruction of the source code location has been

executed. The source locations displayed are target dependent: they could represent each statement of the

program or each jump target of the program. If however the debugger is in intermixed or disassembly mode

then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have

this window displayed then single stepping may be slower than usual.

CrossWorks for ARM Reference Manual CrossStudio User Guide

228

Trace window
The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:

• Choose Debug > Other Windows > Execution Trace.

The type and number of the trace entries depends upon the target that is connected when gathering trace

information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can

click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.

Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

229

Debug file search editor
When a program is built with debugging enabled, the debugging information contains the paths and filenames

of all the source files for the program in order to allow the debugger to find them. If a program or library linked

into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help CrossStudio find the source files is to add the directory containing

the source files to one of its source-file search paths. Alternatively, if CrossStudio cannot find a source file, it will

prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located

where they were at compile time. When a source file cannot be found, the search-path directories will be

checked, in turn, to see if they contain the source file. CrossStudio maintains two debug source-file search paths:

• Project-session search path: This path is for the current project session and does not apply to all projects.

• The global search path: This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

• Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the

original pathnames to the new locations. When a file cannot be found at its original location or in the debug

search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the

user has specified that the file does not exist. Each project session maintains its own source file map, the map is

not shared by all projects.

To view the debug source file map:

• Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

• Choose Debug > Options > Search Paths.

CrossWorks for ARM Reference Manual CrossStudio User Guide

230

• Right-click the mapping to delete.

• Choose Delete Mapping from the shortcut menu.

To remove all entries from the debug source file map:

• Choose Debug > Options > Search Paths.

• Right-click any mapping.

• Choose Delete All Mappings from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

231

Breakpoint expressions
The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities

offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the

particular target interface you are using and the capabilities of your target silicon for exact details. The simplest

expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first

instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the

symbol has been accessed; this is termed a data breakpoint. For example, the expression x will breakpoint when

x is accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,

x[4] will breakpoint when element 4 of array x is accessed, and @sp will breakpoint when the sp register is

accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific

value. The expression x == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,

==, and != can be used similarly. For example, @sp <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator ‘&’ to mask the value you wish to breakpoint on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator ‘&&’ to combine comparisons. For example…

(x >= 2) && (x <= 14)

…will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char[256])

(0x1000) will breakpoint when the memory region 0x1000–0x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example !(char[256])(0x1000) will

breakpoint when memory outside the range 0x1000–0x10FF is accessed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

232

Debug expressions
The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.

The simplest expression is an identifier the debugger tries to interpret in the following order:

• an identifier that exists in the scope of the current context.

• the name of a global identifier in the program of the current context.

Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.

Registers can be referenced by prefixing the register name with @.

The standard C and C++ operators !, ~, *, /, %, +, -, >>, <<, <, <=, >, >=, ==, |, &, ^, &&, and || are supported

on numeric types.

The standard assignment operators =, +=, -=, *=, /=, %=, >>, >>=, <<=, &=, |=, ^= are supported on numeric

types.

The array subscript operator ‘[]’ is supported on array and pointer types.

The structure access operator ‘.’ is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix ‘*’) is supported on pointers, the address-of (prefix ‘&’) and sizeof operators are

supported.

The addressof(filename, linenumber) operator will return the address of the specified source code line

number.

Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.

Operators have the precedence and associativity one expects of a C-like programming language.

CrossWorks for ARM Reference Manual CrossStudio User Guide

233

Utility windows
This section describes the utility windows.

CrossWorks for ARM Reference Manual CrossStudio User Guide

234

Output window
The Output window contains logs and transcripts from various systems within CrossStudio. Most notably, it

contains the Transcript and Source Navigator Log.

Transcript
The Transcript contains the results of the last build or target operation. It is cleared on each build. Errors

detected by CrossStudio are shown in red and warnings are shown in yellow. Double-clicking an error

or warning in the build log will open the offending file at the error position. The commands used for the

build can be echoed to the build log by setting the Echo Build Command Lines environment option. The

transcript also shows a trace of the high-level loading and debug operations carried out on the target. For

downloading, uploading, and verification operations, it displays the time it took to carry out each operation.

The log is cleared for each new download or debug session.

Navigator Log
The Source Navigator Log displays a list of files the Source Navigator has parsed and the time it took to

parse each file.

To activate the Output window:

• Choose View > Output or press Ctrl+Alt+O.

To show a specific log:

• On the Output window toolbar, click the log combo box.

• From the list, click the log to display.

—or—

• Choose View > Logs and select the log to display.

CrossWorks for ARM Reference Manual CrossStudio User Guide

235

Properties window
The Properties window displays properties of the current CrossStudio object. Using the Properties window, you

can set the build properties of your project, modify the editor defaults, and change target settings.

To activate the Properties window:

• Choose View > Properties Window or press Ctrl+Alt+Enter.

The Properties window is organized as a set of key–value pairs. As you select one of the keys, help text explains

the purpose of the property. Because properties are numerous and can be specific to a particular product build,

consider this help to be the definitive help on the property.

You can divide the properties display into categories or, alternatively, display it as a flat list that is sorted

alphabetically.

A combo-box enables you to change the properties and explains which properties you are looking at.

Some properties have actions associated with them—you can find these by right-clicking the property key. Most

properties that represent filenames can be opened this way.

When the Properties window is displaying project properties, you'll find some properties displayed in bold. This

means the property value hasn't been inherited. If you wish to inherit rather than define such a property, right-

click the property and select Inherit from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

236

Targets window
The Targets window (and its associated menu) displays the set of target interfaces you can connect to in order

to download and debug your programs. Using the Targets window in conjunction with the Properties window

enables you to define new targets based on the specific target types supported by the particular CrossStudio

release.

To activate the Targets window:

• Choose View > Targets or press Ctrl+Alt+T.

You can connect, disconnect, and reconnect to a target system. You can also use the Targets window to reset

and load programs.

Targets window layout

Button Description

Connects the target interface selected in the Targets
window.

Disconnects the connected target interface.

Reconnects the connected target interface.

Resets the connected target interface.

Displays the properties of the selected target interface.

Managing connections to target devices

To connect a target:

• In the Targets window, double-click the target to connect.

—or—

• Choose Target > Connect and click the target to connect.

—or—

1. In the Targets window, click the target to connect.

2. On the Targets window toolbar, click the Connect button

—or—

1. In the Targets window, right-click the target to connect.

2. Choose Connect.

CrossWorks for ARM Reference Manual CrossStudio User Guide

237

To disconnect a target:

• Choose Target > Disconnect or press Ctrl+T, D.

—or—

• On the Targets window toolbar, click the Disconnect button.

—or—

1. Right-click the connected target in the Targets window.

2. Choose Disconnect from the shortcut menu.

Alternatively, connecting a different target will disconnect the current target connection.

You can disconnect and reconnect a target in a single operation using the reconnect feature. This may be useful

if the target board has been power cycled, or reset manually, because it forces CrossStudio to resynchronize with

the target.

To reconnect a target:

• Choose Target > Reconnect or press Ctrl+T, E.

—or—

• On the Targets window toolbar, click the Reconnect button.

—or—

1. In the Targets window, right-click the target to reconnect.

2. Choose Reconnect from the shortcut menu.

Automatic target connection

You can configure CrossStudio to automatically connect to the last-used target interface when loading a

solution.

To enable or disable automatic target connection:

1. Choose View > Targets or press Ctrl+Alt+T.

2. Click the disclosure arrow on the Targets window toolbar.

3. Select or deselect Automatically Connect When Starting Debug.

Resetting the target

Reset of the target is typically handled by the system when you start debugging. However, you can manually

reset the target from the Targets window.

To reset the connected target:

• Choose Project > Reset And Debug or press Ctrl+Alt+F5.

CrossWorks for ARM Reference Manual CrossStudio User Guide

238

—or—

• On the Targets window toolbar, click the Reset button.

Creating a new target interface

To create a new target interface:

1. From the Targets window shortcut menu, click New Target Interface. A menu will display the types of

target interface that can be created.

2. Select the type of target interface to create.

Setting target interface properties

All target interfaces have a set of properties. Some properties are read-only and provide information about the

target, but others are modifiable and allow the target interface to be configured. Target interface properties can

be viewed and edited using CrossStudio's property system.

To view or edit target properties:

• Select a target.

• Select the Properties option from the target's shortcut menu.

The Targets window provides the facility to restore the target definitions to the default set. Restoring the default

target definitions will undo any of the changes you have made to the targets and their properties, therefore it

should be used with care.

To restore the default target definitions:

1. Select Restore Default Targets from the Targets window shortcut menu.

2. Click Yes when the systems asks whether you want to restore the default targets.

Importing and exporting target definitions

You can import and export your target-interface definitions. This may be useful if you make a change to the

default set of target definitions and want to share it with another user or use it on another machine.

To export the current set of target-interface definitions:

• Choose Export Target Definitions To XML from the Targets window shortcut menu.

• Specify the location and name of the file to which you want to save the target definitions and click Save.

To import an existing set of target-interface definitions:

• Select Import Target Definitions From XML from the Targets window shortcut menu.

• Select the file from which you want to load the target definitions and click Open.

CrossWorks for ARM Reference Manual CrossStudio User Guide

239

Downloading programs

Program download is handled automatically by CrossStudio when you start debugging. However, you can

download arbitrary programs to a target using the Targets window.

To download a program to the currently selected target:

• In the Targets window, right-click the selected target.

• Choose Download File.

• From the Download File menu, select the type of file to download.

• In the Open File dialog, select the executable file to download and click Open to download the file.

CrossStudio supports the following file formats when downloading a program:

• Binary

• Intel Hex

• Motorola S-record

• CrossWorks native object file (AVR, MSP430, and MAXQ products)

• Texas Instruments text file

Verifying downloaded programs

You can verify a target's contents against arbitrary programs on disk using the Targets window.

To verify a target's contents against a program:

1. In the Targets window, right-click the selected target.

2. Choose Verify File.

3. From the Verify File menu, select the type of file to verify.

4. In the Open File dialog, select the executable file to verify and click Open to verify the file.

CrossStudio supports the same file types for verification as for downloading.

Erasing target memory

Usually, erasing target memory is done when CrossStudio downloads a program, but you can erase a target's

memory manually.

To erase all target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase All from the shortcut menu.

To erase part of target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase Range from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

240

Terminal emulator window
The Terminal Emulator window contains a basic serial-terminal emulator that allows you to receive and transmit

data over a serial interface.

To activate the Terminal Emulator window:

• Choose Tools > Terminal Emulator > Terminal Emulator or press Ctrl+Alt+M.

To use the terminal emulator:

1. Set the required terminal emulator properties.

2. Connect the terminal emulator to the communications port by clicking the button on the toolbar or by

selecting Connect from the shortcut menu.

Once connected, any input in the Terminal Emulator window will be transmitted to the communications port

and any data received from the communications port will be displayed on the terminal.

Connection may be refused if the communication port is in use by another application or if the port doesn't

exist.

To disconnect the terminal emulator:

1. Disconnect the communications port by clicking the Disconnect icon on the toolbar or by right-clicking

to select Disconnect from the shortcut menu.

This will release the communications port so it can be used by other applications.

Supported control codes

The terminal supports a limited set of control codes:

Control code Description

<BS> Backspace

<LF> Linefeed

<LF> Linefeed {mo Why duplicated?}

<ESC>[{attr1};...;{attrn}m Set display attributes. The attributes 2-Dim, 5-Blink, 7-
Reverse, and 8-Hidden are not supported.

CrossWorks for ARM Reference Manual CrossStudio User Guide

241

Script Console window
The Script Console window provides interactive access to the JavaScript interpreter and JavaScript classes that

are built into CrossStudio. The interpreter is an implementation of the 3rd edition of the ECMAScript standard.

The interpreter has an additional function property of the global object that enable files to be loaded into the

interpreter.

The JavaScript method load(filepath) loads and executes the JavaScript contained in filepath returns a Boolean

indicating success.

To activate the Script Console window:

• Choose View > Script Console or press Ctrl+Alt+J.

CrossWorks for ARM Reference Manual CrossStudio User Guide

242

Debug Immediate window
The Debug Immediate window allows you to type in debug expressions and display the results. All results are

displayed in the format specified by the Default Display Mode property found in the Debugging group in the

Environment Options dialog.

To activate the Envronment Options dialog:

• Choose Tools > Options or press Alt+,.

To activate the Debug Immediate window:

• Choose Debug > Other Windows > Debug Immediate.

CrossWorks for ARM Reference Manual CrossStudio User Guide

243

Downloads window
The Downloads Window displays a historical list of files downloaded over the Internet by CrossStudio.

To activate the Downloads window:

• Choose Tools > Downloads Window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

244

Latest News window
The Latest News window displays a historical list of news articles from the Rowley Associates website.

To activate the Latest News window:

• Choose Help > Latest News.

CrossWorks for ARM Reference Manual CrossStudio User Guide

245

Memory-map editor
memory-map files are tree-structured descriptions of the target memory map. They are used by the compiler

to ensure correct placement of program sections, and by the debugger so it knows which addresses are valid

on the target and which program sections to load. You can also use them files to direct the debugger to display

memory-mapped peripherals. Usually, you don't need to modify memory-map files—they will be set up for the

particular targets CrossStudio supports—but it is useful to view them with the memory-map editor.

To open memory-map files, choose File > Open and select the XML file that contains the memory map or,

alternatively, use the View Memory Map option on the shortcut menu of the Project Explorer.

The memory-map editor provides a tree-structured view of the memory space of a target. The memory map

consists of a set of different node types arranged in a hierarchy. These nodes have properties that can be

modified using the Properties window when the node is selected. These properties and the placement of nodes

within the memory map are used as input to the program-building process so the linker knows where sections

should be placed. Additionally, the debugger uses the information in memory-map files to enable register and

memory displays.

The memory-map editor supports the following node types:

Root
The top node of the memory map.

Memory Segment
A range of addresses that represents a region in target memory.

Program Section
Represents a program section of your application.

Register Group
Represents an area in memory that contains a group of related registers.

Register
Represents a memory-mapped register.

Bit Field
Part of a memory-mapped register.

The following statements hold regarding the creation and movement of nodes within a memory:

• Memory segments can be within the Root segment.

• Program sections must be within a memory segment.

• Register groups can be within the Root or within a memory segment.

• Registers can be within memory segments or register groups.

• Bitfields can be within registers.

CrossWorks for ARM Reference Manual CrossStudio User Guide

246

All nodes have both mandatory and optional properties. The value of the mandatory Name property should be

unique within the memory map.

Memory-segment and register-group properties

Start Address
A hexadecimal number stating where memory begins (lowest address).

Start Address Symbol
The name of a linker symbol to generate with the value of the Start Address.

Size
A hexadecimal number specifying the size in bytes of the memory segment.

Size Symbol
The name of a linker symbol to generate with the value of the Size.

Access Type
Specifies whether the memory segment is read only or read/write.

Program section properties

Start Address
An optional hexadecimal value representing the absolute load position of the section. If this isn't set, the

relative placement of the program section within the memory segment will determine the load position of

the section.

Size
An optional decimal value specifying the size in bytes of the program section.

Load
Specifies whether the section should be loaded by the debugger.

Alignment
An optional decimal value specifying the alignment requirements of the section.

Section To Run In
An optional name of another program section to which this program section will be copied.

Input Section Names
The optional names of the files that will be placed in this section.

Register properties

Start Address
A hexadecimal value specifying where the register is placed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

247

Start Address Symbol
The name of a linker symbol to generate with the value of the Start Address.

Register Type
Optional, a C type specifying how you want to display the register. This defaults to the word length of the

target processor.

Endian
Optional, specifies the byte order of a multibyte register. This defaults to the byte order of the target

processor.

Bitfield properties

Bit Offset
A decimal value that sets the starting bit position of the bit field. Bit 0 is the first bit position.

Bit Length
A decimal value that defines the number of bits in the field.

The memory-map editor shares many of the attributes of the text editor, and the same key-bindings—for

example, cut, copy and paste—are accessible from the Edit menu. But in addition to the standard editor

capabilities, the memory-map editor supports moving nodes up and down within a hierarchy. This enables

adjusting the sequence of program sections.

CrossWorks for ARM Reference Manual CrossStudio User Guide

248

Environment options dialog
The Environment Options dialog enables you to modify settings that apply to all uses of a CrossWorks

installation.

CrossWorks for ARM Reference Manual CrossStudio User Guide

249

Building Environment Options

Build Options
Property Description

Automatically Build Before Debug
Environment/Build/Build Before

Debug – Boolean

Enables auto-building of a project before downloading
if it is out of date.

Build Macros
Environment/Macros/Global Macros – StringList

Build macros that are shared across all solutions and
projects e.g. paths to library files.

Confirm Debugger Stop
Environment/Build/Confirm Debugger

Stop – Boolean

Present a warning when you start to build that requires
the debugger to stop.

Echo Build Command Lines
Environment/Build/Show Command

Lines – Boolean

Selects whether build command lines are written to
the build log.

Echo Raw Error/Warning Output
Environment/Build/Show Unparsed Error

Output – Boolean

Selects whether the unprocessed error and warning
output from tools is displayed in the build log.

Find Error After Building
Environment/Build/Find Error After

Build – Boolean

Moves the cursor to the first diagnostic after a build
completes with errors.

Keep Going On Error
Environment/Build/Keep Going On

Error – Boolean

Build doesn't stop on error.

Save Project File Before Building
Environment/Build/Save Project File On

Build – Boolean

Selects whether to save the project file prior to build.

Show Build Information
Environment/Build/Show Build

Information – Boolean

Show build information.

Show Error Window on Build Error
Environment/Build/Show Error Window on

Build Error – Boolean

Shows the Errors window if there is a build error.

Toolchain Root Directory
Environment/Build/Tool Chain Root

Directory – String

Specifies where to find the toolchain (compilers etc).

Building Options
Property Description

CrossWorks for ARM Reference Manual CrossStudio User Guide

250

Link In debugIO Default
Build/Link DebugIO Default – Boolean

Specifies the default for debugio to be linked into an
executable.

Link In printf Default
Build/Link Printf Default – Boolean

Specifies the default for printf to be linked into an
executable.

Link In scanf Default
Build/Link Scanf Default – Boolean

Specifies the default for scanf to be linked into an
executable.

Compatibility Options

Property Description

Build command line generation
ARM/Build/Command Line Generation

Version – Enumeration

Generate build command lines for the specified
CrossWorks for ARM version.

CrossWorks for ARM Installation Directory
ARM/Build/StudioDir Directory – DirPath

The CrossWorks for ARM installation directory to be
used for building - the value $(StudioDir) is set to.

Default GCC Target
ARM/Build/GCC Target Default – Enumeration

Specifies the default GCC compiler target to use.

GCC supports section renaming
ARM/Build/GCC Can Rename Sections – Boolean

GCC supports the -mtext=t, -mdata=d, -mbss=b, -
mrodata=r section renaming options.

Window Options

Property Description

Show Build Log On Build
Environment/Show Transcript On

Build – Boolean

Show the build log when a build starts.

CrossWorks for ARM Reference Manual CrossStudio User Guide

251

Debugging Environment Options

Breakpoint Options

Property Description

Clear Disassembly Breakpoints On Debug Stop
Environment/Debugger/Clear Disassembly

Breakpoint – Boolean

Clear Disassembly Breakpoints On Debug Stop

Initial Breakpoint Is Set
Environment/Debugger/Set Initial

Breakpoint – Enumeration

Specify when the initial breakpoint should be set

Set Initial Breakpoint At
Environment/Debugger/Initial

Breakpoint – String

An initial breakpoint to set if no other breakpoints exist

Debugging Options

Property Description

Default debugIO implementation
ARM/Debug/Default debugIO

Implementation – Enumeration

The default debugIO implemenation.

TLS Expression
Environment/Debugger/TLS Expression – String

Default expression the debugger evaluates to get the
base of Thread Local Storage

UAL Disassemble
ARM/Debug/UAL Disassemble – Boolean

Generate UAL disassembly mnemonics

Display Options

Property Description

Close Disassembly On Mode Switch
Environment/Debugger/Close Disassembly On

Mode Switch – Boolean

Close Disassembly On Mode Switch

Data Tips Display a Maximum Of
Environment/Debugger/Maximum Array

Elements Displayed – IntegerRange

Selects the maximum number of array elements
displayed in a datatip.

Default Display Mode
Environment/Debugger/Default Variable

Display Mode – Enumeration

Selects the format that data values are shown in.

CrossWorks for ARM Reference Manual CrossStudio User Guide

252

Display Floating Point Number In
Environment/Debugger/Floating Point

Format Display – Custom

The printf format directive used to display floating
point numbers.

Maximum Backtrace Calls
Environment/Debugger/Maximum Backtrace

Calls – IntegerRange

Selects the maximum number of calls when
backtracing.

Prompt To Display If More Than
Environment/Debugger/Array Elements

Prompt Size – IntegerRange

The array size to display with prompt.

Show CPU Registers In Locals Window
Environment/Debugger/Locals Display

Registers – Boolean

Specify whether the locals window should display CPU
registers

Show Labels In Disassembly
Environment/Debugger/Disassembly Show

Labels – Boolean

Show Labels In Disassembly

Show Source In Disassembly
Environment/Debugger/Disassembly Show

Source – Boolean

Show Source In Disassembly

Show char * as null terminated string
Environment/Debugger/Display Char Ptr As

String – Boolean

Show char * as null terminated string

Source Path
Environment/Debugger/Source Path – StringList

Global search path to find source files.

Extended Data Tips Options
Property Description

ASCII
Environment/Debugger/Extended Tooltip

Display Mode/ASCII – Boolean

Selects ASCII extended datatips.

Binary
Environment/Debugger/Extended Tooltip

Display Mode/Binary – Boolean

Selects Binary extended datatips.

Decimal
Environment/Debugger/Extended Tooltip

Display Mode/Decimal – Boolean

Selects Decimal extended datatips.

Hexadecimal
Environment/Debugger/Extended Tooltip

Display Mode/Hexadecimal – Boolean

Selects Hexadecimal extended datatips.

Octal
Environment/Debugger/Extended Tooltip

Display Mode/Octal – Boolean

Selects Octal extended datatips.

CrossWorks for ARM Reference Manual CrossStudio User Guide

253

Unsigned Decimal
Environment/Debugger/Extended Tooltip

Display Mode/Unsigned Decimal – Boolean

Selects Unsigned Decimal extended datatips.

Target Options

Property Description

Automatically Connect When Starting Debug
Target/Auto Connect – Boolean

Enable automatic connection to last connected target
when debug start pressed.

Automatically Disconnect When Stopping Debug
Target/Auto Disconnect – Boolean

Enable automatic disconnection on debug stop.

Check Project And Target Processor Compatibility
Target/Enable Processor Check – Boolean

Verify that the project-defined processor is compatible
with the connected target processor.

Enable Differential Download
Target/Enable Differential

Download – Boolean

Verify the contents of memory prior to download and
only download the code and data that is different.

Identify Target On Connect
Target/Identify – Boolean

Note that turning this off may make a malfunctioning
target connection appear as if it is working.

Step Using Hardware Step
Environment/Debugger/Step Using Hardware

Step – Boolean

Step using hardware single stepping rather than
setting breakpoints

Verify Program After Download
Target/Enable Load Verification – Boolean

Verify that a program has been successfully
downloaded after download.

Window Options

Property Description

Clear Debug Terminal On Run
Environment/Clear Debug Terminal On

Run – Boolean

Clear the debug terminal automatically when a
program is run.

Hide Output Window On Successful Load
Debugging/Hide Transcript On Successful

Load – Boolean

Hide the Output window when a load completes
without error.

Show Target Log On Load
Debugging/Show Transcript On Load – Boolean

Show the target log when a load starts.

CrossWorks for ARM Reference Manual CrossStudio User Guide

254

IDE Environment Options

Browser Options
Property Description

Text Size
Environment/Browser/Text Size – Enumeration

Sets the text size of the integrated HTML and help
browser.

Underline Hyperlinks In Browser
Environment/Browser/Underline Web

Links – Boolean

Enables underlining of hypertext links in the
integrated HTML and help browser.

File Extension Options
Property Description

ELF Executable File Extensions
ElfDwarf/Environment/Executable File

Extensions – StringList

The file extensions used for ELF executable files.

ELF Object File Extensions
ElfDwarf/Environment/Object File

Extensions – StringList

The file extensions used for ELF object files.

File Search Options
Property Description

Files To Search
Find In Files/File Type – StringList

The wildcard used to match files in Find In Files
searches.

Find History
Find In Files/Find History – StringList

The list of strings recently used in searches.

Folder History
Find In Files/Folder History – StringList

The set of folders recently used in file searches.

Match Case
Find In Files/Match Case – Boolean

Whether the case of letters must match exactly when
searching.

Match Whole Word
Find In Files/Match Whole Word – Boolean

Whether the whole word must match when searching.

Replace History
Find In Files/Replace History – StringList

The list of strings recently used in searches.

Search Dependencies
Find In Files/Search Dependencies – Boolean

Controls searching of dependent files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

255

Search In
Find In Files/Context – Enumeration

Where to look to find files.

Use Regular Expressions
Find In Files/Use RegExp – Boolean

Whether to use a regular expression or plain text
search.

Internet Options

Property Description

Check For Latest News
Environment/Internet/RSS Update – Boolean

Specifies whether to enable downloading of the Latest
News RSS feeds.

Check For Packages
Environment/Internet/Check

Packages – Boolean

Specifies whether to enable downloading of the list of
available packages.

Check For Updates
Environment/Internet/Check

Updates – Boolean

Specifies whether to enable checking for software
updates.

Enable Connection Debugging
Environment/Internet/Enable

Debugging – Boolean

Controls debugging traces of internet connections and
downloads.

External Web Browser
Environment/External Web Browser – FileName

The path to the external web browser to use when
accessing non-local files.

HTTP Proxy Host
Environment/Internet/HTTP Proxy

Server – String

Specifies the IP address or hostname of the HTTP proxy
server. If empty, no HTTP proxy server will be used.

HTTP Proxy Port
Environment/Internet/HTTP Proxy

Port – IntegerRange

Specifies the HTTP proxy server's port number.

Maximum Download History Items
Environment/Internet/Max Download History

Items – IntegerRange

The maximum amount of download history kept in the
downloads window.

Use Content Delivery Network
Environment/Package/Use Content Delivery

Network – Boolean

Specifies whether to use content delivery network to
deliver packages.

Launcher Options

Property Description

Launch Latest Installations Only
Environment/Launcher Use Latest

Installations Only – Boolean

Specifies whether the CrossStudio launcher should
only consider the latest installations of CrossWorks
when deciding which one to use.

CrossWorks for ARM Reference Manual CrossStudio User Guide

256

Launcher Enabled
Environment/Launcher Enabled – Boolean

Specifies whether the CrossStudio launcher should
be used when the operating system or an external
application requests a file to be opened.

Package Manager Options
Property Description

Check Solution Package Dependencies
Environment/Package/Check Solution

Package Dependencies – Boolean

Specifies whether to check package dependencies
when a solution is loaded.

Package Directory
Environment/Package/Destination

Directory – String

Specifies the directory packages are installed to.

Show Logos
Environment/Package/Show Logos – Enumeration

Specifies whether the package manager should display
company logos.

Print Options
Property Description

Bottom Margin
Environment/Printing/Bottom

Margin – IntegerRange

The page's bottom margin in millimetres.

Left Margin
Environment/Printing/Left

Margin – IntegerRange

The page's left margin in millimetres.

Page Orientation
Environment/Printing/

Orientation – Enumeration

The page's orientation.

Page Size
Environment/Printing/Page Size – Enumeration

The page's size.

Right Margin
Environment/Printing/Right

Margin – IntegerRange

The page's right margin in millimetres.

Top Margin
Environment/Printing/Top

Margin – IntegerRange

The page's top margin in millimetres.

Startup Options
Property Description

CrossWorks for ARM Reference Manual CrossStudio User Guide

257

Allow Multiple CrossStudios
Environment/Permit Multiple Studio

Instances – Boolean

Allow more than one CrossStudio to run at the same
time.

New Project Directory
Environment/General/Solution

Directory – String

The directory where projects are created.

Project Templates File
Environment/General/Project

Templates – String

The project templates file.

Splash Screen
Environment/Splash Screen – Enumeration

How to display the splash screen on startup.

Status Bar Options

Property Description

(Visible)
Environment/Status Bar – Boolean

Show or hide the status bar.

Show Build Status Pane
Environment/General/Status Bar/Show Build

Status – Boolean

Show or hide the Build pane in the status bar.

Show Caret Position Pane
Environment/General/Status Bar/Show Caret

Pos – Boolean

Show or hide the Caret Position pane in the status bar.

Show Insert/Overwrite Status Pane
Environment/General/Status Bar/Show

Insert Mode – Boolean

Show or hide the Insert/Overwrite pane in the status
bar.

Show Read-Only Status Pane
Environment/General/Status Bar/Show Read

Only – Boolean

Show or hide the Read Only pane in the status bar.

Show Size Grip
Environment/General/Status Bar/Show Size

Grip – Boolean

Show or hide the status bar size grip.

Show Target Pane
Environment/General/Status Bar/Show

Target – Boolean

Show or hide the Target pane in the status bar.

Show Time Pane
Environment/General/Status Bar/Show

Time – Boolean

Show or hide the Time pane in the status bar.

CrossWorks for ARM Reference Manual CrossStudio User Guide

258

User Interface Options

Property Description

Application Main Font
Environment/Application Main Font – Font

The font to use for the user interface as a whole.

Application Monospace Font
Environment/Application Monospace

Font – Font

The fixed-size font to use for the user interface as a
whole.

Error Display Timeout
Environment/Error Display

Timeout – IntegerRange

The minimum time, in seconds, that errors are shown
for in the status bar.

Errors Are Displayed
Environment/Error Display Mode – Enumeration

How errors are reported in CrossStudio.

File Size Display Units
Environment/Size Display Unit – Enumeration

How to display sizes of items in the user interface. SI
defines 1kB=1000 bytes, IEC defines 1kiB=1024 bytes,
Alternate SI defines 1kB=1024 bytes.

Number File Names in Menus
Environment/Number Menus – Boolean

Number the first nine file names in menus for quick
keyboard access.

Show Large Icons In Toolbars
Environment/General/Large Icons – Boolean

Show large or small icons on toolbars.

Show Ribbon
Environment/General/Ribbon/Show – Boolean

Show or hide the ribbon.

Show Window Selector On Ctrl+Tab
Environment/Show Selector – Boolean

Present the Window Selector on Next Window and
Previous Window commands activated from the
keyboard.

User Interface Theme
Environment/General/Skin – Enumeration

The theme that CrossStudio uses.

Window Menu Contains At Most
Environment/Max Window Menu

Items – IntegerRange

The maximum number of windows appearing in the
Windows menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

259

Programming Language Environment Options

Assembly Language Settings

Property Description

Column Guide Columns
Text Editor/Indent/Assembly Language/

Column Guides – String

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Assembly Language/

Close Brace – Boolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Assembly Language/

Context Lines – IntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Assembly Language/

Indent Mode – Enumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Assembly Language/Open

Brace – Boolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Assembly Language/

Size – IntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Assembly Language/Tab

Size – IntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Assembly Language/Use

Tabs – Boolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Assembly Language/

Keywords – StringList

Additional identifiers to highlight as keywords.

C and C++ Settings

Property Description

Column Guide Columns
Text Editor/Indent/C and C++/Column

Guides – String

The columns that guides are drawn for.

CrossWorks for ARM Reference Manual CrossStudio User Guide

260

Indent Closing Brace
Text Editor/Indent/C and C++/Close

Brace – Boolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/C and C++/Context

Lines – IntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/C and C++/Indent

Mode – Enumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/C and C++/Open

Brace – Boolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/C and C++/

Size – IntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/C and C++/Tab

Size – IntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/C and C++/Use

Tabs – Boolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/C and C++/

Keywords – StringList

Additional identifiers to highlight as keywords.

Default Settings

Property Description

Column Guide Columns
Text Editor/Indent/Default/Column

Guides – String

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Default/Close

Brace – Boolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Default/Context

Lines – IntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Default/Indent

Mode – Enumeration

How to indent when a new line is inserted.

CrossWorks for ARM Reference Manual CrossStudio User Guide

261

Indent Opening Brace
Text Editor/Indent/Default/Open

Brace – Boolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Default/

Size – IntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Default/Tab

Size – IntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Default/Use

Tabs – Boolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Default/

Keywords – StringList

Additional identifiers to highlight as keywords.

Java Settings

Property Description

Column Guide Columns
Text Editor/Indent/Java/Column

Guides – String

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Java/Close

Brace – Boolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Java/Context

Lines – IntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Java/Indent

Mode – Enumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Java/Open

Brace – Boolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Java/Size – IntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Java/Tab

Size – IntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Java/Use Tabs – Boolean

Insert tabs when indenting.

CrossWorks for ARM Reference Manual CrossStudio User Guide

262

User-Defined Keywords
Text Editor/Indent/Java/Keywords – StringList

Additional identifiers to highlight as keywords.

CrossWorks for ARM Reference Manual CrossStudio User Guide

263

Source Control Environment Options

Configuration Options
Property Description

Enable Source Control Integration
Environment/Source Code Control/

Enabled – Boolean

Source Control integration enabled.

Source Control Provider
Environment/Source Code Control/

Provider – Enumeration

The source control provider to use.

External Tools
Property Description

Diff Command Line
Environment/Source Code Control/

DiffCommand – StringList

The diff command line

Merge Command Line
Environment/Source Code Control/

MergeCommand – StringList

The merge command line

Preference Options
Property Description

Inhibit Add Dialog
Environment/Source Code Control/

InhibitAddDialog – Boolean

Inhibits the dialog when adding a file to source
control.

Inhibit Check In Dialog
Environment/Source Code Control/

InhibitCheckinDialog – Boolean

Inhibits the dialog when checking in a file to source
control.

Inhibit Check Out Dialog
Environment/Source Code Control/

InhibitCheckoutDialog – Boolean

Inhibits the dialog when checking out a file from
source control.

Inhibit Check Out On Edit Dialog
Environment/Source Code Control/

InhibitCheckoutOnEditDialog – Boolean

Inhibits the check out on edit dialog.

Inhibit Get Latest Dialog
Environment/Source Code Control/

InhibitGetLatestDialog – Boolean

Inhibits the dialog when updating the local version
from the source control version.

CrossWorks for ARM Reference Manual CrossStudio User Guide

264

Inhibit Undo Check Out Dialog
Environment/Source Code Control/

InhibitUndoCheckoutDialog – Boolean

Inhibits the dialog when undoing a checkout to source
control.

CrossWorks for ARM Reference Manual CrossStudio User Guide

265

Text Editor Environment Options

Cursor Fence Options
Property Description

Bottom Margin
Text Editor/Margins/Bottom – IntegerRange

The number of lines in the bottom margin.

Keep Cursor Within Fence
Text Editor/Margins/Enabled – Boolean

Enable margins to fence and scroll around the cursor.

Left Margin
Text Editor/Margins/Left – IntegerRange

The number of characters in the left margin.

Right Margin
Text Editor/Margins/Right – IntegerRange

The number of characters in the right margin.

Top Margin
Text Editor/Margins/Top – IntegerRange

The number of lines in the right margin.

Editing Options
Property Description

Allow Drag and Drop Editing
Text Editor/Drag Drop Editing – Boolean

Enables dragging and dropping of selections in the
text editor.

Auto-Comment Text
Text Editor/Auto Comment – Boolean

Enable or disable automatically swapping
commenting on source lines by typing '/' with an
active selection.

Auto-Surround Text
Text Editor/Auto Surround – Boolean

Enable or disable automatically surrounding selected
text when typing triangular brackets, quotation marks,
parentheses, brackets, or braces.

Bold Popup Diagnostic Messages
Text Editor/Bold Popup

Diagnostics – Boolean

Displays popup diagnostic messages in bold for easier
reading.

Check Spelling
Text Editor/Spell Checking – Boolean

Enable spell checking in comments.

Column-mode Tab
Text Editor/Column Mode Tab – Boolean

Tab key moves to the next textual column using the
line above.

Confirm Modified File Reload
Text Editor/Confirm Modified File

Reload – Boolean

Display a confirmation prompt before reloading a file
that has been modified on disk.

Copy Action When Nothing Selected
Text Editor/Copy Action – Enumeration

What Copy copies when nothing is selected.

CrossWorks for ARM Reference Manual CrossStudio User Guide

266

Copy On Mouse Select
Text Editor/Copy On Mouse Select – Boolean

Automatically copy text to clipboard when marking a
selection with the mouse.

Cut Action When Nothing Selected
Text Editor/Cut Action – Enumeration

What Cut cuts when nothing is selected.

Cut Single Blank Line
Text Editor/Cut Blank Lines – Boolean

Selects whether to place text on the clipboard when a
single blank line is cut. When set to

Diagnostic Cycle Mode
Text Editor/Diagnostic Cycle

Mode – Enumeration

Iterates through diagnostics either from most severe
to least severe or in reported order.

Edit Read-Only Files
Text Editor/Edit Read Only – Boolean

Allow editing of read-only files.

Enable Popup Diagnostics
Text Editor/Enable Popup

Diagnostics – Boolean

Enables on-screen diagnostics in the text editor.

Enable Virtual Space
Text Editor/Enable Virtual Space – Boolean

Permit the cursor to move into locations that do not
currently contain text.

FIXME Tag List
Text Editor/FIXME Tags – StringList

Set the tags to display as FIXMEs.

Numeric Keypad Editing
Text Editor/Numeric Keypad

Enabled – Boolean

Selects whether the numeric keypad plus and minus
buttons copy and cut text.

Paste On Mouse Middle Button
Text Editor/Paste On Mouse Middle

Button – Boolean

Paste text from clipboard when mouse middle button
is pressed.

Undo And Redo Behavior
Text Editor/Undo Mode – Enumeration

How Undo and Redo group your typing when it is
undone and redone.

Find And Replace Options

Property Description

Case Sensitive Matching
Text Editor/Find/Match Case – Boolean

Enables or disables the case sensitivity of letters when
searching.

Find History
Text Editor/Find/History – StringList

The list of strings recently used in searches.

Regular Expression Matching
Text Editor/Find/Use RegExp – Boolean

Enables regular expression matching rather than plain
text matching.

Replace History
Text Editor/Replace/History – StringList

The list of strings recently used in replaces.

Whole Word Matching
Text Editor/Find/Match Whole Word – Boolean

Enables or disables whole word matching when
searching.

CrossWorks for ARM Reference Manual CrossStudio User Guide

267

International

Property Description

Default Text File Encoding
Text Editor/Default Codec – Enumeration

The encoding to use if not overridden by a project
property or file is not in a known format.

Save Options

Property Description

Backup File History Depth
Text Editor/Backup File Depth – IntegerRange

The number of backup files to keep when saving an
existing file.

Delete Trailing Space On Save
Text Editor/Delete Trailing Space On

Save – Boolean

Deletes trailing whitespace from each line when a file
is saved.

Tab Cleanup On Save
Text Editor/Cleanup Tabs On

Save – Enumeration

Cleans up tabs when a file is saved.

Visual Appearance

Property Description

Font
Text Editor/Font – FixedPitchFont

The font to use for text editors.

Hide Cursor When Typing
Text Editor/Hide Cursor When

Typing – Boolean

Hide or show the I-beam cursor when you start to type.

Highlight Cursor Line
Text Editor/Highlight Cursor Line – Boolean

Enable or disable visually highlighting the cursor line.

Horizontal Scroll Bar
Text Editor/HScroll Bar – Enumeration

Show or hide the horizontal scroll bar.

Insert Caret Style
Text Editor/Insert Caret Style – Enumeration

How the caret is displayed with the editor in insert
mode.

Line Numbers
Text Editor/Line Number Mode – Enumeration

How often line numbers are displayed in the margin.

Mate Matching Mode
Text Editor/Mate Matching Mode – Enumeration

Controls when braces, brackets, and parentheses are
matched.

Overwrite Caret Style
Text Editor/Overwrite Caret

Style – Enumeration

How the caret is displayed with the editor in overwrite
mode.

CrossWorks for ARM Reference Manual CrossStudio User Guide

268

Show Diagnostic Icons In Gutter
Text Editor/Diagnostic Icons – Boolean

Enables display of diagnostic icons in the icon gutter.

Show Icon Gutter
Text Editor/Icon Gutter – Boolean

Show or hide the left-hand gutter containing
breakpoint, bookmark, and optional diagnostic icons.

Show Mini Toolbar
Text Editor/Mini Toolbar – Boolean

Show the mini toolbar when selecting text with the
mouse.

Use I-beam Cursor
Text Editor/Ibeam cursor – Boolean

Show an I-beam or arrow cursor in the text editor.

Vertical Scroll Bar
Text Editor/VScroll Bar – Enumeration

Show or hide the vertical scroll bar.

CrossWorks for ARM Reference Manual CrossStudio User Guide

269

Windows Environment Options

Call Stack Options
Property Description

Show Call Address
Environment/Call Stack/Show Call

Address – Boolean

Enables the display of the call address in the call stack.

Show Call Source Location
Environment/Call Stack/Show Call

Location – Boolean

Enables the display of the call source location in the
call stack.

Show Parameter Names
Environment/Call Stack/Show Parameter

Names – Boolean

Enables the display of parameter names in the call
stack.

Show Parameter Types
Environment/Call Stack/Show Parameter

Types – Boolean

Enables the display of parameter types in the call stack.

Show Parameter Values
Environment/Call Stack/Show Parameter

Values – Boolean

Enables the display of parameter values in the call
stack.

Clipboard Ring Options
Property Description

Maximum Items Held In Ring
Environment/Clipboard Ring/Max

Entries – IntegerRange

The maximum number of items held on the clipboard
ring before they are recycled.

Preserve Contents Between Runs
Environment/Clipboard Ring/Save – Boolean

Save the clipboard ring across CrossStudio runs.

Outline Window Options
Property Description

Group #define Directives
Windows/Outline/Group Defines – Boolean

Group consecutive #define and #undef preprocessor
directives.

Group #if Directives
Windows/Outline/Group Ifs – Boolean

Group lines contained betwen #if, #else, and #endif
preprocessor directives.

Group #include Directives
Windows/Outline/Group Includes – Boolean

Group consecutive #include preprocessor directives.

CrossWorks for ARM Reference Manual CrossStudio User Guide

270

Group Top-Level Declarations
Windows/Outline/Group Top Level

Items – Boolean

Group consecutive top-level variable and type
declarations.

Group Visibility
Windows/Outline/Group Visibility – Boolean

Group class members by public, protected, and private
visibility.

Hide #region Prefix
Windows/Outline/Hide Region

Prefix – Boolean

Hides the '#region' prefix from groups and shows only
the group name.

Refresh Outline and Preview
Windows/Outline/Preview Refresh

Mode – Enumeration

How the Preview pane refreshes its contects.

Project Explorer Options
Property Description

Add Filename Replace Macros
Environment/Project Explorer/Filename

Replace Macros – StringList

Macros (system and global) used to replace the start of
a filename on project file addition.

Color Project Nodes
Environment/Project Explorer/Color

Nodes – Boolean

Show the project nodes colored for identification in
the Project Explorer.

Output Files Folder
Environment/Project Explorer/Show Output

Files – Boolean

Show the build output files in an Output Files folder in
the project explorer.

Read-Only Data In Code
Environment/Project Explorer/Statistics

Read-Only Data Handling – Boolean

Configures whether read-only data contributes to the
Code or Data statistic.

Show Dependencies
Environment/Project Explorer/Dependencies

Display – Enumeration

Controls how the dependencies are displayed.

Show File Count on Folder
Environment/Project Explorer/Count

Files – Boolean

Show the number of files contained in a folder as a
badge in the Project Explorer.

Show Properties
Environment/Project Explorer/Properties

Display – Enumeration

Controls how the properties are displayed.

Show Statistics Rounded
Environment/Project Explorer/Statistics

Format – Boolean

Show exact or rounded sizes in the project explorer.

Source Control Status Column
Environment/Project Explorer/Show Source

Code Control Status – Boolean

Show the source control status column in the project
explorer.

CrossWorks for ARM Reference Manual CrossStudio User Guide

271

Starred Files Names
Environment/Project Explorer/Starred File

Names – StringList

The list of wildcard-matched file names that get
highligted with stars, to bring attention to themselves,
in the Project Explorer.

Statistics Column
Environment/Project Explorer/Statistics

Display – Boolean

Show the code and data size columns in the Project
Explorer.

Synchronize Explorer With Editor
Environment/Project Explorer/Sync

Editor – Boolean

Synchronizes the Project Explorer with the document
being edited.

Use Common Properties Folder
Environment/Project Explorer/Common

Properties Display – Boolean

Controls how common properties are displayed.

Properties Window Options

Property Description

Properties Displayed
Environment/General/Properties

Displayed – Enumeration

Set how the properties are displayed.

Show Property Details
Environment/General/Property View

Details – Boolean

Show or hide the property description.

Windows Window Options

Property Description

Buffer Grouping
Environment/Windows/Grouping – Enumeration

How the files are grouped or listed in the Windows
window.

Show File Path as Tooltip
Environment/Windows/Show Filename

Tooltips – Boolean

Show the full file name as a tooltip when hovering
over files in the Windows window.

Show Line Count and File Size
Environment/Windows/Show Sizes – Boolean

Show the number of lines and size of each file in the
windows list.

CrossWorks for ARM Reference Manual CrossStudio User Guide

272

ARM target support
When a target-specific executable project is created using the New Project Wizard, the following default files are

added to the project:

• Target_Startup.s — The target-specific startup code. See Target startup code.

• crt0.s — The CrossWorks standard C runtime. See Startup code.

• Target_MemoryMap.xml — The target-specific memory map file for the board. See memory-map files.

Note that, for some targets, a general linker placement file may not be suitable. In these cases, there will

be two memory-map files: one for a flash build and one for a RAM build.

• flash_placement.xml — The linker placement file for a flash build.

• sram_placement.xml — The linker placement file for a RAM build.

• Target_Target.js — The target script file. See Target script file.

Initially, shared versions of these files are added to the project. If you want to modify any these shared files,

select the file in the Project Explorer and then click the Import option from the shortcut menu. This will copy a

writable version of the file into your project directory and change the path in the Project Explorer to that of the

local version. You can then make changes to the local file without affecting the shared copy of it.

The following list describes the typical flow of a C program created with CrossStudio's project templates:

• The processor starts executing at address 0x0000000, which is the reset exception vector. The exception-

vector table can be found in the target-specific startup code (see Target startup code), and is put into the

program section .vectors, which is positioned at address 0x00000000 by the target-specific memory-map

file.

• The processor jumps to the reset_handler label in the target-specific startup code, which configures the

target (see Target startup code).

• When the target is configured, the target-specific startup code jumps to the _start entry point in the C

runtime code, which sets up the C runtime environment (see Startup code).

• When the C runtime environment has been set up, the C runtime code jumps to the C entry-point

function, main.

• When the program returns from main, it re-enters the C runtime code, executes the destructors and

enters an endless loop.

CrossWorks for ARM Reference Manual CrossStudio User Guide

273

Target startup code
The following section describes the role of the target-specific startup code.

When you create a new project to produce an executable file using a target-specific project template, a file

containing the default startup code for the target will be added to the project. Initially, a shared version of this

file will be added to the project; if you want to modify this file, select the file in the Project Explorer and select

Import to copy the file to your project directory.

ARM Target startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

• _vectors — This is the exception vector table. It is put into its own .vectors section in order to ensure that

it is always placed at address 0x00000000. The vector table contains jump instructions to the particular

exception handlers. It is recommended that absolute jump instructions are used ldr pc, [pc,

#handler_address - . - 8] rather than relative branch instructions b handler_address

since many devices shadow the memory at address zero to start execution but the program will be linked

to run at a different address.

• reset_handler — This is the main reset handler function and typically is the main entry point of an

executable. The reset handler will usually carry out any target-specific initialization and then will jump to

the _start entry point. In a C system, the _start entry point is in the crt0.s file. During development it is

usual to replace this jump with an endless loop which will stop the device running potentially dangerous

in-development code directly out of reset.

• undef_handler — This is the default, undefined-instruction exception handler.*

• swi_handler — This is the default, software-interrupt exception handler.*

• pabort_handler — This is the default, prefetch-abort exception handler.*

• dabort_handler — This is the default, data-abort exception handler.*

• irq_handler — This is the default, IRQ-exception handler.*

• fiq_handler — This is the default, FIQ-exception handler.*

* Declared as a weak symbol to allow the user to override the implementation.

Note that ARM exception handlers must be written in ARM assembly code. The CPU or board support package of

the project you have created will typically supply an ARM assembly-coded irq_handler implementation that will

enable you to write interrupt service routines as C functions.

Cortex-M Target startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

CrossWorks for ARM Reference Manual CrossStudio User Guide

274

• _vectors — This is the exception vector table. It is put into its own .vectors section in order to ensure that

it is always placed at address 0x00000000.

The vector table is structured as follows:

• The first entry is the initial value of the stack pointer.

• The second entry is the address of the reset handler function. The reset handler will usually carry out any

target-specific initialization and then jump to the _start entry point. In a C system, the _start entry point

is in the crt0.s file. During development it is usual to replace this jump with an endless loop which will

stop the device running potentially dangerous in-development code directly out of reset.

• The following 15 entries are the addresses of the standard Cortex-M exception handlers ending with the

SysTick_ISR entry.

• Subsequent entries are addresses of device-specific interrupt sources and their associated handlers.

For each exception handler, a weak symbol is declared that will implement an endless loop. You can

implement your own exception handler as a regular C function. Note that the name of the C function

must match the name in the startup code e.g. void SysTick_ISR(void). You can use the C preprocessor to

rename the symbol in the startup code if you have existing code with different exception handler names e.g.

SysTick_ISR=SysTick_Handler.

CrossWorks for ARM Reference Manual CrossStudio User Guide

275

Startup code
The following section describes the role of the C runtime-startup code, crt0.s (and the Cortex-M3/Thumb-2

equivalent thumb_crt0.s).

When you create a new project to produce an executable file using a target-specific project template, the crt0.s

file is added to the project. Initially, a shared version of this file is added to the project. If you want to modify this

file, right-click it in the Project Explorer and then select Import from the shortcut menu to copy the file to your

project directory.

The entry point of the C runtime-startup code is _start. In a typical system, this will be called by the target-

specific startup code after it has initialized the target.

The C runtime carries out the following actions:

• Initialize the stacks.

• If required, copy the contents of the .data (initialized data) section from non-volatile memory.

• If required, copy the contents of the .fast section from non-volatile memory to SRAM.

• Initialize the .bss section to zero.

• Initialize the heap.

• Call constructors.

• If compiled with FULL_LIBRARY, get the command line from the host using debug_getargs and set

registers to supply argc and argv to main.

• Call the main entry point.

On return from main or when exit is called…

• If compiled with FULL_LIBRARY, call destructors.

• If compiled with FULL_LIBRARY, call atexit functions.

• If compiled with FULL_LIBRARY, call debug_exit while supplying the return result from main.

• Wait in exit loop.

Program sections

The following program sections are used for the C runtime in section-placement files:

Section name Description

.vectors The exception vector table.

.init Startup code that runs before the call to the
application's main function.

.ctors Static constructor function table.

.dtors Static destructor function table.

.text The program code.

.fast Code to copy from flash to RAM for fast execution.

CrossWorks for ARM Reference Manual CrossStudio User Guide

276

.data The initialized static data.

.bss The zeroed static data.

.rodata The read-only constants and literals of the program.

.ARM.exidx The C++ exception table.

Stacks

The ARM maintains six separate stacks. The position and size of these stacks are specified in the project's section-

placement or memory-map file by the following program sections:

Section name Linker size symbol Description

.stack __STACKSIZE__ System and User mode stack.

.stack_svc __STACKSIZE_SVC__ Supervisor mode stack

.stack_irq __STACKSIZE_IRQ__ IRQ mode stack

.stack_fiq __STACKSIZE_FIQ__ FIQ mode stack

.stack_abt __STACKSIZE_ABT__ Abort mode stack

.stack_und __STACKSIZE_UND__ Undefined mode stack

For Cortex-M devices the following stacks and linker symbol stack sizes are defined:

Section name Linker size symbol Description

.stack __STACKSIZE__ Main stack.

.stack_process __STACKSIZE_PROCESS__ Process stack.

The crt0.s startup code references these sections and initializes each of the stack-pointer registers to point to the

appropriate location. To change the location in memory of a particular stack, the section should be moved to the

required position in the section-placement or memory-map file.

Should your application not require one or more of these stacks, you can remove those sections from the

memory-map file or set the size to 0 and remove the initialization code from the crt0.s file.

The .data section

The .data section contains the initialized data. If the run address is different from the load address, as it would be

in a flash-based application in order to allow the program to run from reset, the crt0.s startup code will copy

the .data section from the load address to the run address before calling the main entry point.

The .fast section

For performance reasons, it is a common requirement for embedded systems to run critical code from fast

memory; the .fast section can be used to simplify this. If the .fast section's run address is different from the load

CrossWorks for ARM Reference Manual CrossStudio User Guide

277

address, the crt0.s startup code will copy the .fast section from the load address to the run address before

calling the main entry point.

The .bss Section

The .bss section contains the zero-initialized data. The startup code in crt0.s references the .bss section and

sets its contents to zero.

The heap

The position and size of the heap is specified in the project's section-placement or memory-map file by the

.heap program section.

The startup code in crt0.s references this section and initializes the heap. To change the position of the heap,

the section should be moved to the required position in the section-placement or memory-map file.

There is a Heap Size linker project property you can modify in order to alter the heap size. For compatibility with

earlier versions of CrossStudio, you can also specify the heap size using the heap section's Size property in the

section-placement or memory-map file.

Should your application not require the heap functions, you can remove the heap section from the memory-

map file or set the size to zero and remove the heap-initialization code from the crt0.s file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

278

memory-map files
CrossStudio's memory-map files are XML files and are used…

• Linking: …by the linker, to describe how to lay out a program in memory.

• Loading: …by the loader, to check whether a program being downloaded will actually fit into the target's

memory.

• Debugging: …by the debugger, to describe the location and types of memory a target has. This

information is used to decide how to debug the program—for example, whether to set hardware or

software breakpoints on particular memory location.

Section placement files map program sections used in your program into the memory spaces defined in the

memory map. For instance, it's common for code and read-only data to be programmed into non-volatile flash

memory, whereas read-write data needs to be mapped onto either internal or external RAM.

Memory map files are provided in the CPU support package you are using and are referenced in executable

projects by the Memory Map File project property. Section-placement files are provided in the base CrossWorks

distribution.

ARM section placement

The following placement files are supplied for ARM targets:

File Description

flash_placement.xml
Single FLASH segment with internal RAM segment and
optional external RAM segment.

flash_run_text_from_ram_placement.xml Single FLASH segment with internal RAM segment
and optional external RAM segments. Text section is
copied from FLASH to RAM.

internal_sram_placement.xml Single internal RAM segment.

flash_placement.xml Two FLASH segments with internal RAM segment and
optional external RAM segment.

internal_sram_placement.xml Internal RAM segment and optional external RAM
segment.

Cortex-M section placement

The following placement files are supplied for Cortex-M targets:

File Description

flash_placement.xml Two FLASH segments and two RAM segments.

flash_placement2.xml One FLASH segment and two RAM segments.

CrossWorks for ARM Reference Manual CrossStudio User Guide

279

flash_to_ram_placement.xml One FLASH segment and one RAM segment. Text
section is copied from FLASH to RAM.

ram_placement.xml Two RAM segments.

The memory segments defined in the section placement files have macro-expandable names which can be

defined using the Section Placement Macros project property.

Some of the section placement files have a macro-expandable start attribute in the first program section. You

can use this to reserve space at the beginning of the memory segment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

280

Project configurations
When you create a new project a default set of build configurations are created. These configurations vary

depending on the CPU support package you are using and the type of project you create.

Executable project types

For Executable projects, some CPU support packages include the memory configuration in the build

configuration. The following describes the default set of project configurations for this type of project:

Private configurations

Configuration name Description

ARM
Compile and assemble for ARM
instruction set. Link ARM version of
libraries.

THUMB Compile and assemble for Thumb
instruction set. Link Thumb version
of libraries.

Flash Load into, and run from, flash
memory.

RAM Load into, and run from, RAM.

Debug Compile and assemble with debug
information and with optimization
disabled.

Release Compile and assemble without
debug information and with
optimization enabled at level 1.

Public configurations

Configuration Name Inherited configurations

ARM Flash Debug ARM, Flash, Debug

ARM Flash Release ARM, Flash, Release

ARM RAM Debug ARM, RAM, Debug

ARM RAM Release ARM, RAM, Release

THUMB Flash Debug THUMB, Flash, Debug

THUMB Flash Release THUMB, Flash, Release

THUMB RAM Debug THUMB, RAM, Debug

THUMB RAM Release THUMB, RAM, Release

CrossWorks for ARM Reference Manual CrossStudio User Guide

281

For Executable project types with CPU support packages that do not specify the memory configuration in the

build configuration, you will project will have the following configurations:

Configuration Name Description

ARM Debug
Compile/assemble for ARM instruction set. Link ARM
version of libraries. Compile/assemble with debug
information and with optimization disabled.

ARM Release Compile/assemble for ARM instruction set. Link ARM
version of libraries. Compile/assemble without debug
information and with optimization enabled.

Thumb Debug Compile/assemble for Thumb instruction set. Link
Thumb version of libraries. Compile/assemble with
debug information and with optimization disabled.

Thumb Release Compile/assemble for Thumb instruction set. Link
Thumb version of libraries. Compile/assemble without
debug information and with optimization enabled.

The CPU support packages that create configurations which have no memory configuration will provide a

project Placement property that enables the memory configuration to be selected.

Note: Cortex-M CPU support packages will not create any ARM configurations.

Library project types

Crossworks for ARM provides two library project types with associated build configurations. The Static Library

project will create configurations based on combinations of ARM/THUMB and Debug/Release. When you have

created a library project of this form, you will need to set the required ARM architecture, byte order (endian) and

floating-point ABI project properties. The Static Library with Configurations project will create configurations

based on combinations of:

• ARM architecture.

• ARM vs THUMB.

• Byte order (endianness).

• Floating-point ABI.

• ABI type.

• Double as float.

• Optimization for speed vs size. Debug vs Release.

For example, V5TE VFP ARM LE SoftFP EABI Fast Debug is a configuration for a V5TE architecture device

with a VFP, ARM instruction set, little-endian byte order, soft floating point, EABI procedure calling, double is

supported, do speed optimization rather than size optimization, and include debug information.

The CPU support package you are using may support a library project type—in this case the project

configurations created will be based on combinations of ARM/THUMB and Debug/Release.

CrossWorks for ARM Reference Manual CrossStudio User Guide

282

Externally Built Executable project types

The set of build configurations created with Externally Built Executable project types will either match those

created for an Executable project types, or will have no build configurations created. The memory configuration

selected for debug will be specified by the build configuration, or if no build configurations are available, by the

value of the Placement project property.

CrossWorks for ARM Reference Manual CrossStudio User Guide

283

Target script file
The target-interface system uses CrossStudio's JavaScript (ECMAScript) interpreter to support board-specific and

target-specific behavior.

The main use for this is to support non-standard target and board reset schemes and to configure the target

after reset using the Reset Script and Loader Reset Script facilities, described later.

The target script system can also be used to carry out target-specific operations when the target interface

connects or disconnects, or when the debugger uses the Connect, Disconnect, Stop, and Run scripts, described

later.

In order to reduce script duplication, when the target interface runs a reset, attach, run, or stop script, it first

looks in the current active project for a file whose project property File Type is set to Reset Script. If a file of this

type is found, it will be loaded prior to executing the scripts; each of the scripts can then call functions defined in

this script file.

Attach script

The Attach Script property in the Target project-property group specifies the script to be executed when

the debugger first attaches to an application. This can be after a download or reset before the program is

run, or after an attach to a running application. The aim of the attach script is to carry out any target-specific

configuration before the debugger first attaches to the application being debugged.

See arm_target_script_TargetInterface for a description of the TargetInterface object the attach script uses to

access the target hardware.

Connect script

The Connect Script property in the Target project-property group specifies the script to be executed when the

user connects to the target interface.

See arm_target_script_TargetInterface for a description of the TargetInterface object the connect script uses

to access the target hardware.

Disconnect script

The Disconnect Script property of the Target project-property group specifies the script to be executed when

the user disconnects from the target interface.

See arm_target_script_TargetInterface for a description of the TargetInterface object the disconnect script

uses to access the target hardware.

CrossWorks for ARM Reference Manual CrossStudio User Guide

284

Loader reset script

The Loader Reset Script property in the Target project-property group specifies the script to be executed in

order to reset and configure the target prior to downloading a loader application. It does essentially the same

job as the Reset Script property, but it will be used only prior to downloading a loader application, thereby

allowing a loader to have a different reset script than the application. If this property is not defined, the script

defined by the Reset Script property will be used.

See arm_target_script_TargetInterface for a description of the TargetInterface object the loader reset script

uses to access the target hardware.

Reset script

The Reset Script property in the Target project-property group defines a script to execute in order to reset and

configure the target.

The aim of the reset script is to get the processor into a known state. When the script has executed, the

processor should be reset, stopped on the first instruction and configured appropriately.

As an example, the following script demonstrates the reset script for an Evaluator 7T target board with a

memory configuration that re-maps SRAM to start from 0x00000000. The Evaluator7T_Reset function

carries out the standard ARM reset and stops the processor prior to executing the first instruction. The

Evaluator7T_ResetWithRamAtZero function calls this reset function and then configures target memory

by accessing the configuration registers directly. See arm_target_script_TargetInterface for a description of the

TargetInterface object the reset script uses to access the target hardware.

function Evaluator7T_Reset()
{
 TargetInterface.setNSRST(0);
 TargetInterface.setICEBreakerBreakpoint(0, 0x00000000, 0xFFFFFFFF,
 0x00000000, 0xFFFFFFFF, 0x100, 0xF7);
 TargetInterface.setNSRST(1);
 TargetInterface.waitForDebugState(1000);
 TargetInterface.trst();
}

function Evaluator7T_ResetWithRamAtZero()
{
 Evaluator7T_Reset();

 /***
 * Register settings for the following memory configuration:
 *
 * +----------------------+
 * | ROMCON0 - 512K FLASH | 0x01800000 - 0x0187FFFF
 * +----------------------+
 * | ROMCON2 - 256K SRAM | 0x00040000 - 0x0007FFFF
 * +----------------------+
 * | ROMCON1 - 256K SRAM | 0x00000000 - 0x0003FFFF
 * +----------------------+
 *

CrossWorks for ARM Reference Manual CrossStudio User Guide

285

 ***/

 TargetInterface.pokeWord(0x03FF0000, 0x07FFFFA0); // SYSCFG
 TargetInterface.pokeWord(0x03FF3000, 0x00000000); // CLKCON
 TargetInterface.pokeWord(0x03FF3008, 0x00000000); // EXTACON0
 TargetInterface.pokeWord(0x03FF300C, 0x00000000); // EXTACON1
 TargetInterface.pokeWord(0x03FF3010, 0x0000003E); // EXTDBWIDTH
 TargetInterface.pokeWord(0x03FF3014, 0x18860030); // ROMCON0
 TargetInterface.pokeWord(0x03FF3018, 0x00400010); // ROMCON1
 TargetInterface.pokeWord(0x03FF301C, 0x00801010); // ROMCON2
 TargetInterface.pokeWord(0x03FF3020, 0x08018020); // ROMCON3
 TargetInterface.pokeWord(0x03FF3024, 0x0A020040); // ROMCON4
 TargetInterface.pokeWord(0x03FF3028, 0x0C028040); // ROMCON5
 TargetInterface.pokeWord(0x03FF302C, 0x00000000); // DRAMCON0
 TargetInterface.pokeWord(0x03FF3030, 0x00000000); // DRAMCON1
 TargetInterface.pokeWord(0x03FF3034, 0x00000000); // DRAMCON2
 TargetInterface.pokeWord(0x03FF3038, 0x00000000); // DRAMCON3
 TargetInterface.pokeWord(0x03FF303C, 0x9C218360); // REFEXTCON

Run script

The Run Script property in the Target Script Options project-property group is used to define a script to be

executed when the target enters run state. This can be when the application is run for the first time or when the

Debug > Go operation is carried out after the application has hit a breakpoint or was stopped using the Debug

> Break operation. The aim of the run script is to carry out any target-specific operations after the debugger has

finished accessing target memory. This can be useful, for example, to re-enable caches previously disabled by

the stop script.

See arm_target_script_TargetInterface for a description of the TargetInterface object the run script uses to

access the target hardware.

Stop script

The Stop Script property in the Target Script Options project-property groups is used to define a script that

is executed when the target enters debug/stopped state. This can be after the application hits a breakpoint or

when the Debug > Break operation is carried out. The aim of the stop script is to carry out any target-specific

operations before the debugger starts accessing target memory. This is particularly useful when debugging

applications that have caches enabled, because the script can disable and flush the caches, giving the debugger

access to the current memory state.

See arm_target_script_TargetInterface for a description of the TargetInterface object the stop script uses to

access the target hardware.

Debug Interface Reset Script

The Debug Interface Reset Script property held in the Target Script Options project property groups is used

to define a script that is executed when CrossWorks resets the debug interface. This should not affect the target

CrossWorks for ARM Reference Manual CrossStudio User Guide

286

processor and will be executed for example when the debugger attaches to a running target. Use this script if

you don't want Crossworks to execute a TRST to reset the JTAG TAP, for example if the device has a JTAG router.

See arm_target_script_TargetInterface for a description of the TargetInterface object which is used by the

debug interface reset script to access the target hardware.

TAP Reset Script

The TAP Reset Script property held in the Target Script Options project-property groups is used to define a

script that is executed when CrossWorks resets the JTAG connection when exploring the JTAG chain. This script

can be used to configure a JTAG router that would be reset when the standard TRST sequence is applied.

See arm_target_script_TargetInterface for a description of the TargetInterface object the TAP Reset Script uses

to access the target hardware.

CrossWorks for ARM Reference Manual CrossStudio User Guide

287

Program loading
CrossStudio for ARM supports flash programming (and subsequent debugging) by loading a program—the

loader executable, or loader—into the target's RAM and transmitting to it the data to be programmed.

The Loader File Path project property is part of a project's configuration. It specifies the location of the loader

executable to be used; if this property is defined, the loader executable will be downloaded and run on the

target prior to downloading the main application.

In addition, the Loader File Type project property must be specified. This tells CrossStudio how to communicate

with the loader. The various communication mechanisms available are explained in more detail later. The Load

File Type property may be set to one of the following:

• LIBMEM RPC Loader: Calls to LIBMEM library functions will be made directly, using a remote procedure call

mechanism.

• Comms Channel Loader: The ARM debug comms channel is used to communicate with the loader.

• Fast Comms Channel Loader: The ARM debug comms channel is used to communicate with the loader.

This scheme is significantly faster for downloading than Comms Channel Loader because it makes

the assumption that the loader is always ready to read data and therefore does not check the ARM

comms-channel status before sending data to it. This may not be suitable for all targets or loaders. If you

experience reliability problems when downloading and verifying programs while using this setting, try

reverting to the Comms Channel Loader.

• RAM Loader: The target's RAM is used to communicate with the loader.

To write your own loader programs, see LIBMEM loader library.

CrossWorks for ARM Reference Manual CrossStudio User Guide

288

Debug Capabilities
The particular debugging capabilities provided in CrossWorks for ARM depends upon the particular ARM device

being used. The following table summarizes the CrossStudio debug facilities available for each ARM device type:

ARM Debug
Architecture

Software
Breakpoints

Hardware
Breakpoints

Break on
Exception

Monitor Mode
Memory
Access

Debug I/O

ARM7

Unlimited
(1 hardware
breakpoint
used)

2 No Yes Stop CPU or
Monitor Mode

Stop CPU or
DCC

ARM9 Unlimited
(1 hardware
breakpoint
used on
ARM920T/
ARM922T)

2 Yes Yes Stop CPU or
Monitor Mode

Stop CPU or
DCC

ARM11 Unlimited 8 (6
instruction
and 2 data)

Yes No Stop CPU Stop CPU or
DCC

Cortex-M3 Unlimited Max. 12 (8
instruction, 4
data)

Yes No Real Time Stop CPU or
Real Time

Cortex-M1/M0 Unlimited Max. 6 (4
instruction, 2
data)

Yes No Real Time Stop CPU or
Real Time

Cortex-A/R Unlimited 8 (6
instruction
and 2 data)

Yes No Stop CPU Stop CPU or
DCC

XScale Unlimited 4 (2
instruction, 2
data)

Yes No Stop CPU Stop CPU

Common debug features

Single stepping is implemented by setting a hardware breakpoint on the next instruction that will execute in the

current execution thread. Therefore, you will not single step into a different thread of execution, unless code is

shared; and, if you have used all the hardware breakpoints, you won't be able to single step.

Software breakpoints are implemented by overwriting the instruction at the desired breakpoint address with

a breakpoint instruction. Restarting from a software breakpoint uses the built-in ARM simulator, unless the

instruction cannot be simulated, in which case the instruction is written back to memory and single stepped.

The project properties Read-only Software Breakpoints and Read-write Software Breakpoints control how

CrossWorks for ARM Reference Manual CrossStudio User Guide

289

software breakpoints are used in memory areas marked ReadOnly and ReadWrite in the current project's

memory-map file.

The project property Startup Completion Point is used to specify the address of a symbol that has a breakpoint

on it. When the startup completion point is hit, software breakpoints will be used and debug input/output will

be enabled. This enables you to debug an application that copies code into RAM on startup.

ARM7 and ARM9

These ARM devices provide two hardware-breakpoint units that can be configured as program or data

breakpoints.

There is no software-breakpoint instruction on ARM7TDMI, ARM720T, and ARM920T devices. To implement

software breakpoints, one of the hardware-breakpoint units is programmed to break on the execution of the

ARM opcode 0xdfffdfff or 0xdffedffe and, consequently, the Thumb opcode 0xdfff and 0xdffe.

Data breakpoints can only be set on ranges of aligned powers of 2. So char, short, and int/long variables can have

breakpoints set on them, but larger variables are unlikely to meet the requirement for aligned powers of 2. Data-

valued breakpoints such as count==3 are supported, as are masked data-valued breakpoints such as (x & 1)==1.

The hardware breakpoints can be chained together to allow breakpoint sequencing. When you are connected to

the target, use the breakpoint-edit dialog or the breakpoint properties to change the Action to Set Chain on the

first breakpoint, and change the Action of the second breakpoint to Stop (When Chain Set).

ARM9 devices have a vector-catch capability that can be set in the exceptions group of the Breakpoints window

to enable a breakpoint when an exception occurs.

The debug communication channel (DCC) can be used to implement debug I/O, which depends on the setting

of the DebugIO Implementation project property. Using the DCC to implement debug I/O enables interrupts to

be serviced during debug I/O.

The DCC is also used to implement communications with the debug handler, if the project property Use Debug

Handler is set. You can build the debug handler into your application by adding the file $(StudioDir)/

source/ARMDIDebugHandler.s to your project. When you have the debug handler in your project,

you can enable the project property Monitor Mode Debug to allow interrupts to be serviced when a

breakpoint is hit. To do this, you must set the prefetch and data-abort exception vectors to jump to the symbols

dbg_pabort_handler and dbg_dabort_handler, respectively. You can also enable the project property Monitor

Mode Memory, in which case CrossWorks will access memory using the debug handler when the application

is running. You must arrange for your application to call the function dbg_poll at regular intervals, which will

enable interrupts to be serviced while the debugger is accessing memory.

ARM11

These devices provide 6 hardware instruction breakpoints and 2 hardware data breakpoints. Data-valued

breakpoints are not supported.

CrossWorks for ARM Reference Manual CrossStudio User Guide

290

• Vector catching is supported

• Debug I/O is supported by stopping the CPU or the DCC.

• Memory access is supported by stopping the CPU.

• Monitor mode is not supported.

Cortex-M

Cortex-M devices have a variable number of instruction breakpoints and data breakpoints. Typically, Cortex-

M3 parts have six instruction breakpoints and four data breakpoints, Cortex-M1/M0 parts have four instruction

and two data breakpoints. Note that the instruction breakpoints work only on the internal code memory of the

Cortex-M devices. If you have external flash on your Cortex-M device and software breakpoints in flash aren't

supported, a data breakpoint is used, which will stop the processor after the instruction has executed.

Data breakpoints can only be set on ranges of aligned powers of 2. So char, short, and int/long variables can have

breakpoints set on them, but larger variables are unlikely to meet the requirement for aligned powers of 2. One

data-valued breakpoint, such as count==3, is optionally supported on some Cortex-M3 devices.

• Vector catching is supported.

• Debug I/O is supported by stopping the CPU or polling memory.

• The internal data and system memories and the external memories of Cortex-M devices can be accessed

without stopping the CPU. When accessing the internal code memory of Cortex-M devices, the CPU is

stopped.

• Monitor mode is not supported.

Cortex-A and Cortex-R

Cortex-A and Cortex-R devices provide six hardware instruction breakpoints and two hardware data breakpoints.

Data-valued breakpoints are not supported.

• Vector catching is supported.

• Debug I/O is supported by stopping the CPU or the DCC.

• Memory access is supported by stopping the CPU.

• Monitor mode is not supported.

XScale

XScale devices have two instruction breakpoints and two data breakpoints. The data breakpoints are supported

on int and long variables only.

• Vector catching is supported.

• Debug I/O is supported by stopping the CPU.

• Memory access is supported by stopping the CPU.

• Monitor mode is not supported.

CrossWorks for ARM Reference Manual CrossStudio User Guide

291

Trace Capabilities
The following tracing capabilities are supported in CrossStudio

• Instruction tracing using the simulator target interface.

• Instruction and data tracing on ARM7/ARM9 using ETMv1/ETB.

• Instruction tracing on Cortex-M using ETMv3/ETB.

• Instruction and data tracing on Cortex-A using ETMv3/ETB.

• Instruction tracing on Cortex-M0+ using MTB. Tracing is controlled by the CrossStudio debugger i.e.

tracing starts when a programs runs or restarts from a breakpoint and stops when the program stops on

a breakpoint. With ETM tracing it is also possible to start/stop tracing and to include/exclude functions

using trace breakpoints.

Trace output from the last run is displayed in the Trace window and instruction counts are accumulated in the

Execution Counts window for each each run of a debug session.

Simulator Tracing

The simulator maintains a list of the last N instructions that were executed or not executed if the condition failed.

The size of the list is specified using the simulator project property Instruction Trace Size.

ETM/ETB Tracing

For ARM7/ARM9 the ETB is assumed to follow the debug TAP on the JTAG scan chain. For Cortex-M/Cortex-A the

ETB will be identified by the CoreSight ROM table.

ETB tracing is selected by setting the target trace project property Trace Interface Type to be ETB before the

target interface is connected.

You can start and stop tracing with breakpoints by setting hardware breakpoints and specifying the breakpoint

action to be Trace Start and Trace Stop.

You can choose to include/exclude functions by setting hardware breakpoints on the functions and specifying

the breakpoint action to be Trace Include or Trace Exclude. Note that you cannot mix include and exclude

ranges.

With ETMv1 and ETMv3 you can trace specific data items by setting a data breakpoint and specifying the action

to be Trace Data.

For ETMv1 if you are tracing data then you should set the ETM Trace Port Size to be 8-bit or 16-bit.

MTB Tracing

For Cortex-M0+ you can enable MTB tracing by setting the target trace project property Trace Interface Type

to be MTB before the target interface is connected. You can specify the start and size of the trace buffer to use

using the MTB RAM Address and MTB RAM Size project properties.

CrossWorks for ARM Reference Manual CrossStudio User Guide

292

You can start and stop tracing with breakpoints by setting hardware breakpoints and specifying the breakpoint

action to be Trace Start and Trace Stop.

Configuring Hardware for Tracing

The script contained in the target trace project property Trace Initialize Script will be executed when debug

start or debug attach are selected. This script has the macro $(TraceInterfaceType) expanded with the value

of the Trace Interface Type target trace project property. The Board/CPU support package should provide an

implementation of this in the target script.

CrossWorks for ARM Reference Manual CrossStudio User Guide

293

Target interfaces
A target interface is a mechanism for communicating with, and controlling, a target. A target can be either a

physical hardware device or a software simulation of a device. CrossStudio has a Targets window for viewing

and manipulating target interfaces. For more information, see Targets window.

Before you can use a target interface, you must connect to it. You can only connect to one target interface at a

time. For more information, see Connecting to a target.

All target interfaces have a set of properties. The properties provide information on the connected target and

allow the target interface to be configured. For more information, see Viewing and editing target properties.

Target
Interface

ARM7 ARM9 ARM11 XScale
Cortex-M
(JTAG)

Cortex-M
(SWD)

Cortex-A/R

CrossConnect
for ARM

Yes Yes Yes Yes Yes Yes Yes

Generic
ARM Debug
Interface

Yes Yes No No Yes Yes No

Generic
FT2232
Device

Yes Yes Yes Yes Yes Yes Yes

Macraigor
Systems's
Wiggler for
ARM

Yes Yes Yes Yes Yes Yes Yes

Segger J-
Link

Yes Yes No No Yes Yes No

CrossStudio
ARM
Simulator

Yes Yes Yes Yes Yes Yes Yes

ST-Link No No No No Yes Yes No

ST-Link/V2 No No No No Yes Yes No

PandE UNIT
Interface
DLL

No No No No Yes No No

Kinetis
OSJTAG

No No No No Yes No No

Stellaris
ICDI

No No No No Yes No No

Note that the Amontec JTAGkey and Olimex ARM-USB-OCD are FT2232-based devices.

See Debug Capabilities for details about the debug support Crossworks provides for the various devices.

CrossWorks for ARM Reference Manual CrossStudio User Guide

294

Note that the Segger J-Link, ST-Link, and PandE UNIT Interface DLL target interfaces require other files that are

supplied by the vendor of the target interface.

The Segger J-Link target interface's J-Link DLL File property should point at the file JLinkARM.dll on

Windows and to JLinkARM.so on Linux. Go to http://www.segger.com/cms/jlink-software.html for the latest

downloads.

The ST-Link's ST-LINK DLL File property should point at the file STLinkUSBDriver.dll that is supplied in

the ST-Link Utility, found here:

http://www.st.com/internet/com/SOFTWARE_RESOURCES/TOOL/DEVICE_PROGRAMMER/um0892.zip

The PandE UNIT Interface DLL's File Path property should point to the file unit_ngs_arm.dll. Contact

Rowley Associates for the latest information on where to find this.

Do not copy the above files into the CrossWorks distribution—just reference the files where they have been

installed.

http://www.segger.com/cms/jlink-software.html
http://www.st.com/internet/com/SOFTWARE_RESOURCES/TOOL/DEVICE_PROGRAMMER/um0892.zip

CrossWorks for ARM Reference Manual CrossStudio User Guide

295

ARM Simulator target interface
The ARM Simulator target interface provides access to CrossStudio's ARM instruction set simulator (ISS). The ISS

simulates the ARM V4T, ARM V5TE, ARM V6-M, and ARM V7-M instruction sets, as defined in appropriate ARM

Architecture Reference Manuals. The ARM architecture, core type, and memory byte order to be simulated are

specified by the project's code-generation properties.

The instruction set simulator (ISS) supports MCR and MRC access to the 16 primary registers of the System

Control coprocessor (CP15), as defined in the ARM Architecture Reference Manual. The MMU is simulated,

but the cache is not. The ISS supports MCR and MRC access to the Debug Communication Channel (CP14), as

defined in the ARM7TDMI Technical Reference Manual. The ISS supports a limited subset of VFP instructions

(CP10 and CP11) that enables C programs that use the VFP to execute.

The ISS implements a three-word, instruction-prefetch buffer.

The memory system simulated by the ISS is implemented by the dynamic link library and associated parameter

defined in the project's simulator properties.

The ISS supports program loading and debugging with an unlimited number of breakpoints. The ISS supports

instruction tracing, execution counts, exception-vector trapping, and exception-vector triggering.

CrossWorks for ARM Reference Manual CrossStudio User Guide

296

CrossConnect Target Interface

Interface

Property Description

Information
interfaceInformation – String

Interface connection information.

Model
modelInformation – String

CrossConnect Model.

Serial Number
connectedSerialNumber – String

The serial number of the currently connected
CrossConnect.

Target Voltage
target_voltage – String

The target's JTAG reference voltage.

Version
interfaceVersion – String

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClocking – Enumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDivider – IntegerRange

The amount to divide the JTAG clock frequency.

Target

Property Description

Connection
Connection – String

The USB serial number of the CrossConnect to use.

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

297

Fast Memory Accesses
fastMemoryAccessesEnabled – Boolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeout – IntegerRange

The timeout period for memory accesses in
milliseconds.

Target Interface Type
tif – Enumeration

The target interface type.

CrossWorks for ARM Reference Manual CrossStudio User Guide

298

Segger J-Link Target Interface

J-Link
Property Description

DLL Version
 – String

The J-Link DLL version.

Enable Adaptive Clocking
adaptive – Enumeration

Adaptive clocking is enabled.

Firmware Version
 – String

The J-Link firmware version.

Hardware Version
 – String

The J-Link hardware version.

J-Link DLL File
JLinkARMDLLFileName – FileName

The file path of the JLinkARM.dll to use.

J-Link Script File
JLinkScriptFileName – FileName

The file path of the .JLinkScript to use.

Reset Type
resetType – IntegerRange

The reset strategy to use.

Show Log
showLog – Enumeration

Display the J-Link log messages.

Speed
speed – IntegerRange

The required JTAG/SWD clock frequency in kHz (0 to
auto-detect best possible).

Supply Power
supplyPower – Enumeration

The J-Link supplies power to the target.

Verify Read Operations
checkModeAfterRead – Enumeration

The CPU mode is checked after each read operation.

Target
Property Description

Current Speed
 – IntegerRange

The JTAG/SWD clock frequency the J-Link is currently
using.

Device Type
device_id – String

The detected type of the currently connected target
device.

Target Interface Type
tif – Enumeration

The target interface type.

Target Voltage
 – String

The target reference voltage.

CrossWorks for ARM Reference Manual CrossStudio User Guide

299

Olimex ARM-USB-OCD Target Interface

Interface

Property Description

Device Driver
deviceDriver – Enumeration

Specifies which device driver to use.

Serial Number
connectedSerialNumber – String

The serial number of the currently connected FT2232.

Use Serial Number
connectToSerialNumber – String

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

Version
interfaceVersion – String

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClocking – Enumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDivider – IntegerRange

The amount to divide the JTAG clock frequency.

nTRST Open Drain
trstOpenDrain – Boolean

Specifies whether the nTRST signal is open-drain or
push-pull.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

300

Fast Memory Accesses
fastMemoryAccessesEnabled – Boolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeout – IntegerRange

The timeout period for memory accesses in
milliseconds.

Target Interface Type
tif – Enumeration

The target interface type.

CrossWorks for ARM Reference Manual CrossStudio User Guide

301

Amontec JTAGkey Target Interface

Interface

Property Description

Device Driver
deviceDriver – Enumeration

Specifies which device driver to use.

Serial Number
connectedSerialNumber – String

The serial number of the currently connected FT2232.

Use Serial Number
connectToSerialNumber – String

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

Version
interfaceVersion – String

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClocking – Enumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDivider – IntegerRange

The amount to divide the JTAG clock frequency.

nSRST Open Drain
srstOpenDrain – Boolean

Specifies whether the nSRST signal is open-drain or
push-pull.

nTRST Open Drain
trstOpenDrain – Boolean

Specifies whether the nTRST signal is open-drain or
push-pull.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

302

Fast Memory Accesses
fastMemoryAccessesEnabled – Boolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeout – IntegerRange

The timeout period for memory accesses in
milliseconds.

Target Interface Type
tif – Enumeration

The target interface type.

CrossWorks for ARM Reference Manual CrossStudio User Guide

303

P&E UNIT Interface DLL Target Interface

P&E UNIT Interface DLL

Property Description

API Version
 – String

The API version of the P&E UNIT Interface DLL.

File Path
PandEMicroDriver – FileName

The file path of the unit_ngs_arm.dll to use.

Port
port – IntegerRange

The port number to connect to.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

304

ST-LINK Target Interface

ST-LINK

Property Description

Firmware Version
 – String

The Main, JTAG and SWIM firmware versions.

ST-LINK DLL File
STLinkUSBDriver – FileName

The file path of the STLinkUSBDriver.dll to use.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

Target Interface Type
tif – Enumeration

The target interface type.

Voltage
 – String

The target reference voltage.

CrossWorks for ARM Reference Manual CrossStudio User Guide

305

ST-LINK/V2 Target Interface

ST-LINK

Property Description

Firmware Version
 – String

The Main, JTAG and SWIM firmware versions.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

Target Interface Type
tif – Enumeration

The target interface type.

Voltage
 – String

The target reference voltage.

CrossWorks for ARM Reference Manual CrossStudio User Guide

306

Kinetis OSJTAG Target Interface

Kinetis OSJTAG

Property Description

Firmware Version
 – String

The Firmware version of the Kinetis OSJTAG.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

307

Stellaris ICDI Target Interface

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

308

Macraigor Wiggler (20 and 14 pin) Target Interface

Connection

Property Description

Parallel Port
portName – String

The parallel port connection to use to connect to
target.

Parallel Port Address
portAddress – String

The base address of the currently connected parallel
port.

Parallel Port Sharing
portSharing – Boolean

Specifies whether sharing of the parallel port with
other device drivers or programs is permitted.

Interface

Property Description

Version
interfaceVersion – String

The target interface version number.

JTAG

Property Description

Invert nSRST
invertNSRST – Boolean

Specify whether the nSRST signal should be inverted.

JTAG Clock Divider
jtagDivider – IntegerRange

The amount to divide the JTAG clock frequency.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

309

Fast Memory Accesses
fastMemoryAccessesEnabled – Boolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeout – IntegerRange

The timeout period for memory accesses in
milliseconds.

Target Interface Type
tif – Enumeration

The target interface type.

CrossWorks for ARM Reference Manual CrossStudio User Guide

310

Generic FT2232 Target Interface

FT2232 Pin Configuration
Property Description

Connected LED Inversion Mask
connectedLedXORMask – IntegerHex

Specifies the FT2232 output pin(s) to invert when
setting 'connected' LED.

Connected LED Mask
connectedLedMask – IntegerHex

Specifies the FT2232 output pin(s) to use for the
'connected' LED.

Output Pins
outputDirection – IntegerHex

Specifies the FT2232 pins that are to be configured for
output.

Output Value
outputValue – IntegerHex

Specifies the initial value of the FT2232 output pins on
connection.

Output Value 2
outputValue2 – IntegerHex

If non-zero the 2nd initial value of the FT2232 output
pins on connection.

Running LED Inversion Mask
runningLedXORMask – IntegerHex

Specifies the FT2232 output pin(s) to invert when
setting the 'running' LED.

Running LED Mask
runningLedMask – IntegerHex

Specifies the FT2232 output pin(s) to use for the
'running' LED

SWD Direction Inversion Mask
swdDirectionXORMask – IntegerHex

Specifies the FT2232 output pin(s) to invert to set serial
wire debug to output.

SWD Direction Mask
swdDirectionMask – IntegerHex

Specifies the FT2232 output pin(s) to use to set serial
wire debug to output.

SWD Enable Inversion Mask
swdEnableXORMask – IntegerHex

Specifies the FT2232 output pin(s) to invert when
enabling serial wire .

SWD Enable Mask
swdEnableMask – IntegerHex

Specifies the FT2232 output pin(s) to use when
enabling serial wire debug.

nSRST Inversion Mask
srstXORMask – IntegerHex

Specifies the FT2232 output pin(s) to invert when
setting the nSRST signal.

nSRST Mask
srstMask – IntegerHex

Specifies the FT2232 output pin(s) to use for the nSRST
signal.

nTRST Inversion Mask
trstXORMask – IntegerHex

Specifies the FT2232 output pin(s) to invert when
setting the nTRST signal.

nTRST Mask
trstMask – IntegerHex

Specifies the FT2232 output pin(s) to use for the nTRST
signal.

FT2232 USB
Property Description

CrossWorks for ARM Reference Manual CrossStudio User Guide

311

Channel
channel – Enumeration

Specifies the FT2232 channel to use

PID
usbPid – StringList

Specifies the USB product ID of the FT2232 device.

VID
usbVid – String

Specifies the USB vendor ID of the FT2232 device.

Interface

Property Description

Device Driver
deviceDriver – Enumeration

Specifies which device driver to use.

Serial Number
connectedSerialNumber – String

The serial number of the currently connected FT2232.

Use Serial Number
connectToSerialNumber – String

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

Version
interfaceVersion – String

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClocking – Enumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDivider – IntegerRange

The amount to divide the JTAG clock frequency.

Target

Property Description

Device Type
device_id – String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual CrossStudio User Guide

312

Fast Memory Accesses
fastMemoryAccessesEnabled – Boolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeout – IntegerRange

The timeout period for memory accesses in
milliseconds.

Target Interface Type
tif – Enumeration

The target interface type.

CrossWorks for ARM Reference Manual CrossStudio User Guide

313

Generic Target Interface

Generic

Property Description

Applicable Host OS
host – StringList

The names of host OS that are supported.

Generic DLL File
DLLFileName – FileName

The file path of the .dll to use.

CrossWorks for ARM Reference Manual CrossStudio User Guide

314

CrossWorks for ARM Reference Manual C Library User Guide

315

C Library User Guide
This section describes the library and how to use and customize it.

The libraries supplied with CrossWorks have all the support necessary for input and output using the standard C

functions printf and scanf, support for the assert function, both 32-bit and 64-bit floating point, and are capable

of being used in a multi-threaded environment. However, to use these facilities effectively you will need to

customize the low-level details of how to input and output characters, what to do when an assertion fails, how

to provide protection in a multithreaded environment, and how to use the available hardware to the best of its

ability.

CrossWorks for ARM Reference Manual C Library User Guide

316

Floating point
The CrossWorks C library uses IEEE floating point format as specified by the ISO 60559 standard with restrictions.

This library favors code size and execution speed above absolute precision. It is suitable for applications

that need to run quickly and not consume precious resources in limited environments. The library does not

implement features rarely used by simple applications: floating point exceptions, rounding modes, and

subnormals.

NaNs and infinities are supported and correctly generated. The only rounding mode supported is round-to-

nearest. Subnormals are always flushed to a correctly-signed zero. The mathematical functions use stable

approximations and do their best to cater ill-conditioned inputs.

CrossWorks for ARM Reference Manual C Library User Guide

317

Single and double precision
CrossWorks C allows you to choose whether the double data type uses the IEC 60559 32-bit or 64-bit format. The

following sections describe the details of why you would want to choose a 32-bit double rather than a 64-bit

double in many circumstances.

Why choose 32-bit doubles?

Many users are surprised when using float variables exclusively that sometimes their calculations are compiled

into code that calls for double arithmetic. They point out that the C standard allows float arithmetic to be carried

out only using float operations and not to automatically promote to the double data type of classic K&R C.

This is valid point. However, upon examination, even the simplest calculations can lead to double arithmetic.

Consider:

// Compute sin(2x)
float sin_two_x(float x)
{
 return sinf(2.0 * x);
}

This looks simple enough. We're using the sinf function which computes the sine of a float and returns a float

result. There appears to be no mention of a double anywhere, yet the compiler generates code that calls double

support routines—but why?

The answer is that the constant 2.0 is a double constant, not a float constant. That is enough to force the

compiler to convert both operands of the multiplication to double format, perform the multiplication in double

precision, and then convert the result back to float precision. To avoid this surprise, the code should have been

written:

// Compute sin(2x)
float sin_two_x(float x)
{
 return sinf(2.0F * x);
}

This uses a single precision floating-point constant 2.0F. It's all too easy to forget to correctly type your floating-

point constants, so if you compile your program with double meaning the same as float, you can forget all

about adding the 'F' suffix to your floating point constants.

As an aside, the C99 standard is very strict about the way that floating-point is implemented and the latitude the

compiler has to rearrange and manipulate expressions that have floating-point operands. The compiler cannot

second-guess user intention and use a number of useful mathematical identities and algebraic simplifications

because in the world of IEC 60559 arithmetic many algebraic identities, such as x * 1 = x, do not hold when x

takes one of the special values NaN, infinity, or negative zero.

CrossWorks for ARM Reference Manual C Library User Guide

318

More reasons to choose 32-bit doubles

Floating-point constants are not the only silent way that double creeps into your program. Consider this:

void write_results(float x)
{
 printf("After all that x=%f\\n", x);
}

Again, no mention of a double anywhere, but double support routines are now required. The reason is that ISO

C requires that float arguments are promoted to double when they are passed to the non-fixed part of variadic

functions such as printf. So, even though your application may never mention double, double arithmetic may

be required simply because you use printf or one of its near relatives.

If, however, you compile your code with 32-bit doubles, then there is no requirement to promote a float to a

double as they share the same internal format.

Why choose 64-bit doubles?

If your application requires very accurate floating-point, more precise than the seven decimal digits supported

by the float format, then you have little option but to use double arithmetic as there is no simple way to

increase the precision of the float format. The double format delivers approximately 15 decimal digits of

precision.

CrossWorks for ARM Reference Manual C Library User Guide

319

Multithreading
The CrossWorks libraries support multithreading, for example, where you are using CTL or a third-party real-time

operating system (RTOS).

Where you have single-threaded processes, there is a single flow of control. However, in multithreaded

applications there may be several flows of control which access the same functions, or the same resources,

concurrently. To protect the integrity of resources, any code you write for multithreaded applications must be

reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle

resources.

Reentrant functions

A reentrant function does not hold static data over successive calls and does not return a pointer to static data.

For this type of function, the caller provides all the data that the function requires, such as pointers to any

workspace. This means that multiple concurrent calls to the function do not interfere with each other, that the

function can be called in mainline code, and that the function can be called from an interrupt service routine.

Thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks. In C, local variables are

held in processor registers or are on the stack. Any function that does not use static data, or other shared

resources, is thread-safe. In general, thread-safe functions are safe to call from any thread but cannot be called

directly, or indirectly, from an interrupt service routine.

CrossWorks for ARM Reference Manual C Library User Guide

320

Thread safety in the CrossWorks library
In the CrossWorks C library:

• some functions are inherently thread-safe, for example strcmp.

• some functions, such as malloc, are not thread-safe by default but can be made thread-safe by

implementing appropriate lock functions.

• other functions are only thread-safe if passed appropriate arguments, for example tmpnam.

• some functions are never thread-safe, for example setlocale.

We define how the functions in the C library can be made thread-safe if needed. If you use a third-party library

in a multi-threaded system and combine it with the CrossWorks C library, you will need to ensure that the third-

party library can be made thread-safe in just the same way that the CrossWorks C library can be made thread-

safe.

CrossWorks for ARM Reference Manual C Library User Guide

321

Implementing mutual exclusion in the C library
The CrossWorks C library ships as standard with callouts to functions that provide thread-safety in a

multithreaded application. If your application has a single thread of execution, the default implementation of

these functions does nothing and your application will run without modification.

If your application is intended for a multithreaded environment and you wish to use the CrossWorks C library,

you must implement the following locking functions:

• __heap_lock and __heap_unlock to provide thread-safety for all heap operations such as malloc, free,

and realloc.

• __printf_lock and __printf_unlock to provide thread-safety for printf and relatives.

• __scanf_lock and __scanf_unlock to provide thread-safety for scanf and relatives.

• __debug_io_lock and __debug_io_unlock to provide thread-safety for semi-hosting support in the

CrossStudio I/O function.

If you create a CTL project using the New Project wizard, CrossWorks provides implementations of these using

CTL event sets. You're free to reimplement them as you see fit.

If you use a third-party RTOS with the CrossWorks C library, you will need to use whatever your RTOS provides for

mutual exclusion, typically a semaphore, a mutex, or an event set.

CrossWorks for ARM Reference Manual C Library User Guide

322

Input and output
The C library provides all the standard C functions for input and output except for the essential items of where to

output characters printed to stdout and where to read characters from stdin.

If you want to output to a UART, to an LCD, or input from a keyboard using the standard library print and scan

functions, you need to customize the low-level input and output functions.

CrossWorks for ARM Reference Manual C Library User Guide

323

Customizing putchar
To use the standard output functions putchar, puts, and printf, you need to customize the way that characters

are written to the standard output device. These output functions rely on a function __putchar that outputs a

character and returns an indication of whether it was successfully written.

The prototype for __putchar is

int __putchar(int ch);

Sending all output to the CrossStudio virtual terminal

You can send all output to the CrossStudio virtual terminal by supplying the following implementation of

the__putchar function in your code:

#include <__cross_studio_io.h>

int __putchar(int ch)
{
 return debug_putchar(ch);
}

This hands off output of the character ch to the low-level debug output routine, debug_putchar.

Whilst this is an adequate implementation of __putchar, it does consume stack space for an unnecessary nested

call and associated register saving. A better way of achieving the same result is to define the low-level symbol for

__putchar to be equivalent to the low-level symbol for debug_putchar. To do this, we need to instruct the linker

to make the symbols equivalent.

To do this using the HCC environment:

• Select the project node in the Project Explorer.

• Display the Properties Window.

• Enter the text -D___putchar=_debug_putchar into the Additional Options property of the Linker

Options group.

Note that there are three leading underscores in ___putchar and a single leading underscore in

_debug_putchar because the C compiler automatically prepends an underscore to all global symbols.

To do this using the GCC environment:

• Select the project node in the Project Explorer.

• Display the Properties Window.

• Enter the text __putchar=debug_putchar into the Linker > Linker Symbol Definitions property of

the Linker Options group.

CrossWorks for ARM Reference Manual C Library User Guide

324

Sending all output to another device

If you need to output to a physical device, such as a UART, the following notes will help you:

• If the character cannot be written for any reason, putchar must return EOF. Just because a character can't

be written immediately is not a reason to return EOF: you can busy-wait or tasking (if applicable) to wait

until the character is ready to be written.

• The higher layers of the library do not translate C's end of line character '\\n' before passing it to putchar.

If you are directing output to a serial line connected to a terminal, for instance, you will most likely need

to output a carriage return and line feed when given the character '\\n' (ASCII code 10).

The standard functions that perform input and output are the printf and scanf functions.These functions

convert between internal binary and external printable data. In some cases, though, you need to read and write

formatted data on other channels, such as other RS232 ports. This section shows how you can extend the I/O

library to best implement these function.

Classic custom printf-style output

Assume that we need to output formatted data to two UARTs, numbered 0 and 1, and we have a functions

uart0_putc and uart1_putc that do just that and whose prototypes are:

int uart0_putc(int ch, __printf_t *ctx);
int uart1_putc(int ch, __printf_t *ctx);

These functions return a positive value if there is no error outputting the character and EOF if there was an

error. The second parameter, ctx, is the context that the high-level formatting routines use to implement the C

standard library functions.

Using a classic implementation, you would use sprintf to format the string for output and then output it:

void uart0_printf(const char *fmt, ...)
{
 char buf[80], *p;
 va_list ap;
 va_start(ap, fmt);
 vsnprintf(buf, sizeof(buf), fmt, ap);
 for (p = buf; *p; ++p)
 uart0_putc(*p, 0); // null context
 va_end(ap);
}

We would, of course, need an identical routine for outputting to the other UART. This code is portable, but it

requires an intermediate buffer of 80 characters. On small systems, this is quite an overhead, so we could reduce

the buffer size to compensate. Of course, the trouble with that means that the maximum number of characters

that can be output by a single call to uart0_printf is also reduced. What would be good is a way to output

characters to one of the UARTs without requiring an intermediate buffer.

CrossWorks for ARM Reference Manual C Library User Guide

325

CrossWorks printf-style output

CrossWorks provides a solution for just this case by using some internal functions and data types in the

CrossWorks library. These functions and types are define in the header file <__vfprintf.h>.

The first thing to introduce is the __printf_t type which captures the current state and parameters of the format

conversion:

typedef struct __printf_tag
{
 size_t charcount;
 size_t maxchars;
 char *string;
 int (*output_fn)(int, struct __printf_tag *ctx);
} __printf_t;

This type is used by the library functions to direct what the formatting routines do with each character they need

to output. If string is non-zero, the character is appended is appended to the string pointed to by string; if

output_fn is non-zero, the character is output through the function output_fn with the context passed as the

second parameter.

The member charcount counts the number of characters currently output, and maxchars defines the maximum

number of characters output by the formatting routine __vfprintf.

We can use this type and function to rewrite uart0_printf:

int uart0_printf(const char *fmt, ...)
{
 int n;
 va_list ap;
 __printf_t iod;
 va_start(ap, fmt);
 iod.string = 0;
 iod.maxchars = INT_MAX;
 iod.output_fn = uart0_putc;
 n = __vfprintf(\&iod, fmt, ap);
 va_end(ap);
 return n;
}

This function has no intermediate buffer: when a character is ready to be output by the formatting routine, it

calls the output_fn function in the descriptor iod to output it immediately. The maximum number of characters

isn't limited as the maxchars member is set to INT_MAX. if you wanted to limit the number of characters output

you can simply set the maxchars member to the appropriate value before calling __vfprintf.

We can adapt this function to take a UART number as a parameter:

int uart_printf(int uart, const char *fmt, ...)
{
 int n;
 va_list ap;
 __printf_t iod;
 va_start(ap, fmt);

CrossWorks for ARM Reference Manual C Library User Guide

326

 iod.is_string = 0;
 iod.maxchars = INT_MAX;
 iod.output_fn = uart ? uart1_putc : uart0_putc;
 n = __vfprintf(\&iod, fmt, ap);
 va_end(ap);
 return n;
}

Now we can use:

uart_printf(0, "This is uart %d\n...", 0);
uart_printf(1, "..and this is uart %d\n", 1);

__vfprintf returns the actual number of characters printed, which you may wish to dispense with and make the

uart_printf routine return void.

Extending input functions

The formatted input functions would be implemented in the same manner as the output functions: read a

string into an intermediate buffer and parse using sscanf. However, we can use the low-level routines in the

CrossWorks library for formatted input without requiring the intermediate buffer.

The type __stream_scanf_t is:

typedef struct
{
 char is_string;
 int (*getc_fn)(void);
 int (*ungetc_fn)(int);
} __stream_scanf_t;

The function getc_fn reads a single character from the UART, and ungetc_fn pushes back a character to the

UART. You can push at most one character back onto the stream.

Here's an implementation of functions to read and write from a single UART:

static int uart0_ungot = EOF;

int uart0_getc(void)
{
 if (uart0_ungot)
 {
 int c = uart0_ungot;
 uart0_ungot = EOF;
 return c;
 }
 else
 return read_char_from_uart(0);
}

int uart0_ungetc{int c)
{
 uart0_ungot = c;
}

CrossWorks for ARM Reference Manual C Library User Guide

327

You can use these two functions to perform formatted input using the UART:

int uart0_scanf(const char *fmt, ...)
{
 __stream_scanf_t iod;
 va_list a;
 int n;
 va_start(a, fmt);
 iod.is_string = 0;
 iod.getc_fn = uart0_getc;
 iod.ungetc_fn = uart0_ungetc;
 n = __vfscanf((__scanf_t *)\&iod, (const unsigned char *)fmt, a);
 va_end(a);
 return n;
}

Using this template, we can add functions to do additional formatted input from other UARTs or devices, just as

we did for formatted output.

CrossWorks for ARM Reference Manual C Library User Guide

328

Complete API reference
This section contains a complete reference to the CrossWorks C library API.

File Description

<assert.h>
Describes the diagnostic facilities which you can build
into your application.

<cross_studio_io.h> Describes the virtual console services and semi-
hosting support that CrossStudio provides to help you
when developing your applications.

<ctype.h> Describes the character classification and
manipulation functions.

<errno.h> Describes the macros and error values returned by the
C library.

<float.h> Defines macros that expand to various limits and
parameters of the standard floating point types.

<intrinsics.h> Describes ARM-specific intrinsic functions.

<itm.h> Describes ITM access library functions.

<libarm.h> Describes ARM-specific library functions.

<limits.h> Describes the macros that define the extreme values of
underlying C types.

<locale.h> Describes support for localization specific settings.

<math.h> Describes the mathematical functions provided by the
C library.

<setjmp.h> Describes the non-local goto capabilities of the C
library.

<stdarg.h> Describes the way in which variable parameter lists are
accessed.

<stddef.h> Describes standard type definitions.

<stdio.h> Describes the formatted input and output functions.

<stdlib.h> Describes the general utility functions provided by the
C library.

<string.h> Describes the string handling functions provided by
the C library.

<time.h> Describes the functions to get and manipulate date
and time information provided by the C library.

<wchar.h> Describes the facilities you can use to manipulate wide
characters.

CrossWorks for ARM Reference Manual C Library User Guide

329

<assert.h>

API Summary

Macros

assert Allows you to place assertions and diagnostic tests into
programs

Functions

__assert User defined behaviour for the assert macro

CrossWorks for ARM Reference Manual C Library User Guide

330

__assert

Synopsis

void __assert(const char *expression,
 const char *filename,
 int line);

Description

There is no default implementation of __assert. Keeping __assert out of the library means that you can can

customize its behaviour without rebuilding the library. You must implement this function where expression

is the stringized expression, filename is the filename of the source file and line is the linenumber of the failed

assertion.

CrossWorks for ARM Reference Manual C Library User Guide

331

assert

Synopsis

#define assert(e) ..

Description

If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro is defined as:

#define assert(ignore) ((void)0)

If NDEBUG is not defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro expands to a void expression that calls __assert.

#define assert(e) ((e) ? (void)0 : __assert(#e, __FILE__, __LINE__))

When such an assert is executed and e is false, assert calls the __assert function with information about the

particular call that failed: the text of the argument, the name of the source file, and the source line number.

These are the stringized expression and the values of the preprocessing macros __FILE__ and __LINE__.

Note

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h> is included.

CrossWorks for ARM Reference Manual C Library User Guide

332

<cross_studio_io.h>

API Summary

File Functions

debug_clearerr Clear error indicator

debug_fclose Closes an open stream

debug_feof Check end of file condition

debug_ferror Check error indicator

debug_fflush Flushes buffered output

debug_fgetc Read a character from a stream

debug_fgetpos Return file position

debug_fgets Read a string

debug_filesize Return the size of a file

debug_fopen Opens a file on the host PC

debug_fprintf Formatted write

debug_fprintf_c Formatted write

debug_fputc Write a character

debug_fputs Write a string

debug_fread Read data

debug_freopen Reopens a file on the host PC

debug_fscanf Formatted read

debug_fscanf_c Formatted read

debug_fseek Set file position

debug_fsetpos Teturn file position

debug_ftell Return file position

debug_fwrite Write data

debug_remove Deletes a file on the host PC

debug_rename Renames a file on the host PC

debug_rewind Set file position to the beginning

debug_tmpfile Open a temporary file

debug_tmpnam Generate temporary filename

debug_ungetc Push a character

debug_vfprintf Formatted write

debug_vfscanf Formatted read

CrossWorks for ARM Reference Manual C Library User Guide

333

Debug Terminal Output Functions

debug_printf Formatted write

debug_printf_c Formatted write

debug_putchar Write a character

debug_puts Write a string

debug_vprintf Formatted write

Debug Terminal Input Functions

debug_getch Blocking character read

debug_getchar Line-buffered character read

debug_getd Line-buffered double read

debug_getf Line-buffered float read

debug_geti Line-buffered integer read

debug_getl Line-buffered long read

debug_getll Line-buffered long long read

debug_gets String read

debug_getu Line-buffered unsigned integer

debug_getul Line-buffered unsigned long read

debug_getull Line-buffered unsigned long long read

debug_kbhit Polled character read

debug_scanf Formatted read

debug_scanf_c Formatted read

debug_vscanf Formatted read

Debugger Functions

debug_abort Stop debugging

debug_break Stop target

debug_enabled Test if debug input/output is enabled

debug_exit Stop debugging

debug_getargs Get arguments

debug_loadsymbols Load debugging symbols

debug_runtime_error Stop and report error

debug_unloadsymbols Unload debugging symbols

Misc Functions

debug_getenv Get environment variable value

debug_perror Display error

debug_system Execute command

CrossWorks for ARM Reference Manual C Library User Guide

334

debug_time get time

CrossWorks for ARM Reference Manual C Library User Guide

335

debug_abort

Synopsis

void debug_abort(void);

Description

debug_abort causes the debugger to exit and a failure result is returned to the user.

CrossWorks for ARM Reference Manual C Library User Guide

336

debug_break

Synopsis

void debug_break(void);

Description

debug_break causes the debugger to stop the target and position the cursor at the line that called

debug_break.

CrossWorks for ARM Reference Manual C Library User Guide

337

debug_clearerr

Synopsis

void debug_clearerr(DEBUG_FILE *stream);

Description

debug_clearerr clears any error indicator or end of file condition for the stream.

CrossWorks for ARM Reference Manual C Library User Guide

338

debug_enabled

Synopsis

int debug_enabled(void);

Description

debug_enabled returns non-zero if the debugger is connected - you can use this to test if a debug input/output

functions will work.

CrossWorks for ARM Reference Manual C Library User Guide

339

debug_exit

Synopsis

void debug_exit(int result);

Description

debug_exit causes the debugger to exit and result is returned to the user.

CrossWorks for ARM Reference Manual C Library User Guide

340

debug_fclose

Synopsis

int debug_fclose(DEBUG_FILE *stream);

Description

debug_fclose flushes any buffered output of the stream and then closes the stream.

debug_fclose returns 0 on success or -1 if there was an error.

CrossWorks for ARM Reference Manual C Library User Guide

341

debug_feof

Synopsis

int debug_feof(DEBUG_FILE *stream);

Description

debug_feof returns non-zero if the end of file condition is set for the stream.

CrossWorks for ARM Reference Manual C Library User Guide

342

debug_ferror

Synopsis

int debug_ferror(DEBUG_FILE *stream);

Description

debug_ferror returns non-zero if the error indicator is set for the stream.

CrossWorks for ARM Reference Manual C Library User Guide

343

debug_fflush

Synopsis

int debug_fflush(DEBUG_FILE *stream);

Description

debug_fflush flushes any buffered output of the stream.

debug_fflush returns 0 on success or -1 if there was an error.

CrossWorks for ARM Reference Manual C Library User Guide

344

debug_fgetc

Synopsis

int debug_fgetc(DEBUG_FILE *stream);

Description

debug_fgetc reads and returns the next character on stream or -1 if no character is available.

CrossWorks for ARM Reference Manual C Library User Guide

345

debug_fgetpos

Synopsis

int debug_fgetpos(DEBUG_FILE *stream,
 long *pos);

Description

debug_fgetpos is equivalent to debug_fseek .

CrossWorks for ARM Reference Manual C Library User Guide

346

debug_fgets

Synopsis

char *debug_fgets(char *s,
 int n,
 DEBUG_FILE *stream);

Description

debug_fgets reads at most n-1 characters or the characters up to (and including) a newline from the input

stream into the array pointed to by s. A null character is written to the array after the input characters.

debug_fgets returns s on success, or 0 on error or end of file.

CrossWorks for ARM Reference Manual C Library User Guide

347

debug_filesize

Synopsis

int debug_filesize(DEBUG_FILE *stream);

Description

debug_filesize returns the size of the file associated with the stream in bytes.

debug_filesize returns -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

348

debug_fopen

Synopsis

DEBUG_FILE *debug_fopen(const char *filename,
 const char *mode);

Description

debug_fopen opens the filename on the host PC and returns a stream or 0 if the open fails. The filename is a

host PC filename which is opened relative to the debugger working directory. The mode is a string containing

one of:

• r open file for reading.

• w create file for writing.

• a open or create file for writing and position at the end of the file.

• r+ open file for reading and writing.

• w+ create file for reading and writing.

• a+ open or create text file for reading and writing and position at the end of the file.

followed by one of:

• t for a text file.

• b for a binary file.

debug_fopen returns a stream that can be used to access the file or 0 if the open fails.

CrossWorks for ARM Reference Manual C Library User Guide

349

debug_fprintf

Synopsis

int debug_fprintf(DEBUG_FILE *stream,
 const char *format,
 ...);

Description

debug_fprintf writes to stream, under control of the string pointed to by format that specifies how subsequent

arguments are converted for output. The format string is a standard C printf format string. The actual formatting

is performed on the host by the debugger and therefore debug_fprintf consumes only a very small amount of

code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

CrossWorks for ARM Reference Manual C Library User Guide

350

debug_fprintf_c

Synopsis

int debug_fprintf_c(DEBUG_FILE *stream,
 __code const char *format,
 ...);

Description

debug_fprintf_c is equivalent to debug_fprintf with the format string in code memory.

CrossWorks for ARM Reference Manual C Library User Guide

351

debug_fputc

Synopsis

int debug_fputc(int c,
 DEBUG_FILE *stream);

Description

debug_fputc writes the character c to the output stream.

debug_fputc returns the character written or -1 if an error occurred.

CrossWorks for ARM Reference Manual C Library User Guide

352

debug_fputs

Synopsis

int debug_fputs(const char *s,
 DEBUG_FILE *stream);

Description

debug_fputs writes the string pointed to by s to the output stream and appends a new-line character. The

terminating null character is not written.

debug_fputs returns -1 if a write error occurs; otherwise it returns a nonnegative value.

CrossWorks for ARM Reference Manual C Library User Guide

353

debug_fread

Synopsis

int debug_fread(void *ptr,
 int size,
 int nobj,
 DEBUG_FILE *stream);

Description

debug_fread reads from the input stream into the array ptr at most nobj objects of size size.

debug_fread returns the number of objects read. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

CrossWorks for ARM Reference Manual C Library User Guide

354

debug_freopen

Synopsis

DEBUG_FILE *debug_freopen(const char *filename,
 const char *mode,
 DEBUG_FILE *stream);

Description

debug_freopen is the same as debug_open except the file associated with the stream is closed and the opened

file is then associated with the stream.

CrossWorks for ARM Reference Manual C Library User Guide

355

debug_fscanf

Synopsis

int debug_fscanf(DEBUG_FILE *stream,
 const char *format,
 ...);

Description

debug_fscanf reads from the input stream, under control of the string pointed to by format, that specifies how

subsequent arguments are converted for input. The format string is a standard C scanf format string. The actual

formatting is performed on the host by the debugger and therefore debug_fscanf consumes only a very small

amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an output or encoding error occurred.

CrossWorks for ARM Reference Manual C Library User Guide

356

debug_fscanf_c

Synopsis

int debug_fscanf_c(DEBUG_FILE *stream,
 __code const char *format,
 ...);

Description

debug_fscanf_c is equivalent to debug_fscanf with the format string in code memory.

CrossWorks for ARM Reference Manual C Library User Guide

357

debug_fseek

Synopsis

int debug_fseek(DEBUG_FILE *stream,
 long offset,
 int origin);

Description

debug_fseek sets the file position for the stream. A subsequent read or write will access data at that position.

The origin can be one of:

• 0 sets the position to offset bytes from the beginning of the file.

• 1 sets the position to offset bytes relative to the current position.

• 2 sets the position to offset bytes from the end of the file.

Note that for text files offset must be zero. debug_fseek returns zero on success, non-zero on error.

CrossWorks for ARM Reference Manual C Library User Guide

358

debug_fsetpos

Synopsis

int debug_fsetpos(DEBUG_FILE *stream,
 const long *pos);

Description

debug_fsetpos is equivalent to debug_fseek with 0 as the origin.

CrossWorks for ARM Reference Manual C Library User Guide

359

debug_ftell

Synopsis

long debug_ftell(DEBUG_FILE *stream);

Description

debug_ftell returns the current file position of the stream.

debug_ftell returns -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

360

debug_fwrite

Synopsis

int debug_fwrite(void *ptr,
 int size,
 int nobj,
 DEBUG_FILE *stream);

Description

debug_fwrite write to the output stream from the array ptr at most nobj objects of size size.

debug_fwrite returns the number of objects written. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

CrossWorks for ARM Reference Manual C Library User Guide

361

debug_getargs

Synopsis

int debug_getargs(unsigned bufsize,
 unsigned char *buf);

Description

debug_getargs stores the debugger command line arguments into the memory pointed at by buf up to a

maximum of bufsize bytes. The command line is stored as a C argc array of null terminated string and the

number of entries is returned as the result.

CrossWorks for ARM Reference Manual C Library User Guide

362

debug_getch

Synopsis

int debug_getch(void);

Description

debug_getch reads one character from the Debug Terminal. This function will block until a character is

available.

CrossWorks for ARM Reference Manual C Library User Guide

363

debug_getchar

Synopsis

int debug_getchar(void);

Description

debug_getchar reads one character from the Debug Terminal. This function uses line input and will therefore

block until characters are available and ENTER has been pressed.

debug_getchar returns the character that has been read.

CrossWorks for ARM Reference Manual C Library User Guide

364

debug_getd

Synopsis

int debug_getd(double *);

Description

debug_getd reads a double from the Debug Terminal. The number is written to the double object pointed to

by d.

debug_getd returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

365

debug_getenv

Synopsis

char *debug_getenv(char *name);

Description

debug_getenv returns the value of the environment variable name or 0 if the environment variable cannot be

found.

CrossWorks for ARM Reference Manual C Library User Guide

366

debug_getf

Synopsis

int debug_getf(float *f);

Description

debug_getf reads an float from the Debug Terminal. The number is written to the float object pointed to by f.

debug_getf returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

367

debug_geti

Synopsis

int debug_geti(int *i);

Description

debug_geti reads an integer from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the integer object

pointed to by i.

debug_geti returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

368

debug_getl

Synopsis

int debug_getl(long *l);

Description

debug_getl reads a long from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by l.

debug_getl returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

369

debug_getll

Synopsis

int debug_getll(long long *ll);

Description

debug_getll reads a long long from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the long long object

pointed to by ll.

debug_getll returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

370

debug_gets

Synopsis

char *debug_gets(char *s);

Description

debug_gets reads a string from the Debug Terminal in memory pointed at by s. This function will block until

ENTER has been pressed.

debug_gets returns the value of s.

CrossWorks for ARM Reference Manual C Library User Guide

371

debug_getu

Synopsis

int debug_getu(unsigned *u);

Description

debug_getu reads an unsigned integer from the Debug Terminal. If the number starts with 0x it is interpreted

as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted

as a binary number, otherwise it is interpreted as a decimal number. The number is written to the unsigned

integer object pointed to by u.

debug_getu returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

372

debug_getul

Synopsis

int debug_getul(unsigned long *ul);

Description

debug_getul reads an unsigned long from the Debug Terminal. If the number starts with 0x it is interpreted as

a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted

as a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by ul.

debug_getul returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

373

debug_getull

Synopsis

int debug_getull(unsigned long long *ull);

Description

debug_getull reads an unsigned long long from the Debug Terminal. If the number starts with 0x it is

interpreted as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it

is interpreted as a binary number, otherwise it is interpreted as a decimal number. The number is written to the

long long object pointed to by ull.

debug_getull returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual C Library User Guide

374

debug_kbhit

Synopsis

int debug_kbhit(void);

Description

debug_kbhit polls the Debug Terminal for a character and returns a non-zero value if a character is available or 0

if not.

CrossWorks for ARM Reference Manual C Library User Guide

375

debug_loadsymbols

Synopsis

void debug_loadsymbols(const char *filename,
 const void *address,
 const char *breaksymbol);

Description

debug_loadsymbols instructs the debugger to load the debugging symbols in the file denoted by filename.

The filename is a (macro expanded) host PC filename which is relative to the debugger working directory. The

address is the load address which is required for debugging position independent executables, supply NULL for

regular executables. The breaksymbol is the name of a symbol in the filename to set a temporary breakpoint on

or NULL.

CrossWorks for ARM Reference Manual C Library User Guide

376

debug_perror

Synopsis

void debug_perror(const char *s);

Description

debug_perror displays the optional string s on the Debug Terminal together with a string corresponding to the

errno value of the last Debug IO operation.

CrossWorks for ARM Reference Manual C Library User Guide

377

debug_printf

Synopsis

int debug_printf(const char *format,
 ...);

Description

debug_printf writes to the Debug Terminal, under control of the string pointed to by format that specifies

how subsequent arguments are converted for output. The format string is a standard C printf format string. The

actual formatting is performed on the host by the debugger and therefore debug_printf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_printf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

CrossWorks for ARM Reference Manual C Library User Guide

378

debug_printf_c

Synopsis

int debug_printf_c(__code const char *format,
 ...);

Description

debug_printf_c is equivalent to debug_printf with the format string in code memory.

CrossWorks for ARM Reference Manual C Library User Guide

379

debug_putchar

Synopsis

int debug_putchar(int c);

Description

debug_putchar write the character c to the Debug Terminal.

debug_putchar returns the character written or -1 if a write error occurs.

CrossWorks for ARM Reference Manual C Library User Guide

380

debug_puts

Synopsis

int debug_puts(const char *);

Description

debug_puts writes the string s to the Debug Terminal followed by a new-line character.

debug_puts returns -1 if a write error occurs, otherwise it returns a nonnegative value.

CrossWorks for ARM Reference Manual C Library User Guide

381

debug_remove

Synopsis

int debug_remove(const char *filename);

Description

debug_remove removes the filename denoted by filename and returns 0 on success or -1 on error. The

filename is a host PC filename which is relative to the debugger working directory.

CrossWorks for ARM Reference Manual C Library User Guide

382

debug_rename

Synopsis

int debug_rename(const char *oldfilename,
 const char *newfilename);

Description

debug_rename renames the file denoted by oldpath to newpath and returns zero on success or non-zero on

error. The oldpath and newpath are host PC filenames which are relative to the debugger working directory.

CrossWorks for ARM Reference Manual C Library User Guide

383

debug_rewind

Synopsis

void debug_rewind(DEBUG_FILE *stream);

Description

debug_rewind sets the current file position of the stream to the beginning of the file and clears any error and

end of file conditions.

CrossWorks for ARM Reference Manual C Library User Guide

384

debug_runtime_error

Synopsis

void debug_runtime_error(const char *error);

Description

debug_runtime_error causes the debugger to stop the target, position the cursor at the line that called

debug_runtime_error, and display the null-terminated string pointed to by error.

CrossWorks for ARM Reference Manual C Library User Guide

385

debug_scanf

Synopsis

int debug_scanf(const char *format,
 ...);

Description

debug_scanf reads from the Debug Terminal, under control of the string pointed to by format that specifies

how subsequent arguments are converted for input. The format string is a standard C scanf format string. The

actual formatting is performed on the host by the debugger and therefore debug_scanf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_scanf returns number of characters read, or a negative value if an output or encoding error occurred.

CrossWorks for ARM Reference Manual C Library User Guide

386

debug_scanf_c

Synopsis

int debug_scanf_c(__code const char *format,
 ...);

Description

debug_scanf_c is equivalent to debug_scanf with the format string in code memory.

CrossWorks for ARM Reference Manual C Library User Guide

387

debug_system

Synopsis

int debug_system(char *command);

Description

debug_system executes the command with the host command line interpreter and returns the commands exit

status.

CrossWorks for ARM Reference Manual C Library User Guide

388

debug_time

Synopsis

unsigned long debug_time(unsigned long *ptr);

Description

debug_time returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated

universal time (UTC), according to the system clock of the host computer. The return value is stored in *ptr if ptr

is not NULL.

CrossWorks for ARM Reference Manual C Library User Guide

389

debug_tmpfile

Synopsis

DEBUG_FILE *debug_tmpfile(void);

Description

debug_tmpfile creates a temporary file on the host PC which is deleted when the stream is closed.

CrossWorks for ARM Reference Manual C Library User Guide

390

debug_tmpnam

Synopsis

char *debug_tmpnam(char *str);

Description

debug_tmpnam returns a unique temporary filename. If str is NULL then a static buffer is used to store the

filename, otherwise the filename is stored in str. On success a pointer to the string is returned, on failure 0 is

returned.

CrossWorks for ARM Reference Manual C Library User Guide

391

debug_ungetc

Synopsis

int debug_ungetc(int c,
 DEBUG_FILE *stream);

Description

debug_ungetc pushes the character c onto the input stream. If successful c is returned, otherwise -1 is returned.

CrossWorks for ARM Reference Manual C Library User Guide

392

debug_unloadsymbols

Synopsis

void debug_unloadsymbols(const char *filename);

Description

debug_unloadsymbols instructs the debugger to unload the debugging symbols (previously loaded by a call to

debug_loadsymbols) in the file denoted by filename. The filename is a host PC filename which is relative to the

debugger working directory.

CrossWorks for ARM Reference Manual C Library User Guide

393

debug_vfprintf

Synopsis

int debug_vfprintf(DEBUG_FILE *stream,
 const char *format,
 __va_list);

Description

debug_vfprintf is equivalent to debug_fprintf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual C Library User Guide

394

debug_vfscanf

Synopsis

int debug_vfscanf(DEBUG_FILE *stream,
 const char *format,
 __va_list);

Description

debug_vfscanf is equivalent to debug_fscanf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual C Library User Guide

395

debug_vprintf

Synopsis

int debug_vprintf(const char *format,
 __va_list);

Description

debug_vprintf is equivalent to debug_printf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual C Library User Guide

396

debug_vscanf

Synopsis

int debug_vscanf(const char *format,
 __va_list);

Description

debug_vscanf is equivalent to debug_scanf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual C Library User Guide

397

<ctype.h>

API Summary

Classification functions

isalnum Is character alphanumeric?

isalpha Is character alphabetic?

isblank Is character a space or horizontal tab?

iscntrl Is character a control character?

isdigit Is character a decimal digit?

isgraph Is character any printing character except space?

islower Is character a lowercase letter?

isprint Is character printable?

ispunct Is character a punctuation mark?

isspace Is character a whitespace character?

isupper Is character an uppercase letter?

isxdigit Is character a hexadecimal digit?

Conversion functions

tolower Convert uppercase character to lowercase

toupper Convert lowercase character to uppercase

CrossWorks for ARM Reference Manual C Library User Guide

398

isalnum

Synopsis

int isalnum(int c);

Description

isalnum returns nonzero (true) if and only if the value of the argument c is an alphabetic or numeric character.

CrossWorks for ARM Reference Manual C Library User Guide

399

isalpha

Synopsis

int isalpha(int c);

Description

isalpha returns nonzero (true) if and only if isupper or islower return true for value of the argument c.

CrossWorks for ARM Reference Manual C Library User Guide

400

isblank

Synopsis

int isblank(int c);

Description

isblank returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the

horizontal tab character ('\\t').

CrossWorks for ARM Reference Manual C Library User Guide

401

iscntrl

Synopsis

int iscntrl(int c);

Description

iscntrl returns nonzero (true) if and only if the value of the argument c is a control character. Control characters

have values 0 through 31 and the single value 127.

CrossWorks for ARM Reference Manual C Library User Guide

402

isdigit

Synopsis

int isdigit(int c);

Description

isdigit returns nonzero (true) if and only if the value of the argument c is a digit.

CrossWorks for ARM Reference Manual C Library User Guide

403

isgraph

Synopsis

int isgraph(int c);

Description

isgraph returns nonzero (true) if and only if the value of the argument c is any printing character except space ('

').

CrossWorks for ARM Reference Manual C Library User Guide

404

islower

Synopsis

int islower(int c);

Description

islower returns nonzero (true) if and only if the value of the argument c is an lowercase letter.

CrossWorks for ARM Reference Manual C Library User Guide

405

isprint

Synopsis

int isprint(int c);

Description

isprint returns nonzero (true) if and only if the value of the argument c is any printing character including space

(' ').

CrossWorks for ARM Reference Manual C Library User Guide

406

ispunct

Synopsis

int ispunct(int c);

Description

ispunct returns nonzero (true) for every printing character for which neither isspace nor isalnum is true.

CrossWorks for ARM Reference Manual C Library User Guide

407

isspace

Synopsis

int isspace(int c);

Description

isspace returns nonzero (true) if and only if the value of the argument c is a standard white-space character.

The standard white-space characters are space (' '), form feed ('\\f'), new-line ('\\n'), carriage return ('\

\r'), horizontal tab ('\\t'), and vertical tab ('\v').

CrossWorks for ARM Reference Manual C Library User Guide

408

isupper

Synopsis

int isupper(int c);

Description

isupper returns nonzero (true) if and only if the value of the argument c is an uppercase letter.

CrossWorks for ARM Reference Manual C Library User Guide

409

isxdigit

Synopsis

int isxdigit(int c);

Description

isxdigit returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit.

CrossWorks for ARM Reference Manual C Library User Guide

410

tolower

Synopsis

int tolower(int c);

Description

tolower converts an uppercase letter to a corresponding lowercase letter. If the argument c is a character for

which isupper is true, tolower returns the corresponding lowercase letter; otherwise, the argument is returned

unchanged.

CrossWorks for ARM Reference Manual C Library User Guide

411

toupper

Synopsis

int toupper(int c);

Description

toupper converts a lowercase letter to a corresponding uppercase letter. If the argument c is a character for

which islower is true, toupper returns the corresponding uppercase letter; otherwise, the argument is returned

unchanged.

CrossWorks for ARM Reference Manual C Library User Guide

412

<errno.h>

API Summary

Macros

errno Allows you to access the errno implementation

Error numbers

EDOM Domain error

EILSEQ Illegal byte sequence

ERANGE Result too large or too small

Functions

__errno User-defined behavior for the errno macro

CrossWorks for ARM Reference Manual C Library User Guide

413

EDOM

Synopsis

#define EDOM 0x01

Description

EDOM - an input argument is outside the defined domain of the mathematical function.

CrossWorks for ARM Reference Manual C Library User Guide

414

EILSEQ

Synopsis

#define EILSEQ 0x02

Description

EILSEQ - A wide-character code has been detected that does not correspond to a valid character, or a byte

sequence does not form a valid wide-character code.

CrossWorks for ARM Reference Manual C Library User Guide

415

ERANGE

Synopsis

#define ERANGE 0x03

Description

ERANGE - the result of the function is too large (overflow) or too small (underflow) to be represented in the

available space.

CrossWorks for ARM Reference Manual C Library User Guide

416

__errno

Synopsis

int *__errno(void);

Description

There is no default implementation of __errno. Keeping __errno out of the library means that you can can

customize its behavior without rebuilding the library. A default implementation could be

static int errno;

int *_errno(void) { return &errno; }

CrossWorks for ARM Reference Manual C Library User Guide

417

errno

Synopsis

#define errno (*__errno())

Description

errno macro expands to a function call to __errno that returns a pointer to an int. This function can be

implemented by the application to provide a thread specific errno.

The value of errno is zero at program startup, but is never set to zero by any library function. The value of errno

may be set to a nonzero value by a library function, and this effect is documented in each function that does so.

Note

The ISO standard does not specify whether errno is a macro or an identifier declared with external linkage.

Portable programs must not make assumptions about the implementation of errno.

CrossWorks for ARM Reference Manual C Library User Guide

418

<float.h>

API Summary

Double exponent minimum and maximum values

DBL_MAX_10_EXP The maximum exponent value in base 10 of a double

DBL_MAX_EXP The maximum exponent value of a double

DBL_MIN_10_EXP The minimal exponent value in base 10 of a double

DBL_MIN_EXP The minimal exponent value of a double

Implementation

DBL_DIG The number of digits of precision of a double

DBL_MANT_DIG The number of digits in a double

DECIMAL_DIG The number of decimal digits that can be rounded
without change

FLT_DIG The number of digits of precision of a float

FLT_EVAL_METHOD The evaluation format

FLT_MANT_DIG The number of digits in a float

FLT_RADIX The radix of the exponent representation

FLT_ROUNDS The rounding mode

Float exponent minimum and maximum values

FLT_MAX_10_EXP The maximum exponent value in base 10 of a float

FLT_MAX_EXP The maximum exponent value of a float

FLT_MIN_10_EXP The minimal exponent value in base 10 of a float

FLT_MIN_EXP The minimal exponent value of a float

Double minimum and maximum values

DBL_EPSILON The difference between 1 and the least value greater
than 1 of a double

DBL_MAX The maximum value of a double

DBL_MIN The minimal value of a double

Float minimum and maximum values

FLT_EPSILON The difference between 1 and the least value greater
than 1 of a float

FLT_MAX The maximum value of a float

FLT_MIN The minimal value of a float

CrossWorks for ARM Reference Manual C Library User Guide

419

DBL_DIG

Synopsis

#define DBL_DIG 15

Description

DBL_DIG specifies The number of digits of precision of a double.

CrossWorks for ARM Reference Manual C Library User Guide

420

DBL_EPSILON

Synopsis

#define DBL_EPSILON 2.2204460492503131E-16

Description

DBL_EPSILON the minimum positive number such that 1.0 + DBL_EPSILON != 1.0.

CrossWorks for ARM Reference Manual C Library User Guide

421

DBL_MANT_DIG

Synopsis

#define DBL_MANT_DIG 53

Description

DBL_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a double.

CrossWorks for ARM Reference Manual C Library User Guide

422

DBL_MAX

Synopsis

#define DBL_MAX 1.7976931348623157E+308

Description

DBL_MAX is the maximum value of a double.

CrossWorks for ARM Reference Manual C Library User Guide

423

DBL_MAX_10_EXP

Synopsis

#define DBL_MAX_10_EXP +308

Description

DBL_MAX_10_EXP is the maximum value in base 10 of the exponent part of a double.

CrossWorks for ARM Reference Manual C Library User Guide

424

DBL_MAX_EXP

Synopsis

#define DBL_MAX_EXP +1024

Description

DBL_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a double.

CrossWorks for ARM Reference Manual C Library User Guide

425

DBL_MIN

Synopsis

#define DBL_MIN 2.2250738585072014E-308

Description

DBL_MIN is the minimum value of a double.

CrossWorks for ARM Reference Manual C Library User Guide

426

DBL_MIN_10_EXP

Synopsis

#define DBL_MIN_10_EXP -307

Description

DBL_MIN_10_EXP is the minimum value in base 10 of the exponent part of a double.

CrossWorks for ARM Reference Manual C Library User Guide

427

DBL_MIN_EXP

Synopsis

#define DBL_MIN_EXP -1021

Description

DBL_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a double.

CrossWorks for ARM Reference Manual C Library User Guide

428

DECIMAL_DIG

Synopsis

#define DECIMAL_DIG 17

Description

DECIMAL_DIG specifies the number of decimal digits that can be rounded to a floating-point number without

change to the value.

CrossWorks for ARM Reference Manual C Library User Guide

429

FLT_DIG

Synopsis

#define FLT_DIG 6

Description

FLT_DIG specifies The number of digits of precision of a float.

CrossWorks for ARM Reference Manual C Library User Guide

430

FLT_EPSILON

Synopsis

#define FLT_EPSILON 1.19209290E-07F // decimal constant

Description

FLT_EPSILON the minimum positive number such that 1.0 + FLT_EPSILON != 1.0.

CrossWorks for ARM Reference Manual C Library User Guide

431

FLT_EVAL_METHOD

Synopsis

#define FLT_EVAL_METHOD 0

Description

FLT_EVAL_METHOD specifies that all operations and constants are evaluated to the range and precision of the

type.

CrossWorks for ARM Reference Manual C Library User Guide

432

FLT_MANT_DIG

Synopsis

#define FLT_MANT_DIG 24

Description

FLT_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a float.

CrossWorks for ARM Reference Manual C Library User Guide

433

FLT_MAX

Synopsis

#define FLT_MAX 3.40282347E+38F

Description

FLT_MAX is the maximum value of a float.

CrossWorks for ARM Reference Manual C Library User Guide

434

FLT_MAX_10_EXP

Synopsis

#define FLT_MAX_10_EXP +38

Description

FLT_MAX_10_EXP is the maximum value in base 10 of the exponent part of a float.

CrossWorks for ARM Reference Manual C Library User Guide

435

FLT_MAX_EXP

Synopsis

#define FLT_MAX_EXP +128

Description

FLT_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a float.

CrossWorks for ARM Reference Manual C Library User Guide

436

FLT_MIN

Synopsis

#define FLT_MIN 1.17549435E-38F

Description

FLT_MIN is the minimum value of a float.

CrossWorks for ARM Reference Manual C Library User Guide

437

FLT_MIN_10_EXP

Synopsis

#define FLT_MIN_10_EXP -37

Description

FLT_MIN_10_EXP is the minimum value in base 10 of the exponent part of a float.

CrossWorks for ARM Reference Manual C Library User Guide

438

FLT_MIN_EXP

Synopsis

#define FLT_MIN_EXP -125

Description

FLT_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a float.

CrossWorks for ARM Reference Manual C Library User Guide

439

FLT_RADIX

Synopsis

#define FLT_RADIX 2

Description

FLT_RADIX specifies the radix of the exponent representation.

CrossWorks for ARM Reference Manual C Library User Guide

440

FLT_ROUNDS

Synopsis

#define FLT_ROUNDS 1

Description

FLT_ROUNDS specifies the rounding mode of floating-point addition is round to nearest.

CrossWorks for ARM Reference Manual C Library User Guide

441

<intrinsics.h>

API Summary

Misc Intrinsics

__breakpoint BKPT instruction

__clrex CLREX instruction

__clz CLZ instruction

__dbg DBG instruction

__dmb DMB instruction

__dsb DSB instruction

__isb ISB instruction

__nop NOP instruction

__pld PLD instruction

__pli PLI instruction

__sev SEV instruction

__swp SWP instruction

__swpb SWPB instruction

__wfe WFE instruction

__wfi WFI instruction

__yield YIELD instruction

Coprocessor Intrinsics

__cdp CDP instruction

__cdp2 CDP2 instruction

__ldc LDC instruction

__ldc2 LDC2 instruction

__ldc2_noidx LDC2 instruction

__ldc2l LDC2L instruction

__ldc2l_noidx LDC2L instruction

__ldc_noidx LDC instruction

__ldcl LDCL instruction

__ldcl_noidx LDCL instruction

__mcr MCR instruction

__mcr2 MCR2 instruction

__mcrr MCRR instruction

CrossWorks for ARM Reference Manual C Library User Guide

442

__mcrr2 MCRR2 instruction

__mrc MRC instruction

__mrc2 MRC2 instruction

__mrrc MRRC instruction

__mrrc2 MRRC2 instruction

__stc STC instruction

__stc2 STC2 instruction

__stc2l STC2L instruction

__stc_noidx STC2L instruction

__stcl STCL instruction

Interrupt Intrinsics

__disable_fiq Disable FIQ interrupts

__disable_interrupt Disable interrupt

__disable_irq Disable IRQ interrupts

__enable_fiq Enable FIQ interrupts

__enable_interrupt Enable interrupt

__enable_irq Enable IRQ interrupts

VFP Intrinsics

__fabs VABS.F64 instruction

__fabsf VABS.F32 instruction

__sqrt VSQRT.F64 instruction

__sqrtf VQSRT.F32 instruction

Register Intrinsics

__get_APSR Get APSR value

__get_BASEPRI Get BASEPRI register value

__get_CONTROL Get CONTROL register value

__get_CPSR Get CPSR value

__get_FAULTMASK Get FAULTMASK register value

__get_PRIMASK Get PRIMASK register value

__set_APSR Set APSR value

__set_BASEPRI Set BASEPRI register value

__set_CONTROL Set CONTROL register value

__set_CPSR Set CPSR value

__set_FAULTMASK Set FAULTMASK register value

__set_PRIMASK Set PRIMASK register value

CrossWorks for ARM Reference Manual C Library User Guide

443

Load/Store Intrinsics

__ldrbt LDRBT instruction

__ldrex LDREX instruction

__ldrexb LDREXB instruction

__ldrexd LDREXD instruction

__ldrexh LDREXH instruction

__ldrht LDRHT instruction

__ldrsbt LDRSBT instruction

__ldrsht LDRSHT instruction

__ldrt LDRT instruction

__strbt STRBT instruction

__strex STREX instruction

__strexb STREXB instruction

__strexd STREXD instruction

__strexh STREXH instruction

__strht STRHT instruction

__strt STRT instruction

DSP & SIMD Intrinsics

__qadd QADD instruction

__qadd16 QADD16 instruction

__qadd8 QADD8 instruction

__qasx QASX instruction

__qdadd QDADD instruction

__qdbl QDBL instruction

__qdsub QDSUB instruction

__qflag Get Q flag value

__qsax QSAX instruction

__qsub QSUB instruction

__qsub16 QSUB16 instruction

__qsub8 QSUB8 instruction

__sadd16 SADD16 instruction

__sadd8 SADD8 instruction

__sasx SASX instruction

__sel SEL instruction

__shadd16 SHADD16 instruction

CrossWorks for ARM Reference Manual C Library User Guide

444

__shadd8 SHADD8 instruction

__shasx SHASX instruction

__shsax SHSAX instruction

__shsub16 SHSUB16 instruction

__shsub8 SHSUB8 instruction

__smlabb SMLABB instruction

__smlabt SMLABT instruction

__smlad SMLAD instruction

__smladx SMLADX instruction

__smlalbb SMLALBB instruction

__smlalbt SMLALBT instruction

__smlald SMLALD instruction

__smlaldx SMLALDX instruction

__smlaltb SMLALTB instruction

__smlaltt SMLALTT instruction

__smlatb SMLATB instruction

__smlatt SMLATT instruction

__smlawb SMLAWB instruction

__smlawt SMLAWT instruction

__smlsd SMLSD instruction

__smlsdx SMLSDX instruction

__smlsld SMLSLD instruction

__smlsldx SMLSLDX instruction

__smuad SMUAD instruction

__smuadx SMUADX instruction

__smulbb SMULBB instruction

__smulbt SMULBT instruction

__smultb SMULTB instruction

__smultt SMULTT instruction

__smulwb SMULWB instruction

__smulwt SMULWT instruction

__smusd SMUSD instruction

__smusdx SMUSDX instruction

__ssat SSAT instruction

__ssat16 SSAT16 instruction

CrossWorks for ARM Reference Manual C Library User Guide

445

__ssax SSAX instruction

__ssub16 SSUB16 instruction

__ssub8 SSUB8 instruction

__sxtab16 SXTAB16 instruction

__sxtb16 SXTB16 instruction

__uadd16 UADD16 instruction

__uadd8 UADD8 instruction

__uasx UASX instruction

__uhadd16 UHADD16 instruction

__uhadd8 UHADD8 instruction

__uhasx UHASX instruction

__uhsax UHSAX instruction

__uhsub16 UHSUB16 instruction

__uhsub8 UHSUB8 instruction

__uqadd16 UQADD16 instruction

__uqadd8 UQADD8 instruction

__uqasx UQASX instruction

__uqsax UQSAX instruction

__uqsub16 USUB16 instruction

__uqsub8 UQSUB8 instruction

__usad8 USAD8 instruction

__usad8a USADA8 instruction

__usat USAT instruction

__usat16 USAT16 instruction

__usax USAX instruction

__usub8 USUB8 instruction

__uxtab16 UXTAB16 instruction

__uxtb16 UXTB16 instruction

Reversing Intrinsics

__rbit RBIT instruction

__rev REV instruction

__rev16 REV16 instruction

__revsh REVSH instruction

CrossWorks for ARM Reference Manual C Library User Guide

446

__breakpoint

Synopsis

void __breakpoint(unsigned val);

Description

__breakpoint inserts a BKPT instruction where val is a compile time constant.

CrossWorks for ARM Reference Manual C Library User Guide

447

__cdp

Synopsis

void __cdp(unsigned coproc,
 unsigned opc1,
 unsigned crd,
 unsigned crn,
 unsigned crm,
 unsigned opc2);

Description

__cdp inserts a CDP instruction. All arguments are compile time constants.

CrossWorks for ARM Reference Manual C Library User Guide

448

__cdp2

Synopsis

void __cdp2(unsigned coproc,
 unsigned opc1,
 unsigned crd,
 unsigned crn,
 unsigned crm,
 unsigned opc2);

Description

__cdp2 inserts a CDP2 instruction. All arguments are compile time constants.

CrossWorks for ARM Reference Manual C Library User Guide

449

__clrex

Synopsis

void __clrex(void);

Description

__clrex inserts a CLREX instruction.

CrossWorks for ARM Reference Manual C Library User Guide

450

__clz

Synopsis

unsigned char __clz(unsigned val);

Description

__clz returns the number of leading zeros in val.

CrossWorks for ARM Reference Manual C Library User Guide

451

__dbg

Synopsis

void __dbg(unsigned option);

Description

__dbg inserts a DBG instruction where option is a compile time constant.

CrossWorks for ARM Reference Manual C Library User Guide

452

__disable_fiq

Synopsis

int __disable_fiq(void);

Description

__disable_fiq sets the F bit in the CPSR and returns the previous F bit value.

CrossWorks for ARM Reference Manual C Library User Guide

453

__disable_interrupt

Synopsis

void __disable_interrupt(void);

Description

__disable_interrupt set the PRIMASK for Cortex-M parts and sets the I and F bit in the CPSR for ARM parts.

CrossWorks for ARM Reference Manual C Library User Guide

454

__disable_irq

Synopsis

int __disable_irq(void);

Description

__disable_irq sets the I bit in the CPSR and returns the previous I bit value.

CrossWorks for ARM Reference Manual C Library User Guide

455

__dmb

Synopsis

void __dmb(void);

Description

__dmb inserts a DMB instruction.

CrossWorks for ARM Reference Manual C Library User Guide

456

__dsb

Synopsis

void __dsb(void);

Description

__dsb inserts a DSB instruction.

CrossWorks for ARM Reference Manual C Library User Guide

457

__enable_fiq

Synopsis

void __enable_fiq(void);

Description

__enable_fiq clears the F bit in the CPSR.

CrossWorks for ARM Reference Manual C Library User Guide

458

__enable_interrupt

Synopsis

void __enable_interrupt(void);

Description

__enable_interrupt clears the PRIMASK for Cortex-M parts and clears the I and F bit in the CPSR for ARM parts.

CrossWorks for ARM Reference Manual C Library User Guide

459

__enable_irq

Synopsis

void __enable_irq(void);

Description

__enable_irq clears the I bit in the CPSR.

CrossWorks for ARM Reference Manual C Library User Guide

460

__fabs

Synopsis

double __fabs(double val);

Description

__fabs inserts a VABS.F64 instruction. Returns the absolute value of val.

CrossWorks for ARM Reference Manual C Library User Guide

461

__fabsf

Synopsis

float __fabsf(float val);

Description

__fabsf inserts a VABS.F32 instruction. Returns the absolute value of val.

CrossWorks for ARM Reference Manual C Library User Guide

462

__get_APSR

Synopsis

unsigned __get_APSR(void);

Description

__get_APSR returns the value of the APSR/CPSR for Cortex-M/ARM parts.

CrossWorks for ARM Reference Manual C Library User Guide

463

__get_BASEPRI

Synopsis

unsigned __get_BASEPRI(void);

Description

__get_BASEPRI returns the value of the Cortex-M3/M4 BASEPRI register.

CrossWorks for ARM Reference Manual C Library User Guide

464

__get_CONTROL

Synopsis

unsigned __get_CONTROL(void);

Description

__get_CONTROL returns the value of the Cortex-M CONTROL register.

CrossWorks for ARM Reference Manual C Library User Guide

465

__get_CPSR

Synopsis

unsigned __get_CPSR(void);

Description

__get_CPSR returns the value of the ARM CPSR register.

CrossWorks for ARM Reference Manual C Library User Guide

466

__get_FAULTMASK

Synopsis

unsigned __get_FAULTMASK(void);

Description

__get_FAULTMASK returns the value of the Cortex-M3/M4 FAULTMASK register.

CrossWorks for ARM Reference Manual C Library User Guide

467

__get_PRIMASK

Synopsis

unsigned __get_PRIMASK(void);

Description

__get_PRIMASK returns the value of the Cortex-M PRIMASK register.

CrossWorks for ARM Reference Manual C Library User Guide

468

__isb

Synopsis

void __isb(void);

Description

__isb inserts a ISB instruction.

CrossWorks for ARM Reference Manual C Library User Guide

469

__ldc

Synopsis

void __ldc(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldc inserts a LDC instruction where coproc and Crd are compile time constants and ptr points to the word of

data to load.

CrossWorks for ARM Reference Manual C Library User Guide

470

__ldc2

Synopsis

void __ldc2(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldc2 inserts a LDC2 instruction where coproc and Crd are compile time constants and ptr points to the word

of data to load.

CrossWorks for ARM Reference Manual C Library User Guide

471

__ldc2_noidx

Synopsis

void __ldc2_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldc2_noidx inserts a LDC2 instruction where coproc, Crd and option are compile time constants and ptr

points to the word of data to load.

CrossWorks for ARM Reference Manual C Library User Guide

472

__ldc2l

Synopsis

void __ldc2l(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldc2l inserts a LDC2L instruction where coproc and Crd are compile time constants and ptr points to the word

of data to load.

CrossWorks for ARM Reference Manual C Library User Guide

473

__ldc2l_noidx

Synopsis

void __ldc2l_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldc2l_noidx inserts a LDC2L instruction where coproc, Crd and option are compile time constants and ptr

points to the word of data to load.

CrossWorks for ARM Reference Manual C Library User Guide

474

__ldc_noidx

Synopsis

void __ldc_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldc_noidx inserts a LDC instruction where coproc, Crd and option are compile time constants and ptr points

to the word of data to load.

CrossWorks for ARM Reference Manual C Library User Guide

475

__ldcl

Synopsis

void __ldcl(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldcl inserts a LDCL instruction where coproc and Crd are compile time constants and ptr points to the word of

data to load.

CrossWorks for ARM Reference Manual C Library User Guide

476

__ldcl_noidx

Synopsis

void __ldcl_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldcl_noidx inserts a LDCL instruction where coproc, Crd and option are compile time constants and ptr points

to the word of data to load.

CrossWorks for ARM Reference Manual C Library User Guide

477

__ldrbt

Synopsis

unsigned __ldrbt(unsigned char *ptr);

Description

__ldrbt inserts a LDRBT instruction. Returns the byte of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

478

__ldrex

Synopsis

unsigned __ldrex(unsigned *ptr);

Description

__ldrex inserts a LDREX instruction. Returns the word of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

479

__ldrexb

Synopsis

unsigned __ldrexb(unsigned char *ptr);

Description

__ldrexb inserts a LDREXB instruction. Returns the byte of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

480

__ldrexd

Synopsis

unsigned long long __ldrexd(unsigned long long *ptr);

Description

__ldrexd inserts a LDREXD instruction. Returns the double word of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

481

__ldrexh

Synopsis

unsigned __ldrexh(unsigned short *ptr);

Description

__ldrexh inserts a LDREXH instruction. Returns the half word of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

482

__ldrht

Synopsis

unsigned __ldrht(unsigned short *ptr);

Description

__ldrht inserts a LDRHT instruction. Returns the half word of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

483

__ldrsbt

Synopsis

unsigned __ldrsbt(signed char *ptr);

Description

__ldrsbt inserts a LDRSBT instruction. Returns the sign extended byte of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

484

__ldrsht

Synopsis

unsigned __ldrsht(short *ptr);

Description

__ldrsht inserts a LDRSHT instruction. Returns the sign extended half word of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

485

__ldrt

Synopsis

unsigned __ldrt(unsigned *ptr);

Description

__ldrt inserts a LDRT instruction. Returns the word of data at memory address ptr.

CrossWorks for ARM Reference Manual C Library User Guide

486

__mcr

Synopsis

void __mcr(unsigned coproc,
 unsigned opc1,
 unsigned src,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mcr inserts a MCR instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants and src is

the value to write.

CrossWorks for ARM Reference Manual C Library User Guide

487

__mcr2

Synopsis

void __mcr2(unsigned coproc,
 unsigned opc1,
 unsigned src,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mcr2 inserts a MCR2 instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants and src

is the value to write.

CrossWorks for ARM Reference Manual C Library User Guide

488

__mcrr

Synopsis

void __mcrr(unsigned coproc,
 unsigned opc1,
 unsigned src1,
 unsigned src2,
 unsigned CRn);

Description

__mcrr inserts a MCRR instruction. Where coproc, opc1 and Crn are compile time constants and src1, src2 are

the values to write.

CrossWorks for ARM Reference Manual C Library User Guide

489

__mcrr2

Synopsis

void __mcrr2(unsigned coproc,
 unsigned opc1,
 unsigned src1,
 unsigned src2,
 unsigned CRn);

Description

__mcrr2 inserts a MCRR2 instruction. Where coproc, opc1 and Crn are compile time constants and src1, src2 are

the values to write.

CrossWorks for ARM Reference Manual C Library User Guide

490

__mrc

Synopsis

unsigned __mrc(unsigned coproc,
 unsigned opc1,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mrc inserts a MRC instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants. __mrc

returns the value read.

CrossWorks for ARM Reference Manual C Library User Guide

491

__mrc2

Synopsis

unsigned __mrc2(unsigned coproc,
 unsigned opc1,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mrc2 inserts a MRC2 instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants. __mrc2

returns the value read.

CrossWorks for ARM Reference Manual C Library User Guide

492

__mrrc

Synopsis

void __mrrc(unsigned coproc,
 unsigned opc1,
 unsigned *dst1,
 unsigned *dst2,
 unsigned CRn);

Description

__mrrc inserts a MRRC instruction. Where coproc, opc1 and Crn are compile time constants and dst1, dst2 are

the values read.

CrossWorks for ARM Reference Manual C Library User Guide

493

__mrrc2

Synopsis

void __mrrc2(unsigned coproc,
 unsigned opc1,
 unsigned *dst1,
 unsigned *dst2,
 unsigned CRn);

Description

__mrrc2 inserts a MRRC2 instruction. Where coproc, opc1 and Crn are compile time constants and dst1, dst2 are

the values read.

CrossWorks for ARM Reference Manual C Library User Guide

494

__nop

Synopsis

void __nop(void);

Description

__nop inserts a NOP instruction.

CrossWorks for ARM Reference Manual C Library User Guide

495

__pld

Synopsis

void __pld(void *ptr);

Description

__pld inserts a PLD instruction. Where ptr specifies the memory address.

CrossWorks for ARM Reference Manual C Library User Guide

496

__pli

Synopsis

void __pli(void *ptr);

Description

__pli inserts a PLI instruction. Where ptr specifies the memory address.

CrossWorks for ARM Reference Manual C Library User Guide

497

__qadd

Synopsis

int __qadd(int val1,
 int val2);

Description

__qadd inserts a QADD instruction. Returns the 32-bit saturating signed equivalent of res = val1 + val2. This

operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual C Library User Guide

498

__qadd16

Synopsis

int16x2 __qadd16(int16x2 val1,
 int16x2 val2);

Description

__qadd16 inserts a QADD16 instruction. __qadd16 returns the 16-bit signed saturated equivalent of

• res[0] = val1[0] + val2[0],

• res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

499

__qadd8

Synopsis

int8x4 __qadd8(int8x4 val1,
 int8x4 val2);

Description

__qadd8 inserts a QADD8 instruction. __qadd8 returns the 8-bit signed saturated equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

• res[2] = val1[2] + val2[2]

• res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

500

__qasx

Synopsis

int16x2 __qasx(int16x2 val1,
 int16x2 val2);

Description

__qasx inserts a QASX instruction. __qasx returns the 16-bit signed saturated equivalent of

• res[0] = val1[1] - val2[1]

• res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

501

__qdadd

Synopsis

int __qdadd(int val1,
 int val2);

Description

__qdadd inserts a QDADD instruction. __qdadd returns the 32-bit signed saturated equivalent of res = val1 +

(2*val2). This operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual C Library User Guide

502

__qdbl

Synopsis

int __qdbl(int val);

Description

__qdbl inserts a QADD instruction. __qdbl returns the 32-bit signed saturated equivalent of res = val + val. This

operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual C Library User Guide

503

__qdsub

Synopsis

int __qdsub(int val1,
 int val2);

Description

__qdsub inserts a QDSUB instruction. __qdsub returns the 32-bit signed saturated equivalent of val1 - (2*val2).

This operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual C Library User Guide

504

__qflag

Synopsis

int __qflag(void);

Description

__qflag returns the value of the Q flag.

CrossWorks for ARM Reference Manual C Library User Guide

505

__qsax

Synopsis

int16x2 __qsax(int16x2 val1,
 int16x2 val2);

Description

__qsax inserts a QSAX instruction. __qsax returns the 16-bit signed saturated equivalent of

• res[0] = val1[0] + val2[1]

• res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

506

__qsub

Synopsis

int __qsub(int val1,
 int val2);

Description

__qsub inserts a QSUB instruction. __qsub returns the 32-bit signed saturated equivalent of res=val1-val2. This

operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual C Library User Guide

507

__qsub16

Synopsis

int16x2 __qsub16(int16x2 val1,
 int16x2 val2);

Description

__qsub16 inserts a QSUB16 instruction. __qsub16 returns the 16-bit signed saturated equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

508

__qsub8

Synopsis

int8x4 __qsub8(int8x4 val1,
 int8x4 val2);

Description

__qsub8 inserts a QSUB8 instruction. __qsub8 returns the 8-bit signed saturated equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

• res[2] = val1[2] - val2[2]

• res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

509

__rbit

Synopsis

unsigned __rbit(unsigned val);

Description

__rbit inserts a RBIT instruction. __rbit returns the bit reversed equivalent of val.

CrossWorks for ARM Reference Manual C Library User Guide

510

__rev

Synopsis

unsigned __rev(unsigned val);

Description

__rev inserts a REV instruction. __rev returns the equivalent of

• res[0] = val[3]

• res[1] = val[2]

• res[2] = val[1]

• res[3] = val[0]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

511

__rev16

Synopsis

unsigned __rev16(unsigned val);

Description

__rev16 inserts a REV16 instruction. __rev16 returns the equivalent of

• res[0] = val[1]

• res[1] = val[0]

• res[2] = val[3]

• res[3] = val[2]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

512

__revsh

Synopsis

unsigned __revsh(unsigned val);

Description

__revsh inserts a REVSH instruction. __revsh returns the 16-bit sign extended equivalent of

• res[0] = val[1]

• res[1] = val[0]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

513

__sadd16

Synopsis

int16x2 __sadd16(int16x2 val1,
 int16x2 val2);

Description

__sadd16 inserts a SADD16 instruction. __sadd16 returns the 16-bit signed equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

514

__sadd8

Synopsis

int8x4 __sadd8(int8x4 val1,
 int8x4 val2);

Description

__sadd8 inserts a SADD8 instruction. __sadd8 returns the 8-bit signed equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

• res[2] = val1[2] + val2[2]

• res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

515

__sasx

Synopsis

int16x2 __sasx(int16x2 val1,
 int16x2 val2);

Description

__sasx inserts a SASX instruction. __sasx returns the 16-bit signed equivalent of

• res[0] = val1[0] - val2[1]

• res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

516

__sel

Synopsis

uint8x4 __sel(uint8x4 val1,
 uint8x4 val2);

Description

__sel inserts a SEL instruction. __sel returns the equivalent of

• res[0] = GE[0] ? val1[0] : val2[0]

• res[1] = GE[1] ? val1[1] : val2[1]

• res[2] = GE[2] ? val1[2] : val2[2]

• res[3] = GE[3] ? val1[3] : val2[3]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

517

__set_APSR

Synopsis

void __set_APSR(unsigned val);

Description

__set_APSR sets the value of the APSR i.e. the condition bits and the GE bits.

CrossWorks for ARM Reference Manual C Library User Guide

518

__set_BASEPRI

Synopsis

void __set_BASEPRI(unsigned val);

Description

__set_BASEPRI sets the value of the Cortex-M3/M4 BASEPRI register.

CrossWorks for ARM Reference Manual C Library User Guide

519

__set_CONTROL

Synopsis

void __set_CONTROL(unsigned val);

Description

__set_CONTROL set the value of the Cortex-M CONTROL register.

CrossWorks for ARM Reference Manual C Library User Guide

520

__set_CPSR

Synopsis

void __set_CPSR(unsigned val);

Description

__set_CPSR sets the value of the ARM CPSR.

CrossWorks for ARM Reference Manual C Library User Guide

521

__set_FAULTMASK

Synopsis

void __set_FAULTMASK(unsigned val);

Description

__set_FAULTMASK sets the value of the Cortex-M3/M4 FAULTMASK register.

CrossWorks for ARM Reference Manual C Library User Guide

522

__set_PRIMASK

Synopsis

void __set_PRIMASK(unsigned val);

Description

__set_PRIMASK sets the value of the Cortex-M3/M4 PRIMASK register.

CrossWorks for ARM Reference Manual C Library User Guide

523

__sev

Synopsis

void __sev(void);

Description

__sev inserts a SEV instruction.

CrossWorks for ARM Reference Manual C Library User Guide

524

__shadd16

Synopsis

int16x2 __shadd16(int16x2 val1,
 int16x2 val2);

Description

__shadd16 inserts a SHADD16 instruction. __shadd16 returns the 16-bit signed equivalent of

• res[0] = (val1[0] + val2[0])/2

• res[1] = (val1[1] + val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

525

__shadd8

Synopsis

int8x4 __shadd8(int8x4 val1,
 int8x4 val2);

Description

__shadd8 inserts a SHADD8 instruction. __shadd8 returns the 8-bit signed equivalent of

• res[0] = (val1[0] + val2[0])/2

• res[1] = (val1[1] + val2[1])/2

• res[2] = (val1[2] + val2[2])/2

• res[3] = (val1[3] + val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

526

__shasx

Synopsis

int16x2 __shasx(int16x2 val1,
 int16x2 val2);

Description

__shasx inserts a SHASX instruction. __shasx returns the 16-bit signed equivalent of

• res[0] = (val1[0] - val2[1])/2

• res[1] = (val1[1] + val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

527

__shsax

Synopsis

int16x2 __shsax(int16x2 val1,
 int16x2 val2);

Description

__shsax inserts a SHSAX instruction. __shsax returns the 16-bit signed equivalent of

• res[0] = (val1[0] + val2[1])/2

• res[1] = (val1[1] - val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

528

__shsub16

Synopsis

int16x2 __shsub16(int16x2 val1,
 int16x2 val2);

Description

__shsub16 inserts a SHSUB16 instruction. __shsub16 returns the 16-bit signed equivalent of

• res[0] = (val1[0] - val2[0])/2

• res[1] = (val1[1] - val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

529

__shsub8

Synopsis

int8x4 __shsub8(int8x4 val1,
 int8x4 val2);

Description

__shsub8 inserts a SHSUB8 instruction. __shsub8 returns the 8-bit signed equivalent of

• res[0] = (val1[0] - val2[0])/2

• res[1] = (val1[1] - val2[1])/2

• res[2] = (val1[2] - val2[2])/2

• res[3] = (val1[3] - val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

530

__smlabb

Synopsis

int __smlabb(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlabb inserts a SMLABB instruction. __smlabb returns the equivalent of

• res = val1[0] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

531

__smlabt

Synopsis

int __smlabt(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlabt inserts a SMLABT instruction. __smlabt returns the equivalent of

• res = val1[0] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

532

__smlad

Synopsis

int __smlad(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlad inserts a SMLAD instruction. __smlad returns the 16-bit signed equivalent of

• res = val1[0] * val2[0] + val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

533

__smladx

Synopsis

int __smladx(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smladx inserts a SMLADX instruction. __smladx returns the 16-bit signed equivalent of

• res = val1[0] * val2[1] + val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

534

__smlalbb

Synopsis

long long __smlalbb(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlalbb inserts a SMLALBB instruction. __smlalbb returns the equivalent of

• res = val1[0] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

535

__smlalbt

Synopsis

long long __smlalbt(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlalbt inserts a SMLALBT instruction. __smlalbt returns the equivalent of

• res = val1[0] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

536

__smlald

Synopsis

long long __smlald(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlald inserts a SMLALD instruction. __smlald returns the equivalent of

• res = val1[0] * val2[0] + val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

537

__smlaldx

Synopsis

long long __smlaldx(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlaldx inserts a SMLALDX instruction. __smlaldx returns the equivalent of

• res = val1[0] * val2[1] + val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

538

__smlaltb

Synopsis

long long __smlaltb(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlaltb inserts a SMLALTB instruction. __smlaltb returns the equivalent of

• res = val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

539

__smlaltt

Synopsis

long long __smlaltt(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlaltt inserts a SMLALTT instruction. __smlaltt returns the equivalent of

• res = val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

540

__smlatb

Synopsis

int __smlatb(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlatb inserts a SMLATB instruction. __smlatb returns the equivalent of

• res = val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

541

__smlatt

Synopsis

int __smlatt(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlatt inserts a SMLATT instruction. __smlatt returns the equivalent of

• res = val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

542

__smlawb

Synopsis

int __smlawb(int val1,
 int16x2 val2,
 int val3);

Description

__smlawb inserts a SMLAWB instruction. __smlawb returns the equivalent of

• res = (val1 * val2[0] + (val3 << 16)) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

543

__smlawt

Synopsis

int __smlawt(int val1,
 int16x2 val2,
 int val3);

Description

__smlawt inserts a SMLAWT instruction. __smlawt returns the equivalent of

• res = (val1 * val2[1] + (val3 << 16)) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

544

__smlsd

Synopsis

int __smlsd(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlsd inserts a SMLSD instruction. __smlsd returns the equivalent of

• res = val1[0] * val2[0] - val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

545

__smlsdx

Synopsis

int __smlsdx(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlsdx inserts a SMLSDX instruction. __smlsdx returns the equivalent of

• res = val1[0] * val2[1] - val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

546

__smlsld

Synopsis

long long __smlsld(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlsld inserts a SMLSLD instruction. __smlsld returns the equivalent of

• res = val1[0] * val2[0] - val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

547

__smlsldx

Synopsis

long long __smlsldx(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlsldx inserts a SMLSLDX instruction. __smlsldx returns the equivalent of

• res = val1[0] * val2[1] - val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

548

__smuad

Synopsis

int __smuad(int16x2 val1,
 int16x2 val2);

Description

__smuad inserts a SMUAD instruction. __smuad returns the equivalent of

• res = val1[0] * val2[0] + val1[1] * val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

549

__smuadx

Synopsis

int __smuadx(int16x2 val1,
 int16x2 val2);

Description

__smuadx inserts a SMUADX instruction. __smuadx returns the equivalent of

• res = val1[0] * val2[1] + val1[1] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual C Library User Guide

550

__smulbb

Synopsis

int __smulbb(int16x2 val1,
 int16x2 val2);

Description

__smulbb inserts a SMULBB instruction. __smulbb returns the equivalent of

• res = val1[0] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

551

__smulbt

Synopsis

int __smulbt(int16x2 val1,
 int16x2 val2);

Description

__smulbt inserts a SMULBT instruction. __smulbt returns the equivalent of

• res = val1[0] * val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

552

__smultb

Synopsis

int __smultb(int16x2 val1,
 int16x2 val2);

Description

__smultb inserts a SMULTB instruction. __smultb returns the equivalent of

• res = val1[1] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

553

__smultt

Synopsis

int __smultt(int16x2 val1,
 int16x2 val2);

Description

__smultt inserts a SMULTT instruction. __smultt returns the equivalent of

• res = val1[1] * val2[1]

where [1] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

554

__smulwb

Synopsis

int __smulwb(int16x2 val1,
 int val2);

Description

__smulwb inserts a SMULWB instruction. __smulwb returns the equivalent of

• res = (val1[0] * val2) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

555

__smulwt

Synopsis

int __smulwt(int16x2 val1,
 int val2);

Description

__smulwt inserts a SMULWT instruction. __smulwt returns the equivalent of

• res = (val1[1] * val2) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

556

__smusd

Synopsis

int __smusd(int16x2 val1,
 int16x2 val2);

Description

__smusd inserts a SMUSD instruction. __smusd returns the equivalent of

• res = val1[0] * val2[0] - val1[1] * val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

557

__smusdx

Synopsis

int __smusdx(int16x2 val1,
 int16x2 val2);

Description

__smusdx inserts a SMUSDX instruction. __smusdx returns the equivalent of

• res = val1[0] * val2[1] - val1[1] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

558

__sqrt

Synopsis

double __sqrt(double val);

Description

__sqrt inserts a VSQRT.F64 instruction.

CrossWorks for ARM Reference Manual C Library User Guide

559

__sqrtf

Synopsis

float __sqrtf(float val);

Description

__sqrtf inserts a VSQRT.F32 instruction.

CrossWorks for ARM Reference Manual C Library User Guide

560

__ssat

Synopsis

int __ssat(int val,
 unsigned sat);

Description

__ssat inserts a SSAT instruction. __ssat returns val saturated to the signed range of sat where sat is a compile

time constant.

CrossWorks for ARM Reference Manual C Library User Guide

561

__ssat16

Synopsis

int16x2 __ssat16(int16x2 val,
 unsigned sat);

Description

__ssat16 inserts a SSAT16 instruction. __ssat16 returns the equivalent of

• res[0] = val[0] saturated to the signed range of sat

• res[1] = val[1] saturated to the signed range of sat

where [0] is the lower 16 bits and [1] is the upper 16 bits and sat is a compile time constant.

CrossWorks for ARM Reference Manual C Library User Guide

562

__ssax

Synopsis

int16x2 __ssax(int16x2 val1,
 int16x2 val2);

Description

__ssax inserts a SSAX instruction. __ssax returns the equivalent of

• res[0] = val1[0] + val2[1]

• res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the GE bits.

CrossWorks for ARM Reference Manual C Library User Guide

563

__ssub16

Synopsis

int16x2 __ssub16(int16x2 val1,
 int16x2 val2);

Description

__ssub16 inserts a SSUB16 instruction. __ssub16 returns the 16-bit signed equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

564

__ssub8

Synopsis

int8x4 __ssub8(int8x4 val1,
 int8x4 val2);

Description

__ssub8 inserts a SSUB8 instruction. __ssub8 returns the 8-bit signed equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

• res[2] = val1[2] - val2[2]

• res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

565

__stc

Synopsis

void __stc(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stc inserts a STC instruction where coproc and Crd are compile time constants and ptr points to the word of

data to store.

CrossWorks for ARM Reference Manual C Library User Guide

566

__stc2

Synopsis

void __stc2(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stc2 inserts a STC2 instruction where coproc and Crd are compile time constants and ptr points to the word of

data to store.

CrossWorks for ARM Reference Manual C Library User Guide

567

__stc2l

Synopsis

void __stc2l(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stc2l inserts a STC2L instruction where coproc and Crd are compile time constants and ptr points to the word

of data to store.

CrossWorks for ARM Reference Manual C Library User Guide

568

__stc_noidx

Synopsis

void __stc_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__stc_noidx inserts a STC2L instruction where coproc, Crd and option are compile time constants and ptr

points to the word of data to store.

CrossWorks for ARM Reference Manual C Library User Guide

569

__stcl

Synopsis

void __stcl(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stcl inserts a STCL instruction where coproc and Crd are compile time constants and ptr points to the word of

data to store.

CrossWorks for ARM Reference Manual C Library User Guide

570

__strbt

Synopsis

void __strbt(unsigned char val,
 unsigned char *ptr);

Description

__strbt inserts a STRBT instruction.

CrossWorks for ARM Reference Manual C Library User Guide

571

__strex

Synopsis

int __strex(unsigned val,
 unsigned *ptr);

Description

__strex inserts a STREX instruction.

CrossWorks for ARM Reference Manual C Library User Guide

572

__strexb

Synopsis

int __strexb(unsigned char val,
 unsigned *char ptr);

Description

__strexb inserts a STREXB instruction.

CrossWorks for ARM Reference Manual C Library User Guide

573

__strexd

Synopsis

int __strexd(unsigned long long val,
 unsigned *long long ptr);

Description

__strexd inserts a STREXD instruction.

CrossWorks for ARM Reference Manual C Library User Guide

574

__strexh

Synopsis

int __strexh(unsigned short val,
 unsigned *short ptr);

Description

__strexh inserts a STREXH instruction.

CrossWorks for ARM Reference Manual C Library User Guide

575

__strht

Synopsis

void __strht(unsigned short val,
 unsigned short *ptr);

Description

__strht inserts a STRHT instruction.

CrossWorks for ARM Reference Manual C Library User Guide

576

__strt

Synopsis

void __strt(unsigned val,
 unsigned *ptr);

Description

__strt inserts a STRT instruction.

CrossWorks for ARM Reference Manual C Library User Guide

577

__swp

Synopsis

unsigned __swp(unsigned val,
 unsigned *ptr);

Description

__swp inserts a SWP instruction.

CrossWorks for ARM Reference Manual C Library User Guide

578

__swpb

Synopsis

unsigned __swpb(unsigned char val,
 unsigned char *ptr);

Description

__swpb inserts a SWPB instruction.

CrossWorks for ARM Reference Manual C Library User Guide

579

__sxtab16

Synopsis

int16x2 __sxtab16(int16x2 val1,
 uint8x4 val2);

Description

__sxtab16 inserts a SXTAB16 instruction. __sxtab16 returns the 16-bit signed equivalent of

• res[0] = val1[0] + (short)val2[0]

• res[1] = val1[1] + (short)val2[2]

where res[0] & val1[0] are the lower 16 bits, res[1] & val1[1] are the upper 16 bits, val2[0] is the lower 8 bits

and val2[2] is the 8 bits starting at bit position 16.

CrossWorks for ARM Reference Manual C Library User Guide

580

__sxtb16

Synopsis

int16x2 __sxtb16(int8x4 val);

Description

__sxtb16 inserts a SXTB16 instruction. __sxtb16 returns the 16-bit signed equivalent of

• res[0] = (short)val[0]

• res[1] = (short)val[2]

where res[0] is the lower 16 bits, res[1] is the upper 16 bits, val[0] is the lower 8 bits and val[2] is the 8 bits

starting at bit position 16.

CrossWorks for ARM Reference Manual C Library User Guide

581

__uadd16

Synopsis

uint16x2 __uadd16(uint16x2 val1,
 uint16x2 val2);

Description

__uadd16 inserts a UADD16 instruction. __uadd16 returns the 16-bit unsigned equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

582

__uadd8

Synopsis

uint8x4 __uadd8(uint8x4 val1,
 uint8x4 val2);

Description

__uadd8 inserts a UADD8 instruction. __uadd8 returns the 8-bit unsigned equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

• res[2] = val1[2] + val2[2]

• res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

583

__uasx

Synopsis

uint16x2 __uasx(uint16x2 val1,
 uint16x2 val2);

Description

__uasx inserts a UASX instruction. __uasx returns the 16-bit unsigned equivalent of

• res[0] = val1[0] - val2[1]

• res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual C Library User Guide

584

__uhadd16

Synopsis

uint16x2 __uhadd16(uint16x2 val1,
 uint16x2 val2);

Description

__uhadd16 inserts a UHADD16 instruction. __uhadd16 returns the 16-bit unsigned equivalent of

• res[0] = (val1[0] + val2[0])/2

• res[1] = (val1[1] + val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

585

__uhadd8

Synopsis

uint8x4 __uhadd8(uint8x4 val1,
 uint8x4 val2);

Description

__uhadd8 inserts a UHADD8 instruction. __uhadd8 returns the 8-bit unsigned equivalent of

• res[0] = (val1[0] + val2[0])/2

• res[1] = (val1[1] + val2[1])/2

• res[2] = (val1[2] + val2[2])/2

• res[3] = (val1[3] + val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

586

__uhasx

Synopsis

uint16x2 __uhasx(uint16x2 val1,
 uint16x2 val2);

Description

__uhasx inserts a UHASX instruction. __uhasx returns the 16-bit unsigned equivalent of

• res[0] = (val1[0] - val2[1])/2

• res[1] = (val1[1] + val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

587

__uhsax

Synopsis

uint16x2 __uhsax(uint16x2 val1,
 uint16x2 val2);

Description

__uhsax inserts a UHSAX instruction. __uhsax returns the 16-bit unsigned equivalent of

• res[0] = (val1[0] + val2[1])/2

• res[1] = (val1[1] - val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

588

__uhsub16

Synopsis

uint16x2 __uhsub16(uint16x2 val1,
 uint16x2 val2);

Description

__uhsub16 inserts a UHSUB16 instruction. __uhsub16 returns the 16-bit unsigned equivalent of

• res[0] = (val1[0] - val2[0])/2

• res[1] = (val1[1] - val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

589

__uhsub8

Synopsis

uint8x4 __uhsub8(uint8x4 val1,
 uint8x4 val2);

Description

__uhsub8 inserts a UHSUB8 instruction. __uhsub8 returns the 8-bit unsigned equivalent of

• res[0] = (val1[0] - val2[0])/2

• res[1] = (val1[1] - val2[1])/2

• res[2] = (val1[2] - val2[2])/2

• res[3] = (val1[3] - val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

590

__uqadd16

Synopsis

uint16x2 __uqadd16(uint16x2 val1,
 uint16x2 val2);

Description

__uqadd16 inserts a UQADD16 instruction. __uqadd16 returns the 16-bit unsigned saturated equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

591

__uqadd8

Synopsis

uint8x4 __uqadd8(uint8x4 val1,
 uint8x4 val2);

Description

__uqadd8 inserts a UQADD8 instruction. __uqadd8 returns the 8-bit unsigned saturated equivalent of

• res[0] = val1[0] + val2[0]

• res[1] = val1[1] + val2[1]

• res[2] = val1[2] + val2[2]

• res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

592

__uqasx

Synopsis

uint16x2 __uqasx(uint16x2 val1,
 uint16x2 val2);

Description

__uqasx inserts a UQASX instruction. __uqasx returns the 16-bit signed saturated equivalent of

• res[0] = val1[0] - val2[1]

• res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

593

__uqsax

Synopsis

uint16x2 __uqsax(uint16x2 val1,
 uint16x2 val2);

Description

__uqsax inserts a UQSAX instruction. __uqsax returns the 16-bit signed saturated equivalent of

• res[0] = val1[0] + val2[1]

• res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual C Library User Guide

594

__uqsub16

Synopsis

uint16x2 __uqsub16(uint16x2 val1,
 uint16x2 val2);

Description

__uqsub16 inserts a USUB16 instruction. __uqsub16 returns the 16-bit unsigned equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

595

__uqsub8

Synopsis

uint8x4 __uqsub8(uint8x4 val1,
 uint8x4 val2);

Description

__uqsub8 inserts a UQSUB8 instruction. __uqsub8 returns the 8-bit unsigned saturated equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

• res[2] = val1[2] - val2[2]

• res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

596

__usad8

Synopsis

unsigned __usad8(uint8x4 val1,
 uint8x4 val2);

Description

__usad8 inserts a USAD8 instruction. __usad8 returns the 8-bit unsigned equivalent of

• res = abs(val1[0] - val2[0]) + abs(val1[1] - val2[1]) + (val1[2] - val2[2]) + (val1[3] - val2[3])

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

597

__usad8a

Synopsis

unsigned __usad8a(uint8x4 val1,
 uint8x4 val2,
 unsigned val3);

Description

__usad8a inserts a USADA8 instruction. __usad8a returns the 8-bit unsigned equivalent of

• res = abs(val1[0] - val2[0]) + abs(val1[1] - val2[1]) + (val1[2] - val2[2]) + (val1[3] - val2[3]) + val3

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

598

__usat

Synopsis

int __usat(int val,
 unsigned sat);

Description

__usat inserts a USAT instruction. __usat returns val saturated to the unsigned range of sat where sat is a

compile time constant.

CrossWorks for ARM Reference Manual C Library User Guide

599

__usat16

Synopsis

int16x2 __usat16(int16x2 val,
 const unsigned sat);

Description

__usat16 inserts a USAT16 instruction. __usat16 returns the equivalent of

• res[0] = val[0] saturated to the unsigned range of sat

• res[1] = val[1] saturated to the unsigned range of sat

where [0] is the lower 16 bits and [1] is the upper 16 bits and sat is a compile time constant.

CrossWorks for ARM Reference Manual C Library User Guide

600

__usax

Synopsis

int16x2 __usax(int16x2 val1,
 int16x2 val2);

Description

__usax inserts a USAX instruction. __usax returns the equivalent of

• res[0] = val1[0] + val2[1]

• res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the GE bits.

CrossWorks for ARM Reference Manual C Library User Guide

601

__usub8

Synopsis

uint8x4 __usub8(uint8x4 val1,
 uint8x4 val2);

Description

__usub8 inserts a USUB8 instruction. __usub8 returns the 8-bit unsigned equivalent of

• res[0] = val1[0] - val2[0]

• res[1] = val1[1] - val2[1]

• res[2] = val1[2] - val2[2]

• res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual C Library User Guide

602

__uxtab16

Synopsis

int16x2 __uxtab16(int16x2 val1,
 uint8x4 val2);

Description

__uxtab16 inserts a UXTAB16 instruction. __uxtab16 returns the 16-bit unsigned equivalent of

• res[0] = val1[0] + (unsigned short)val2[0]

• res[1] = val1[1] + (unsigned short)val2[2]

where res[0] & val1[0] are the lower 16 bits, res[1] & val1[1] are the upper 16 bits, val2[0] is the lower 8 bits

and val2[2] is the 8 bits starting at bit position 16.

CrossWorks for ARM Reference Manual C Library User Guide

603

__uxtb16

Synopsis

int16x2 __uxtb16(int8x4 val);

Description

__uxtb16 inserts a UXTB16 instruction. __uxtb16 returns the 16-bit unsigned equivalent of

• res[0] = (unsigned short)val[0]

• res[1] = (unsigned short)val[2]

where res[0] is the lower 16 bits, res[1] is the upper 16 bits, val[0] is the lower 8 bits and val[2] is the 8 bits

starting at bit position 16.

CrossWorks for ARM Reference Manual C Library User Guide

604

__wfe

Synopsis

void __wfe(void);

Description

__wfe inserts a WFE instruction.

CrossWorks for ARM Reference Manual C Library User Guide

605

__wfi

Synopsis

void __wfi(void);

Description

__wfi inserts a WFI instruction.

CrossWorks for ARM Reference Manual C Library User Guide

606

__yield

Synopsis

void __yield(void);

Description

__yield inserts a YIELD instruction.

CrossWorks for ARM Reference Manual C Library User Guide

607

<iso646.h>

Overview

The header <iso646.h> defines macros that expand to the corresponding tokens to ease writing C programs

with keyboards that do not have keys for frequently-used operators.

API Summary

Macros

and Alternative spelling for logical and operator

and_eq Alternative spelling for logical and-equals operator

bitand Alternative spelling for bitwise and operator

bitor Alternative spelling for bitwise or operator

compl Alternative spelling for bitwise complement operator

not Alternative spelling for logical not operator

not_eq Alternative spelling for not-equal operator

or Alternative spelling for logical or operator

or_eq Alternative spelling for bitwise or-equals operator

xor Alternative spelling for bitwise exclusive or operator

xor_eq Alternative spelling for bitwise exclusive-or-equals
operator

CrossWorks for ARM Reference Manual C Library User Guide

608

and

Synopsis

#define and &&

Description

and defines the alternative spelling for &&.

CrossWorks for ARM Reference Manual C Library User Guide

609

and_eq

Synopsis

#define and_eq &=

Description

and_eq defines the alternative spelling for &=.

CrossWorks for ARM Reference Manual C Library User Guide

610

bitand

Synopsis

#define bitand &

Description

bitand defines the alternative spelling for &.

CrossWorks for ARM Reference Manual C Library User Guide

611

bitor

Synopsis

#define bitor |

Description

bitor defines the alternative spelling for |.

CrossWorks for ARM Reference Manual C Library User Guide

612

compl

Synopsis

#define compl ~

Description

compl defines the alternative spelling for ~.

CrossWorks for ARM Reference Manual C Library User Guide

613

not

Synopsis

#define not !

Description

not defines the alternative spelling for !.

CrossWorks for ARM Reference Manual C Library User Guide

614

not_eq

Synopsis

#define not_eq !=

Description

not_eq defines the alternative spelling for !=.

CrossWorks for ARM Reference Manual C Library User Guide

615

or

Synopsis

#define or ||

Description

or defines the alternative spelling for ||.

CrossWorks for ARM Reference Manual C Library User Guide

616

or_eq

Synopsis

#define or_eq |=

Description

or_eq defines the alternative spelling for |=.

CrossWorks for ARM Reference Manual C Library User Guide

617

xor

Synopsis

#define xor ^

Description

xor defines the alternative spelling for ^.

CrossWorks for ARM Reference Manual C Library User Guide

618

xor_eq

Synopsis

#define xor_eq ^=

Description

xor_eq defines the alternative spelling for ^=.

CrossWorks for ARM Reference Manual C Library User Guide

619

<itm.h>

API Summary

Functions

ITM_channel_enabled Check if an ITM channel is enabled

ITM_send_byte Send a byte to an ITM channel

ITM_send_half_word Send a half word to an ITM channel

ITM_send_pc Send the program counter of the caller to an ITM
channel

ITM_send_word Send a word to an ITM channel

CrossWorks for ARM Reference Manual C Library User Guide

620

ITM_channel_enabled

Synopsis

int ITM_channel_enabled(int n);

Description

ITM_channel_enabled returns 1 if the given ITM channel is enabled otherwise it returns 0.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual C Library User Guide

621

ITM_send_byte

Synopsis

void ITM_send_byte(int n,
 unsigned char b);

Description

ITM_send_byte sends the byte b to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual C Library User Guide

622

ITM_send_half_word

Synopsis

void ITM_send_half_word(int n,
 unsigned short s);

Description

ITM_send_half_word sends the half word s to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual C Library User Guide

623

ITM_send_pc

Synopsis

void ITM_send_pc(int n);

Description

ITM_send_pc sends the program counter of the caller to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual C Library User Guide

624

ITM_send_word

Synopsis

void ITM_send_word(int n,
 unsigned w);

Description

ITM_send_word sends the word w to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual C Library User Guide

625

<libarm.h>

API Summary

Functions

libarm_dcc_read Read a word of data from the host over JTAG using the
ARM's debug comms channel.

libarm_dcc_write Write a word of data to the host over JTAG using the
ARM debug comms channel.

libarm_disable_fiq Disable FIQ interrupts.

libarm_disable_irq Disable IRQ interrupts.

libarm_disable_irq_fiq Disables IRQ and FIQ interrupts and return the
previous enable state.

libarm_enable_fiq Enable FIQ interrupts.

libarm_enable_irq Enable IRQ interrupts.

libarm_enable_irq_fiq Enable IRQ and FIQ interrupts.

libarm_get_cpsr Get the value of the CPSR.

libarm_isr_disable_irq Re-disable ARM's global interrupts from within an IRQ
interrupt service routine.

libarm_isr_enable_irq Re-enable ARM's global interrupts from within an IRQ
interrupt service routine.

libarm_mmu_flat_initialise_level_1_table Create a flat mapped level 1 translation table.

libarm_mmu_flat_initialise_level_2_small_page_tableCreate a level 2 small page table for an address range.

libarm_mmu_flat_set_level_1_cacheable_region Mark region of memory described by level 1 section
descriptors as cacheable.

libarm_mmu_flat_set_level_2_small_page_cacheable_regionMark region of memory described by level 2 small
page table descriptors as cacheable.

libarm_restore_irq_fiq Restores the IRQ and FIQ interrupt enable state.

libarm_run_dcc_port_server Serve commands from the ARM's debug
communication channel.

libarm_set_cpsr Set the value of the CPSR.

libarm_set_fiq Enables or disables FIQ interrupts.

libarm_set_irq Enables or disables IRQ interrupts.

CrossWorks for ARM Reference Manual C Library User Guide

626

libarm_dcc_read

Synopsis

unsigned long libarm_dcc_read(void);

Description

libarm_dcc_read returns — The data read from the debug comms channel.

The ARM's debug comms channel is usually used by debuggers so reading from this port with a debugger

attached can cause unpredictable results.

CrossWorks for ARM Reference Manual C Library User Guide

627

libarm_dcc_write

Synopsis

void libarm_dcc_write(unsigned long data);

Description

data — The data to write to the debug comms channel.

The ARM's debug comms channel is usually used by debuggers so writing to this port with a debugger attached

can cause unpredictable results.

CrossWorks for ARM Reference Manual C Library User Guide

628

libarm_disable_fiq

Synopsis

void libarm_disable_fiq(void);

Description

This function disables FIQ interrupts by setting the F bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

 // Disable FIQ interrupts
 libarm_disable_fiq();

CrossWorks for ARM Reference Manual C Library User Guide

629

libarm_disable_irq

Synopsis

void libarm_disable_irq(void);

Description

This function disables IRQ interrupts by setting the I bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

 // Disable IRQ interrupts
 libarm_disable_irq();

CrossWorks for ARM Reference Manual C Library User Guide

630

libarm_disable_irq_fiq

Synopsis

int libarm_disable_irq_fiq(void);

Description

libarm_disable_irq_fiq returns — The IRQ and FIQ enable state prior to disabling the IRQ and FIQ interrupts.

This function disables both IRQ and FIQ interrupts, it also returns the previous IRQ and FIQ enable state so that it

can be restored using libarm_restore_irq_fiq.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

 int s;

 // Disable IRQ and FIQ interrupts
 s = libarm_disable_irq_fiq();
 \hdots
 // Restore IRQ and FIQ interrupts
 libarm_restore_irq_fiq(s);

CrossWorks for ARM Reference Manual C Library User Guide

631

libarm_enable_fiq

Synopsis

void libarm_enable_fiq(void);

Description

This function enables FIQ interrupts by clearing the F bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

 // Enable FIQ interrupts
 libarm_enable_fiq();

CrossWorks for ARM Reference Manual C Library User Guide

632

libarm_enable_irq

Synopsis

void libarm_enable_irq(void);

Description

This function enables IRQ interrupts by clearing the I bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example:

 // Enable IRQ interrupts
 libarm_enable_irq();

CrossWorks for ARM Reference Manual C Library User Guide

633

libarm_enable_irq_fiq

Synopsis

void libarm_enable_irq_fiq(void);

Description

libarm_enable_irq_fiq returns — The IRQ and FIQ enable state prior to enabling the IRQ and FIQ interrupts.

This function enables both IRQ and FIQ interrupts.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

 // Enable IRQ and FIQ interrupts
 libarm_enable_irq_fiq();

CrossWorks for ARM Reference Manual C Library User Guide

634

libarm_get_cpsr

Synopsis

unsigned long libarm_get_cpsr(void);

Description

libarm_get_cpsr returns — The value of the CPSR.

This function returns the value of the CPSR (Current Program Status Register).

CrossWorks for ARM Reference Manual C Library User Guide

635

libarm_isr_disable_irq

Synopsis

void libarm_isr_disable_irq(void);

Description

A call to libarm_isr_enable_irq must have been made prior to calling this function.

Note that this call should only be made from within an IRQ interrupt handler.

CrossWorks for ARM Reference Manual C Library User Guide

636

libarm_isr_enable_irq

Synopsis

void libarm_isr_enable_irq(void);

Description

ARM IRQ interrupts are automatically disabled on entry to an interrupt handler and subsequently re-enabled on

exit. You can use libarm_isr_enable_irq to re-enable interrupts from within an interrupt handler so that higher-

priority interrupts may interrupt the current interrupt handler.

This call must be accompanied with a call to libarm_isr_disable_irq prior to completion of the interrupt service

routine.

Note that this function should only be called from within an IRQ interrupt handler and that calling this function

changes the operating mode, and therefore the stack, so if it is being called from a C function you should not use

any automatic variables within that function.

CrossWorks for ARM Reference Manual C Library User Guide

637

libarm_mmu_flat_initialise_level_1_table

Synopsis

void libarm_mmu_flat_initialise_level_1_table(void *translation_table);

Description

translation_table — A pointer to the start of the translation table.

This function creates a flat mapped (i.e. virtual addresses == physical addresses) level 1 MMU translation table at

the location pointed to by translation_table (the translation table is 16BKytes in size).

Note that this function only initialises the translation table, it doesn't set the translation table base register.

CrossWorks for ARM Reference Manual C Library User Guide

638

libarm_mmu_flat_initialise_level_2_small_page_table

Synopsis

void libarm_mmu_flat_initialise_level_2_small_page_table(void *translation_table,
 void *start,
 size_t size,
 void *coarse_page_tables);

Description

translation_table — A pointer to the start of the translation table.

start — A pointer to the start address of the address range.

size — The size of the address range in bytes.

coarse_page_tables — A pointer to the start address of the coarse page tables.

This function creates a level 2 small page table for the specified address range, it requires a level 1 translation

table to be createdi using libarm_mmu_flat_initialise_level_1_table prior to calling.

CrossWorks for ARM Reference Manual C Library User Guide

639

libarm_mmu_flat_set_level_1_cacheable_region

Synopsis

void libarm_mmu_flat_set_level_1_cacheable_region(void *translation_table,
 void *start,
 size_t size);

Description

translation_table — A pointer to the start of the translation table.

start — A pointer to the start of the cacheable region.

size — The size of the cacheable region in bytes.

This function marks a region of memory described by level 1 section descriptors as cacheable, it requires a level 1

translation table to be created using libarm_mmu_flat_initialise_level_1_table prior to calling.

CrossWorks for ARM Reference Manual C Library User Guide

640

libarm_mmu_flat_set_level_2_small_page_cacheable_region

Synopsis

void libarm_mmu_flat_set_level_2_small_page_cacheable_region(void *translation_table,
 void *start,
 size_t size);

Description

translation_table — A pointer to the start of the translation table.

start — A pointer to the start address of the cacheable region.

size — The size of the cacheable region in bytes.

This function marks a region of memory described by level 2 small page table

descriptors as cacheable, it requires a level 2 small page table table to be created using

libarm_mmu_flat_initialise_level_2_small_page_table prior to calling.

CrossWorks for ARM Reference Manual C Library User Guide

641

libarm_restore_irq_fiq

Synopsis

void libarm_restore_irq_fiq(int disable_irq_fiq_return);

Description

disable_irq_fiq_return — The value returned from libarm_disable_irq_fiq.

This function restores the IRQ and FIQ enable state to the state it was in before a call to libarm_disable_irq_fiq.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

 int s;

 // Disable IRQ and FIQ interrupts
 s = libarm_disable_irq_fiq();
 \hdots
 // Restore IRQ and FIQ interrupts
 libarm_restore_irq_fiq(s);

CrossWorks for ARM Reference Manual C Library User Guide

642

libarm_run_dcc_port_server

Synopsis

void libarm_run_dcc_port_server(void);

Description

CrossWorks uses the ARM's debug communication channel to carry operations such as memory access, to

do this a simple client server protocol is run over the channel. This function runs the debug communications

channel server, it returns when the host terminates the server.

CrossWorks for ARM Reference Manual C Library User Guide

643

libarm_set_cpsr

Synopsis

void libarm_set_cpsr(unsigned long cpsr);

Description

cpsr — The value the CPSR should be set to.

This function sets the value of all fields of the CPSR (Current Program Status Register).

CrossWorks for ARM Reference Manual C Library User Guide

644

libarm_set_fiq

Synopsis

int libarm_set_fiq(int enable);

Description

enable — If non-zero FIQ interrupts will be enabled, otherwise they will be disabled.

libarm_set_fiq returns — The FIQ enable state prior to enabling the FIQ interrupt.

This function enables or disables FIQ interrupts. It modifies the CPSR register's control field and therefore will

only work when the CPU is executing in a privileged operating mode.

Example

 // Enable FIQ interrupts
 libarm_set_fiq(1);
 \hdots
 // Disable FIQ interrupts
 libarm_set_fiq(0);

CrossWorks for ARM Reference Manual C Library User Guide

645

libarm_set_irq

Synopsis

int libarm_set_irq(int enable);

Description

enable — If non-zero IRQ interrupts will be enabled, otherwise they will be disabled.

libarm_set_irq returns — The IRQ enable state prior to enabling the IRQ interrupt.

This function enables or disables IRQ interrupts. It modifies the CPSR register's control field and therefore will

only work when the CPU is executing in a privileged operating mode.

Example

 // Disable IRQ interrupts if enabled
 int en = libarm_set_irq(0);
 \hdots
 // Restore IRQ interrupts
 libarm_set_irq(en);

CrossWorks for ARM Reference Manual C Library User Guide

646

<limits.h>

API Summary

Long integer minimum and maximum values

LONG_MAX Maximum value of a long integer

LONG_MIN Minimum value of a long integer

ULONG_MAX Maximum value of an unsigned long integer

Character minimum and maximum values

CHAR_MAX Maximum value of a plain character

CHAR_MIN Minimum value of a plain character

SCHAR_MAX Maximum value of a signed character

SCHAR_MIN Minimum value of a signed character

UCHAR_MAX Maximum value of an unsigned char

Long long integer minimum and maximum values

LLONG_MAX Maximum value of a long long integer

LLONG_MIN Minimum value of a long long integer

ULLONG_MAX Maximum value of an unsigned long long integer

Short integer minimum and maximum values

SHRT_MAX Maximum value of a short integer

SHRT_MIN Minimum value of a short integer

USHRT_MAX Maximum value of an unsigned short integer

Integer minimum and maximum values

INT_MAX Maximum value of an integer

INT_MIN Minimum value of an integer

UINT_MAX Maximum value of an unsigned integer

Type sizes

CHAR_BIT Number of bits in a character

CrossWorks for ARM Reference Manual C Library User Guide

647

CHAR_BIT

Synopsis

#define CHAR_BIT 8

Description

CHAR_BIT is the number of bits for smallest object that is not a bit-field (byte).

CrossWorks for ARM Reference Manual C Library User Guide

648

CHAR_MAX

Synopsis

#define CHAR_MAX 255

Description

CHAR_MAX is the maximum value for an object of type char.

CrossWorks for ARM Reference Manual C Library User Guide

649

CHAR_MIN

Synopsis

#define CHAR_MIN 0

Description

CHAR_MIN is the minimum value for an object of type char.

CrossWorks for ARM Reference Manual C Library User Guide

650

INT_MAX

Synopsis

#define INT_MAX 2147483647

Description

INT_MAX is the maximum value for an object of type int.

CrossWorks for ARM Reference Manual C Library User Guide

651

INT_MIN

Synopsis

#define INT_MIN (-2147483647 - 1)

Description

INT_MIN is the minimum value for an object of type int.

CrossWorks for ARM Reference Manual C Library User Guide

652

LLONG_MAX

Synopsis

#define LLONG_MAX 9223372036854775807LL

Description

LLONG_MAX is the maximum value for an object of type long long int.

CrossWorks for ARM Reference Manual C Library User Guide

653

LLONG_MIN

Synopsis

#define LLONG_MIN (-9223372036854775807LL - 1)

Description

LLONG_MIN is the minimum value for an object of type long long int.

CrossWorks for ARM Reference Manual C Library User Guide

654

LONG_MAX

Synopsis

#define LONG_MAX 2147483647L

Description

LONG_MAX is the maximum value for an object of type long int.

CrossWorks for ARM Reference Manual C Library User Guide

655

LONG_MIN

Synopsis

#define LONG_MIN (-2147483647L - 1)

Description

LONG_MIN is the minimum value for an object of type long int.

CrossWorks for ARM Reference Manual C Library User Guide

656

SCHAR_MAX

Synopsis

#define SCHAR_MAX 127

Description

SCHAR_MAX is the maximum value for an object of type signed char.

CrossWorks for ARM Reference Manual C Library User Guide

657

SCHAR_MIN

Synopsis

#define SCHAR_MIN (-128)

Description

SCHAR_MIN is the minimum value for an object of type signed char.

CrossWorks for ARM Reference Manual C Library User Guide

658

SHRT_MAX

Synopsis

#define SHRT_MAX 32767

Description

SHRT_MAX is the minimum value for an object of type short int.

CrossWorks for ARM Reference Manual C Library User Guide

659

SHRT_MIN

Synopsis

#define SHRT_MIN (-32767 - 1)

Description

SHRT_MIN is the minimum value for an object of type short int.

CrossWorks for ARM Reference Manual C Library User Guide

660

UCHAR_MAX

Synopsis

#define UCHAR_MAX 255

Description

UCHAR_MAX is the maximum value for an object of type unsigned char.

CrossWorks for ARM Reference Manual C Library User Guide

661

UINT_MAX

Synopsis

#define UINT_MAX 4294967295U

Description

UINT_MAX is the maximum value for an object of type unsigned int.

CrossWorks for ARM Reference Manual C Library User Guide

662

ULLONG_MAX

Synopsis

#define ULLONG_MAX 18446744073709551615ULL

Description

ULLONG_MAX is the maximum value for an object of type unsigned long long int.

CrossWorks for ARM Reference Manual C Library User Guide

663

ULONG_MAX

Synopsis

#define ULONG_MAX 4294967295UL

Description

ULONG_MAX is the maximum value for an object of type unsigned long int.

CrossWorks for ARM Reference Manual C Library User Guide

664

USHRT_MAX

Synopsis

#define USHRT_MAX 65535

Description

USHRT_MAX is the minimum value for an object of type unsigned short int.

CrossWorks for ARM Reference Manual C Library User Guide

665

<locale.h>

API Summary

Functions

localeconv Get current locale data

setlocale Set Locale

Structures

lconv Formatting info for numeric values

CrossWorks for ARM Reference Manual C Library User Guide

666

lconv

Synopsis

typedef struct {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
 char int_p_cs_precedes;
 char int_n_cs_precedes;
 char int_p_sep_by_space;
 char int_n_sep_by_space;
 char int_p_sign_posn;
 char int_n_sign_posn;
} lconv;

Description

lconv structure holds formatting information on how numeric values are to be written. Note that the order of

fields in this structure is not consistent between implementations, nor is it consistent between C89 and C99

standards.

The members decimal_point, grouping, and thousands_sep are controlled by LC_NUMERIC, the remainder by

LC_MONETARY.

The members int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn, int_p_cs_precedes,

int_p_sep_by_space. and int_p_sign_posn are added by the C99 standard.

We have standardized on the ordering specified by the ARM EABI for the base of this structure. This ordering is

neither that of C89 nor C99.

Member Description

currency_symbol Local currency symbol.

decimal_point Decimal point separator.

frac_digits Amount of fractional digits to the right of the decimal
point for monetary quantities in the local format.

CrossWorks for ARM Reference Manual C Library User Guide

667

grouping Specifies the amount of digits that form each of the
groups to be separated by thousands_sep separator
for non-monetary quantities.

int_curr_symbol International currency symbol.

int_frac_digits Amount of fractional digits to the right of the decimal
point for monetary quantities in the international
format.

mon_decimal_point Decimal-point separator used for monetary quantities.

mon_grouping Specifies the amount of digits that form each of the
groups to be separated by mon_thousands_sep
separator for monetary quantities.

mon_thousands_sep Separators used to delimit groups of digits to the left
of the decimal point for monetary quantities.

negative_sign Sign to be used for negative monetary quantities.

n_cs_precedes Whether the currency symbol should precede negative
monetary quantities.

n_sep_by_space Whether a space should appear between the currency
symbol and negative monetary quantities.

n_sign_posn Position of the sign for negative monetary quantities.

positive_sign Sign to be used for nonnegative (positive or zero)
monetary quantities.

p_cs_precedes Whether the currency symbol should precede
nonnegative (positive or zero) monetary quantities.

p_sep_by_space Whether a space should appear between the currency
symbol and nonnegative (positive or zero) monetary
quantities.

p_sign_posn Position of the sign for nonnegative (positive or zero)
monetary quantities.

thousands_sep Separators used to delimit groups of digits to the left
of the decimal point for non-monetary quantities.

CrossWorks for ARM Reference Manual C Library User Guide

668

localeconv

Synopsis

 localeconv(void);

Description

localeconv returns a pointer to a structure of type lconv with the corresponding values for the current locale

filled in.

CrossWorks for ARM Reference Manual C Library User Guide

669

setlocale

Synopsis

char *setlocale(int category,
 const char *locale);

Description

setlocale sets the current locale. The category parameter can have the following values:

Name Locale affected

LC_ALL Entire locale

LC_COLLATE Affects strcoll and strxfrm

LC_CTYPE Affects character handling

LC_MONETARY Affects monetary formatting information

LC_NUMERIC Affects decimal-point character in I/O and string
formatting operations

LC_TIME Affects strftime

The locale parameter contains the name of a C locale to set or if NULL is passed the current locale is not

changed.

setlocale returns the name of the current locale.

Note

CrossWorks only supports the minimal "C" locale.

CrossWorks for ARM Reference Manual C Library User Guide

670

<math.h>

API Summary

Type Generic Macros

fpclassify Classify floating type

isfinite Test for a finite value

isinf Test for infinity

isnan Test for NaN

isnormal Test for a normal value

signbit Test sign

Trigonometric functions

cos Compute cosine of a double

cosf Compute cosine of a float

sin Compute sine of a double

sinf Compute sine of a float

tan Compute tangent of a double

tanf Compute tangent of a double

Inverse trigonometric functions

acos Compute inverse cosine of a double

acosf Compute inverse cosine of a float

asin Compute inverse sine of a double

asinf Compute inverse sine of a float

atan Compute inverse tangent of a double

atan2 Compute inverse tangent of a ratio of doubles

atan2f Compute inverse tangent of a ratio of floats

atanf Compute inverse tangent of a float

Exponential and logarithmic functions

cbrt Compute cube root of a double

cbrtf Compute cube root of a float

exp Compute exponential of a double

expf Compute exponential of a float

frexp Set exponent of a double

frexpf Set exponent of a float

ldexp Adjust exponent of a double

CrossWorks for ARM Reference Manual C Library User Guide

671

ldexpf Adjust exponent of a float

log Compute natural logarithm of a double

log10 Compute common logarithm of a double

log10f Compute common logarithm of a float

logf Compute natural logarithm of a float

pow Raise a double to a power

powf Raise a float to a power

scalbn Scale a double

scalbnf Scale a float

sqrt Compute square root of a double

sqrtf Compute square root of a float

Remainder functions

fmod Compute remainder after division of two doubles

fmodf Compute remainder after division of two floats

modf Break a double into integer and fractional parts

modff Break a float into integer and fractional parts

Nearest integer functions

ceil Compute smallest integer not greater than a double

ceilf Compute smallest integer not greater than a float

floor Compute largest integer not greater than a float

floorf Compute largest integer not greater than a float

Absolute value functions

fabs Compute absolute value of a double

fabsf Compute absolute value of a float

hypot Compute complex magnitude of two doubles

hypotf Compute complex magnitude of two floats

Maximum, minimum, and positive difference functions

fmax Compute maximum of two doubles

fmaxf Compute maximum of two floats

fmin Compute minimum of two doubles

fminf Compute minimum of two floats

Hyperbolic functions

cosh Compute hyperbolic cosine of a double

coshf Compute hyperbolic cosine of a float

sinh Compute hyperbolic sine of a double

CrossWorks for ARM Reference Manual C Library User Guide

672

sinhf Compute hyperbolic sine of a float

tanh Compute hyperbolic tangent of a double

tanhf Compute hyperbolic tangent of a float

Inverse hyperbolic functions

acosh Compute inverse hyperbolic cosine of a double

acoshf Compute inverse hyperbolic cosine of a float

asinh Compute inverse hyperbolic sine of a double

asinhf Compute inverse hyperbolic sine of a float

atanh Compute inverse hyperbolic tangent of a double

atanhf Compute inverse hyperbolic tangent of a float

CrossWorks for ARM Reference Manual C Library User Guide

673

acos

Synopsis

double acos(double x);

Description

acos returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.

If |x| > 1, errno is set to EDOM and acos returns HUGE_VAL.

If x is NaN, acos returns x. If |x| > 1, acos returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

674

acosf

Synopsis

float acosf(float x);

Description

acosf returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.

If |a| 1, errno is set to EDOM and acosf returns HUGE_VAL.

If x is NaN, acosf returns x. If |x| > 1, acosf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

675

acosh

Synopsis

double acosh(double x);

Description

acosh returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2 − 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acosh returns HUGE_VAL.

If x < 1, acosh returns NaN.

If x is NaN, acosh returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

676

acoshf

Synopsis

float acoshf(float x);

Description

acoshf returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2 − 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acoshf returns HUGE_VALF.

If x < 1, acoshf returns NaN.

If x is NaN, acoshf returns that NaN.

CrossWorks for ARM Reference Manual C Library User Guide

677

asin

Synopsis

double asin(double x);

Description

asin returns the principal value, in radians, of the inverse circular sine of x. The principal value lies in the interval

[−½π, +½π] radians.

If |x| > 1, errno is set to EDOM and asin returns HUGE_VAL.

If x is NaN, asin returns x. If |x| > 1, asin returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

678

asinf

Synopsis

float asinf(float x);

Description

asinf returns the principal value, in radians, of the inverse circular sine of val. The principal value lies in the

interval [−½π, +½π] radians.

If |x| > 1, errno is set to EDOM and asinf returns HUGE_VALF.

If x is NaN, asinf returns x. If |x| > 1, asinf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

679

asinh

Synopsis

double asinh(double x);

Description

asinh calculates the hyperbolic sine of x.

If |x| > ~709.782, errno is set to EDOM and asinh returns HUGE_VAL.

If x is +∞, −∞, or NaN, asinh returns |x|. If |x| > ~709.782, asinh returns +∞ or −∞ depending upon the sign of x.

CrossWorks for ARM Reference Manual C Library User Guide

680

asinhf

Synopsis

float asinhf(float x);

Description

asinhf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errnois set to EDOM and asinhf returns HUGE_VALF.

If x is +∞, −∞, or NaN, asinhf returns |x|. If |x| > ~88.7228, asinhf returns +∞ or −∞ depending upon the sign of x.

CrossWorks for ARM Reference Manual C Library User Guide

681

atan

Synopsis

double atan(double x);

Description

atan returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [−½π, +½π] radians.

CrossWorks for ARM Reference Manual C Library User Guide

682

atan2

Synopsis

double atan2(double x,
 double y);

Description

atan2 returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [−½π/2, +½π] radians. If x = y =

0, errno is set to EDOM and atan2 returns HUGE_VAL.

atan2(x, NaN) is NaN.

atan2(NaN, x) is NaN.

atan2(±0, +(anything but NaN)) is ±0.

atan2(±0, −(anything but NaN)) is ±π.

atan2(±(anything but 0 and NaN), 0) is ±½π.

atan2(±(anything but ∞ and NaN), +∞) is ±0.

atan2(±(anything but ∞ and NaN), −∞) is ±π.

atan2(±∞, +∞) is ±¼π.

atan2(±∞, −∞) is ±¾π.

atan2(±∞, (anything but 0, NaN, and ∞)) is ±½π.

CrossWorks for ARM Reference Manual C Library User Guide

683

atan2f

Synopsis

float atan2f(float x,
 float y);

Description

atan2f returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [−½π, +½π] radians.

If x = y = 0, errno is set to EDOM and atan2f returns HUGE_VALF.

atan2f(x, NaN) is NaN.

atan2f(NaN, x) is NaN.

atan2f(±0, +(anything but NaN)) is ±0.

atan2f(±0, −(anything but NaN)) is ±π.

atan2f(±(anything but 0 and NaN), 0) is ±½π.

atan2f(±(anything but ∞ and NaN), +∞) is ±0.

atan2f(±(anything but ∞ and NaN), −∞) is ±π.

atan2f(±∞, +∞) is ±¼π.

atan2f(±∞, −∞) is ±¾π.

atan2f(±∞, (anything but 0, NaN, and ∞)) is ±½π.

CrossWorks for ARM Reference Manual C Library User Guide

684

atanf

Synopsis

float atanf(float x);

Description

atanf returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [−½π, +½π] radians.

CrossWorks for ARM Reference Manual C Library User Guide

685

atanh

Synopsis

double atanh(double x);

Description

atanh returns the inverse hyperbolic tangent of x.

If |x| ≥ 1, errno is set to EDOM and atanh returns HUGE_VAL.

If |x| > 1 atanh returns NaN.

If x is NaN, atanh returns that NaN.

If x is 1, atanh returns ∞.

If x is −1, atanh returns −∞.

CrossWorks for ARM Reference Manual C Library User Guide

686

atanhf

Synopsis

float atanhf(float x);

Description

atanhf returns the inverse hyperbolic tangent of val.

If |x| ≥ 1, errno is set to EDOM and atanhf returns HUGE_VALF.

If |val| > 1 atanhf returns NaN. If val is NaN, atanhf returns that NaN. If val is 1, atanhf returns ∞. If val is −1,

atanhf returns −∞.

CrossWorks for ARM Reference Manual C Library User Guide

687

cbrt

Synopsis

double cbrt(double x);

Description

cbrt computes the cube root of x.

CrossWorks for ARM Reference Manual C Library User Guide

688

cbrtf

Synopsis

float cbrtf(float x);

Description

cbrtf computes the cube root of x.

CrossWorks for ARM Reference Manual C Library User Guide

689

ceil

Synopsis

double ceil(double x);

Description

ceil computes the smallest integer value not less than x.

ceil (±0) is ±0. ceil (± ∞) is ± ∞.

CrossWorks for ARM Reference Manual C Library User Guide

690

ceilf

Synopsis

float ceilf(float x);

Description

ceilf computes the smallest integer value not less than x.

ceilf (±0) is ±0. ceilf (± ∞) is ± ∞.

CrossWorks for ARM Reference Manual C Library User Guide

691

cos

Synopsis

double cos(double x);

Description

cos returns the radian circular cosine of x.

If |x| > 10^9, errno is set to EDOM and cos returns HUGE_VAL.

If x is NaN, cos returns x. If |x| is ∞, cos returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

692

cosf

Synopsis

float cosf(float x);

Description

cosf returns the radian circular cosine of x.

If |x| > 10^9, errno is set to EDOM and cosf returns HUGE_VALF.

If x is NaN, cosf returns x. If |x| is ∞, cosf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

693

cosh

Synopsis

double cosh(double x);

Description

cosh calculates the hyperbolic cosine of x.

If |x| > ~709.782, errno is set to EDOM and cosh returns HUGE_VAL.

If x is +∞, −∞, or NaN, cosh returns |x|.> If |x| > ~709.782, cosh returns +∞ or −∞ depending upon the sign of x.

CrossWorks for ARM Reference Manual C Library User Guide

694

coshf

Synopsis

float coshf(float x);

Description

coshf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errno is set to EDOM and coshf returns HUGE_VALF.

If x is +∞, −∞, or NaN, coshf returns |x|.

If |x| > ~88.7228, coshf returns +∞ or −∞ depending upon the sign of x.

CrossWorks for ARM Reference Manual C Library User Guide

695

exp

Synopsis

double exp(double x);

Description

exp computes the base-e exponential of x.

If |x| > ~709.782, errno is set to EDOM and exp returns HUGE_VAL.

If x is NaN, exp returns NaN.

If x is ∞, exp returns ∞.

If x is −∞, exp returns 0.

CrossWorks for ARM Reference Manual C Library User Guide

696

expf

Synopsis

float expf(float x);

Description

expf computes the base-e exponential of x.

If |x| > ~88.722, errno is set to EDOM and expf returns HUGE_VALF. If x is NaN, expf returns NaN.

If x is ∞, expf returns ∞.

If x is −∞, expf returns 0.

CrossWorks for ARM Reference Manual C Library User Guide

697

fabs

Synopsis

double fabs(double x);

CrossWorks for ARM Reference Manual C Library User Guide

698

fabsf

Synopsis

float fabsf(float x);

Description

fabsf computes the absolute value of the floating-point number x.

CrossWorks for ARM Reference Manual C Library User Guide

699

floor

Synopsis

double floor(double);

floor computes the largest integer value not greater than x.

floor (±0) is ±0. floor (±∞) is ±∞.

CrossWorks for ARM Reference Manual C Library User Guide

700

floorf

Synopsis

float floorf(float);

floorf computes the largest integer value not greater than x.

floorf(±0) is ±0. floorf(±∞) is ±∞.

CrossWorks for ARM Reference Manual C Library User Guide

701

fmax

Synopsis

double fmax(double x,
 double y);

Description

fmax determines the maximum of x and y.

fmax (NaN, y) is y. fmax (x, NaN) is x.

CrossWorks for ARM Reference Manual C Library User Guide

702

fmaxf

Synopsis

float fmaxf(float x,
 float y);

Description

fmaxf determines the maximum of x and y.

fmaxf (NaN, y) is y. fmaxf(x, NaN) is x.

CrossWorks for ARM Reference Manual C Library User Guide

703

fmin

Synopsis

double fmin(double x,
 double y);

Description

fmin determines the minimum of x and y.

fmin (NaN, y) is y. fmin (x, NaN) is x.

CrossWorks for ARM Reference Manual C Library User Guide

704

fminf

Synopsis

float fminf(float x,
 float y);

Description

fminf determines the minimum of x and y.

fminf (NaN, y) is y. fminf (x, NaN) is x.

CrossWorks for ARM Reference Manual C Library User Guide

705

fmod

Synopsis

double fmod(double x,
 double y);

Description

fmod computes the floating-point remainder of x divided by y. #b #this returns the value x − n y, for some

integer n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

If y = 0, fmod returns zero and errno is set to EDOM.

fmod (± 0, y) is ± 0 for y not zero.

fmod (∞, y) is NaN.

fmod (x, 0) is NaN.

fmod (x, ± ∞) is x for x not infinite.

CrossWorks for ARM Reference Manual C Library User Guide

706

fmodf

Synopsis

float fmodf(float x,
 float y);

Description

fmodf computes the floating-point remainder of x divided by y. fmodf returns the value x − n y, for some

integer n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

If y = 0, fmodf returns zero and errno is set to EDOM.

fmodf (± 0, y) is ± 0 for y not zero.

fmodf (∞, y) is NaN.

fmodf (x, 0) is NaN.

fmodf (x, ± ∞) is x for x not infinite.

CrossWorks for ARM Reference Manual C Library User Guide

707

fpclassify

Synopsis

#define fpclassify(x) (sizeof(x) == sizeof(float) ? __float32_classify(x) :
 __float64_classify(x))

Description

fpclassify macro shall classify its argument value as NaN, infinite, normal, subnormal, zero, or into another

implementation-defined category. The fpclassify macro returns the value of the number classification macro one

of

• FP_ZERO

• FP_SUBNORMAL

• FP_NORMAL

• FP_INFINITE

• FP_NAN

CrossWorks for ARM Reference Manual C Library User Guide

708

frexp

Synopsis

double frexp(double x,
 int *exp);

Description

frexp breaks a floating-point number into a normalized fraction and an integral power of 2.

frexp stores power of two in the int object pointed to by exp and returns the value x, such that x has a

magnitude in the interval [1/2, 1) or zero, and value equals x * 2^exp.

If x is zero, both parts of the result are zero.

If x is ∞ or NaN, frexp returns x and stores zero into the int object pointed to by exp.

CrossWorks for ARM Reference Manual C Library User Guide

709

frexpf

Synopsis

float frexpf(float x,
 int *exp);

Description

frexpf breaks a floating-point number into a normalized fraction and an integral power of 2.

frexpf stores power of two in the int object pointed to by frexpf and returns the value x, such that x has a

magnitude in the interval [½, 1) or zero, and value equals x * 2^exp.

If x is zero, both parts of the result are zero.

If x is ∞ or NaN, frexpf returns x and stores zero into the int object pointed to by exp.

CrossWorks for ARM Reference Manual C Library User Guide

710

hypot

Synopsis

double hypot(double x,
 double y);

Description

hypot computes the square root of the sum of the squares of x and y, sqrt(x*x + y*y), without undue overflow or

underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypot computes the length of

the hypotenuse.

If x or y is +∞ or −∞, hypot returns ∞.

If x or y is NaN, hypot returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

711

hypotf

Synopsis

float hypotf(float x,
 float y);

Description

hypotf computes the square root of the sum of the squares of x and y, sqrtf(x*x + y*y), without undue overflow

or underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypotf computes the length

of the hypotenuse.

If x or y is +∞ or −∞, hypotf returns ∞. If x or y is NaN, hypotf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

712

isfinite

Synopsis

#define isfinite(x) (sizeof(x) == sizeof(float) ? __float32_isfinite(x) :
 __float64_isfinite(x))

Description

isfinite determines whether x is a finite value (zero, subnormal, or normal, and not infinite or NaN). The isfinite

macro returns a non-zero value if and only if its argument has a finite value.

CrossWorks for ARM Reference Manual C Library User Guide

713

isinf

Synopsis

#define isinf(x) (sizeof(x) == sizeof(float) ? __float32_isinf(x) : __float64_isinf(x))

Description

isinf determines whether x is an infinity (positive or negative). The determination is based on the type of the

argument.

CrossWorks for ARM Reference Manual C Library User Guide

714

isnan

Synopsis

#define isnan(x) (sizeof(x) == sizeof(float) ? __float32_isnan(x) : __float64_isnan(x))

Description

isnan determines whether x is a NaN. The determination is based on the type of the argument.

CrossWorks for ARM Reference Manual C Library User Guide

715

isnormal

Synopsis

#define isnormal(x) (sizeof(x) == sizeof(float) ? __float32_isnormal(x) :
 __float64_isnormal(x))

Description

isnormal determines whether x is a normal value (zero, subnormal, or normal, and not infinite or NaN). The

isnormal macro returns a non-zero value if and only if its argument has a normal value.

CrossWorks for ARM Reference Manual C Library User Guide

716

ldexp

Synopsis

double ldexp(double x,
 int exp);

Description

ldexp multiplies a floating-point number by an integral power of 2.

ldexp returns x * 2^exp.

If the result overflows, errno is set to ERANGE and ldexp returns HUGE_VALF.

If x is ∞ or NaN, ldexp returns x. If the result overflows, ldexp returns ∞.

CrossWorks for ARM Reference Manual C Library User Guide

717

ldexpf

Synopsis

float ldexpf(float x,
 int exp);

Description

ldexpf multiplies a floating-point number by an integral power of 2.

ldexpf returns x * 2^exp. If the result overflows, errno is set to ERANGE and ldexpf returns HUGE_VALF.

If x is ∞ or NaN, ldexpf returns x. If the result overflows, ldexpf returns ∞.

CrossWorks for ARM Reference Manual C Library User Guide

718

log

Synopsis

double log(double x);

Description

log computes the base-e logarithm of x.

If x = 0, errno is set to ERANGE and log returns −HUGE_VAL. If x < 0, errno is set to EDOM and log returns

−HUGE_VAL.

If x < 0 or x = −∞, log returns NaN.

If x = 0, log returns −∞.

If x = ∞, log returns ∞.

If x = NaN, log returns x.

CrossWorks for ARM Reference Manual C Library User Guide

719

log10

Synopsis

double log10(double x);

Description

log10 computes the base-10 logarithm of x.

If x = 0, errno is set to ERANGE and log10 returns −HUGE_VAL. If x < 0, errno is set to EDOM and log10 returns

−HUGE_VAL.

If x < 0 or x = −∞, log10 returns NaN.

If x = 0, log10 returns −∞.

If x = ∞, log10 returns ∞.

If x = NaN, log10 returns x.

CrossWorks for ARM Reference Manual C Library User Guide

720

log10f

Synopsis

float log10f(float x);

Description

log10f computes the base-10 logarithm of x.

If x = 0, errno is set to ERANGE and log10f returns −HUGE_VALF. If x < 0, errno is set to EDOM and log10f

returns −HUGE_VALF.

If x < 0 or x = −∞, log10f returns NaN.

If x = 0, log10f returns −∞.

If x = ∞, log10f returns ∞.

If x = NaN, log10f returns x.

CrossWorks for ARM Reference Manual C Library User Guide

721

logf

Synopsis

float logf(float x);

Description

logf computes the base-e logarithm of x.

If x = 0, errno is set to ERANGE and logf returns −HUGE_VALF. If x < 0, errno is set to EDOM and logf returns

−HUGE_VALF.

If x < 0 or x = −∞, logf returns NaN.

If x = 0, logf returns −∞.

If x = ∞, logf returns ∞.

If x = NaN, logf returns x.

CrossWorks for ARM Reference Manual C Library User Guide

722

modf

Synopsis

double modf(double x,
 double *iptr);

Description

modf breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modf returns the signed

fractional part of x.

CrossWorks for ARM Reference Manual C Library User Guide

723

modff

Synopsis

float modff(float x,
 float *iptr);

Description

modff breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modff returns the signed

fractional part of x.

CrossWorks for ARM Reference Manual C Library User Guide

724

pow

Synopsis

double pow(double x,
 double y);

Description

pow computes x raised to the power y.

If x < 0 and y ≤ 0, errno is set to EDOM and pow returns −HUGE_VAL. If x ≤ 0 and y is not an integer value, errno

is set to EDOM and pow returns −HUGE_VAL.

If y = 0, pow returns 1.

If y = 1, pow returns x.

If y = NaN, pow returns NaN.

If x = NaN and y is anything other than 0, pow returns NaN.

If x < −1 or 1 < x, and y = +∞, pow returns +∞.

If x < −1 or 1 < x, and y = −∞, pow returns 0.

If −1 < x < 1 and y = +∞, pow returns +0.

If −1 < x < 1 and y = −∞, pow returns +∞.

If x = +1 or x = −1 and y = +∞ or y = −∞, pow returns NaN.

If x = +0 and y > 0 and y ≠ NaN, pow returns +0.

If x = −0 and y > 0 and y ≠ NaN or y not an odd integer, pow returns +0.

If x = +0 and y and y ≠ NaN, pow returns +∞.

If x = −0 and y > 0 and y ≠ NaN or y not an odd integer, pow returns +∞.

If x = −0 and y is an odd integer, pow returns −0.

If x = +∞ and y > 0 and y ≠ NaN, pow returns +∞.

If x = +∞ and y < 0 and y ≠ NaN, pow returns +0.

If x = −∞, pow returns pow(−0, y)

If x < 0 and x ≠ ∞ and y is a non-integer, pow returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

725

powf

Synopsis

float powf(float,
 float);

Description

powf computes x raised to the power y.

If x < 0 and y ≤ 0, errno. is set to EDOM and powf returns −HUGE_VALF. If x ≤ 0 and y is not an integer value,

errno is set to EDOM and pow returns −HUGE_VALF.

If y = 0, powf returns 1.

If y = 1, powf returns x.

If y = NaN, powf returns NaN.

If x = NaN and y is anything other than 0, powf returns NaN.

If x < −1 or 1 < x, and y = +∞, powf returns +∞.

If x < −1 or 1 < x, and y = −∞, powf returns 0.

If −1 < x < 1 and y = +∞, powf returns +0.

If −1 < x < 1 and y = −∞, powf returns +∞.

If x = +1 or x = −1 and y = +∞ or y = −∞, powf returns NaN.

If x = +0 and y > 0 and y ≠ NaN, powf returns +0.

If x = −0 and y > 0 and y ≠ NaN or y not an odd integer, powf returns +0.

If x = +0 and y and y ≠ NaN, powf returns +∞.

If x = −0 and y > 0 and y ≠ NaN or y not an odd integer, powf returns +∞.

If x = −0 and y is an odd integer, powf returns −0.

If x = +∞ and y > 0 and y ≠ NaN, powf returns +∞.

If x = +∞ and y < 0 and y ≠ NaN, powf returns +0.

If x = −∞, powf returns powf(−0, y)

If x < 0 and x ≠ ∞ and y is a non-integer, powf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

726

scalbn

Synopsis

double scalbn(double x,
 int exp);

Description

scalbn multiplies a floating-point number by an integral power of DBL_RADIX.

As floating-point arithmetic conforms to IEC 60559, DBL_RADIX is 2 and scalbn is (in this implementation)

identical to ldexp.

scalbn returns x * DBL_RADIX^exp.

If the result overflows, errno is set to ERANGE and scalbn returns HUGE_VAL.

If x is ∞ or NaN, scalbn returns x.

If the result overflows, scalbn returns ∞.

See Also

ldexp

CrossWorks for ARM Reference Manual C Library User Guide

727

scalbnf

Synopsis

float scalbnf(float x,
 int exp);

Description

scalbnf multiplies a floating-point number by an integral power of FLT_RADIX.

As floating-point arithmetic conforms to IEC 60559, FLT_RADIX is 2 and scalbnf is (in this implementation)

identical to ldexpf.

scalbnf returns x * FLT_RADIX ^exp.

If the result overflows, errno is set to ERANGE and scalbnf returns HUGE_VALF.

If x is ∞ or NaN, scalbnf returns x. If the result overflows, scalbnf returns ∞.

See Also

ldexpf

CrossWorks for ARM Reference Manual C Library User Guide

728

signbit

Synopsis

#define signbit(x) (sizeof(x) == sizeof(float) ? __float32_signbit(x) :
 __float64_signbit(x))

Description

signbit macro shall determine whether the sign of its argument value is negative. The signbit macro returns a

non-zero value if and only if its argument value is negative.

CrossWorks for ARM Reference Manual C Library User Guide

729

sin

Synopsis

double sin(double x);

Description

sin returns the radian circular sine of x.

If |x| > 10^9, errno is set to EDOM and sin returns HUGE_VAL.

sin returns x if x is NaN. sin returns NaN if |x| is ∞.

CrossWorks for ARM Reference Manual C Library User Guide

730

sinf

Synopsis

float sinf(float x);

Description

sinf returns the radian circular sine of x.

If |x| > 10^9, errno is set to EDOM and sinf returns HUGE_VALF.

sinf returns x if x is NaN. sinf returns NaN if |x| is ∞.

CrossWorks for ARM Reference Manual C Library User Guide

731

sinh

Synopsis

double sinh(double x);

Description

sinh calculates the hyperbolic sine of x.

If |x| .782, errno is set to EDOM and sinh returns HUGE_VAL.

If x is +∞, −∞, or NaN, sinh returns |x|. If |x| > ~709.782, sinh returns +∞ or −∞ depending upon the sign of x.

CrossWorks for ARM Reference Manual C Library User Guide

732

sinhf

Synopsis

float sinhf(float x);

Description

sinhf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errno is set to EDOM and sinhf returns HUGE_VALF.

If x is +∞, −∞, or NaN, sinhf returns |x|. If |x| > ~88.7228, sinhf returns +∞ or −∞ depending upon the sign of x.

CrossWorks for ARM Reference Manual C Library User Guide

733

sqrt

Synopsis

double sqrt(double x);

Description

sqrt computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the argument

is less than zero. CrossWorks C deviates and always uses IEC 60559 semantics.

If x is +0, sqrt returns +0.

If x is −0, sqrt returns −0.

If x is ∞, sqrt returns ∞.

If x < 0, sqrt returns NaN.

If x is NaN, sqrt returns that NaN.

CrossWorks for ARM Reference Manual C Library User Guide

734

sqrtf

Synopsis

float sqrtf(float x);

Description

sqrtf computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the

argument is less than zero. CrossWorks C deviates and always uses IEC 60559 semantics.

If x is +0, sqrtf returns +0.

If x is −0, sqrtf returns −0.

If x is ∞, sqrtf returns ∞.

If x < 0, sqrtf returns NaN.

If x is NaN, sqrtf returns that NaN.

CrossWorks for ARM Reference Manual C Library User Guide

735

tan

Synopsis

double tan(double x);

Description

tan returns the radian circular tangent of x.

If |x| > 10^9, errno is set to EDOM and tan returns HUGE_VAL.

If x is NaN, tan returns x. If |x| is ∞, tan returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

736

tanf

Synopsis

float tanf(float x);

Description

tanf returns the radian circular tangent of x.

If |x| > 10^9, errno is set to EDOM and tanf returns HUGE_VALF.

If x is NaN, tanf returns x. If |x| is ∞, tanf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

737

tanh

Synopsis

double tanh(double x);

Description

tanh calculates the hyperbolic tangent of x.

If x is NaN, tanh returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

738

tanhf

Synopsis

float tanhf(float x);

Description

tanhf calculates the hyperbolic tangent of x.

If x is NaN, tanhf returns NaN.

CrossWorks for ARM Reference Manual C Library User Guide

739

<setjmp.h>

API Summary

Functions

longjmp Restores the saved environment

setjmp Save calling environment for non-local jump

CrossWorks for ARM Reference Manual C Library User Guide

740

longjmp

Synopsis

void longjmp(jmp_buf env,
 int val);

Description

longjmp restores the environment saved by setjmp in the corresponding env argument. If there has been no

such invocation, or if the function containing the invocation of setjmp has terminated execution in the interim,

the behavior of longjmp is undefined.

After longjmp is completed, program execution continues as if the corresponding invocation of setjmp had just

returned the value specified by val.

Note

longjmp cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Objects of automatic storage allocation that are local to the function containing the invocation of the

corresponding setjmp that do not have volatile qualified type and have been changed between the setjmp

invocation and this call are indeterminate.

CrossWorks for ARM Reference Manual C Library User Guide

741

setjmp

Synopsis

int setjmp(jmp_buf env);

Description

setjmp saves its calling environment in the env for later use by the longjmp function.

On return from a direct invocation setjmp returns the value zero. On return from a call to the longjmp function,

the setjmp returns a nonzero value determined by the call to longjmp.

The environment saved by a call to setjmp consists of information sufficient for a call to the longjmp function to

return execution to the correct block and invocation of that block, were it called recursively.

CrossWorks for ARM Reference Manual C Library User Guide

742

<stdarg.h>

API Summary

Macros

va_arg Get variable argument value

va_copy Copy var args

va_end Finish access to variable arguments

va_start Start access to variable arguments

CrossWorks for ARM Reference Manual C Library User Guide

743

va_arg

Synopsis

type va_arg(va_list ap,
 type);

Description

va_arg expands to an expression that has the specified type and the value of the type argument. The ap

parameter must have been initialized by va_start or va_copy, without an intervening invocation of va_end. You

can create a pointer to a va_list and pass that pointer to another function, in which case the original function

may make further use of the original list after the other function returns.

Each invocation of the va_arg macro modifies ap so that the values of successive arguments are returned in

turn. The parameter type must be a type name such that the type of a pointer to an object that has the specified

type can be obtained simply by postfixing a * to type.

If there is no actual next argument, or if type is not compatible with the type of the actual next argument (as

promoted according to the default argument promotions), the behavior of va_arg is undefined, except for the

following cases:

• one type is a signed integer type, the other type is the corresponding unsigned integer type, and the

value is representable in both types;

• one type is pointer to void and the other is a pointer to a character type.

The first invocation of the va_arg macro after that of the va_start macro returns the value of the argument after

that specified by parmN. Successive invocations return the values of the remaining arguments in succession.

CrossWorks for ARM Reference Manual C Library User Guide

744

va_copy

Synopsis

void va_copy(va_list dest,
 val_list src);

Description

va_copy initializes dest as a copy of src, as if the va_start macro had been applied to dest followed by the same

sequence of uses of the va_arg macro as had previously been used to reach the present state of src. Neither

the va_copy nor va_start macro shall be invoked to reinitialize dest without an intervening invocation of the

va_end macro for the same dest.

CrossWorks for ARM Reference Manual C Library User Guide

745

va_end

Synopsis

void va_end(va_list ap);

Description

va_end indicates a normal return from the function whose variable argument list ap was initialised by va_start

or va_copy. The va_end macro may modify ap so that it is no longer usable without being reinitialized by

va_start or va_copy. If there is no corresponding invocation of va_start or va_copy, or if va_end is not invoked

before the return, the behavior is undefined.

CrossWorks for ARM Reference Manual C Library User Guide

746

va_start

Synopsis

void va_start(va_list ap,
 paramN);

Description

va_start initializes ap for subsequent use by the va_arg and va_end macros.

The parameter parmN is the identifier of the last fixed parameter in the variable parameter list in the function

definition (the one just before the ', ...').

The behaviour of va_start and va_arg is undefined if the parameter parmN is declared with the register

storage class, with a function or array type, or with a type that is not compatible with the type that results after

application of the default argument promotions.

va_start must be invoked before any access to the unnamed arguments.

va_start and va_copy must not be invoked to reinitialize ap without an intervening invocation of the va_end

macro for the same ap.

CrossWorks for ARM Reference Manual C Library User Guide

747

<stddef.h>

API Summary

Macros

NULL NULL pointer

offsetof offsetof

Types

ptrdiff_t ptrdiff_t type

size_t size_t type

wchar_t Wide character type

CrossWorks for ARM Reference Manual C Library User Guide

748

NULL

Synopsis

#define NULL 0

Description

NULL is the null pointer constant.

CrossWorks for ARM Reference Manual C Library User Guide

749

offsetof

Synopsis

#define offsetof(type, member)

Description

offsetof returns the offset in bytes to the structure member, from the beginning of its structure type.

CrossWorks for ARM Reference Manual C Library User Guide

750

ptrdiff_t

Synopsis

typedef __PTRDIFF_T ptrdiff_t;

Description

ptrdiff_t is the signed integral type of the result of subtracting two pointers.

CrossWorks for ARM Reference Manual C Library User Guide

751

size_t

Synopsis

typedef __SIZE_T size_t;

Description

size_t is the unsigned integral type returned by the sizeof operator.

CrossWorks for ARM Reference Manual C Library User Guide

752

wchar_t

Synopsis

typedef unsigned wchar_t;

Description

wchar_t holds a single wide character.

CrossWorks for ARM Reference Manual C Library User Guide

753

<stdio.h>

API Summary

Character and string I/O functions

getchar Read a character from standard input

gets Read a string from standard input

putchar Write a character to standard output

puts Write a string to standard output

Formatted output functions

printf Write formatted text to standard output

snprintf Write formatted text to a string with truncation

sprintf Write formatted text to a string

vprintf Write formatted text to standard output using variable
argument context

vsnprintf Write formatted text to a string with truncation using
variable argument context

vsprintf Write formatted text to a string using variable
argument context

Formatted input functions

scanf Read formatted text from standard input

sscanf Read formatted text from string

vscanf Read formatted text from standard using variable
argument context

vsscanf Read formatted text from a string using variable
argument context

CrossWorks for ARM Reference Manual C Library User Guide

754

getchar

Synopsis

int getchar(void);

Description

getchar reads a single character from the standard input stream.

If the stream is at end-of-file or a read error occurs, getchar returns EOF.

CrossWorks for ARM Reference Manual C Library User Guide

755

gets

Synopsis

char *gets(char *s);

Description

gets reads characters from standard input into the array pointed to by s until end-of-file is encountered or a

new-line character is read. Any new-line character is discarded, and a null character is written immediately after

the last character read into the array.

gets returns s if successful. If end-of-file is encountered and no characters have been read into the array, the

contents of the array remain unchanged and gets returns a null pointer. If a read error occurs during the

operation, the array contents are indeterminate and gets returns a null pointer.

CrossWorks for ARM Reference Manual C Library User Guide

756

printf

Synopsis

int printf(const char *format,
 ...);

Description

printf writes to the standard output stream using putchar, under control of the string pointed to by format that

specifies how subsequent arguments are converted for output.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

printf returns the number of characters transmitted, or a negative value if an output or encoding error occurred.

Formatted output control strings

The format is composed of zero or more directives: ordinary characters (not ‘%’, which are copied unchanged

to the output stream; and conversion specifications, each of which results in fetching zero or more subsequent

arguments, converting them, if applicable, according to the corresponding conversion specifier, and then

writing the result to the output stream.

Each conversion specification is introduced by the character ‘%’. After the ‘%’ the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specification.

• An optional minimum field width. If the converted value has fewer characters than the field width, it is

padded with spaces (by default) on the left (or right, if the left adjustment flag has been given) to the field

width. The field width takes the form of an asterisk ‘*’ or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and

‘X’ conversions, the number of digits to appear after the decimal-point character for ‘e’, ‘E’, ‘f’, and ‘F’

conversions, the maximum number of significant digits for the ‘g’ and ‘G’ conversions, or the maximum

number of bytes to be written for ‘s’ conversions. The precision takes the form of a period ‘.’ followed

either by an asterisk ‘*’ or by an optional decimal integer; if only the period is specified, the precision is

taken as zero. If a precision appears with any other conversion specifier, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int argument

supplies the field width or precision. The arguments specifying field width, or precision, or both, must appear

(in that order) before the argument (if any) to be converted. A negative field width argument is taken as a ‘-’ flag

followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

CrossWorks for ARM Reference Manual C Library User Guide

757

Some CrossWorks library variants do not support width and precision specifiers in order to reduce code and

data space requirements; please ensure that you have selected the correct library in the Printf Width/Precision

Support property of the project if you use these.

Flag characters

The flag characters and their meanings are:

‘-’
The result of the conversion is left-justified within the field. The default, if this flag is not specified, is that the

result of the conversion is left-justified within the field.

‘+’
The result of a signed conversion always begins with a plus or minus sign. The default, if this flag is not

specified, is that it begins with a sign only when a negative value is converted.

space
If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a

space is prefixed to the result. If the space and ‘+’ flags both appear, the space flag is ignored.

‘#’
The result is converted to an alternative form. For ‘o’ conversion, it increases the precision, if and only if

necessary, to force the first digit of the result to be a zero (if the value and precision are both zero, a single

‘0’ is printed). For ‘x’ or ‘X’ conversion, a nonzero result has ‘0x’ or ‘0X’ prefixed to it. For ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, and

‘G’ conversions, the result of converting a floating-point number always contains a decimal-point character,

even if no digits follow it. (Normally, a decimal-point character appears in the result of these conversions

only if a digit follows it.) For ‘g’ and ‘F’ conversions, trailing zeros are not removed from the result. As an

extension, when used in ‘p’ conversion, the results has ‘#’ prefixed to it. For other conversions, the behavior

is undefined.

‘0’
For ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, and ‘G’ conversions, leading zeros (following any indication of

sign or base) are used to pad to the field width rather than performing space padding, except when

converting an infinity or NaN. If the ‘0’ and ‘-’ flags both appear, the ‘0’ flag is ignored. For ‘d’, ‘i’, ‘o’, ‘u’, ‘x’,

and ‘X’ conversions, if a precision is specified, the ‘0’ flag is ignored. For other conversions, the behavior is

undefined.

Length modifiers

The length modifiers and their meanings are:

‘hh’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion specifier applies to a signed char or unsigned

char argument (the argument will have been promoted according to the integer promotions, but its value

will be converted to signed char or unsigned char before printing); or that a following ‘n’ conversion

specifier applies to a pointer to a signed char argument.

CrossWorks for ARM Reference Manual C Library User Guide

758

‘h’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion specifier applies to a short int or unsigned short

int argument (the argument will have been promoted according to the integer promotions, but its value

is converted to short int or unsigned short int before printing); or that a following ‘n’ conversion specifier

applies to a pointer to a short int argument.

‘l’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion specifier applies to a long int or unsigned long

int argument; that a following ‘n’ conversion specifier applies to a pointer to a long int argument; or has

no effect on a following ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, or ‘G’ conversion specifier. Some CrossWorks library variants do not

support the ‘l’ length modifier in order to reduce code and data space requirements; please ensure that you

have selected the correct library in the Printf Integer Support property of the project if you use this length

modifier.

‘ll’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion specifier applies to a long long int or unsigned

long long int argument; that a following ‘n’ conversion specifier applies to a pointer to a long long int

argument. Some CrossWorks library variants do not support the ‘ll’ length modifier in order to reduce code

and data space requirements; please ensure that you have selected the correct library in the Printf Integer

Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers ‘j’, ‘z’, ‘t’, and ‘L’ are not supported.

Conversion specifiers

The conversion specifiers and their meanings are:

‘d’, ‘i’
The argument is converted to signed decimal in the style [-]dddd. The precision specifies the minimum

number of digits to appear; if the value being converted can be represented in fewer digits, it is expanded

with leading spaces. The default precision is one. The result of converting a zero value with a precision of

zero is no characters.

‘o’, ‘u’, ‘x’, ‘X’
The unsigned argument is converted to unsigned octal for ‘o’, unsigned decimal for ‘u’, or unsigned

hexadecimal notation for ‘x’ or ‘X’ in the style dddd the letters ‘abcdef’ are used for ‘x’ conversion and the

letters ‘ABCDEF’ for ‘X’ conversion. The precision specifies the minimum number of digits to appear; if the

value being converted can be represented in fewer digits, it is expanded with leading spaces. The default

precision is one. The result of converting a zero value with a precision of zero is no characters.

‘f’, ‘F’
A double argument representing a floating-point number is converted to decimal notation in the

style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is zero and the ‘#’ flag is not specified,

CrossWorks for ARM Reference Manual C Library User Guide

759

no decimal-point character appears. If a decimal-point character appears, at least one digit appears before

it. The value is rounded to the appropriate number of digits. A double argument representing an infinity is

converted to ‘inf’. A double argument representing a NaN is converted to ‘nan’. The ‘F’ conversion specifier

produces ‘INF’ or ‘NAN’ instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks library variants do not

support the ‘f’ and ‘F’ conversion specifiers in order to reduce code and data space requirements; please

ensure that you have selected the correct library in the Printf Floating Point Support property of the

project if you use these conversion specifiers.

‘e’, ‘E’
A double argument representing a floating-point number is converted in the style [-]d.ddde±dd, where

there is one digit (which is nonzero if the argument is nonzero) before the decimal-point character and

the number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the

precision is zero and the ‘#’ flag is not specified, no decimal-point character appears. The value is rounded

to the appropriate number of digits. The ‘E’ conversion specifier produces a number with ‘E’ instead of

‘e’ introducing the exponent. The exponent always contains at least two digits, and only as many more

digits as necessary to represent the exponent. If the value is zero, the exponent is zero. A double argument

representing an infinity is converted to ‘inf’. A double argument representing a NaN is converted to ‘nan’.

The ‘E’ conversion specifier produces ‘INF’ or ‘NAN’ instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks

library variants do not support the ‘f’ and ‘F’ conversion specifiers in order to reduce code and data space

requirements; please ensure that you have selected the correct library in the Printf Floating Point Support}

property of the project if you use these conversion specifiers.

‘g’, ‘G’
A double argument representing a floating-point number is converted in style ‘f’ or ‘e’ (or in style ‘F’ or ‘e’

in the case of a ‘G’ conversion specifier), with the precision specifying the number of significant digits. If

the precision is zero, it is taken as one. The style used depends on the value converted; style ‘e’ (or ‘E’) is

used only if the exponent resulting from such a conversion is less than -4 or greater than or equal to the

precision. Trailing zeros are removed from the fractional portion of the result unless the ‘#’ flag is specified;

a decimal-point character appears only if it is followed by a digit. A double argument representing an

infinity is converted to ‘inf’. A double argument representing a NaN is converted to ‘nan’. The ‘G’ conversion

specifier produces ‘INF’ or ‘NAN’ instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks library variants

do not support the ‘f’ and ‘F’ conversion specifiers in order to reduce code and data space requirements;

please ensure that you have selected the correct library in the Printf Floating Point Support property of the

project if you use these conversion specifiers.

‘c’
The argument is converted to an unsigned char, and the resulting character is written.

‘s’
The argument is be a pointer to the initial element of an array of character type. Characters from the array

are written up to (but not including) the terminating null character. If the precision is specified, no more

than that many characters are written. If the precision is not specified or is greater than the size of the array,

the array must contain a null character.

CrossWorks for ARM Reference Manual C Library User Guide

760

‘p’
The argument is a pointer to void. The value of the pointer is converted in the same format as the ‘x’

conversion specifier with a fixed precision of 2*sizeof(void *).

‘n’
The argument is a pointer to a signed integer into which is written the number of characters written to the

output stream so far by the call to the formatting function. No argument is converted, but one is consumed.

If the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

‘%’
A ‘%’ character is written. No argument is converted.

Note that the C99 width modifier ‘l’ used in conjunction with the ‘c’ and ‘s’ conversion specifiers is not supported

and nor are the conversion specifiers ‘a’ and ‘A’.

CrossWorks for ARM Reference Manual C Library User Guide

761

putchar

Synopsis

int putchar(int c);

Description

putchar writes the character c to the standard output stream.

putchar returns the character written. If a write error occurs, putchar returns EOF.

CrossWorks for ARM Reference Manual C Library User Guide

762

puts

Synopsis

int puts(const char *s);

Description

puts writes the string pointed to by s to the standard output stream using putchar and appends a new-line

character to the output. The terminating null character is not written.

puts returns EOF if a write error occurs; otherwise it returns a nonnegative value.

CrossWorks for ARM Reference Manual C Library User Guide

763

scanf

Synopsis

int scanf(const char *format,
 ...);

Description

scanf reads input from the standard input stream under control of the string pointed to by format that specifies

the admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

scanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, scanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Formatted input control strings

The format is composed of zero or more directives: one or more white-space characters, an ordinary character

(neither % nor a white-space character), or a conversion specification.

Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

• An optional assignment-suppressing character *.

• An optional nonzero decimal integer that specifies the maximum field width (in characters).

• An optional length modifier that specifies the size of the receiving object.

• A conversion specifier character that specifies the type of conversion to be applied.

The formatted input function executes each directive of the format in turn. If a directive fails, the function

returns. Failures are described as input failures (because of the occurrence of an encoding error or the

unavailability of input characters), or matching failures (because of inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-white-space

character (which remains unread), or until no more characters can be read.

A directive that is an ordinary character is executed by reading the next characters of the stream. If any of those

characters differ from the ones composing the directive, the directive fails and the differing and subsequent

characters remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from

being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described below for

each specifier. A conversion specification is executed in the following steps:

CrossWorks for ARM Reference Manual C Library User Guide

764

• Input white-space characters (as specified by the isspace function) are skipped, unless the specification

includes a [, c, or n specifier.

• An input item is read from the stream, unless the specification includes an n specifier. An input item is

defined as the longest sequence of input characters which does not exceed any specified field width

and which is, or is a prefix of, a matching input sequence. The first character, if any, after the input item

remains unread. If the length of the input item is zero, the execution of the directive fails; this condition is

a matching failure unless end-of-file, an encoding error, or a read error prevented input from the stream,

in which case it is an input failure.

• Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input

characters) is converted to a type appropriate to the conversion specifier. If the input item is not a

matching sequence, the execution of the directive fails: this condition is a matching failure. Unless

assignment suppression was indicated by a *, the result of the conversion is placed in the object pointed

to by the first argument following the format argument that has not already received a conversion result.

If this object does not have an appropriate type, or if the result of the conversion cannot be represented

in the object, the behavior is undefined.

Length modifiers

The length modifiers and their meanings are:

‘hh’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion specifier applies to an argument with type

pointer to signed char or pointer to unsigned char.

‘h’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion specifier applies to an argument with type

pointer to short int or unsigned short int.

‘l’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion specifier applies to an argument with type

pointer to long int or unsigned long int; that a following ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, or ‘G’ conversion specifier applies

to an argument with type pointer to double. Some CrossWorks library variants do not support the ‘l’ length

modifier in order to reduce code and data space requirements; please ensure that you have selected the

correct library in the Printf Integer Support property of the project if you use this length modifier.

‘ll’
Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion specifier applies to an argument with type

pointer to long long int or unsigned long long int. Some CrossWorks library variants do not support the ‘ll’

length modifier in order to reduce code and data space requirements; please ensure that you have selected

the correct library in the Printf Integer Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers ‘j’, ‘z’, ‘t’, and ‘L’ are not supported.

CrossWorks for ARM Reference Manual C Library User Guide

765

Conversion specifiers

‘d’
Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of the strtol function with the value 10 for the base argument. The corresponding argument

must be a pointer to signed integer.

‘i’
Matches an optionally signed integer, whose format is the same as expected for the subject sequence of the

strtol function with the value zero for the base argument. The corresponding argument must be a pointer

to signed integer.

‘o’
Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence

of the strtol function with the value 18 for the base argument. The corresponding argument must be a

pointer to signed integer.

‘u’
Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of the strtoul function with the value 10 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

‘x’
Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject

sequence of the strtoul function with the value 16 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

‘e’, ‘f’, ‘g’
Matches an optionally signed floating-point number whose format is the same as expected for the

subject sequence of the strtod function. The corresponding argument shall be a pointer to floating. Some

CrossWorks library variants do not support the ‘e’, ‘f’ and ‘F’ conversion specifiers in order to reduce code

and data space requirements; please ensure that you have selected the correct library in the Scanf Floating

Point Support property of the project if you use these conversion specifiers.

‘c’
Matches a sequence of characters of exactly the number specified by the field width (one if no field width

is present in the directive). The corresponding argument must be a pointer to the initial element of a

character array large enough to accept the sequence. No null character is added.

‘s’
Matches a sequence of non-white-space characters The corresponding argument must be a pointer to the

initial element of a character array large enough to accept the sequence and a terminating null character,

which will be added automatically.

CrossWorks for ARM Reference Manual C Library User Guide

766

‘[’
Matches a nonempty sequence of characters from a set of expected characters (the scanset). The

corresponding argument must be a pointer to the initial element of a character array large enough to

accept the sequence and a terminating null character, which will be added automatically. The conversion

specifier includes all subsequent characters in the format string, up to and including the matching right

bracket ‘]’. The characters between the brackets (the scanlist) compose the scanset, unless the character

after the left bracket is a circumflex ‘^’, in which case the scanset contains all characters that do not

appear in the scanlist between the circumflex and the right bracket. If the conversion specifier begins

with ‘[]’ or‘[^]’, the right bracket character is in the scanlist and the next following right bracket character

is the matching right bracket that ends the specification; otherwise the first following right bracket

character is the one that ends the specification. If a ‘-’ character is in the scanlist and is not the first, nor

the second where the first character is a ‘^’, nor the last character, it is treated as a member of the scanset.

Some CrossWorks library variants do not support the ‘[’ conversion specifier in order to reduce code and

data space requirements; please ensure that you have selected the correct library in the Scanf Classes

Supported property of the project if you use this conversion specifier.

‘p’
Reads a sequence output by the corresponding ‘%p’ formatted output conversion. The corresponding

argument must be a pointer to a pointer to void.

‘n’
No input is consumed. The corresponding argument shall be a pointer to signed integer into which is to

be written the number of characters read from the input stream so far by this call to the formatted input

function. Execution of a ‘%n’ directive does not increment the assignment count returned at the completion

of execution of the fscanf function. No argument is converted, but one is consumed. If the conversion

specification includes an assignment-suppressing character or a field width, the behavior is undefined.

‘%’
Matches a single ‘%’ character; no conversion or assignment occurs.

Note that the C99 width modifier ‘l’ used in conjunction with the ‘c’, ‘s’, and ‘[’ conversion specifiers is not

supported and nor are the conversion specifiers ‘a’ and ‘A’.

CrossWorks for ARM Reference Manual C Library User Guide

767

snprintf

Synopsis

int snprintf(char *s,
 size_t n,
 const char *format,
 ...);

Description

snprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n−1st are

discarded rather than being written to the array, and a null character is written at the end of the characters

actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

snprintf returns the number of characters that would have been written had n been sufficiently large, not

counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n>.

CrossWorks for ARM Reference Manual C Library User Guide

768

sprintf

Synopsis

int sprintf(char *s,
 const char *format,
 ...);

Description

sprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. A null character is written at the end of the characters written;

it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

sprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

CrossWorks for ARM Reference Manual C Library User Guide

769

sscanf

Synopsis

int sscanf(const char *s,
 const char *format,
 ...);

Description

sscanf reads input from the string s under control of the string pointed to by format that specifies the

admissible input sequences and how they are to be converted for assignment, using subsequent arguments as

pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

sscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, sscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

CrossWorks for ARM Reference Manual C Library User Guide

770

vprintf

Synopsis

int vprintf(const char *format,
 __va_list arg);

Description

vprintf writes to the standard output stream using putchar under control of the string pointed to by format that

specifies how subsequent arguments are converted for output. Before calling vprintf, arg must be initialized by

the va_start macro (and possibly subsequent va_arg calls). vprintf does not invoke the va_end macro.

vprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

Note

vprintf is equivalent to printf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual C Library User Guide

771

vscanf

Synopsis

int vscanf(const char *format,
 __va_list arg);

Description

vscanf reads input from the standard input stream under control of the string pointed to by format that

specifies the admissible input sequences and how they are to be converted for assignment, using subsequent

arguments as pointers to the objects to receive the converted input. Before calling vscanf, arg must be

initialized by the va_start macro (and possibly subsequent va_arg calls). vscanf does not invoke the va_end

macro.

If there are insufficient arguments for the format, the behavior is undefined.

vscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vscanf is equivalent to scanf with the variable argument list replaced arg.

CrossWorks for ARM Reference Manual C Library User Guide

772

vsnprintf

Synopsis

int vsnprintf(char *s,
 size_t n,
 const char *format,
 __va_list arg);

Description

vsnprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. Before calling vsnprintf, arg must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsnprintf does not invoke the va_end macro.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n−1st are

discarded rather than being written to the array, and a null character is written at the end of the characters

actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsnprintf returns the number of characters that would have been written had n been sufficiently large, not

counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n.

Note

vsnprintf is equivalent to snprintf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual C Library User Guide

773

vsprintf

Synopsis

int vsprintf(char *s,
 const char *format,
 __va_list arg);

Description

vsprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. Before calling vsprintf, arg> must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsprintf does not invoke the va_end macro.

A null character is written at the end of the characters written; it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

Note

vsprintf is equivalent to sprintf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual C Library User Guide

774

vsscanf

Synopsis

int vsscanf(const char *s,
 const char *format,
 __va_list arg);

Description

vsscanf reads input from the string s under control of the string pointed to by format that specifies the

admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input. Before calling vsscanf, arg must be initialized by the

va_start macro (and possibly subsequent va_arg calls). vsscanf does not invoke the va_end macro.

If there are insufficient arguments for the format, the behavior is undefined.

vsscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vsscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vsscanf is equivalent to sscanf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual C Library User Guide

775

<stdlib.h>

API Summary

Macros

EXIT_FAILURE EXIT_FAILURE

EXIT_SUCCESS EXIT_SUCCESS

RAND_MAX RAND_MAX

Integer arithmetic functions

abs Return an integer absolute value

div Divide two ints returning quotient and remainder

labs Return a long integer absolute value

ldiv Divide two longs returning quotient and remainder

llabs Return a long long integer absolute value

lldiv Divide two long longs returning quotient and
remainder

Memory allocation functions

calloc Allocate space for an array of objects and initialize
them to zero

free Frees allocated memory for reuse

malloc Allocate space for a single object

realloc Resizes allocated memory space or allocates memory
space

String to number conversions

atof Convert string to double

atoi Convert string to int

atol Convert string to long

atoll Convert string to long long

strtod Convert string to double

strtof Convert string to float

strtol Convert string to long

strtoll Convert string to long long

strtoul Convert string to unsigned long

strtoull Convert string to unsigned long long

Pseudo-random sequence generation functions

rand Return next random number in sequence

CrossWorks for ARM Reference Manual C Library User Guide

776

srand Set seed of random number sequence

Search and sort functions

bsearch Search a sorted array

qsort Sort an array

Environment

atexit Set function to be execute on exit

exit Terminates the calling process

Number to string conversions

itoa Convert int to string

lltoa Convert long long to string

ltoa Convert long to string

ulltoa Convert unsigned long long to string

ultoa Convert unsigned long to string

utoa Convert unsigned to string

Types

div_t Structure containing quotient and remainder after
division of an int

ldiv_t Structure containing quotient and remainder after
division of a long

lldiv_t Structure containing quotient and remainder after
division of a long long

CrossWorks for ARM Reference Manual C Library User Guide

777

EXIT_FAILURE

Synopsis

#define EXIT_FAILURE 1

Description

EXIT_FAILURE pass to exit on unsuccessful termination.

CrossWorks for ARM Reference Manual C Library User Guide

778

EXIT_SUCCESS

Synopsis

#define EXIT_SUCCESS 0

Description

EXIT_SUCCESS pass to exit on successful termination.

CrossWorks for ARM Reference Manual C Library User Guide

779

RAND_MAX

Synopsis

#define RAND_MAX 32767

Description

RAND_MAX expands to an integer constant expression that is the maximum value returned by rand.

CrossWorks for ARM Reference Manual C Library User Guide

780

abs

Synopsis

int abs(int j);

Description

abs returns the absolute value of the integer argument j.

CrossWorks for ARM Reference Manual C Library User Guide

781

atexit

Synopsis

int atexit(void (*func)(void));

Description

atexit registers function to be called when the application has exited. The functions registered with atexit are

executed in reverse order of their registration. atexit returns 0 on success and non-zero on failure.

CrossWorks for ARM Reference Manual C Library User Guide

782

atof

Synopsis

double atof(const char *nptr);

Description

atof converts the initial portion of the string pointed to by nptr to a double representation. atof does not affect

the value of errno on an error. If the value of the result cannot be represented, the behavior is undefined.

Except for the behavior on error, atof is equivalent to strtod(nptr, (char **)NULL).

atof returns the converted value.

See Also

strtod

CrossWorks for ARM Reference Manual C Library User Guide

783

atoi

Synopsis

int atoi(const char *nptr);

Description

atoi converts the initial portion of the string pointed to by nptr to an int representation.

atoi does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoi is equivalent to (int)strtol(nptr, (char **)NULL, 10).

atoi returns the converted value.

See Also

strtol

CrossWorks for ARM Reference Manual C Library User Guide

784

atol

Synopsis

long int atol(const char *nptr);

Description

atol converts the initial portion of the string pointed to by nptr to a long int representation.

atol does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atol is equivalent to strtol(nptr, (char **)NULL, 10).

atol returns the converted value.

See Also

strtol

CrossWorks for ARM Reference Manual C Library User Guide

785

atoll

Synopsis

long long int atoll(const char *nptr);

Description

atoll converts the initial portion of the string pointed to by nptr to a long long int representation.

atoll does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoll is equivalent to strtoll(nptr, (char **)NULL, 10). atoll

returns the converted value.

See Also

strtoll

CrossWorks for ARM Reference Manual C Library User Guide

786

bsearch

Synopsis

void *bsearch(const void *key,
 const void *buf,
 size_t num,
 size_t size,
 int (*compare)(const void *, const void *));

Description

bsearch searches the array *base for the specified {*key} and returns a pointer to the first entry that matches or

null if no match. The array should have num elements of size bytes and be sorted by the same algorithm as the

compare function

The compare function should return a negative value if the first parameter is less than second parameter, zero if

the parameters are equal, and a positive value if the first parameter is greater than the second parameter.

CrossWorks for ARM Reference Manual C Library User Guide

787

calloc

Synopsis

void *calloc(size_t nobj,
 size_t size);

Description

calloc allocates space for an array of nmemb objects, each of whose size is size. The space is initialized to all zero

bits.

calloc returns a null pointer if the space for the array of object cannot be allocated from free memory; if space for

the array can be allocated, calloc returns a pointer to the start of the allocated space.

CrossWorks for ARM Reference Manual C Library User Guide

788

div

Synopsis

div_t div(int numer,
 int denom);

Description

div computes numer / denom and numer % denom in a single operation.

div returns a structure of type div_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

div_t

CrossWorks for ARM Reference Manual C Library User Guide

789

div_t

Description

div_t stores the quotient and remainder returned by div.

CrossWorks for ARM Reference Manual C Library User Guide

790

exit

Synopsis

void exit(int exit_code);

Description

exit returns to the startup code and performs the appropriate cleanup process.

CrossWorks for ARM Reference Manual C Library User Guide

791

free

Synopsis

void free(void *p);

Description

free causes the space pointed to by ptr to be deallocated, that is, made available for further allocation. If ptr is a

null pointer, no action occurs.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

CrossWorks for ARM Reference Manual C Library User Guide

792

itoa

Synopsis

char *itoa(int val,
 char *buf,
 int radix);

Description

itoa converts val to a string in base radix and places the result in buf.

itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

ltoa, lltoa, ultoa, ulltoa, utoa

CrossWorks for ARM Reference Manual C Library User Guide

793

labs

Synopsis

long int labs(long int j);

Description

labs returns the absolute value of the long integer argument j.

CrossWorks for ARM Reference Manual C Library User Guide

794

ldiv

Synopsis

ldiv_t ldiv(long int numer,
 long int denom);

Description

ldiv computes numer / denom and numer % denom in a single operation. ldiv returns a structure of type ldiv_t

comprising both the quotient and the remainder. The structures contain the members quot (the quotient) and

rem (the remainder), each of which has the same type as the arguments numer and denom. If either part of the

result cannot be represented, the behavior is undefined.

See Also

ldiv_t

CrossWorks for ARM Reference Manual C Library User Guide

795

ldiv_t

Description

ldiv_t stores the quotient and remainder returned by ldiv.

CrossWorks for ARM Reference Manual C Library User Guide

796

llabs

Synopsis

long long int llabs(long long int j);

Description

llabs returns the absolute value of the long long integer argument j.

CrossWorks for ARM Reference Manual C Library User Guide

797

lldiv

Synopsis

lldiv_t lldiv(long long int numer,
 long long int denom);

lldiv computes numer / denom and numer % denom in a single operation. lldiv returns a structure of type

lldiv_t comprising both the quotient and the remainder. The structures contain the members quot (the

quotient) and rem (the remainder), each of which has the same type as the arguments numer and denom. If

either part of the result cannot be represented, the behavior is undefined.

See Also

lldiv_t

CrossWorks for ARM Reference Manual C Library User Guide

798

lldiv_t

Description

lldiv_t stores the quotient and remainder returned by lldiv.

CrossWorks for ARM Reference Manual C Library User Guide

799

lltoa

Synopsis

char *lltoa(long long val,
 char *buf,
 int radix);

Description

lltoa converts val to a string in base radix and places the result in buf.

lltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

itoa, ltoa, ultoa, ulltoa, utoa

CrossWorks for ARM Reference Manual C Library User Guide

800

ltoa

Synopsis

char *ltoa(long val,
 char *buf,
 int radix);

Description

ltoa converts val to a string in base radix and places the result in buf.

ltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

itoa, lltoa, ultoa, ulltoa, utoa

CrossWorks for ARM Reference Manual C Library User Guide

801

malloc

Synopsis

void *malloc(size_t size);

Description

malloc allocates space for an object whose size is specified by 'b size and whose value is indeterminate.

malloc returns a null pointer if the space for the object cannot be allocated from free memory; if space for the

object can be allocated, malloc returns a pointer to the start of the allocated space.

CrossWorks for ARM Reference Manual C Library User Guide

802

qsort

Synopsis

void qsort(void *buf,
 size_t num,
 size_t size,
 int (*compare)(const void *, const void *));

qsort sorts the array *base using the compare algorithm. The array should have num elements of size bytes. The

compare function should return a negative value if the first parameter is less than second parameter, zero if the

parameters are equal and a positive value if the first parameter is greater than the second parameter.

CrossWorks for ARM Reference Manual C Library User Guide

803

rand

Synopsis

int rand(void);

Description

rand computes a sequence of pseudo-random integers in the range 0 to RAND_MAX.

rand returns the computed pseudo-random integer.

CrossWorks for ARM Reference Manual C Library User Guide

804

realloc

Synopsis

void *realloc(void *p,
 size_t size);

Description

realloc deallocates the old object pointed to by ptr and returns a pointer to a new object that has the size

specified by size. The contents of the new object is identical to that of the old object prior to deallocation,

up to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object have

indeterminate values.

If ptr is a null pointer, realloc behaves like realloc for the specified size. If memory for the new object cannot be

allocated, the old object is not deallocated and its value is unchanged.

realloc returns a pointer to the new object (which may have the same value as a pointer to the old object), or a

null pointer if the new object could not be allocated.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

CrossWorks for ARM Reference Manual C Library User Guide

805

srand

Synopsis

void srand(unsigned int seed);

Description

srand uses the argument seed as a seed for a new sequence of pseudo-random numbers to be returned by

subsequent calls to rand. If srand is called with the same seed value, the same sequence of pseudo-random

numbers is generated.

If rand is called before any calls to srand have been made, a sequence is generated as if srand is first called with

a seed value of 1.

See Also

rand or 'ref rand_max

CrossWorks for ARM Reference Manual C Library User Guide

806

strtod

Synopsis

double strtod(const char *nptr,
 char **endptr);

Description

strtod converts the initial portion of the string pointed to by nptr to a double representation.

First, strtod decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string

of one or more unrecognized characters, including the terminating null character of the input string. strtod then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by strtod, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtod returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, HUGE_VAL is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

CrossWorks for ARM Reference Manual C Library User Guide

807

strtof

Synopsis

float strtof(const char *nptr,
 char **endptr);

Description

strtof converts the initial portion of the string pointed to by nptr to a double representation.

First, strtof decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string

of one or more unrecognized characters, including the terminating null character of the input string. strtof then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part. If the subject

sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer to the final

string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtof returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, HUGE_VALF is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

CrossWorks for ARM Reference Manual C Library User Guide

808

strtol

Synopsis

long int strtol(const char *nptr,
 char **endptr,
 int base);

Description

strtol converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtol decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtol then attempts to convert the subject sequence to an integer,

and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters ‘0x’ or ‘0X’ may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual C Library User Guide

809

strtol returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LONG_MIN or LONG_MAX is returned according to the sign

of the value, if any, and the value of the macro errno is stored in errno.

CrossWorks for ARM Reference Manual C Library User Guide

810

strtoll

Synopsis

long long int strtoll(const char *nptr,
 char **endptr,
 int base);

Description

strtoll converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoll decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoll then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters ‘0x’ or ‘0X’ may optionally precede the sequence of letters and digits,

following the optional sign. The subject sequence is defined as the longest initial subsequence of the input

string, starting with the first non-white-space character, that is of the expected form. The subject sequence

contains no characters if the input string is empty or consists entirely of white space, or if the first non-white-

space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual C Library User Guide

811

strtoll returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LLONG_MIN or LLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

CrossWorks for ARM Reference Manual C Library User Guide

812

strtoul

Synopsis

unsigned long int strtoul(const char *nptr,
 char **endptr,
 int base);

Description

strtoul converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoul decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoul then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant. If the value of base is between 2 and 36 (inclusive), the expected form of the subject

sequence is an optional plus or minus sign followed by a sequence of letters and digits representing an integer

with the radix specified by base. The letters from a (or A) through z (or Z) represent the values 10 through 35;

only letters and digits whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters ‘0x’ or ‘0X’ may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual C Library User Guide

813

strtoul returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LONG_MAX or ULONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

CrossWorks for ARM Reference Manual C Library User Guide

814

strtoull

Synopsis

unsigned long long int strtoull(const char *nptr,
 char **endptr,
 int base);

Description

strtoull converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoull decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoull then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters ‘0x’ or ‘0X’ may optionally precede the sequence of letters and digits,

following the optional sign. The subject sequence is defined as the longest initial subsequence of the input

string, starting with the first non-white-space character, that is of the expected form. The subject sequence

contains no characters if the input string is empty or consists entirely of white space, or if the first non-white-

space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer

to the final string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtoull returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LLONG_MAX or ULLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

CrossWorks for ARM Reference Manual C Library User Guide

815

ulltoa

Synopsis

char *ulltoa(unsigned long long val,
 char *buf,
 int radix);

Description

ulltoa converts val to a string in base radix and places the result in buf.

ulltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ultoa, utoa

CrossWorks for ARM Reference Manual C Library User Guide

816

ultoa

Synopsis

char *ultoa(unsigned long val,
 char *buf,
 int radix);

Description

ultoa converts val to a string in base radix and places the result in buf.

ultoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ulltoa, utoa

CrossWorks for ARM Reference Manual C Library User Guide

817

utoa

Synopsis

char *utoa(unsigned val,
 char *buf,
 int radix);

Description

utoa converts val to a string in base radix and places the result in buf.

utoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ultoa, ulltoa

CrossWorks for ARM Reference Manual C Library User Guide

818

<string.h>

API Summary

Copying functions

memccpy Copy memory with specified terminator (POSIX
extension)

memcpy Copy memory

memmove Safely copy overlapping memory

mempcpy Copy memory (GNU extension)

strcat Concatenate strings

strcpy Copy string

strdup Duplicate string (POSIX extension)

strlcat Copy string up to a maximum length with terminator
(BSD extension)

strlcpy Copy string up to a maximum length with terminator
(BSD extension)

strncat Concatenate strings up to maximum length

strncpy Copy string up to a maximum length

strndup Duplicate string (POSIX extension)

Comparison functions

memcmp Compare memory

strcasecmp Compare strings ignoring case (POSIX extension)

strcmp Compare strings

strncasecmp Compare strings up to a maximum length ignoring
case (POSIX extension)

strncmp Compare strings up to a maximum length

Search functions

memchr Search memory for a character

strcasestr Find first case-insensitive occurrence of a string within
string

strchr Find character within string

strcspn Compute size of string not prefixed by a set of
characters

strncasestr Find first case-insensitive occurrence of a string within
length-limited string

strnchr Find character in a length-limited string

CrossWorks for ARM Reference Manual C Library User Guide

819

strnlen Calculate length of length-limited string (POSIX
extension)

strnstr Find first occurrence of a string within length-limited
string

strpbrk Find first occurrence of characters within string

strrchr Find last occurrence of character within string

strsep Break string into tokens (4.4BSD extension)

strspn Compute size of string prefixed by a set of characters

strstr Find first occurrence of a string within string

strtok Break string into tokens

strtok_r Break string into tokens, reentrant version (POSIX
extension)

Miscellaneous functions

memset Set memory to character

strerror Decode error code

strlen Calculate length of string

CrossWorks for ARM Reference Manual C Library User Guide

820

memccpy

Synopsis

void *memccpy(void *s1,
 const void *s2,
 int c,
 size_t n);

Description

memccpy copies at most n characters from the object pointed to by s2 into the object pointed to by s1. The

copying stops as soon as n characters are copied or the character c is copied into the destination object pointed

to by s1. The behavior of memccpy is undefined if copying takes place between objects that overlap.

memccpy returns a pointer to the character immediately following c in s1, or NULL if c was not found in the first

n characters of s2.

Note

memccpy conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual C Library User Guide

821

memchr

Synopsis

void *memchr(const void *s,
 int c,
 size_t n);

Description

memchr locates the first occurrence of c (converted to an unsigned char) in the initial n characters (each

interpreted as unsigned char) of the object pointed to by s. Unlike strchr, memchr does not terminate a search

when a null character is found in the object pointed to by s.

memchr returns a pointer to the located character, or a null pointer if c does not occur in the object.

CrossWorks for ARM Reference Manual C Library User Guide

822

memcmp

Synopsis

int memcmp(const void *s1,
 const void *s2,
 size_t n);

Description

memcmp compares the first n characters of the object pointed to by s1 to the first n characters of the object

pointed to by s2. memcmp returns an integer greater than, equal to, or less than zero as the object pointed to

by s1 is greater than, equal to, or less than the object pointed to by s2.

CrossWorks for ARM Reference Manual C Library User Guide

823

memcpy

Synopsis

void *memcpy(void *s1,
 const void *s2,
 size_t n);

Description

memcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

memcpy is undefined if copying takes place between objects that overlap.

memcpy returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

824

memmove

Synopsis

void *memmove(void *s1,
 const void *s2,
 size_t n);

Description

memmove copies n characters from the object pointed to by s2 into the object pointed to by s1 ensuring that

if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n characters from the object pointed

to by s2 are first copied into a temporary array of n characters that does not overlap the objects pointed to by s1

and s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

memmove returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

825

mempcpy

Synopsis

void *mempcpy(void *s1,
 const void *s2,
 size_t n);

Description

mempcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

mempcpy is undefined if copying takes place between objects that overlap.

mempcpy returns a pointer to the byte following the last written byte.

Note

This is an extension found in GNU libc.

CrossWorks for ARM Reference Manual C Library User Guide

826

memset

Synopsis

void *memset(void *s,
 int c,
 size_t n);

Description

memset copies the value of c (converted to an unsigned char) into each of the first n characters of the object

pointed to by s.

memset returns the value of s.

CrossWorks for ARM Reference Manual C Library User Guide

827

strcasecmp

Synopsis

int strcasecmp(const char *s1,
 const char *s2);

Description

strcasecmp compares the string pointed to by s1 to the string pointed to by s2 ignoring differences in case.

strcasecmp returns an integer greater than, equal to, or less than zero if the string pointed to by s1 is greater

than, equal to, or less than the string pointed to by s2.

Note

strcasecmp conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual C Library User Guide

828

strcasestr

Synopsis

char *strcasestr(const char *s1,
 const char *s2);

Description

strcasestr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2 without regard to character case.

strcasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strcasestr returns s1.

Note

strcasestr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

829

strcat

Synopsis

char *strcat(char *s1,
 const char *s2);

Description

strcat appends a copy of the string pointed to by s2 (including the terminating null character) to the end of the

string pointed to by s1. The initial character of s2 overwrites the null character at the end of s1. The behavior of

strcat is undefined if copying takes place between objects that overlap.

strcat returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

830

strchr

Synopsis

char *strchr(const char *s,
 int c);

Description

strchr locates the first occurrence of c (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual C Library User Guide

831

strcmp

Synopsis

int strcmp(const char *s1,
 const char *s2);

Description

strcmp compares the string pointed to by s1 to the string pointed to by s2. strcmp returns an integer greater

than, equal to, or less than zero if the string pointed to by s1 is greater than, equal to, or less than the string

pointed to by s2.

CrossWorks for ARM Reference Manual C Library User Guide

832

strcpy

Synopsis

char *strcpy(char *s1,
 const char *s2);

Description

strcpy copies the string pointed to by s2 (including the terminating null character) into the array pointed to by

s1. The behavior of strcpy is undefined if copying takes place between objects that overlap.

strcpy returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

833

strcspn

Synopsis

size_t strcspn(const char *s1,
 const char *s2);

Description

strcspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters not from the string pointed to by s2.

strcspn returns the length of the segment.

CrossWorks for ARM Reference Manual C Library User Guide

834

strdup

Synopsis

char *strdup(const char *s1);

Description

strdup duplicates the string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating null, to that memory strdup returns a pointer to the new string or a null

pointer if the new string cannot be created. The returned pointer can be passed to free.

Note

strdup conforms to POSIX.1-2008 and SC22 TR 24731-2.

CrossWorks for ARM Reference Manual C Library User Guide

835

strerror

Synopsis

char *strerror(int num);

Description

strerror maps the number in num to a message string. Typically, the values for num come from errno, but

strerror can map any value of type int to a message.

strerror returns a pointer to the message string. The program must not modify the returned message string. The

message may be overwritten by a subsequent call to strerror.

CrossWorks for ARM Reference Manual C Library User Guide

836

strlcat

Synopsis

size_t strlcat(char *s1,
 const char *s2,
 size_t n);

Description

strlcat appends no more than n−strlen(dst)−1 characters pointed to by s2 into the array pointed to by s1 and

always terminates the result with a null character if n is greater than zero. Both the strings s1 and s2 must be

terminated with a null character on entry to strlcat and a byte for the terminating null should be included in n.

The behavior of strlcat is undefined if copying takes place between objects that overlap.

strlcat returns the number of characters it tried to copy, which is the sum of the lengths of the strings s1 and s2

or n, whichever is smaller.

Note

strlcat is commonly found in OpenBSD libraries.

CrossWorks for ARM Reference Manual C Library User Guide

837

strlcpy

Synopsis

size_t strlcpy(char *s1,
 const char *s2,
 size_t n);

Description

strlcpy copies up to n−1 characters from the string pointed to by s2 into the array pointed to by s1 and always

terminates the result with a null character. The behavior of strlcpy is undefined if copying takes place between

objects that overlap.

strlcpy returns the number of characters it tried to copy, which is the length of the string s2 or n, whichever is

smaller.

Note

strlcpy is commonly found in OpenBSD libraries and contrasts with strncpy in that the resulting string is always

terminated with a null character.

CrossWorks for ARM Reference Manual C Library User Guide

838

strlen

Synopsis

size_t strlen(const char *s);

Description

strlen returns the length of the string pointed to by s, that is the number of characters that precede the

terminating null character.

CrossWorks for ARM Reference Manual C Library User Guide

839

strncasecmp

Synopsis

int strncasecmp(const char *s1,
 const char *s2,
 size_t n);

Description

strncasecmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2

ignoring differences in case. Characters that follow a null character are not compared.

strncasecmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

Note

strncasecmp conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual C Library User Guide

840

strncasestr

Synopsis

char *strncasestr(const char *s1,
 const char *s2,
 size_t n);

Description

strncasestr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the

sequence of characters (excluding the terminating null character) in the string pointed to by s2 without regard

to character case.

strncasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a

string with zero length, strncasestr returns s1.

Note

strncasestr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

841

strncat

Synopsis

char *strncat(char *s1,
 const char *s2,
 size_t n);

Description

strncat appends not more than n characters from the array pointed to by s2 to the end of the string pointed to

by s1. A null character in s1 and characters that follow it are not appended. The initial character of s2 overwrites

the null character at the end of s1. A terminating null character is always appended to the result. The behavior of

strncat is undefined if copying takes place between objects that overlap.

strncat returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

842

strnchr

Synopsis

char *strnchr(const char *str,
 size_t n,
 int ch);

Description

strnchr searches not more than n characters to locate the first occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

strnchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual C Library User Guide

843

strncmp

Synopsis

int strncmp(const char *s1,
 const char *s2,
 size_t n);

Description

strncmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2.

Characters that follow a null character are not compared.

strncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array pointed

to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

CrossWorks for ARM Reference Manual C Library User Guide

844

strncpy

Synopsis

char *strncpy(char *s1,
 const char *s2,
 size_t n);

Description

strncpy copies not more than n characters from the array pointed to by s2 to the array pointed to by s1.

Characters that follow a null character in s2 are not copied. The behavior of strncpy is undefined if copying takes

place between objects that overlap. If the array pointed to by s2 is a string that is shorter than n characters, null

characters are appended to the copy in the array pointed to by s1, until n characters in all have been written.

strncpy returns the value of s1.

Note

No null character is implicitly appended to the end of s1, so s1 will only be terminated by a null character if the

length of the string pointed to by s2 is less than n.

CrossWorks for ARM Reference Manual C Library User Guide

845

strndup

Synopsis

char *strndup(const char *s1,
 size_t n);

Description

strndup duplicates at most n characters from the the string pointed to by s1 by using malloc to allocate memory

for a copy of s1.

If the length of string pointed to by s1 is greater than n characters, only n characters will be duplicated. If n is

greater than the length of string pointed to by s1, all characters in the string are copied into the allocated array

including the terminating null character.

strndup returns a pointer to the new string or a null pointer if the new string cannot be created. The returned

pointer can be passed to free.

Note

strndup conforms to POSIX.1-2008 and SC22 TR 24731-2.

CrossWorks for ARM Reference Manual C Library User Guide

846

strnlen

Synopsis

size_t strnlen(const char *s,
 size_t n);

Description

strnlen returns the length of the string pointed to by s, up to a maximum of n characters. strnlen only examines

the first n characters of the string s.

Note

strnlen conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual C Library User Guide

847

strnstr

Synopsis

char *strnstr(const char *s1,
 const char *s2,
 size_t n);

Description

strnstr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the sequence

of characters (excluding the terminating null character) in the string pointed to by s2.

strnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strnstr returns s1.

Note

strnstr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

848

strpbrk

Synopsis

char *strpbrk(const char *s1,
 const char *s2);

Description

strpbrk locates the first occurrence in the string pointed to by s1 of any character from the string pointed to by

s2.

strpbrk returns a pointer to the character, or a null pointer if no character from s2 occurs in s1.

CrossWorks for ARM Reference Manual C Library User Guide

849

strrchr

Synopsis

char *strrchr(const char *s,
 int c);

Description

strrchr locates the last occurrence of c (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strrchr returns a pointer to the character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual C Library User Guide

850

strsep

Synopsis

char *strsep(char **stringp,
 const char *delim);

Description

strsep locates, in the string referenced by *stringp, the first occurrence of any character in the string delim (or

the terminating null character) and replaces it with a null character. The location of the next character after the

delimiter character (or NULL, if the end of the string was reached) is stored in *stringp. The original value of

*stringp is returned.

An empty field (that is, a character in the string delim occurs as the first character of *stringp can be detected by

comparing the location referenced by the returned pointer to the null character.

If *stringp is initially null, strsep returns null.

Note

strsep is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

851

strspn

Synopsis

size_t strspn(const char *s1,
 const char *s2);

Description

strspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters from the string pointed to by s2.

strspn returns the length of the segment.

CrossWorks for ARM Reference Manual C Library User Guide

852

strstr

Synopsis

char *strstr(const char *s1,
 const char *s2);

Description

strstr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2.

strstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string with

zero length, strstr returns s1.

CrossWorks for ARM Reference Manual C Library User Guide

853

strtok

Synopsis

char *strtok(char *s1,
 const char *s2);

Description

strtok A sequence of calls to strtok breaks the string pointed to by s1 into a sequence of tokens, each of which

is delimited by a character from the string pointed to by s2. The first call in the sequence has a non-null first

argument; subsequent calls in the sequence have a null first argument. The separator string pointed to by s2

may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is not contained in

the current separator string pointed to by s2. If no such character is found, then there are no tokens in the string

pointed to by s1 and strtok returns a null pointer. If such a character is found, it is the start of the first token.

strtok then searches from there for a character that is contained in the current separator string. If no such

character is found, the current token extends to the end of the string pointed to by s1, and subsequent searches

for a token will return a null pointer. If such a character is found, it is overwritten by a null character, which

terminates the current token. strtok saves a pointer to the following character, from which the next search for a

token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

strtok maintains static state and is therefore not reentrant and not thread safe. See strtok_r for a thread-safe and

reentrant variant.

See Also

strsep, strtok_r.

CrossWorks for ARM Reference Manual C Library User Guide

854

strtok_r

Synopsis

char *strtok_r(char *s1,
 const char *s2,
 char **s3);

Description

strtok_r is a reentrant version of the function strtok where the state is maintained in the object of type char *

pointed to by s3.

Note

strtok_r conforms to POSIX.1-2008 and is commonly found in Linux and BSD C libraries.

See Also

strtok.

CrossWorks for ARM Reference Manual C Library User Guide

855

<time.h>

API Summary

Functions

asctime Convert a struct tm to a string

asctime_r Convert a struct tm to a string

ctime Convert a time_t to a string

ctime_r Convert a time_t to a string

difftime Calculates the difference between two times

gmtime Convert a time_t to a struct tm

gmtime_r Convert a time_t to a struct tm

localtime Convert a time_t to a struct tm

localtime_r Convert a time_t to a struct tm

mktime Convert a struct tm to time_t

strftime Format a struct tm to a string

Types

clock_t Clock type

time_t Time type

tm Time structure

CrossWorks for ARM Reference Manual C Library User Guide

856

asctime

Synopsis

char *asctime(const tm *tp);

Description

asctime converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973. The returned

string is held in a static buffer, this function is not re-entrant.

CrossWorks for ARM Reference Manual C Library User Guide

857

asctime_r

Synopsis

char *asctime_r(const tm *tp,
 char *buf);

Description

asctime_r converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973 in buf and

returns buf. The buf must point to an array at least 26 bytes in length.

CrossWorks for ARM Reference Manual C Library User Guide

858

clock_t

Synopsis

typedef long clock_t;

Description

clock_t is the type returned by the clock function.

CrossWorks for ARM Reference Manual C Library User Guide

859

ctime

Synopsis

char *ctime(const time_t *tp);

Description

ctime converts the *tp to a null terminated string. The returned string is held in a static buffer, this function is

not re-entrant.

CrossWorks for ARM Reference Manual C Library User Guide

860

ctime_r

Synopsis

char *ctime_r(const time_t *tp,
 char *buf);

Description

ctime_r converts the *tp to a null terminated string in buf and returns buf. The buf must point to an array at

least 26 bytes in length.

CrossWorks for ARM Reference Manual C Library User Guide

861

difftime

Synopsis

double difftime(time_t time2,
 time_t time1);

Description

difftime returns time1 - time0 as a double precision number.

CrossWorks for ARM Reference Manual C Library User Guide

862

gmtime

Synopsis

 gmtime(const time_t *tp);

Description

gmtime converts the *tp time format to a struct tm time format. The returned value points to a static object -

this function is not re-entrant.

CrossWorks for ARM Reference Manual C Library User Guide

863

gmtime_r

Synopsis

 gmtime_r(const time_t *tp,
 tm *result);

Description

gmtime_r converts the *tp time format to a struct tm time format in *result and returns result.

CrossWorks for ARM Reference Manual C Library User Guide

864

localtime

Synopsis

 localtime(const time_t *tp);

Description

localtime converts the *tp time format to a struct tm local time format. The returned value points to a static

object - this function is not re-entrant.

CrossWorks for ARM Reference Manual C Library User Guide

865

localtime_r

Synopsis

 localtime_r(const time_t *tp,
 tm *result);

Description

localtime_r converts the *tp time format to a struct tm local time format in *result and returns result.

CrossWorks for ARM Reference Manual C Library User Guide

866

mktime

Synopsis

time_t mktime(tm *tp);

Description

mktime validates (and updates) the *tp struct to ensure that the tm_sec, tm_min, tm_hour, tm_mon fields

are within the supported integer ranges and the tm_m_day, tm_mon and tm_year fields are consistent. The

validated *tp struct is converted to the number of seconds since UTC 1/1/70 and returned.

CrossWorks for ARM Reference Manual C Library User Guide

867

strftime

Synopsis

size_t strftime(char *s,
 size_t smax,
 const char *fmt,
 const tm *tp);

Description

strftime formats the *tp struct to a null terminated string of maximum size smax-1 into the array at *s based

on the fmt format string. The format string consists of conversion specifications and ordinary characters.

Conversion specifications start with a % character followed by an optional # character. The following conversion

specifications are supported:

Specification Description

% Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for locale

%#c Long date and time representation appropriate for
locale

%d Day of month [01,31]

%#d Day of month without leading zero [1,31]

%H Hour in 24-hour format [00,23]

%#H Hour in 24-hour format without leading zeros [0,23]

%I Hour in 12-hour format [01,12]

%#I Hour in 12-hour format without leading zeros [1,12]

%j Day of year as a decimal number [001,366]

%#j Day of year as a decimal number without leading zeros
[1,366]

%m Month as a decimal number [01,12]

%#m Month as a decimal number without leading zeros
[1,12]

%M Minute as a decimal number [00,59]

%#M Minute as a decimal number without leading zeros
[0,59]

%#p Locale's a.m or p.m indicator

%S Second as a decimal number [00,59]

CrossWorks for ARM Reference Manual C Library User Guide

868

%#S Second as a decimal number without leading zeros
[0,59]

%U Week number as a decimal number [00,53], Sunday is
first day of the week

%#U Week number as a decimal number without leading
zeros [0,53], Sunday is first day of the week

%w Weekday as a decimal number [0,6], Sunday is 0

%W Week number as a decimal number [00,53], Monday is
first day of the week

%#W Week number as a decimal number without leading
zeros [0,53], Monday is first day of the week

%x Locale's date representation

%#x Locale's long date representation

%X Locale's time representation

%y Year without century, as a decimal number [00,99]

%#y Year without century, as a decimal number without
leading zeros [0,99]

%z,%Z Timezone name or abbreviation

%% %

CrossWorks for ARM Reference Manual C Library User Guide

869

time_t

Synopsis

typedef long time_t;

Description

time_t is a long type that represents the time in number of seconds since UTC 1/1/70, negative values indicate

time before UTC 1/1/70.

CrossWorks for ARM Reference Manual C Library User Guide

870

tm

Synopsis

typedef struct {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
} tm;

Description

tm structure has the following fields.

Member Description

tm_sec seconds after the minute - [0,59]

tm_min minutes after the hour - [0,59]

tm_hour hours since midnight - [0,23]

tm_mday day of the month - [1,31]

tm_mon months since January - [0,11]

tm_year years since 1900

tm_wday days since Sunday - [0,6]

tm_yday days since January 1 - [0,365]

tm_isdst daylight savings time flag

CrossWorks for ARM Reference Manual C Library User Guide

871

<wchar.h>

API Summary

Character minimum and maximum values

WCHAR_MAX Maximum value of a wide character

WCHAR_MIN Minimum value of a wide character

Constants

WEOF End of file indication

Copying functions

wcscat Concatenate strings

wcscpy Copy string

wcsncat Concatenate strings up to maximum length

wcsncpy Copy string up to a maximum length

wmemccpy Copy memory with specified terminator (POSIX
extension)

wmemcpy Copy memory

wmemmove Safely copy overlapping memory

wmempcpy Copy memory (GNU extension)

Comparison functions

wcscmp Compare strings

wcsncmp Compare strings up to a maximum length

wmemcmp Compare memory

Search functions

wcschr Find character within string

wcscspn Compute size of string not prefixed by a set of
characters

wcsnchr Find character in a length-limited string

wcsnlen Calculate length of length-limited string

wcsnstr Find first occurrence of a string within length-limited
string

wcspbrk Find first occurrence of characters within string

wcsrchr Find last occurrence of character within string

wcsspn Compute size of string prefixed by a set of characters

wcsstr Find first occurrence of a string within string

wcstok Break string into tokens

CrossWorks for ARM Reference Manual C Library User Guide

872

wcstok_r Break string into tokens (reentrant version)

wmemchr Search memory for a wide character

wstrsep Break string into tokens

Miscellaneous functions

wcsdup Duplicate string

wcslen Calculate length of string

wmemset Set memory to wide character

Types

wchar_t Wide character type

wint_t Wide integer type

CrossWorks for ARM Reference Manual C Library User Guide

873

WCHAR_MAX

Synopsis

#define WCHAR_MAX 2147483647

Description

WCHAR_MAX is the maximum value for an object of type wchar_t. Although capable of storing larger values,

the maximum value implemented by the conversion functions in the library is the value 0x10FFFF defined by ISO

10646.

CrossWorks for ARM Reference Manual C Library User Guide

874

WCHAR_MIN

Synopsis

#define WCHAR_MIN 0

Description

WCHAR_MIN is the minimum value for an object of type wchar_t.

CrossWorks for ARM Reference Manual C Library User Guide

875

WEOF

Synopsis

#define WEOF ((wint_t)0xFFFFFFFF)

Description

WEOF expands to a constant value that does not correspond to any character in the wide character set. It is

typically used to indicate an end of file condition.

CrossWorks for ARM Reference Manual C Library User Guide

876

wcscat

Synopsis

wchar_t *wcscat(wchar_t *s1,
 const wchar_t *s2);

Description

wcscat appends a copy of the wide string pointed to by s2 (including the terminating null wide character) to the

end of the wide string pointed to by s1. The initial character of s2 overwrites the null wide character at the end

of s1. The behavior of wcscat is undefined if copying takes place between objects that overlap.

wcscat returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

877

wcschr

Synopsis

wchar_t *wcschr(const wchar_t *s,
 wchar_t c);

Description

wcschr locates the first occurrence of c in the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcschr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual C Library User Guide

878

wcscmp

Synopsis

int wcscmp(const wchar_t *s1,
 const wchar_t *s2);

Description

wcscmp compares the wide string pointed to by s1 to the wide string pointed to by s2. wcscmp returns an

integer greater than, equal to, or less than zero if the wide string pointed to by s1 is greater than, equal to, or less

than the wide string pointed to by s2.

CrossWorks for ARM Reference Manual C Library User Guide

879

wcscpy

Synopsis

wchar_t *wcscpy(wchar_t *s1,
 const wchar_t *s2);

Description

wcscpy copies the wide string pointed to by s2 (including the terminating null wide character) into the array

pointed to by s1. The behavior of wcscpy is undefined if copying takes place between objects that overlap.

wcscpy returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

880

wcscspn

Synopsis

size_t wcscspn(const wchar_t *s1,
 const wchar_t *s2);

Description

wcscspn computes the length of the maximum initial segment of the wide string pointed to by s1 which

consists entirely of wide characters not from the wide string pointed to by s2.

wcscspn returns the length of the segment.

CrossWorks for ARM Reference Manual C Library User Guide

881

wcsdup

Synopsis

wchar_t *wcsdup(const wchar_t *s1);

Description

wcsdup duplicates the wide string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating wide null character, to that memory. The returned pointer can be passed to

free. wcsdup returns a pointer to the new wide string or a null pointer if the new string cannot be created.

Note

wcsdup is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

882

wcslen

Synopsis

size_t wcslen(const wchar_t *s);

Description

wcslen returns the length of the wide string pointed to by s, that is the number of wide characters that precede

the terminating null wide character.

CrossWorks for ARM Reference Manual C Library User Guide

883

wcsncat

Synopsis

wchar_t *wcsncat(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncat appends not more than n wude characters from the array pointed to by s2 to the end of the wide string

pointed to by s1. A null wide character in s1 and wide characters that follow it are not appended. The initial

wide character of s2 overwrites the null wide character at the end of s1. A terminating wide null character is

always appended to the result. The behavior of wcsncat is undefined if copying takes place between objects

that overlap.

wcsncat returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

884

wcsnchr

Synopsis

wchar_t *wcsnchr(const wchar_t *str,
 size_t n,
 wchar_t ch);

Description

wcsnchr searches not more than n wide characters to locate the first occurrence of c in the wide string pointed

to by s. The terminating wide null character is considered to be part of the wide string.

wcsnchr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual C Library User Guide

885

wcsncmp

Synopsis

int wcsncmp(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncmp compares not more than n wide characters from the array pointed to by s1 to the array pointed to by

s2. Characters that follow a null wide character are not compared.

wcsncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

CrossWorks for ARM Reference Manual C Library User Guide

886

wcsncpy

Synopsis

wchar_t *wcsncpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncpy copies not more than n wide characters from the array pointed to by s2 to the array pointed to by s1.

Wide characters that follow a null wide character in s2 are not copied. The behavior of wcsncpy is undefined

if copying takes place between objects that overlap. If the array pointed to by s2 is a wide string that is shorter

than n wide characters, null wide characters are appended to the copy in the array pointed to by s1, until n

characters in all have been written.

wcsncpy returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

887

wcsnlen

Synopsis

size_t wcsnlen(const wchar_t *s,
 size_t n);

Description

this returns the length of the wide string pointed to by s, up to a maximum of n wide characters. wcsnlen only

examines the first n wide characters of the string s.

Note

wcsnlen is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

888

wcsnstr

Synopsis

wchar_t *wcsnstr(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsnstr searches at most n wide characters to locate the first occurrence in the wide string pointed to by s1 of

the sequence of wide characters (excluding the terminating null wide character) in the wide string pointed to by

s2.

wcsnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, wcsnstr returns s1.

Note

wcsnstr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual C Library User Guide

889

wcspbrk

Synopsis

wchar_t *wcspbrk(const wchar_t *s1,
 const wchar_t *s2);

Description

wcspbrk locates the first occurrence in the wide string pointed to by s1 of any wide character from the wide

string pointed to by s2.

wcspbrk returns a pointer to the wide character, or a null pointer if no wide character from s2 occurs in s1.

CrossWorks for ARM Reference Manual C Library User Guide

890

wcsrchr

Synopsis

wchar_t *wcsrchr(const wchar_t *s,
 wchar_t c);

Description

wcsrchr locates the last occurrence of c in the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcsrchr returns a pointer to the wide character, or a null pointer if c does not occur in the wide string.

CrossWorks for ARM Reference Manual C Library User Guide

891

wcsspn

Synopsis

size_t wcsspn(const wchar_t *s1,
 const wchar_t *s2);

Description

wcsspn computes the length of the maximum initial segment of the wide string pointed to by s1 which consists

entirely of wide characters from the wide string pointed to by s2.

wcsspn returns the length of the segment.

CrossWorks for ARM Reference Manual C Library User Guide

892

wcsstr

Synopsis

wchar_t *wcsstr(const wchar_t *s1,
 const wchar_t *s2);

Description

wcsstr locates the first occurrence in the wide string pointed to by s1 of the sequence of wide characters

(excluding the terminating null wide character) in the wide string pointed to by s2.

wcsstr returns a pointer to the located wide string, or a null pointer if the wide string is not found. If s2 points to

a wide string with zero length, wcsstr returns s1.

CrossWorks for ARM Reference Manual C Library User Guide

893

wcstok

Synopsis

wchar_t *wcstok(wchar_t *s1,
 const wchar_t *s2);

Description

wcstok A sequence of calls to wcstok breaks the wide string pointed to by s1 into a sequence of tokens, each of

which is delimited by a wide character from the wide string pointed to by s2. The first call in the sequence has a

non-null first argument; subsequent calls in the sequence have a null first argument. The separator wide string

pointed to by s2 may be different from call to call.

The first call in the sequence searches the wide string pointed to by s1 for the first wide character that is not

contained in the current separator wide string pointed to by s2. If no such wide character is found, then there are

no tokens in the wide string pointed to by s1 and wcstok returns a null pointer. If such a wide character is found,

it is the start of the first token.

wcstok then searches from there for a wide character that is contained in the current wide separator string. If

no such wide character is found, the current token extends to the end of the wide string pointed to by s1, and

subsequent searches for a token will return a null pointer. If such a wude character is found, it is overwritten by a

wide null character, which terminates the current token. wcstok saves a pointer to the following wide character,

from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

wcstok maintains static state and is therefore not reentrant and not thread safe. See wcstok_r for a thread-safe

and reentrant variant.

CrossWorks for ARM Reference Manual C Library User Guide

894

wcstok_r

Synopsis

wchar_t *wcstok_r(wchar_t *s1,
 const wchar_t *s2,
 wchar_t **s3);

Description

wcstok_r is a reentrant version of the function wcstok where the state is maintained in the object of type

wchar_t * pointed to by s3.

Note

wcstok_r is an extension commonly found in Linux and BSD C libraries.

See Also

wcstok.

CrossWorks for ARM Reference Manual C Library User Guide

895

wint_t

Synopsis

typedef long wint_t;

Description

wint_t is an integer type that is unchanged by default argument promotions that can hold any value

corresponding to members of the extended character set, as well as at least one value that does not correspond

to any member of the extended character set (WEOF).

CrossWorks for ARM Reference Manual C Library User Guide

896

wmemccpy

Synopsis

wchar_t *wmemccpy(wchar_t *s1,
 const wchar_t *s2,
 wchar_t c,
 size_t n);

Description

wmemccpy copies at most n wide characters from the object pointed to by s2 into the object pointed to by s1.

The copying stops as soon as n wide characters are copied or the wide character c is copied into the destination

object pointed to by s1. The behavior of wmemccpy is undefined if copying takes place between objects that

overlap.

wmemccpy returns a pointer to the wide character immediately following c in s1, or NULL if c was not found in

the first n wide characters of s2.

Note

wmemccpy conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual C Library User Guide

897

wmemchr

Synopsis

wchar_t *wmemchr(const wchar_t *s,
 wchar_t c,
 size_t n);

Description

wmemchr locates the first occurrence of c in the initial n characters of the object pointed to by s. Unlike wcschr,

wmemchr does not terminate a search when a null wide character is found in the object pointed to by s.

wmemchr returns a pointer to the located wide character, or a null pointer if c does not occur in the object.

CrossWorks for ARM Reference Manual C Library User Guide

898

wmemcmp

Synopsis

int wmemcmp(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemcmp compares the first n wide characters of the object pointed to by s1 to the first n wide characters of

the object pointed to by s2. wmemcmp returns an integer greater than, equal to, or less than zero as the object

pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

CrossWorks for ARM Reference Manual C Library User Guide

899

wmemcpy

Synopsis

wchar_t *wmemcpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of wmemcpy is undefined if copying takes place between objects that overlap.

wmemcpy returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

900

wmemmove

Synopsis

wchar_t *wmemmove(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemmove copies n wide characters from the object pointed to by s2 into the object pointed to by s1 ensuring

that if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n wide characters from the

object pointed to by s2 are first copied into a temporary array of n wide characters that does not overlap the

objects pointed to by s1 and s2, and then the n wide characters from the temporary array are copied into the

object pointed to by s1.

wmemmove returns the value of s1.

CrossWorks for ARM Reference Manual C Library User Guide

901

wmempcpy

Synopsis

wchar_t *wmempcpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmempcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of wmempcpy is undefined if copying takes place between objects that overlap.

wmempcpy returns it returns a pointer to the wide character following the last written wide character.

Note

This is an extension found in GNU libc.

CrossWorks for ARM Reference Manual C Library User Guide

902

wmemset

Synopsis

wchar_t *wmemset(wchar_t *s,
 wchar_t c,
 size_t n);

Description

wmemset copies the value of c into each of the first n wide characters of the object pointed to by s.

wmemset returns the value of s.

CrossWorks for ARM Reference Manual C Library User Guide

903

wstrsep

Synopsis

wchar_t *wstrsep(wchar_t **stringp,
 const wchar_t *delim);

Description

wstrsep locates, in the wide string referenced by *stringp, the first occurrence of any wide character in the wide

string delim (or the terminating wide null character) and replaces it with a wide null character. The location of

the next character after the delimiter wide character (or NULL, if the end of the string was reached) is stored in

*stringp. The original value of *stringp is returned.

An empty field (that is, a wide character in the string delim occurs as the first wide character of *stringp can be

detected by comparing the location referenced by the returned pointer to a wide null character.

If *stringp is initially null, wstrsep returns null.

Note

wstrsep is not an ISO C function, but appears in BSD4.4 and Linux.

CrossWorks for ARM Reference Manual C Library User Guide

904

CrossWorks for ARM Reference Manual C++ Library User Guide

905

C++ Library User Guide
CrossWorks provides a limited C++ library suitable for use in an embedded application.

Standard library

The following C++ standard header files are provided in $(StudioDir)/include:

File Description

<cassert> C++ wrapper on assert.h.

<cctype> C++ wrapper on ctype.h.

<cerrno> C++ wrapper on errno.h.

<cfloat> C++ wrapper on float.h.

<ciso646> C++ wrapper on iso646.h.

<climits> C++ wrapper on limits.h.

<clocale> C++ wrapper on locale.h.

<cmath> C++ wrapper on math.h.

<csetjmp> C++ wrapper on setjmp.h.

<cstdarg> C++ wrapper on stdarg.h.

<cstddef> C++ wrapper on stddef.h.

<cstdio> C++ wrapper on stdio.h.

<cstdlib> C++ wrapper on stdlib.h.

CrossWorks for ARM Reference Manual C++ Library User Guide

906

<cstring> C++ wrapper on string.h.

<ctime> C++ wrapper on time.h.

<exception> Definitions for exceptions. Note that this file is licensed
under the GPL.

<new> Types and definitions for placement new and delete.

<exception> Definitions for RTTI. Note that this file is licensed under
the GPL.

It's worth mentioning again: to use exceptions or RTTI requires header files and library code to be linked into

your application that is licensed under the GPL.

CrossWorks for ARM Reference Manual C++ Library User Guide

907

Standard template library
The C++ STL functionality of STLPort 5.1.0 is provided in CrossWorks. To use STLPort you must put

$(StudioDir)/include/stlport as the first entry in the User Include Directories project property. The

STLPort is configured to not support wide characters, long doubles, and iostreams, and not throw exceptions.

The following STLPort header files are supported (not including the above list of standard C++ header files)

<algorithm> <bitset> <deque>

<functional> <hash_map> <hash_set>

<iterator> <limits> <list>

<locale> <map> <memory>

<numeric> <queue> <set>

<stack> <stdexcept> <string>

<utility> <valarray> <vector>

CrossWorks for ARM Reference Manual C++ Library User Guide

908

Subset API reference
This section contains a subset reference to the CrossWorks C++ library.

CrossWorks for ARM Reference Manual C++ Library User Guide

909

<new> - memory allocation
The header file <new> defines functions for memory allocation.

Functions

set_new_handler Establish a function which is called when memory
allocation fails.

Operators

operator delete Heap storage deallocators operator.

operator new Heap storage allocators operator.

CrossWorks for ARM Reference Manual C++ Library User Guide

910

operator delete

Synopsis

void operator delete(void *ptr) throw();

void operator delete[](void *ptr) throw();

Description

operator delete deallocates space of an object.

operator delete will do nothing if ptr is null. If ptr is not null then it should have been returned from a call to

operator new.

operator delete[] has the same behaviour as operator delete but is used for array deallocation.

Portability

Standard C++.

CrossWorks for ARM Reference Manual C++ Library User Guide

911

operator new

Synopsis

void *operator new(size_t size) throw();

void *operator new[](size_t size) throw();

Description

operator new allocates space for an object whose size is specified by size and whose value is indeterminate.

operator new returns a null pointer if the space for the object cannot be allocated from free memory; if space for

the object can be allocated, operator new returns a pointer to the start of the allocated space.

operator new[] has the same behaviour as operator new but is used for array allocation.

Portability

The implementation is not standard. The standard C++ implementation should throw an exception if memory

allocation fails.

CrossWorks for ARM Reference Manual C++ Library User Guide

912

set_new_handler

Synopsis

typedef void (*new_handler)();

new_handler set_new_handler(new_handler) throw();

Description

set_new_handler establishes a new_handler function.

set_new_handler establishes a new_handler function that is called when operator new fails to allocate the

requested memory. If the new_handler function returns then operator new will attempt to allocate the memory

again. The new_handler function can throw an exception to implement standard C++ behaviour for memory

allocation failure.

Portability

Standard C++.

CrossWorks for ARM Reference Manual LIBMEM User Guide

913

LIBMEM User Guide
The aim of LIBMEM is to provide a common programming interface for a wide range of different memory types.

LIBMEM consists of a mechanism for installing drivers for the different memories and a set of common memory

access and control functions that locate the driver for a particular memory range and call the appropriate

memory driver functions for the operation.

The LIBMEM library also includes a set of memory drivers for common memory devices.

CrossWorks for ARM Reference Manual LIBMEM User Guide

914

Using the LIBMEM library
Probably the best way to demonstrate LIBMEM is to see it in use. The following example demonstrates copying a

block of data into FLASH using a LIBMEM common flash interface (CFI) driver.

int libmem_example_1(void)
{
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 uint8_t *write_dest = flash1_start + 16;
 const uint8_t write_data[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
 int res;

 // Register the FLASH LIBMEM driver
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Unlock the destination memory area.
 res = libmem_unlock(write_dest, sizeof(write_data));
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Erase the destination memory area.
 res = libmem_erase(write_dest, sizeof(write_data), 0, 0);
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Copy write_data to the destination memory area.
 res = libmem_write(write_dest, write_data, sizeof(write_data));
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Complete any outstanding transactions and put FLASH memory back into read mode.
 res = libmem_flush();
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 return 1;
}

The following section describes each of the LIBMEM calls in the preceding example in detail.

Before any memory operations can be carried out the LIBMEM drivers that you are going to use must be

registered. The following code registers a LIBMEM CFI driver for a FLASH device located at the memory location

pointed to by flash1_start.

// Register the FLASH LIBMEM driver
res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,

CrossWorks for ARM Reference Manual LIBMEM User Guide

915

 flash1_max_geometry_regions,
 &flash1_info);
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

This call attempts to detect the type of FLASH and register the correct LIBMEM CFI driver based on the CFI

information read out from the FLASH device. Note that using this function will link in all LIBMEM CFI drivers so

in your own application you may wish to save memory by using libmem_cfi_get_info to get out the FLASH

geometry information and registering a specific CFI driver. You may also save further memory and time by not

calling libmem_cfi_get_info and specifying the FLASH geometry yourself.

For each driver you register you must allocate libmem_driver_handle_t structure to act as a handle for the

driver. Will the full version of LIBMEM you can register as many drivers as you wish, if you are using the ‘light’

version of LIBMEM you can only register one driver.

Once you have registered your drivers you can use the general LIBMEM memory functions to access and control

your memory. The starting address passed to these functions is used to decide which driver to use for the

memory operation, operations cannot span multiple drivers.

The next operation the example code carries out it to unlock the FLASH in preparation for the erase and write

operations. Unlocking is not necessary on all memory devices and this operation is not implemented in all

LIBMEM drivers.

// Unlock the destination memory area.
res = libmem_unlock(write_dest, sizeof(write_data));
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

Once the memory has been unlocked the FLASH memory is erased. Once again erasing is not necessary on all

memory devices and this operation may not be implemented in all LIBMEM drivers.

// Erase the destination memory area.
res = libmem_erase(write_dest, sizeof(write_data), 0, 0);
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

Parameters three and four of libmem_erase are not used in this example, however they provide a mechanism

to allow the caller to determine how much memory was actually erased by the erase operation as it may well be

more than requested.

Once the FLASH memory has been erased the FLASH can be programmed using the libmem_write function.

// Copy write_data to the destination memory area.
res = libmem_write(write_dest, write_data, sizeof(write_data));
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

The final step is to call libmem_flush. Once again flushing is not necessary on all memory devices, but some

LIBMEM drivers do not necessarily carry out operations immediately or they may leave the memory in an

unreadable state for performance reasons and calling libmem_flush is required to flush outstanding operations

and return the device to read mode.

CrossWorks for ARM Reference Manual LIBMEM User Guide

916

// Complete any outstanding transactions and put FLASH memory back into read mode.
res = libmem_flush();
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

Typically you would now access the FLASH memory as you would any other memory and read it directly,

LIBMEM does however provide the libmem_read function for accessing memory that is not directly accessibly

by the CPU.

CrossWorks for ARM Reference Manual LIBMEM User Guide

917

Light version of LIBMEM
LIBMEM is built in two configurations, the full version and the light version. The only difference between the

full and the light versions of LIBMEM is that the light version only supports one installed LIBMEM driver and

is compiled with optimization for code size rather than performance. The light version of LIBMEM is therefore

useful for situations where code memory is at a premium.

To use the light version of LIBMEM you should link in the light version of the library and also have the

preprocessor definition LIBMEM_LIGHT defined when including libmem.h.

CrossWorks for ARM Reference Manual LIBMEM User Guide

918

Writing LIBMEM drivers
LIBMEM includes a set of memory drivers for common memory devices which means in most cases you probably

won't need to write a LIBMEM driver. If however you wish to use LIBMEM to drive other unsupported memory

devices you will need to write your own LIBMEM driver.

It is fairly straightforward to implement a LIBMEM driver, the following example demonstrates the

implementation of a minimal LIBMEM driver:

#include <libmem.h>

static int
libmem_write_impl(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size)
{
 // TODO: Implement memory write operation.
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_fill_impl(libmem_driver_handle_t *h, uint8_t *dest, uint8_t c, size_t size)
{
 // TODO: Implement memory fill operation.
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_erase_impl(libmem_driver_handle_t *h, uint8_t *start, size_t size,
 uint8_t **erase_start, size_t *erase_size)
{
 // TODO: Implement memory erase operation.
 if (erase_start)
 {
 // TODO: Set erase_start to point to the start of the memory block that
 // has been erased. For now we'll just return the requested start in
 // order to keep the caller happy.
 *erase_start = start;
 }
 if (erase_size)
 {
 // TODO: Set erase_size to the size of the memory block that has been
 // erased. For now we'll just return the requested size in order to
 // keep the caller happy.
 *erase_size = size;
 }
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_lock_impl(libmem_driver_handle_t *h, uint8_t *dest, size_t size)
{
 // TODO: Implement memory lock operation
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_unlock_impl(libmem_driver_handle_t *h, uint8_t *dest, size_t size)
{
 // TODO: Implement memory unlock operation.

CrossWorks for ARM Reference Manual LIBMEM User Guide

919

 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_flush_impl(libmem_driver_handle_t *h)
{
 // TODO: Implement memory flush operation.
 return LIBMEM_STATUS_SUCCESS;
}

static const libmem_driver_functions_t driver_functions =
{
 libmem_write_impl,
 libmem_fill_impl,
 libmem_erase_impl,
 libmem_lock_impl,
 libmem_unlock_impl,
 libmem_flush_impl
};

int
libmem_register_example_driver_1(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, 0, 0, &driver_functions, 0);
 return LIBMEM_STATUS_SUCCESS;
}

For some types of memory it is necessary to carry out operations on a per-sector basis, in this case it can be

useful to register a geometry with the driver and use the geometry helper functions. For example the following

code demonstrates how you might implement a driver that can only erase the entire memory or individual

sectors.

static int
driver_erase_sector(libmem_driver_handle_t *h, libmem_sector_info_t *si)
{
 // TODO: Implement sector erase for sector starting at si->start
 return LIBMEM_STATUS_SUCCESS;
}

static int
driver_erase_chip(libmem_driver_handle_t *h)
{
 // TODO: Implement chip erase
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_erase_impl(libmem_driver_handle_t *h, uint8_t *start, size_t size,
 uint8_t **erase_start, size_t *erase_size)
{
 int res;
 if (LIBMEM_RANGE_WITHIN_RANGE(h->start, h->start + h->size - 1, start, start + size - 1))
 {
 res = driver_erase_chip(h);
 if (erase_start)
 *erase_start = h->start;
 if (erase_size)
 *erase_size = h->size;
 }
 else

CrossWorks for ARM Reference Manual LIBMEM User Guide

920

 res = libmem_foreach_sector_in_range(h, start, size, driver_erase_sector, erase_start,
 erase_size);
 return res;
}

static const libmem_geometry_t geometry[] =
{
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 } // NULL terminator
};

int
libmem_register_example_driver_2(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, geometry, 0, &driver_functions, 0);
 return LIBMEM_STATUS_SUCCESS;
}

There are two sets of driver entry point functions, the standard set that include functions common to most

LIBMEM drivers which have been described above and the extended set which provide extra functionality

for less common types of driver. The following example demonstrates how you would also register a set of

extended LIBMEM driver functions in your driver:

static int
libmem_inrange_impl(libmem_driver_handle_t *h, const uint8_t *dest)
{
 // TODO: Implement inrange function (return non-zero if dest is within range
 // handled by driver).
 return 0;
}

static int
libmem_read_impl(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size)
{
 // TODO: Implement memory read operation
 return LIBMEM_STATUS_SUCCESS;
}

static uint32_t
libmem_crc32_impl(libmem_driver_handle_t *h, const uint8_t *start, size_t size, uint32_t
 crc)
{
 // TODO: Implement CRC-32 operation.
 return crc;
}

int
libmem_register_example_driver_3(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, geometry, 0, &driver_functions,
 &ext_driver_functions);
 return LIBMEM_STATUS_SUCCESS;
}

Some types of memory require you to carry out paged writes. The paged write driver helper functions have been

provided to simplify the writing of drivers of this type.

CrossWorks for ARM Reference Manual LIBMEM User Guide

921

To use these functions, you need to call libmem_driver_paged_write_init supplying a paged write control

block, a page buffer, the page size, a pointer to a function that will carry out the actual page write operation

and the byte alignment of the source data required by the page write function. You can then use the

libmem_driver_paged_write, libmem_driver_paged_write_fill and libmem_driver_paged_write_flush

functions to implement your driver's write, fill and flush functions.

For example, the following code demonstrates how you might implement a driver for a device with a page size

of 256 bytes:

static uint8_t page_buffer[256];
static libmem_driver_paged_write_ctrlblk_t paged_write_ctrlblk;

static int
flash_write_page(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src)
{
 // TODO: Implement function that writes a page of data from src to page
 // starting at dest.
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_write_impl(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size)
{
 return libmem_driver_paged_write(h, dest, src, size, &paged_write_ctrlblk);
}

static int
libmem_fill_impl(libmem_driver_handle_t *h, uint8_t *dest, uint8_t c, size_t size)
{
 return libmem_driver_paged_write_fill(h, dest, c, size, &paged_write_ctrlblk);
}

static int
libmem_flush_impl(libmem_driver_handle_t *h)
{
 return libmem_driver_paged_write_flush(h, &paged_write_ctrlblk);
}

int
libmem_register_example_driver_3(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, 0, 0, &driver_functions, 0);
 libmem_driver_paged_write_init(&paged_write_ctrlblk,
 page_buffer, sizeof(page_buffer),
 flash_write_page, 4,
 0);
 return LIBMEM_STATUS_SUCCESS;
}

CrossWorks for ARM Reference Manual LIBMEM User Guide

922

LIBMEM loader library
The aim of the LIBMEM loader library is to be an add on to the LIBMEM library that simplifies the writing of loader

applications.

To write a loader application all you need to do is register the LIBMEM drivers you require and then call the

appropriate loader start function for the communication mechanism you wish to use.

For example, the following code is an example of a LIBMEM loader, it registers one LIBMEM FLASH driver, if the

driver is successfully registered it starts up the loader by calling libmem_rpc_loader_start. Finally it tells the host

that the loader has finished by calling libmem_rpc_loader_exit.

static unsigned char buffer[256];

int main(void)
{
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;

 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Run the loader
 libmem_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }

 libmem_rpc_loader_exit(res, NULL);

 return 0;
}

Essentially, a LIBMEM loader is just a standard RAM-based application that registers the LIBMEM drivers required

by the loader and then calls the appropriate loader start function for the communication mechanism being

used.

The LIBMEM loader library currently supports three different loader communication mechanisms.

You select which one to use by calling libmem_rpc_loader_start, libmem_dcc_rpc_loader_start, or

libmem_dcc_loader_start to start the loader. The documentation for each of these functions describes how

each of these communication mechanisms work.

A significant difference between LIBMEM loader applications and regular applications is that once the loader

start function is called it is no longer possible to debug the application using the debugger. Therefore if you

CrossWorks for ARM Reference Manual LIBMEM User Guide

923

need to debug your loader application using the debugger you can do it by simply adding calls to the functions

you wish to debug in place of the loader start call.

CrossWorks for ARM Reference Manual LIBMEM User Guide

924

Complete API reference
This section contains a complete reference to the LIBMEM API.

CrossWorks for ARM Reference Manual LIBMEM User Guide

925

<libmem.h>

API Summary

Utility macros

LIBMEM_ADDRESS_IN_RANGE Determine whether an address is within an address
range

LIBMEM_ADDRESS_IS_ALIGNED Determine whether an address is aligned to a specified
width

LIBMEM_ALIGNED_ADDRESS Return an address aligned to a specified width

LIBMEM_KB Convert kilobytes to bytes

LIBMEM_MB Convert megabytes to bytes

LIBMEM_RANGE_OCCLUDES_RANGE Determine whether an address range overlaps another
address range or vice versa

LIBMEM_RANGE_OVERLAPS_RANGE Determine whether an address range overlaps another
address range

LIBMEM_RANGE_WITHIN_RANGE Determine whether an address range is within another
address range

Return codes

LIBMEM_STATUS_CFI_ERROR Error reading CFI information return code

LIBMEM_STATUS_ERROR Non-specific error return code

LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW No room for geometry information return code

LIBMEM_STATUS_INVALID_DEVICE Invalid or mismatched device return code

LIBMEM_STATUS_INVALID_PARAMETER Invalid parameter return code

LIBMEM_STATUS_INVALID_RANGE Invalid range return code

LIBMEM_STATUS_INVALID_WIDTH Invalid or unsupported device width return code

LIBMEM_STATUS_LOCKED Memory locked return code

LIBMEM_STATUS_NOT_IMPLEMENTED Not implemented return code

LIBMEM_STATUS_NO_DRIVER No driver for memory range return code

LIBMEM_STATUS_SUCCESS Successful operation return code

LIBMEM_STATUS_TIMEOUT Timeout error return code

Command set macros

LIBMEM_CFI_CMDSET_AMD_EXTENDED AMD standard command set

LIBMEM_CFI_CMDSET_AMD_STANDARD AMD standard command set

LIBMEM_CFI_CMDSET_INTEL_EXTENDED Intel extended command set

LIBMEM_CFI_CMDSET_INTEL_STANDARD Intel standard command set

CrossWorks for ARM Reference Manual LIBMEM User Guide

926

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED Mitsubishi extended command set

LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD Mitsubishi standard command set

LIBMEM_CFI_CMDSET_NONE Invalid CFI command set

LIBMEM_CFI_CMDSET_RESERVED Reserved command set

LIBMEM_CFI_CMDSET_SST_PAGE_WRITE SST page write command set

LIBMEM_CFI_CMDSET_WINBOND_STANDARD Winbond standard command set

Macros

LIBMEM_VERSION_NUMBER LIBMEM interface version number

Configuration macros

LIBMEM_INLINE Inline definition

Driver helper macros

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOADOption to disable paged write data pre-loading

Functions

libmem_cfi_get_info Return a FLASH memory device's common flash
interface (CFI) information

libmem_crc32 Compute CRC-32 checksum

libmem_crc32_direct Compute CRC-32 checksum of an address range

libmem_enable_timeouts Enable LIBMEM operation timeouts

libmem_erase Erase a block of memory using a LIBMEM driver

libmem_erase_all Erase all memory using LIBMEM drivers

libmem_fill Fill memory with a specific data value using a LIBMEM
driver

libmem_flush Flush any outstanding memory operations and return
memory to read mode if applicable

libmem_foreach_driver Iterate through all drivers

libmem_foreach_sector Iterate through all sectors of a driver

libmem_foreach_sector_in_range Iterate through subset of sectors of a driver

libmem_foreach_sector_in_range_ex A helper function for iterating through all sectors in a
specified geometry that are within a specific address
range

libmem_get_driver Look up driver for address

libmem_get_driver_sector_size A helper function that locates the driver for a specific
address and then returns the sector size for that
address using the driver's geometry

libmem_get_geometry_size A helper function that returns the size of the address
range described by a geometry description

CrossWorks for ARM Reference Manual LIBMEM User Guide

927

libmem_get_number_of_regions A helper function that returns the number of geometry
regions described by a geometry description

libmem_get_number_of_sectors A helper function that returns the number of sectors
described by a geometry description

libmem_get_sector_info A helper function that returns the sector information
for an address within a specified geometry

libmem_get_sector_number A helper function that returns the sector number of an
address within a specified geometry

libmem_get_sector_size A helper function that returns the sector size for an
address within a specified geometry

libmem_get_ticks Helper function that returns the current timer tick
count

libmem_lock Lock a block of memory using a LIBMEM driver

libmem_lock_all Lock all memory using LIBMEM drivers

libmem_read Read a block of data using a LIBMEM driver

libmem_register_driver Register a LIBMEM driver instance

libmem_set_busy_handler Specify busy loop function

libmem_unlock Unlock a block of memory using a LIBMEM driver

libmem_unlock_all Unlock all memory using LIBMEM drivers

libmem_write Write a block of data using a LIBMEM driver

Driver helper functions

libmem_driver_paged_write A driver helper function that implements a paged
write operation

libmem_driver_paged_write_fill A driver helper function that implements a paged
write fill operation

libmem_driver_paged_write_flush A driver helper function that implements a paged
write flush operation

libmem_driver_paged_write_init A driver helper function that initializes the paged write
control bock

Generic FLASH drivers

libmem_register_cfi_0001_16_driver Register a 16-bit CFI command set 1 (Intel Extended)
LIBMEM driver

libmem_register_cfi_0001_8_driver Register an 8-bit CFI command set 1 (Intel Extended)
LIBMEM driver

libmem_register_cfi_0002_16_driver Register a 16-bit CFI command set 2 (AMD Standard)
LIBMEM driver

libmem_register_cfi_0002_8_driver Register an 8 bit CFI command set 2 (AMD Standard)
LIBMEM driver

CrossWorks for ARM Reference Manual LIBMEM User Guide

928

libmem_register_cfi_0003_16_driver Register a 16-bit CFI command set 3 (Intel Standard)
LIBMEM driver

libmem_register_cfi_0003_8_driver Register an 8-bit CFI command set 3 (Intel Standard)
LIBMEM driver

libmem_register_cfi_amd_driver Register a multi-width CFI command set 2 (AMD)
LIBMEM driver

libmem_register_cfi_driver Register a FLASH driver based on detected CFI
information

libmem_register_cfi_intel_driver Register a combined multi-width CFI command set 1
and 3 (Intel) LIBMEM driver

FLASH drivers

libmem_register_am29f200b_driver Register a driver for an AMD Am29F200B FLASH chip

libmem_register_am29f200t_driver Register a driver for an AMD Am29F200T FLASH chip

libmem_register_am29f400bb_driver Register a driver for an AMD Am29F400BB FLASH chip

libmem_register_am29f400bt_driver Register a driver for an AMD Am29F400BT FLASH chip

libmem_register_am29fxxx_driver Register a driver for an AMD Am29Fxxx FLASH chip

libmem_register_am29lv010b_driver Register a driver for an AMD Am29LV010B FLASH chip

libmem_register_sst39xFx00A_16_driver Register a driver for a 16-bit SST39xFx00A FLASH chip

libmem_register_st_m28w320cb_driver Register a driver for an ST M28W320CB FLASH chip

libmem_register_st_m28w320ct_driver Register a driver for an ST M28W320CT FLASH chip

RAM drivers

libmem_register_ram_driver Register a simple driver that directly accesses RAM

Data types

_libmem_driver_functions_t Structure containing pointers to a LIBMEM driver's
functions

_libmem_driver_handle_t LIBMEM driver handle structure

_libmem_driver_paged_write_ctrlblk_t Paged write control block

_libmem_ext_driver_functions_t Structure containing pointers to a LIBMEM driver's
extended functions

_libmem_flash_info_t Structure containing information about a specific
FLASH chip

_libmem_geometry_t Structure describing a geometry region

_libmem_sector_info_t Structure describing a sector

Static data

libmem_busy_handler_fn Pointer to a function that should be called each time
LIBMEM iterates a busy loop

libmem_drivers Pointer to the first registered LIBMEM driver

CrossWorks for ARM Reference Manual LIBMEM User Guide

929

libmem_get_ticks_fn Pointer to a function that returns the current timer tick
count

libmem_ticks_per_second How fast the tick increments

Function pointers

libmem_busy_handler_fn_t A pointer to a function to be called each time LIBMEM
iterates a busy loop

libmem_driver_crc32_fn_t A function pointer to a LIBMEM driver's crc32 extended
function

libmem_driver_erase_fn_t A function pointer to a LIBMEM driver's erase function

libmem_driver_fill_fn_t A function pointer to a LIBMEM driver's fill function

libmem_driver_flush_fn_t A function pointer to a LIBMEM driver's flush function

libmem_driver_inrange_fn_t A function pointer to a LIBMEM driver's inrange
extended function

libmem_driver_lock_fn_t A function pointer to a LIBMEM driver's lock function

libmem_driver_page_write_fn_t A function pointer to a function implementing a paged
write operation

libmem_driver_read_fn_t A function pointer to a LIBMEM driver's read extended
function

libmem_driver_unlock_fn_t A function pointer to a LIBMEM driver's unlock
function

libmem_driver_write_fn_t A function pointer to a LIBMEM driver's write function

libmem_foreach_driver_fn_t A function pointer to a function handling a
libmem_foreach_driver call

libmem_foreach_sector_fn_t A function pointer to a function
handling a libmem_foreach_sector or
libmem_foreach_sector_in_range call

libmem_get_ticks_fn_t A pointer to a function returning the current timer tick
count

CrossWorks for ARM Reference Manual LIBMEM User Guide

930

LIBMEM_ADDRESS_IN_RANGE

Synopsis

#define LIBMEM_ADDRESS_IN_RANGE(address, startAddress, endAddress) ((address >=
 startAddress) && (address <= endAddress))

Description

LIBMEM_ADDRESS_IN_RANGE is used to determine whether an address is within an address range.

address — The address to check.

startAddress — The start address of the address range.

endAddress — The end address of the address range.

LIBMEM_ADDRESS_IN_RANGE returns — Non-zero if address is within address range.

CrossWorks for ARM Reference Manual LIBMEM User Guide

931

LIBMEM_ADDRESS_IS_ALIGNED

Synopsis

#define LIBMEM_ADDRESS_IS_ALIGNED(address, width) \
 ((((uint32_t)address) & ((width) - 1)) == 0)

Description

LIBMEM_ADDRESS_IS_ALIGNED is used to determine whether an address is aligned to a specified width.

address — The address to check alignment of.

width — The alignment width.

LIBMEM_ADDRESS_IS_ALIGNED returns — Non-zero if address is aligned.

CrossWorks for ARM Reference Manual LIBMEM User Guide

932

LIBMEM_ALIGNED_ADDRESS

Synopsis

#define LIBMEM_ALIGNED_ADDRESS(address, width) \
 ((uint8_t *)(((uint32_t)address) & (~((width) - 1))))

Description

LIBMEM_ALIGNED_ADDRESS returns an address aligned to a specified width.

address — The address to align.

width — The alignment width.

LIBMEM_ALIGNED_ADDRESS returns — The aligned address.

CrossWorks for ARM Reference Manual LIBMEM User Guide

933

LIBMEM_CFI_CMDSET_AMD_EXTENDED

Synopsis

#define LIBMEM_CFI_CMDSET_AMD_EXTENDED (0x0004)

Description

A definition representing the CFI command set number for the AMD extended command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

934

LIBMEM_CFI_CMDSET_AMD_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_AMD_STANDARD (0x0002)

Description

A definition representing the CFI command set number for the AMD standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

935

LIBMEM_CFI_CMDSET_INTEL_EXTENDED

Synopsis

#define LIBMEM_CFI_CMDSET_INTEL_EXTENDED (0x0001)

Description

A definition representing the CFI command set number for the Intel extended command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

936

LIBMEM_CFI_CMDSET_INTEL_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_INTEL_STANDARD (0x0003)

Description

A definition representing the CFI command set number for the Intel standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

937

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED

Synopsis

#define LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED (0x0101)

Description

A definition representing the CFI command set number for the Mitsubishi extended command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

938

LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD (0x0100)

Description

A definition representing the CFI command set number for the Mitsubishi standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

939

LIBMEM_CFI_CMDSET_NONE

Synopsis

#define LIBMEM_CFI_CMDSET_NONE (0x0000)

Description

A definition representing an invalid CFI command set number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

940

LIBMEM_CFI_CMDSET_RESERVED

Synopsis

#define LIBMEM_CFI_CMDSET_RESERVED (0xFFFF)

Description

A definition representing the reserved CFI command set number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

941

LIBMEM_CFI_CMDSET_SST_PAGE_WRITE

Synopsis

#define LIBMEM_CFI_CMDSET_SST_PAGE_WRITE (0x0102)

Description

A definition representing the CFI command set number for the SST page write command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

942

LIBMEM_CFI_CMDSET_WINBOND_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_WINBOND_STANDARD (0x0006)

Description

A definition representing the CFI command set number for the Winbond standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

943

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD

Synopsis

#define LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD (1 << 0)

Description

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD disables paged write data pre-loading.

This option can be passed to libmem_driver_paged_write_init to disable pre-loads to the page buffer when

switching to a new page. The pre-load is required if you want the driver to support arbitrary writes without

corrupting existing data, however it may not be supported by all hardware.

CrossWorks for ARM Reference Manual LIBMEM User Guide

944

LIBMEM_INLINE

Synopsis

#define LIBMEM_INLINE inline

Description

This definition contains the inline keyword if function inlining should be used. This definition is empty for the

LIBMEM_LIGHT build.

CrossWorks for ARM Reference Manual LIBMEM User Guide

945

LIBMEM_KB

Synopsis

#define LIBMEM_KB(X) ((X)*1024)

Description

LIBMEM_KB converts kilobytes to bytes, e.g. LIBMEM_KB(10) = 10*1024.

CrossWorks for ARM Reference Manual LIBMEM User Guide

946

LIBMEM_MB

Synopsis

#define LIBMEM_MB(X) (LIBMEM_KB(X)*1024)

Description

LIBMEM_MB converts megabytes to bytes, e.g. LIBMEM_MB(10) = 10*1024*1024.

CrossWorks for ARM Reference Manual LIBMEM User Guide

947

LIBMEM_RANGE_OCCLUDES_RANGE

Synopsis

#define LIBMEM_RANGE_OCCLUDES_RANGE(r1StartAddress, r1EndAddress, r2StartAddress,
 r2EndAddress) (LIBMEM_RANGE_OVERLAPS_RANGE(r1StartAddress, r1EndAddress, r2StartAddress,
 r2EndAddress) || LIBMEM_RANGE_OVERLAPS_RANGE(r2StartAddress, r2EndAddress, r1StartAddress,
 r1EndAddress))

Description

LIBMEM_RANGE_OCCLUDES_RANGE is used to determine whether address range 1 overlaps address range 2 or

vice versa.

r1StartAddress — The start address of address range 1.

r1EndAddress — The end address of address range 1.

r2StartAddress — The start address of address range 2.

r2EndAddress — The end address of address range 2.

LIBMEM_RANGE_OCCLUDES_RANGE returns — Non-zero if address range 1 overlaps address range 2 or

address range 2 overlaps address range 1.

CrossWorks for ARM Reference Manual LIBMEM User Guide

948

LIBMEM_RANGE_OVERLAPS_RANGE

Synopsis

#define LIBMEM_RANGE_OVERLAPS_RANGE(r1StartAddress, r1EndAddress, r2StartAddress,
 r2EndAddress) (LIBMEM_ADDRESS_IN_RANGE(r1StartAddress, r2StartAddress, r2EndAddress) ||
 LIBMEM_ADDRESS_IN_RANGE(r1EndAddress, r2StartAddress, r2EndAddress))

Description

LIBMEM_RANGE_OVERLAPS_RANGE is used to determine whether address range 1 overlaps address range 2.

r1StartAddress — The start address of address range 1.

r1EndAddress — The end address of address range 1.

r2StartAddress — The start address of address range 2.

r2EndAddress — The end address of address range 2.

LIBMEM_RANGE_OVERLAPS_RANGE returns — Non-zero if address range 1 overlaps address range 2.

CrossWorks for ARM Reference Manual LIBMEM User Guide

949

LIBMEM_RANGE_WITHIN_RANGE

Synopsis

#define LIBMEM_RANGE_WITHIN_RANGE(r1StartAddress, r1EndAddress, r2StartAddress,
 r2EndAddress) (LIBMEM_ADDRESS_IN_RANGE(r1StartAddress, r2StartAddress, r2EndAddress) &&
 LIBMEM_ADDRESS_IN_RANGE(r1EndAddress, r2StartAddress, r2EndAddress))

Description

LIBMEM_RANGE_WITHIN_RANGE is used to determine whether address range 1 is within address range 2.

r1StartAddress — The start address of address range 1.

r1EndAddress — The end address of address range 1.

r2StartAddress — The start address of address range 2.

r2EndAddress — The end address of address range 2.

LIBMEM_RANGE_WITHIN_RANGE returns — Non-zero if address range 1 is within address range 2.

CrossWorks for ARM Reference Manual LIBMEM User Guide

950

LIBMEM_STATUS_CFI_ERROR

Synopsis

#define LIBMEM_STATUS_CFI_ERROR (-6)

Description

Status result returned from LIBMEM functions indicating that an error has been detected reading out the CFI

information.

CrossWorks for ARM Reference Manual LIBMEM User Guide

951

LIBMEM_STATUS_ERROR

Synopsis

#define LIBMEM_STATUS_ERROR (0)

Description

Status result returned from LIBMEM functions indicating a non-specific error.

CrossWorks for ARM Reference Manual LIBMEM User Guide

952

LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW

Synopsis

#define LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW (-4)

Description

Status result returned from LIBMEM functions indicating that there is not enough room to store all the geometry

region information.

CrossWorks for ARM Reference Manual LIBMEM User Guide

953

LIBMEM_STATUS_INVALID_DEVICE

Synopsis

#define LIBMEM_STATUS_INVALID_DEVICE (-10)

Description

Status result returned from LIBMEM functions indicating that the driver has determined that the expected and

actual device IDs do not match.

CrossWorks for ARM Reference Manual LIBMEM User Guide

954

LIBMEM_STATUS_INVALID_PARAMETER

Synopsis

#define LIBMEM_STATUS_INVALID_PARAMETER (-8)

Description

Status result returned from LIBMEM functions indicating that an invalid parameter has been passed to the

function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

955

LIBMEM_STATUS_INVALID_RANGE

Synopsis

#define LIBMEM_STATUS_INVALID_RANGE (-7)

Description

Status result returned from LIBMEM functions indicating that an invalid address range has been passed to the

function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

956

LIBMEM_STATUS_INVALID_WIDTH

Synopsis

#define LIBMEM_STATUS_INVALID_WIDTH (-9)

Description

Status result returned from LIBMEM functions indicating that an invalid or unsupported device width has been

passed to the function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

957

LIBMEM_STATUS_LOCKED

Synopsis

#define LIBMEM_STATUS_LOCKED (-2)

Description

Status result returned from LIBMEM functions indicating that the operation could not be completed because the

memory is locked.

CrossWorks for ARM Reference Manual LIBMEM User Guide

958

LIBMEM_STATUS_NOT_IMPLEMENTED

Synopsis

#define LIBMEM_STATUS_NOT_IMPLEMENTED (-3)

Description

Status result returned from LIBMEM functions indicating that the operation being carried out has not been

implemented in the LIBMEM driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

959

LIBMEM_STATUS_NO_DRIVER

Synopsis

#define LIBMEM_STATUS_NO_DRIVER (-5)

Description

Status result returned from LIBMEM functions indicating that no driver has been installed for the region of

memory being used.

CrossWorks for ARM Reference Manual LIBMEM User Guide

960

LIBMEM_STATUS_SUCCESS

Synopsis

#define LIBMEM_STATUS_SUCCESS (1)

Description

Status result returned from LIBMEM functions indicating success.

CrossWorks for ARM Reference Manual LIBMEM User Guide

961

LIBMEM_STATUS_TIMEOUT

Synopsis

#define LIBMEM_STATUS_TIMEOUT (-1)

Description

Status result returned from LIBMEM functions indicating that the operation has timed out.

CrossWorks for ARM Reference Manual LIBMEM User Guide

962

LIBMEM_VERSION_NUMBER

Synopsis

#define LIBMEM_VERSION_NUMBER 4

Description

The LIBMEM interface version number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

963

_libmem_driver_functions_t

Synopsis

typedef struct {
 libmem_driver_write_fn_t write;
 libmem_driver_fill_fn_t fill;
 libmem_driver_erase_fn_t erase;
 libmem_driver_lock_fn_t lock;
 libmem_driver_unlock_fn_t unlock;
 libmem_driver_flush_fn_t flush;
} _libmem_driver_functions_t;

Description

_libmem_driver_functions_t is a structure containing pointers to a LIBMEM driver's functions.

Member Description

write A pointer to a LIBMEM driver's write function

fill A pointer to a LIBMEM driver's fill function

erase A pointer to a LIBMEM driver's erase function

lock A pointer to a LIBMEM driver's lock function

unlock A pointer to a LIBMEM driver's unlock function

flush A pointer to a LIBMEM driver's flush function

CrossWorks for ARM Reference Manual LIBMEM User Guide

964

_libmem_driver_handle_t

Synopsis

typedef struct {
 libmem_driver_handle_t *next;
 const libmem_driver_functions_t *driver_functions;
 const libmem_ext_driver_functions_t *ext_driver_functions;
 uint8_t *start;
 size_t size;
 const libmem_geometry_t *geometry;
 const libmem_flash_info_t *flash_info;
 uint32_t driver_data;
 uint32_t user_data;
} _libmem_driver_handle_t;

Description

_libmem_driver_handle_t contains information on a particular driver's entry point functions, the address range

the driver is responsible for and optionally the geometry and device specific information of the memory.

Member Description

next The next LIBMEM driver in list of drivers

driver_functions A pointer to the structure describing the LIBMEM
driver's functions

ext_driver_functions A pointer to the structure describing the LIBMEM
driver's extended functions

start A pointer to the start of the address range handled by
the LIBMEM driver

size The size of address range handled by the LIBMEM
driver in bytes

geometry A pointer to a null-terminated geometry description
list

flash_info A pointer to the FLASH information structure

driver_data A data word available for storing driver information

user_data A data word available for storing user information

CrossWorks for ARM Reference Manual LIBMEM User Guide

965

_libmem_driver_paged_write_ctrlblk_t

Synopsis

typedef struct {
 uint8_t *page_buffer;
 size_t page_size;
 uint32_t page_mask;
 libmem_driver_page_write_fn_t page_write_fn;
 uint32_t page_write_src_alignment;
 uint32_t options;
 uint8_t *current_page;
} _libmem_driver_paged_write_ctrlblk_t;

Description

_libmem_driver_paged_write_ctrlblk_t is a structure describing the paged write helper functions control bock.

CrossWorks for ARM Reference Manual LIBMEM User Guide

966

_libmem_ext_driver_functions_t

Synopsis

typedef struct {
 libmem_driver_inrange_fn_t inrange;
 libmem_driver_read_fn_t read;
 libmem_driver_crc32_fn_t crc32;
} _libmem_ext_driver_functions_t;

Description

_libmem_ext_driver_functions_t is a structure containing pointers to a LIBMEM driver's extended functions.

Member Description

inrange A pointer to a LIBMEM driver's inrange function

read A pointer to a LIBMEM driver's read function

crc32 A pointer to a LIBMEM driver's crc32 function

CrossWorks for ARM Reference Manual LIBMEM User Guide

967

_libmem_flash_info_t

Synopsis

typedef struct {
 uint32_t write_timeout_ticks;
 uint32_t multi_write_timeout_ticks;
 uint32_t erase_sector_timeout_ticks;
 uint32_t erase_chip_timeout_ticks;
 uint32_t max_multi_program_bytes;
 uint16_t primary_cmdset;
 uint8_t width;
 uint8_t pairing;
} _libmem_flash_info_t;

Description

_libmem_flash_info_t is a structure containing information about a specific FLASH chip.

Member Description

write_timeout_ticks
The maximum number of ticks it should take for a
write operation to complete

multi_write_timeout_ticks The maximum number of ticks it should take for a
multi-byte write operation to complete

erase_sector_timeout_ticks The maximum number of ticks it should take for a
sector erase operation to complete

erase_chip_timeout_ticks The maximum number of ticks it should take for a chip
erase operation to complete

max_multi_program_bytes The maximum number of bytes that can be
programmed in a multi-program operation

primary_cmdset The FLASH chip's primary CFI command set

width The operating width of the FLASH chip in bytes

pairing Non-zero if using a paired FLASH configuration

CrossWorks for ARM Reference Manual LIBMEM User Guide

968

_libmem_geometry_t

Synopsis

typedef struct {
 unsigned int count;
 size_t size;
} _libmem_geometry_t;

Description

_libmem_geometry_t describes a geometry region.

A geometry description can be made up of one or more geometry regions. A geometry region is a collection of

equal-size sectors.

Member Description

count
The number of equal-sized sectors in the geometry
region

size The size of the sector

CrossWorks for ARM Reference Manual LIBMEM User Guide

969

_libmem_sector_info_t

Synopsis

typedef struct {
 int number;
 uint8_t *start;
 size_t size;
} _libmem_sector_info_t;

Description

_libmem_sector_info_t is a structure describing a sector.

Member Description

number
The sector number (sectors in a geometry are
numbered in order from zero)

start The start address of the sector

size The size of the sector

CrossWorks for ARM Reference Manual LIBMEM User Guide

970

libmem_busy_handler_fn

Synopsis

libmem_busy_handler_fn_t libmem_busy_handler_fn;

Description

libmem_busy_handler_fn is a pointer to a function that should be called each time LIBMEM iterates a busy

loop.

CrossWorks for ARM Reference Manual LIBMEM User Guide

971

libmem_busy_handler_fn_t

Synopsis

typedef void (*libmem_busy_handler_fn_t)(void);

Description

libmem_busy_handler_fn_t is a pointer to a function to be called each time LIBMEM iterates a busy loop.

CrossWorks for ARM Reference Manual LIBMEM User Guide

972

libmem_cfi_get_info

Synopsis

int libmem_cfi_get_info(uint8_t *start,
 size_t *size,
 libmem_geometry_t *geometry,
 int max_geometry_regions,
 libmem_flash_info_t *flash_info);

Description

libmem_cfi_get_info returns a FLASH memory device's common flash interface (CFI) information.

start — The start address of the FLASH memory.

size — A pointer to the memory location to store the size (in bytes) of the FLASH memory.

geometry — A pointer to the memory location to store the geometry description or NULL if not required.

max_geometry_regions — The maximum number of geometry regions that can be stored at the memory

pointed to by geometry. The geometry description is NULL terminated so max_geometry_regions must be at

least two regions in size in order to store one geometry region and one terminator entry.

flash_info — A pointer to the memory location to store the remaining FLASH information, or NULL if not

required.

libmem_cfi_get_info returns — The LIBMEM status result.

This function attempts to return the FLASH device's type, size, geometry and other FLASH information from only

a pointer to the first address the FLASH memory is located at. It uses the common flash memory interface (CFI) to

obtain this information and therefore only works on FLASH devices that fully support this interface.

Example:

 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_flash_info_t flash1_info;
 const int flash1_max_geometry_regions = 4;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 size_t flash1_size;
 int res;

 res = libmem_cfi_get_info(flash1_start,
 &flash1_size,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_cfi_get_info : success\n");
 else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

973

libmem_crc32

Synopsis

uint32_t libmem_crc32(const uint8_t *start,
 size_t size,
 uint32_t crc);

Description

libmem_crc32 computes the CRC-32 checksum of an address range using a LIBMEM driver.

start — A pointer to the start of the address range.

size — The size of the address range in bytes.

crc — The initial CRC-32 value.

libmem_crc32 returns — The computed CRC-32 value.

This function locates the LIBMEM driver for the address pointed to by start, then calls the LIBMEM driver's crc32

extended function if it has one and returns the result. If the driver hasn't implemented the crc32 extended

function then the libmem_crc32_direct function is called which accesses the memory directly. The intention

for this function is to allow you to use the LIBMEM library for memory that doesn't appear on the address bus by

providing a virtual address range for the device.

Example:

 uint32_t crc = 0xFFFFFFFF;

 crc = libmem_crc32((uint8_t *)0x10000000, 1024, crc);

CrossWorks for ARM Reference Manual LIBMEM User Guide

974

libmem_crc32_direct

Synopsis

uint32_t libmem_crc32_direct(const uint8_t *start,
 size_t size,
 uint32_t crc);

Description

libmem_crc32_direct computes the CRC-32 checksum of an address range.

start — A pointer to the start of the address range.

size — The size of the address range in bytes.

crc — The initial CRC-32 value.

libmem_crc32_direct returns — The computed CRC-32 value.

This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial

(0x04C11DB7). Note that this implementation doesn't reflect the input or the output and the result is not

inverted.

Example:

 uint32_t crc = 0xFFFFFFFF;

 crc = libmem_crc32_direct((uint8_t *)0x10000000, 1024, crc);

CrossWorks for ARM Reference Manual LIBMEM User Guide

975

libmem_driver_crc32_fn_t

Synopsis

typedef uint32_t (*libmem_driver_crc32_fn_t)(libmem_driver_handle_t *, const uint8_t *,
 size_t , uint32_t);

Description

libmem_driver_crc32_fn_t is a function pointer to a LIBMEM driver's crc32 extended function.

h — A pointer to the handle of the LIBMEM driver.

start — A pointer to the start of the address range.

size — The size of the address range in bytes.

crc — The initial CRC-32 value.

libmem_driver_crc32_fn_t returns — The computed CRC-32 value.

The driver's crc function is an optional extended function. It has been provided to allow you to write a driver for

memory that is not memory mapped.

Typically memory read operations will be direct memory mapped operations however implementing a driver's

crc function allows you to carry out a crc32 operation on non-memory mapped memory through the LIBMEM

interface.

CrossWorks for ARM Reference Manual LIBMEM User Guide

976

libmem_driver_erase_fn_t

Synopsis

typedef int (*libmem_driver_erase_fn_t)(libmem_driver_handle_t *, uint8_t *, size_t ,
 uint8_t ** , size_t *);

Description

libmem_driver_erase_fn_t is a function pointer to a LIBMEM driver's erase function.

h — A pointer to the handle of the LIBMEM driver.

start — A pointer to the initial memory address in memory range handled by driver to erase.

size — The number of bytes to erase.

erase_start — A pointer to a location in memory to store a pointer to the start of the memory range that has

actually been erased or NULL if not required.

erase_size — A pointer to a location in memory to store the size in bytes of the memory range that has actually

been erased or NULL if not required.

libmem_driver_erase_fn_t returns — The LIBMEM status result.

The driver's erase function should erase size bytes of the memory range handled by the LIBMEM driver pointed

to by start.

There is no specific module or chip erase driver entry point, it is up to the driver to decide how best to erase

the memory based on the supplied address range. If the application needs to know what memory was actually

erased it can use the erase_start and erase_size parameters.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS and if the erase_start or

erase_size parameters are supplied they should be assigned with the values of start and size.

CrossWorks for ARM Reference Manual LIBMEM User Guide

977

libmem_driver_fill_fn_t

Synopsis

typedef int (*libmem_driver_fill_fn_t)(libmem_driver_handle_t *, uint8_t *, uint8_t ,
 size_t);

Description

libmem_driver_fill_fn_t is a function pointer to a LIBMEM driver's fill function.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to the memory address in memory range handled by driver to write data to.

c — The data byte to write.

size — The number of bytes to write.

libmem_driver_fill_fn_t returns — The LIBMEM status result.

The driver's fill function writes size bytes of value to the memory address handled by the LIBMEM driver

pointed to by dest.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

978

libmem_driver_flush_fn_t

Synopsis

typedef int (*libmem_driver_flush_fn_t)(libmem_driver_handle_t *);

Description

libmem_driver_flush_fn_t is a function pointer to a LIBMEM driver's flush function.

h — A pointer to the handle of the LIBMEM driver.

libmem_driver_flush_fn_t returns — The LIBMEM status result.

The driver's flush function should complete any outstanding memory operations (if any) and return the memory

to read mode.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

979

libmem_driver_inrange_fn_t

Synopsis

typedef int (*libmem_driver_inrange_fn_t)(libmem_driver_handle_t *, const uint8_t *);

Description

libmem_driver_inrange_fn_t is a function pointer to a LIBMEM driver's inrange extended function.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to then memory location being tested.

libmem_driver_inrange_fn_t returns — The LIBMEM status result.

The driver's inrange function is an optional extended function. It has been provided to allow the driver to

indicate if it handles a more complex memory range than the single range described by the start and size

libmem_driver_handle_t fields, for example if the memory has been aliased over a number of memory ranges.

The function should return non-zero if the address pointed to by dest is handled by the driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

980

libmem_driver_lock_fn_t

Synopsis

typedef int (*libmem_driver_lock_fn_t)(libmem_driver_handle_t *, uint8_t *, size_t);

Description

libmem_driver_lock_fn_t is a function pointer to a LIBMEM driver's lock function.

h — A pointer to the handle of the LIBMEM driver.

start — A pointer to the initial memory address in memory range handled by driver to lock.

size — The number of bytes to lock.

libmem_driver_lock_fn_t returns — The LIBMEM status result.

The driver's lock function should lock size bytes of the memory range handled by the LIBMEM driver pointed to

by start.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

981

libmem_driver_page_write_fn_t

Synopsis

typedef int (*libmem_driver_page_write_fn_t)(libmem_driver_handle_t *, uint8_t *, const
 uint8_t *);

Description

libmem_driver_page_write_fn_t is a function pointer to a function implementing a paged write operation.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to the start address of the page to write to.

src — A pointer to the address to copy the page data from.

libmem_driver_page_write_fn_t returns — The LIBMEM status result. If any value other than

LIBMEM_STATUS_SUCCESS is returned from this function the libmem_driver_paged_write or

libmem_driver_paged_write_fill functions will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

982

libmem_driver_paged_write

Synopsis

int libmem_driver_paged_write(libmem_driver_handle_t *h,
 uint8_t *dest,
 const uint8_t *src,
 size_t size,
 libmem_driver_paged_write_ctrlblk_t *paged_write_ctrlblk);

Description

libmem_driver_paged_write is a driver helper function that implements a paged write operation.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to the address to write the block of data.

src — A pointer to the address to copy the block of data from.

size — The size of the block of data to copy in bytes.

paged_write_ctrlblk — A pointer to the paged write control block.

libmem_driver_paged_write returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

983

libmem_driver_paged_write_fill

Synopsis

int libmem_driver_paged_write_fill(libmem_driver_handle_t *h,
 uint8_t *dest,
 uint8_t c,
 size_t size,
 libmem_driver_paged_write_ctrlblk_t
 *paged_write_ctrlblk);

Description

libmem_driver_paged_write_fill is a driver helper function that implements a paged write fill operation.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to the address to write the block of data.

c — The data value to fill the memory with.

size — The number of bytes to write.

paged_write_ctrlblk — A pointer to the paged write control block.

libmem_driver_paged_write_fill returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

984

libmem_driver_paged_write_flush

Synopsis

int libmem_driver_paged_write_flush(libmem_driver_handle_t *h,
 libmem_driver_paged_write_ctrlblk_t
 *paged_write_ctrlblk);

Description

libmem_driver_paged_write_flush is a driver helper function that implements a paged write flush operation.

h — A pointer to the handle of the LIBMEM driver.

paged_write_ctrlblk — A pointer to the paged write control block.

libmem_driver_paged_write_flush returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

985

libmem_driver_paged_write_init

Synopsis

int libmem_driver_paged_write_init(libmem_driver_paged_write_ctrlblk_t *paged_write_ctrlblk,
 uint8_t *page_buffer,
 size_t page_size,
 libmem_driver_page_write_fn_t page_write_fn,
 uint32_t page_write_src_alignment,
 uint32_t options);

Description

libmem_driver_paged_write_init is a driver helper function that initializes the paged write control bock.

paged_write_ctrlblk — A pointer to the paged write control block.

page_buffer — A pointer to the page buffer to use for paged write operations.

page_size — The page size, this value must be equal to the size of the buffer pointed to by page_buffer.

page_write_fn — A pointer to a function that carries out the page write operation.

page_write_src_alignment — The byte alignment of source data required by the page write function when

bypassing the page buffer. Set this to zero if the write function only supports writes directly from the page

buffer.

options — Paged write configuration options.

libmem_driver_paged_write_init returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

986

libmem_driver_read_fn_t

Synopsis

typedef int (*libmem_driver_read_fn_t)(libmem_driver_handle_t *, uint8_t *, const uint8_t *,
 size_t);

Description

libmem_driver_read_fn_t is a function pointer to a LIBMEM driver's read extended function.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to the initial memory address to write data to.

src — A pointer to the initial memory address in the memory range handled by the driver to read data from.

size — The number of bytes to write.

libmem_driver_read_fn_t returns — The LIBMEM status result.

The driver's read function is an optional extended function. It has been provided to allow you to write a driver

for memory that is not memory mapped.

Typically memory read operations will be direct memory mapped operations however implementing a driver's

read function allows you to access non-memory mapped memory through the LIBMEM interface.

CrossWorks for ARM Reference Manual LIBMEM User Guide

987

libmem_driver_unlock_fn_t

Synopsis

typedef int (*libmem_driver_unlock_fn_t)(libmem_driver_handle_t *, uint8_t *, size_t);

Description

libmem_driver_unlock_fn_t is a function pointer to a LIBMEM driver's unlock function.

h — A pointer to the handle of the LIBMEM driver.

start — A pointer to the initial memory address in memory range handled by driver to unlock.

size — The number of bytes to unlock.

libmem_driver_unlock_fn_t returns — The LIBMEM status result.

The driver's unlock function should unlock size bytes of the memory range handled by the LIBMEM driver

pointed to by start.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

988

libmem_driver_write_fn_t

Synopsis

typedef int (*libmem_driver_write_fn_t)(libmem_driver_handle_t *, uint8_t *, const uint8_t
 *, size_t);

Description

libmem_driver_write_fn_t is a function pointer to a LIBMEM driver's write function.

h — A pointer to the handle of the LIBMEM driver.

dest — A pointer to the memory address in memory range handled by driver to write data to.

src — A pointer to the memory address to read data from.

size — The number of bytes to write.

libmem_driver_write_fn_t returns — The LIBMEM status result.

The driver's write function copies data from the memory address pointed to by src to the memory address

handled by the LIBMEM driver pointed to by dest.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

989

libmem_drivers

Synopsis

libmem_driver_handle_t *libmem_drivers;

Description

libmem_drivers is a pointer to the first registered LIBMEM driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

990

libmem_enable_timeouts

Synopsis

void libmem_enable_timeouts(libmem_get_ticks_fn_t get_ticks_fn,
 uint32_t ticks_per_second);

Description

libmem_enable_timeouts enables LIBMEM operation timeouts.

get_ticks_fn — A pointer to a function that returns an incrementing tick count.

ticks_per_second — The amount the value returned by the get_ticks_fn increments per second.

In order for operations to timeout the LIBMEM library needs a function that can supply a timer tick count and

also needs to know the frequency the timer increments.

This function should be called prior to registering LIBMEM drivers as the ticks_per_second parameter can be

used to pre-compute timeout periods when the driver is registered.

CrossWorks for ARM Reference Manual LIBMEM User Guide

991

libmem_erase

Synopsis

int libmem_erase(uint8_t *start,
 size_t size,
 uint8_t **erase_start,
 size_t *erase_size);

Description

libmem_erase erases a block of memory using a LIBMEM driver.

start — A pointer to the start address of the memory range to erase.

size — The size of the memory range to erase in bytes.

erase_start — A pointer to a location in memory to store a pointer to the start of the memory range that has

actually been erased or NULL if not required.

erase_size — A pointer to a location in memory to store the size in bytes of the memory range that has actually

been erased or NULL if not required.

libmem_erase returns — The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

erase function.

Note that the address range being erased cannot span multiple LIBMEM drivers.

Example:

 uint8_t *erase_start;
 size_t erase_size;
 int res;

 res = libmem_erase((uint8_t *)0x10000000, 1024, &erase_start, &erase_size);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_erase : success (erased %08X - 0x%08X)\n", erase_start, erase_start +
 erase_size - 1);
 else
 printf("libmem_erase : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

992

libmem_erase_all

Synopsis

int libmem_erase_all(void);

Description

libmem_erase_all erases all memory using LIBMEM drivers.

libmem_erase_all returns — The LIBMEM status result.

This function iterates through all registered LIBMEM drivers calling each driver's erase function specifying the

drivers entire memory range as its parameters.

The function will terminate if any of the driver's erase functions return a result other than

LIBMEM_STATUS_SUCCESS.

Example:

 int res;

 res = libmem_erase_all();

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_erase_all : success\n");
 else
 printf("libmem_erase_all : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

993

libmem_fill

Synopsis

int libmem_fill(uint8_t *dest,
 uint8_t c,
 size_t size);

Description

libmem_fill fills memory with a specific data value using a LIBMEM driver.

dest — A pointer to the address to write the data.

c — The data value to fill the memory with.

size — The number of bytes to write.

libmem_fill returns — The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by dest and then calls the LIBMEM driver's fill

function.

Note that the address range being written to cannot span multiple LIBMEM drivers.

Example:

 int res;

 res = libmem_fill((uint8_t *)0x10000000, 0xCC, 64);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_fill : success\n");
 else
 printf("libmem_fill : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

994

libmem_flush

Synopsis

int libmem_flush(void);

Description

libmem_flush flushes any outstanding memory operations and returns memory to read mode if applicable.

libmem_flush returns — The LIBMEM status result.

LIBMEM drivers do not necessarily carry out operations immediately or they may leave the memory in an

unreadable state for performance reasons. You should call libmem_flush once you have finished carrying out

memory operations in order to complete all outstanding transactions and return the memory to a readable

state.

Example:

 int res;

 res = libmem_flush();

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_flush : success\n");
 else
 printf("libmem_flush : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

995

libmem_foreach_driver

Synopsis

int libmem_foreach_driver(libmem_foreach_driver_fn_t fn);

Description

libmem_foreach_driver iterates through all the registered LIBMEM drivers and calls fn for each. If any of the

calls return a response other than LIBMEM_STATUS_SUCCESS this function will terminate and return that

response.

fn — The function to call for each driver.

libmem_foreach_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

996

libmem_foreach_driver_fn_t

Synopsis

typedef int (*libmem_foreach_driver_fn_t)(libmem_driver_handle_t *);

Description

libmem_foreach_driver_fn_t is a function pointer to a function handling a libmem_foreach_driver call.

h — A pointer to the handle of the LIBMEM driver.

libmem_foreach_driver_fn_t returns — The LIBMEM status result. If any value other than

LIBMEM_STATUS_SUCCESS is returned from this function the libmem_foreach_driver function will terminate

and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

997

libmem_foreach_sector

Synopsis

int libmem_foreach_sector(libmem_driver_handle_t *h,
 libmem_foreach_sector_fn_t fn);

Description

libmem_foreach_sector is a helper function for iterating through all sectors handled by a LIBMEM driver.

h — A pointer to the handle of the LIBMEM driver.

fn — The function to call for each sector.

libmem_foreach_sector returns — The LIBMEM status result.

This function iterates through all the sectors handled by a single LIBMEM driver and calls a

libmem_foreach_sector_fn_t function for each. If any of the calls return a response other than

LIBMEM_STATUS_SUCCESS this function will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

998

libmem_foreach_sector_fn_t

Synopsis

typedef int (*libmem_foreach_sector_fn_t)(libmem_driver_handle_t *, libmem_sector_info_t *);

Description

libmem_foreach_sector_fn_t is a function pointer to a function handling a libmem_foreach_sector or

libmem_foreach_sector_in_range call.

h — A pointer to the handle of the LIBMEM driver.

sector_info — A pointer to the sector information.

libmem_foreach_sector_fn_t returns — The LIBMEM status result. If any value other than

LIBMEM_STATUS_SUCCESS is returned from this function the libmem_foreach_sector or

libmem_foreach_sector_in_range functions will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

999

libmem_foreach_sector_in_range

Synopsis

int libmem_foreach_sector_in_range(libmem_driver_handle_t *h,
 uint8_t *range_start,
 size_t range_size,
 libmem_foreach_sector_fn_t fn,
 uint8_t **actual_range_start,
 size_t *actual_range_size);

Description

libmem_foreach_sector_in_range is a helper function for iterating through all sectors handled by a driver that

are within a specific address range.

h — A pointer to the handle of the LIBMEM driver.

range_start — A pointer to the start of the address range.

range_size — The size of the address range in bytes.

fn — The function to call for each sector.

actual_range_start — A pointer to the start of the first sector that is within the address range.

actual_range_size — The combined size of all the sectors that are within the address range.

libmem_foreach_sector_in_range returns — The LIBMEM status result.

This function iterates through all the sectors handled by a single LIBMEM driver and calls a

libmem_foreach_sector_fn_t function for each if it is within the specified address range. If any of the calls return

a response other than LIBMEM_STATUS_SUCCESS this function will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1000

libmem_foreach_sector_in_range_ex

Synopsis

int libmem_foreach_sector_in_range_ex(libmem_driver_handle_t *h,
 const libmem_geometry_t *geometry,
 uint8_t *range_start,
 size_t range_size,
 libmem_foreach_sector_fn_t fn,
 uint8_t **actual_range_start,
 size_t *actual_range_size);

Description

libmem_foreach_sector_in_range_ex is a helper function for iterating through all sectors in a specified

geometry that are within a specific address range.

h — A pointer to the handle of the LIBMEM driver.

geometry — A pointer to the NULL terminated geometry description.

range_start — A pointer to the start of the address range.

range_size — The size of the address range in bytes.

fn — The function to call for each sector.

actual_range_start — A pointer to the start of the first sector that is within the address range.

actual_range_size — The combined size of all the sectors that are within the address range.

libmem_foreach_sector_in_range_ex returns — The LIBMEM status result.

This function iterates through all the sectors in the specified geometry and calls a libmem_foreach_sector_fn_t

function for each if it is within the specified address range. If any of the calls return a response other than

LIBMEM_STATUS_SUCCESS this function will terminate and return the response. This function is essentially

the same as libmem_foreach_sector_in_range except it allows a different geometry to be specified to that

associated with the driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1001

libmem_get_driver

Synopsis

libmem_driver_handle_t *libmem_get_driver(const uint8_t *p);

Description

libmem_get_driver is a helper function that returns the handle of a LIBMEM driver that is responsible for a

specific memory location.

p — A pointer to the memory location to get the driver for.

libmem_get_driver returns — The LIBMEM driver handle or NULL if no driver could be found.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1002

libmem_get_driver_sector_size

Synopsis

size_t libmem_get_driver_sector_size(const uint8_t *p);

Description

libmem_get_driver_sector_size is a helper function that locates the driver for a specific address and then

returns the sector size for that address using the driver's geometry.

p — A pointer to the address to determine the sector information of.

libmem_get_driver_sector_size returns — The size of the sector or 0 if the sector cannot be found.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1003

libmem_get_geometry_size

Synopsis

size_t libmem_get_geometry_size(const libmem_geometry_t *geometry);

Description

libmem_get_geometry_size is a helper function that returns the size of the address range described by a

geometry description.

geometry — A pointer to the NULL terminated geometry description.

libmem_get_geometry_size returns — The size of the address range described the by geometry description in

bytes.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1004

libmem_get_number_of_regions

Synopsis

int libmem_get_number_of_regions(const libmem_geometry_t *geometry);

Description

libmem_get_number_of_regions is a helper function that returns the number of geometry regions described

by a geometry description.

geometry — A pointer to the NULL terminated geometry description.

libmem_get_number_of_regions returns — The number of geometry regions.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1005

libmem_get_number_of_sectors

Synopsis

int libmem_get_number_of_sectors(const libmem_geometry_t *geometry);

Description

libmem_get_number_of_sectors is a helper function that returns the number of sectors described by a

geometry description.

geometry — A pointer to the NULL terminated geometry description.

libmem_get_number_of_sectors returns — The number of sectors.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1006

libmem_get_sector_info

Synopsis

int libmem_get_sector_info(uint8_t *start,
 const libmem_geometry_t *geometry,
 const uint8_t *p,
 libmem_sector_info_t *info);

Description

libmem_get_sector_info is a helper function that returns the sector information for an address within a

specified geometry.

start — A pointer to the start address of the geometry desribed by geometry.

geometry — A pointer to the NULL terminated geometry description.

p — A pointer to the address to determine the sector information of.

info — A pointer to the libmem_sector_info_t structure to write the sector information to.

libmem_get_sector_info returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1007

libmem_get_sector_number

Synopsis

int libmem_get_sector_number(uint8_t *start,
 const libmem_geometry_t *geometry,
 const uint8_t *p);

Description

libmem_get_sector_number is a helper function that returns the sector number of an address within a specified

geometry.

start — A pointer to the start address of the geometry desribed by geometry.

geometry — A pointer to the NULL terminated geometry description.

p — A pointer to the address to determine the sector number of.

libmem_get_sector_number returns — The sector number or -1 if the address is not located within the

described geometry.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1008

libmem_get_sector_size

Synopsis

size_t libmem_get_sector_size(uint8_t *start,
 const libmem_geometry_t *geometry,
 const uint8_t *p);

Description

libmem_get_sector_size is a helper function that returns the sector size for an address within a specified

geometry.

start — A pointer to the start address of the geometry desribed by geometry.

geometry — A pointer to the NULL terminated geometry description.

p — A pointer to the address to determine the sector information of.

libmem_get_sector_size returns — The size of the sector or 0 if the sector cannot be found.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1009

libmem_get_ticks

Synopsis

uint32_t libmem_get_ticks(void);

Description

libmem_get_ticks is a helper function that returns the current timer tick count.

libmem_get_ticks returns — The current timer tick count as returned by the libmem_get_ticks_fn function or 0

if this function has not been defined.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1010

libmem_get_ticks_fn

Synopsis

libmem_get_ticks_fn_t libmem_get_ticks_fn;

Description

libmem_get_ticks_fn is a pointer to a function that returns the current timer tick count.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1011

libmem_get_ticks_fn_t

Synopsis

typedef uint32_t (*libmem_get_ticks_fn_t)(void);

Description

libmem_get_ticks_fn_t is a pointer to a function returning the current timer tick count.

libmem_get_ticks_fn_t returns — The current timer tick count.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1012

libmem_lock

Synopsis

int libmem_lock(uint8_t *start,
 size_t size);

Description

libmem_lock locks a block of memory using a LIBMEM driver.

start — A pointer to the start address of the memory range to lock.

size — The size of the memory range to lock in bytes.

libmem_lock returns — The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

lock function.

Example:

 int res;

 res = libmem_lock((uint8_t *)0x10000000, 1024);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_lock : success\n");
 else
 printf("libmem_lock : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1013

libmem_lock_all

Synopsis

int libmem_lock_all(void);

Description

libmem_lock_all locks all memory using LIBMEM drivers.

libmem_lock_all returns — The LIBMEM status result.

This function iterates through all registered LIBMEM drivers calling each driver's lock function specifying the

drivers entire memory range as its parameters.

The function will terminate if any of the driver's lock functions return a result other than

LIBMEM_STATUS_SUCCESS.

Example:

 int res;

 res = libmem_lock_all();

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_lock_all : success\n");
 else
 printf("libmem_lock_all : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1014

libmem_read

Synopsis

int libmem_read(uint8_t *dest,
 const uint8_t *src,
 size_t size);

Description

libmem_read reads a block of data using a LIBMEM driver.

dest — A pointer to the address to write the block of data.

src — A pointer to the address to copy the block of data from.

size — The size of the block of data to copy in bytes.

libmem_read returns — The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by src and then calls the LIBMEM driver's read

extended function if it has been implemented. If the read function has not been implemented then the memory

will be read directly using memcpy. The intention for this function is to allow you to use the LIBMEM library for

memory that doesn't appear on the address bus by providing a virtual address range for the device.

Note that if the LIBMEM driver's read function is used, the address range being read cannot span multiple

LIBMEM drivers.

Example:

 uint8_t buffer[64];
 int res;

 res = libmem_read(buffer, (uint8_t *)0x10000000, sizeof(buffer));

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_read : success\n");
 else
 printf("libmem_read : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1015

libmem_register_am29f200b_driver

Synopsis

int libmem_register_am29f200b_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f200b_driver registers a driver for an AMD Am29F200B FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_am29f200b_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1016

libmem_register_am29f200t_driver

Synopsis

int libmem_register_am29f200t_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f200t_driver registers a driver for an AMD Am29F200T FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_am29f200t_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1017

libmem_register_am29f400bb_driver

Synopsis

int libmem_register_am29f400bb_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f400bb_driver registers a driver for an AMD Am29F400BB FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_am29f400bb_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1018

libmem_register_am29f400bt_driver

Synopsis

int libmem_register_am29f400bt_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f400bt_driver registers a driver for an AMD Am29F400BT FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_am29f400bt_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1019

libmem_register_am29fxxx_driver

Synopsis

int libmem_register_am29fxxx_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 unsigned size,
 const libmem_geometry_t *geometry,
 unsigned device_id);

Description

libmem_register_am29fxxx_driver registers a driver for an AMD Am29Fxxx FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the address range handled by the LIBMEM driver in bytes.

geometry — A pointer to a null-terminated geometry description list for the device.

device_id — The device ID of the device. The expected device ID is checked against the device ID read from the

FLASH. If the device IDs differ this function return LIBMEM_STATUS_INVALID_DEVICE.

libmem_register_am29fxxx_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1020

libmem_register_am29lv010b_driver

Synopsis

int libmem_register_am29lv010b_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29lv010b_driver registers a driver for an AMD Am29LV010B FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_am29lv010b_driver returns — The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1021

libmem_register_cfi_0001_16_driver

Synopsis

int libmem_register_cfi_0001_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0001_16_driver registers a 16-bit CFI command set 1 (Intel Extended) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0001_16_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
 int res;

 res = libmem_register_cfi_0001_16_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0001_16_driver : success\n");
 else
 printf("libmem_register_cfi_0001_16_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1022

libmem_register_cfi_0001_8_driver

Synopsis

int libmem_register_cfi_0001_8_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0001_8_driver registers an 8-bit CFI command set 1 (Intel Extended) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0001_8_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
 int res;

 res = libmem_register_cfi_0001_8_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0001_8_driver : success\n");
 else
 printf("libmem_register_cfi_0001_8_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1023

libmem_register_cfi_0002_16_driver

Synopsis

int libmem_register_cfi_0002_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0002_16_driver registers a 16-bit CFI command set 2 (AMD Standard) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0002_16_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
 int res;

 res = libmem_register_cfi_0002_16_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0002_16_driver : success\n");
 else
 printf("libmem_register_cfi_0002_16_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1024

libmem_register_cfi_0002_8_driver

Synopsis

int libmem_register_cfi_0002_8_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0002_8_driver registers an 8 bit CFI command set 2 (AMD Standard) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0002_8_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
 int res;

 res = libmem_register_cfi_0002_8_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0002_8_driver : success\n");
 else
 printf("libmem_register_cfi_0002_8_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1025

libmem_register_cfi_0003_16_driver

Synopsis

int libmem_register_cfi_0003_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0003_16_driver registers a 16-bit CFI command set 3 (Intel Standard) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0003_16_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
 int res;

 res = libmem_register_cfi_0003_16_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0003_16_driver : success\n");
 else
 printf("libmem_register_cfi_0003_16_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1026

libmem_register_cfi_0003_8_driver

Synopsis

int libmem_register_cfi_0003_8_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0003_8_driver registers an 8-bit CFI command set 3 (Intel Standard) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0003_8_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
 int res;

 res = libmem_register_cfi_0003_8_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0003_8_driver : success\n");
 else
 printf("libmem_register_cfi_0003_8_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1027

libmem_register_cfi_amd_driver

Synopsis

int libmem_register_cfi_amd_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_amd_driver registers a multi-width CFI command set 2 (AMD) LIBMEM driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure.

libmem_register_cfi_amd_driver returns — The LIBMEM status result.

This function registers a multi-width CFI command set 2 (AMD) LIBMEM driver. The advantage of this driver over

the individual single width and command set drivers is that one driver will support a range of FLASH chips, the

disadvantage is that of increased code size and reduced performance.

Example:

 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 size_t flash1_size;
 int res;

 // Detect the type, size and geometry of the Intel FLASH.
 res = libmem_cfi_get_info(flash1_start,
 &flash1_size,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Register the driver
 res = libmem_register_cfi_amd_driver(&flash1_handle,
 flash1_start,
 flash1_size,
 flash1_geometry,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)

CrossWorks for ARM Reference Manual LIBMEM User Guide

1028

 printf("libmem_register_cfi_amd_driver : success\n");
 else
 printf("libmem_register_cfi_amd_driver : failed (%d)\n", res);

 }
 else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1029

libmem_register_cfi_driver

Synopsis

int libmem_register_cfi_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 libmem_geometry_t *geometry,
 int max_geometry_regions,
 libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_driver registers a FLASH driver based on detected CFI information.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

geometry — A pointer to the memory location to store the geometry description.

max_geometry_regions — The maximum number of geometry regions that can be stored at the memory

pointed to by geometry. The geometry description is NULL terminated so max_geometry_regions must be at

least two regions in size in order to store one geometry region and one terminator entry.

flash_info — A pointer to the memory location to store the remaining FLASH information.

libmem_register_cfi_driver returns — The LIBMEM status result.

This function calls libmem_cfi_get_info to detect the type and geometry of the the FLASH pointed to by start

and then, if the FLASH memory is supported, registers an appropriate LIBMEM driver for the FLASH.

Use of this function requires all supported CFI LIBMEM drivers to be linked in, therefore if memory is at a

premium you should register only the LIBMEM FLASH driver you require instead of using this function.

Example:

 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_flash_info_t flash1_info;
 const int flash1_max_geometry_regions = 4;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_driver_handle_t flash1_handle;
 int res;

 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_driver : success\n");
 else
 printf("libmem_register_cfi_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1030

libmem_register_cfi_intel_driver

Synopsis

int libmem_register_cfi_intel_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_intel_driver registers a combined multi-width CFI command set 1 and 3 (Intel) LIBMEM

driver.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure.

libmem_register_cfi_intel_driver returns — The LIBMEM status result.

This function registers a combined multi-width CFI command set 1 and 3 (Intel) LIBMEM driver. The advantage

of this driver over the individual single width and command set drivers is that one driver will support a range of

Intel FLASH chips, the disadvantage is that of increased code size and reduced performance.

Example:

 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 size_t flash1_size;
 int res;

 // Detect the type, size and geometry of the Intel FLASH.
 res = libmem_cfi_get_info(flash1_start,
 &flash1_size,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Register the driver
 res = libmem_register_cfi_intel_driver(&flash1_handle,
 flash1_start,
 flash1_size,
 flash1_geometry,
 &flash1_info);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1031

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_intel_driver : success\n");
 else
 printf("libmem_register_cfi_intel_driver : failed (%d)\n", res);

 }
 else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1032

libmem_register_driver

Synopsis

void libmem_register_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info,
 const libmem_driver_functions_t *driver_functions,
 const libmem_ext_driver_functions_t *ext_driver_functions);

Description

libmem_register_driver registers a LIBMEM driver instance.

h — A pointer to the handle of the LIBMEM driver being registered.

start — A Pointer to the start of the address range handled by the LIBMEM driver.

size — The size of the address range handled by the LIBMEM driver in bytes.

geometry — A pointer to a null-terminated geometry description list or NULL if not required.

flash_info — A pointer to the FLASH information structure or NULL if not required.

driver_functions — A pointer to the structure describing the LIBMEM driver's functions.

ext_driver_functions — A pointer to the structure describing the LIBMEM driver's extended functions, or NULL if

not required.

This function adds a LIBMEM driver to the list of LIBMEM drivers currently installed. This function is not normally

called directly by an application, it is typically called by a LIBMEM driver's own register function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1033

libmem_register_ram_driver

Synopsis

int libmem_register_ram_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size);

Description

libmem_register_ram_driver registers a simple driver that directly accesses RAM.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the RAM.

size — The size of the RAM.

libmem_register_ram_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t ram1_handle;
 uint8_t *ram1_start = (uint8_t *)0x10000000;
 const size_t ram1_size = 1024;
 int res;

 res = libmem_register_ram_driver(&ram_handle, ram1_start, ram1_size);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_ram_driver : success\n");
 else
 printf("libmem_register_ram_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1034

libmem_register_sst39xFx00A_16_driver

Synopsis

int libmem_register_sst39xFx00A_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_sst39xFx00A_16_driver registers a driver for a 16-bit SST39xFx00A FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

size — The size of the FLASH memory.

geometry — A NULL terminated description of the FLASH's geometry.

flash_info — A pointer to the FLASH information structure or NULL if not required.

libmem_register_sst39xFx00A_16_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 libmem_flash_info_t flash1_info;
 const int flash1_max_geometry_regions = 4;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 size_t size;
 int res;

 // Get CFI FLASH information and geometry
 res = libmem_cfi_get_info(flash1_start, &size, flash1_geometry,
 flash1_max_geometry_regions, &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 res = libmem_register_sst39xFx00A_16_driver(&flash1_handle, flash1_start, size,
 flash1_geometry, &flash1_info)

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_sst39xFx00A_16_driver : success\n");
 else
 printf("libmem_register_sst39xFx00A_16_driver : failed (%d)\n", res);
 }
 else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1035

libmem_register_st_m28w320cb_driver

Synopsis

int libmem_register_st_m28w320cb_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_st_m28w320cb_driver registers a driver for an ST M28W320CB FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_st_m28w320cb_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 int res;

 res = libmem_register_st_m28w320cb_driver(&flash1_handle, flash1_start);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_st_m28w320cb_driver : success\n");
 else
 printf("libmem_register_st_m28w320cb_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1036

libmem_register_st_m28w320ct_driver

Synopsis

int libmem_register_st_m28w320ct_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_st_m28w320ct_driver registers a driver for an ST M28W320CT FLASH chip.

h — A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start — The start address of the FLASH memory.

libmem_register_st_m28w320ct_driver returns — The LIBMEM status result.

Example:

 libmem_driver_handle_t flash1_handle;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 int res;

 res = libmem_register_st_m28w320ct_driver(&flash1_handle, flash1_start);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_st_m28w320ct_driver : success\n");
 else
 printf("libmem_register_st_m28w320ct_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1037

libmem_set_busy_handler

Synopsis

libmem_busy_handler_fn_t libmem_set_busy_handler(libmem_busy_handler_fn_t busy_handler_fn);

Description

libmem_set_busy_handler specifies a handler function that should be called each time LIBMEM iterates a busy

loop.

busy_handler_fn — A pointer to a busy handler function.

libmem_set_busy_handler returns — A pointer to the existing busy handler or NULL if there isn't one.

This function allows a user defined function to be called each time LIBMEM iterates a busy loop. The typical use

of this is to keep watchdogs alive while LIBMEM is carrying out blocking operations.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1038

libmem_ticks_per_second

Synopsis

uint32_t libmem_ticks_per_second;

Description

libmem_ticks_per_second is the amount the value returned by the libmem_get_ticks_fn function increments

each second.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1039

libmem_unlock

Synopsis

int libmem_unlock(uint8_t *start,
 size_t size);

Description

libmem_unlock unlocks a block of memory using a LIBMEM driver.

start — A pointer to the start address of the memory range to unlock.

size — The size of the memory range to unlock in bytes.

libmem_unlock returns — The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

unlock function.

Example:

 int res;

 res = libmem_unlock((uint8_t *)0x10000000, 1024);

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_unlock : success\n");
 else
 printf("libmem_unlock : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1040

libmem_unlock_all

Synopsis

int libmem_unlock_all(void);

Description

libmem_unlock_all unlocks all memory using LIBMEM drivers.

libmem_unlock_all returns — The LIBMEM status result.

This function iterates through all registered LIBMEM drivers calling each driver's unlock function specifying the

drivers entire memory range as its parameters.

The function will terminate if any of the driver's unlock functions return a result other than

LIBMEM_STATUS_SUCCESS.

Example:

 int res;

 res = libmem_unlock_all();

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_unlock_all : success\n");
 else
 printf("libmem_unlock_all : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1041

libmem_write

Synopsis

int libmem_write(uint8_t *dest,
 const uint8_t *src,
 size_t size);

Description

libmem_write writes a block of data using a LIBMEM driver.

dest — A pointer to the address to write the block of data.

src — A pointer to the address to copy the block of data from.

size — The size of the block of data to copy in bytes.

libmem_write returns — The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

write function.

Note that the address range being written to cannot span multiple LIBMEM drivers.

Example:

 const unsigned char buffer[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
 int res;

 res = libmem_write((uint8_t *)0x10000000, buffer, sizeof(buffer));

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_write : success\n");
 else
 printf("libmem_write : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1042

<libmem_loader.h>

API Summary

Macros

LIBMEM_RPC_LOADER_FLAG_PARAM Indicates whether the loader parameter has been set.

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE Indicates that a loader should preserve target state.

LIBMEM_RPC_LOADER_MAGIC_NUMBER Magic number used to identify LIBMEM loader.

Functions

libmem_dcc_loader_start Start up a LIBMEM loader that uses the "Comms
Channel Loader" protocol.

libmem_dcc_rpc_loader_exit Exit a DCC RPC loader and return the exit status to the
host.

libmem_dcc_rpc_loader_start Start up a LIBMEM loader that uses remote procedure
calls via the ARM's debug comms channel.

libmem_rpc_loader_exit Exit an RPC loader and return the exit status to the
host.

libmem_rpc_loader_start Start up a LIBMEM loader that uses direct RPC (remote
procedure calls).

Types

libmem_dcc_loader_set_param_fn_t A function pointer type for a function that handles
loader set parameter transactions.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1043

LIBMEM_RPC_LOADER_FLAG_PARAM

Synopsis

#define LIBMEM_RPC_LOADER_FLAG_PARAM (1 << 0)

Description

LIBMEM loader flag used to indicate whether the loader parameter has been set.

If this flag is set in R0 on entry to an RPC loader then R1 holds the optional loader parameter specified using

CrossStudio's "Target | Loader Parameter" project property.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1044

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE

Synopsis

#define LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE (1 << 31)

Description

LIBMEM loader flag used to indicate that a loader should preserve target state.

If this flag is set in R0 on entry to an RPC loader then the loader should attempt to preserve any existing target

state. This is typically set when a loader is used to modify memory while a target program is running which

would happen when a software breakpoint is set in ROM during a debug session. If this is functionality is not

required then this flag can be ignored.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1045

LIBMEM_RPC_LOADER_MAGIC_NUMBER

Synopsis

#define LIBMEM_RPC_LOADER_MAGIC_NUMBER 0x76E9C416

Description

Defines the magic number used by host to identify the loader as a LIBMEM loader.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1046

libmem_dcc_loader_set_param_fn_t

Synopsis

typedef int (*libmem_dcc_loader_set_param_fn_t)(unsigned , unsigned);

Description

parameter — The parameter number to set.

value — The value to set the parameter to.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1047

libmem_dcc_loader_start

Synopsis

void libmem_dcc_loader_start(libmem_dcc_loader_set_param_fn_t set_param_fn);

Description

set_param_fn — A pointer to the function to call when a loader set parameter message is received or NULL if

not required.

Example:

 int set_param_fn(unsigned int parameter, unsigned int value)
 {
 return 1;
 }

 int main(void)
 {
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;

 // Register FLASH driver.
 libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 // Run the loader
 libmem_dcc_loader_start(set_param_fn);

 return 0;
 }

This function starts up a LIBMEM loader that uses the older "Comms Channel Loader" protocol, this function has

been provided for backward compatibility with earlier products. This form of loader will only run on ARM7 and

ARM9s with the debug comms channel.

To use this form of loader the "Target | Loader File Type" project property must be set to "Comms Channel

Loader".

Optional parameters can be passed to the loader using CrossStudio's "Target | Loader Parameter" project

property which holds a 32 bit integer value. If a parameter value has been set the function set_param_fn will be

called when the set parameter message has been received.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1048

libmem_dcc_rpc_loader_exit

Synopsis

void libmem_dcc_rpc_loader_exit(int result,
 const char *error);

Description

result — A LIBMEM status result.

error — Pointer to optional error string or NULL if not required.

This function provides a way of signalling to the host that the loader program has completed and also

allows the loader to return an exit code and optional error string. Note that this function should only

be used in conjunction with libmem_dcc_rpc_loader_start() and that any code located after the call to

libmem_dcc_rpc_loader_exit() has been made will not be executed.

The error parameter can be used to describe an error not covered by the LIBMEM status results. To use it, set

result to LIBMEM_STATUS_ERROR and error to the error string to be displayed.

The following example demonstrates how to return user defined error messages from the loader and how code

can be executed after the loader server has terminated prior to the loader program exiting:

 static unsigned char buffer[256];

 int initialise()
 {
 ... initialisation code ...
 }

 int deinitialise()
 {
 ... deinitialisation code ...
 }

 int main(void)
 {
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;
 const char *error = 0;

 if (initialise())
 {
 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)

CrossWorks for ARM Reference Manual LIBMEM User Guide

1049

 {
 // Run the loader
 libmem_dcc_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }
 }
 else
 {
 res = LIBMEM_STATUS_ERROR;
 error = "cannot initialise loader";
 }

 if (!deinitialise() && res == LIBMEM_STATUS_SUCCESS)
 {
 res = LIBMEM_STATUS_ERROR;
 error = "cannot deinitialise loader";
 }

 libmem_dcc_rpc_loader_exit(res, NULL);

 return 0;
 }

CrossWorks for ARM Reference Manual LIBMEM User Guide

1050

libmem_dcc_rpc_loader_start

Synopsis

void libmem_dcc_rpc_loader_start(void *comm_buffer_start,
 void *comm_buffer_end);

Description

comm_buffer_start — A pointer to the start of an area of RAM that can be used by the host to store data passed

to the remotely called libmem functions.

comm_buffer_end — A pointer to the last byte of the of an area of RAM that can be used by the host to store

data passed to the remotely called libmem functions.

Example:

 static unsigned char buffer[256];

 int main(void)
 {
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;

 // Register FLASH driver.
 libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 // Run the loader
 libmem_dcc_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);

 return 0;
 }

This function starts up a LIBMEM loader that uses remote procedure calls of the LIBMEM library executed via

the ARM's debug comms channel. This form of loader will only run on ARM7 and ARM9s with the debug comms

channel. It offers some performance advantage over the direct RPC loader.

The advantage of this loader mechanism is that it can be quicker than the direct RPC loader as it uses the ARM

debug comms channel for memory access rather than accessing the memory directly reducing significantly the

number of JTAG operations required to carry out each operation. It works by the host locating the addresses

of the LIBMEM functions in memory by examining the symbols in the loader's binary file and then calling them

directly via a simple server handling commands over the ARM debug comms channel.

A communication buffer is required to store the parameters passed to the LIBMEM functions, this buffer is

specified using the comm_buffer_start and comm_buffer_end parameters. The buffer must be at least 8 bytes

CrossWorks for ARM Reference Manual LIBMEM User Guide

1051

in length, however you will find the bigger the buffer is, the better the loader performance will be, because less

RPC calls will required.

The host loader application adapts how it carries out the download by the set of LIBMEM functions that are

linked into the loader application. The only two required functions are libmem_write() and libmem_erase(),

libmem_unlock() is only required if the erase or write functions return a LIBMEM_STATUS_LOCKED result.

Everything else can be done by accessing memory directly however you will get a performance increase when

verifying if you link in libmem_crc32(). If any of the memory programmed by the LIBMEM drivers cannot be

accessed directly you will also need to link in libmem_read(), note that if all memory can be accessed directly

you should not link this in as using this function will reduce performance.

As the loader application usually makes no direct calls to the LIBMEM functions they will by default be discarded

by the linker, you therefore need to make sure the required LIBMEM functions are linked into your loader using

the "Linker | Keep Symbols" project property.

To use this form of loader the "Target | Loader File Type" project property must be set to "LIBMEM RPC Loader".

Parameters are passed to an RPC loader by initialising the CPU registers prior to starting the loader. On entry, the

register R0 contains the LIBMEM loader flags which can be any of the following:

• LIBMEM_RPC_LOADER_FLAG_PARAM - If this flag is set then R1 holds the optional loader parameter

specified using CrossStudio's "Target | Loader Parameter" project property.

• LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE - If this flag is set then the loader should attempt to

preserve any existing target state. This is typically set when a loader is used to modify memory while a

target program is running which would happen when a software breakpoint is set in ROM during a debug

session. If this is functionality is not required then this flag can be ignored.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1052

libmem_rpc_loader_exit

Synopsis

void libmem_rpc_loader_exit(int result,
 const char *error);

Description

result — A LIBMEM status result.

error — Pointer to optional error string or NULL if not required.

This function provides a way of signalling to the host that the loader program has completed and also

allows the loader to return an exit code and optional error string. Note that this function should only

be used in conjunction with libmem_rpc_loader_start() and that any code located after the call to

libmem_rpc_loader_exit() has been made will not be executed.

The error parameter can be used to describe an error not covered by the LIBMEM status results. To use it, set

result to LIBMEM_STATUS_ERROR and error to the error string to be displayed.

The following example demonstrates how to return user defined error messages from the loader and how code

can be executed after the loader server has terminated prior to the loader program exiting:

 static unsigned char buffer[256];

 int initialise()
 {
 ... initialisation code ...
 }

 int deinitialise()
 {
 ... deinitialisation code ...
 }

 int main(void)
 {
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;
 const char *error = 0;

 if (initialise())
 {
 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)

CrossWorks for ARM Reference Manual LIBMEM User Guide

1053

 {
 // Run the loader
 libmem_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }
 }
 else
 {
 res = LIBMEM_STATUS_ERROR;
 error = "cannot initialise loader";
 }

 if (!deinitialise() && res == LIBMEM_STATUS_SUCCESS)
 {
 res = LIBMEM_STATUS_ERROR;
 error = "cannot deinitialise loader";
 }

 libmem_rpc_loader_exit(res, NULL);

 return 0;
 }

CrossWorks for ARM Reference Manual LIBMEM User Guide

1054

libmem_rpc_loader_start

Synopsis

int libmem_rpc_loader_start(void *comm_buffer_start,
 void *comm_buffer_end);

Description

comm_buffer_start — A pointer to the start of an area of RAM that can be used by the host to store data passed

to the remotely called libmem functions.

comm_buffer_end — A pointer to the last byte of the of an area of RAM that can be used by the host to store

data passed to the remotely called libmem functions.

libmem_rpc_loader_start returns — The last error result returned from a LIBMEM function or

LIBMEM_STATUS_SUCCESS if there has been no error.

Example:

 static unsigned char buffer[256];

 int main(void)
 {
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;

 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Run the loader
 libmem_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }

 libmem_rpc_loader_exit(res, NULL);

 return 0;
 }

This function starts up a LIBMEM loader that uses direct remote procedure calls of the LIBMEM library. This form

of loader should run on all ARM targets.

The advantage of this loader mechanism is that as it uses direct remote procedure calls and therefore has no

server code saving a significant amount of memory. It works by the host locating the addresses of the LIBMEM

CrossWorks for ARM Reference Manual LIBMEM User Guide

1055

functions in memory by examining the symbols in the loader's binary file and then calling them directly using

the debug interface.

A communication buffer is required to store the parameters passed to the LIBMEM functions, this buffer is

specified using the comm_buffer_start and comm_buffer_end parameters. The buffer must be at least 8 bytes

in length, however you will find the bigger the buffer is, the better the loader performance will be, because less

RPC calls will required.

The host loader application adapts how it carries out the download by the set of LIBMEM functions that are

linked into the loader application. The only two required functions are libmem_write() and libmem_erase(),

libmem_unlock() is only required if the erase or write functions return a LIBMEM_STATUS_LOCKED result.

Everything else can be done by accessing memory directly however you will get a performance increase when

verifying if you link in libmem_crc32(). If any of the memory programmed by the LIBMEM drivers cannot be

accessed directly you will also need to link in libmem_read(), note that if all memory can be accessed directly

you should not link this in as using this function will reduce performance.

As the loader application usually makes no direct calls to the LIBMEM functions they will by default be discarded

by the linker, you therefore need to make sure the required LIBMEM functions are linked into your loader using

the "Linker | Keep Symbols" project property.

To use this form of loader the "Target | Loader File Type" project property must be set to "LIBMEM RPC Loader".

Parameters are passed to an RPC loader by initialising the CPU registers prior to starting the loader. On entry, the

register R0 contains the LIBMEM loader flags which can be any of the following:

- #LIBMEM_RPC_LOADER_FLAG_PARAM - If this flag is set then R1 holds the optional loader parameter specified

using CrossStudio's "Target | Loader Parameter" project property.

- #LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE - If this flag is set then the loader should attempt to preserve

any existing target state. This is typically set when a loader is used to modify memory while a target program

is running which would happen when a software breakpoint is set in ROM during a debug session. If this is

functionality is not required then this flag can be ignored.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1056

CrossWorks for ARM Reference Manual Tasking Library User Guide

1057

Tasking Library User Guide
This document describes the CrossWorks Tasking Library (CTL). The tasking (aka multitasking) library provides a

multi-priority, preemptive, task switching and synchronization facility. Additionally, it supports a timer, interrupt

service routines, and memory-block allocation.

This document is divided into three parts:

• A whistle-stop tour of the tasking library introduces the key concepts.

• Putting the tasking library to use looks in-depth at the tasking library and how to use it in your applications.

• Reference information is a concise reference for each function provided in the tasking library.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1058

Overview
The tasking library enables your application to employ multiple tasks. Tasks are typically used for processing that

may suspend execution while other activities occur. For example, you may have a protocol-processing task, a

user-interface task, and a data-acquisition task.

Each task has its own task stack, which is used to store local variables and function-return information. The task

stack is also used to store the CPU execution context when the task isn't executing. The CPU execution context

of a task varies between machine architectures; it is typically the subset of the CPU register values that enable a

task to be descheduled at any point during its execution.

The process of changing the CPU registers from one task to another is termed taskswitching}. Task switching

occurs when a CTL function is called, either from a task or from an interrupt service routine (ISR), and there is a

runnable task with higher priority than the executing task. Task switching also occurs when there is a runnable

task of the same priority as the executing task, if the executing task has exceeded its time-slice period. If you

have more than one runnable task of the same priority, the next task (modulo priority) after the executing task is

selected. This is sometimes called round-robin scheduling.

There is a single task list and it is kept in priority-sorted order. The task list is updated when tasks are created

and deleted, and when their priority changes. The task list is traversed when a CTL function is called that could

change the execution state of a task. While the task list is modified or traversed, global interrupts are disabled.

Consequently, the length of the interrupt-disable period depends on the number of tasks in the task list, and the

priority and type of the task affected by the CTL operation.

If you require a simple, deterministic (sometimes called real-time) system, you should ensure that each task has a

unique priority. The task switching will always select the highest-priority task that is runnable.

CTL has a pointer to the executing task. There must always be a task executing; if there isn't, a CTL error is

signaled. Typically, there will be an idle task that loops and, perhaps, puts the CPU into power-saving mode.

Global interrupts will be enabled when a task switch occurs, so you can safely call tasking library functions while

interrupts are disabled.

Task synchronization and resource allocation

The CTL provides several mechanisms to synchronize execution of tasks, to serialize resource access, and to

provide high-level communication.

• Event Sets: An event set is a word-sized variable, and tasks can wait for its specific bits (representing

events) to be set to 1. Events can be used for synchronization and to serialize resource access. Events can

be set by interrupt service routines.

• Semaphores: A semaphore is a word size variable which tasks can wait for to be non-zero. Semaphores

can be used be used for synchronization and to serialize resource access. Semaphores can be signaled by

interrupt service routines.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1059

• Mutexes: A mutex is a structure that can be used to serialize resource access. Unlike semaphores, mutexes

cannot be used by interrupt service routines, but do provide extra features that make mutexes preferable

to semaphores for serializing resource access.

• Message Queues: A message queue is a structure that enables tasks to post and receive data. Message

queues are used to provide a buffered communication mechanism. Messages can be sent by interrupt

service routines.

• Byte Queues: A byte queue is a specialization of a message queue; i.e., it is a message queue in which the

messages are one byte in size. Byte queues can be sent by interrupt service routines.

• Interrupt Enable and Disable: The tasking library provides functions that enable and disable the

processor's global interrupts. These functions can be used to provide a time-critical, mutual-exclusion

facility.

Note that all task synchronization is priority based, i.e., the highest-priority task that is waiting will be scheduled

first.

Timer support

If your application can provide a periodic timer interrupt, you can use the timer facility of the CTL. This facility

enables time slicing of equal-priority tasks, allows tasks to delay, and provides a timeout capability when waiting

for something. The timer is a software counter that is incremented by your timer interrupt. The counter is

typically a millisecond counter, but you can change the timer's increment to reduce the interrupt frequency.

Memory allocation support

The CTL provides a simple memory block allocator that can be used in situations for which the standard C malloc

and free functions are either too slow or may block the calling task.

C library support

The CTL provides the functions required of the CrossWorks C library for multi-threading.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1060

Tasks
Each task has a corresponding task structure that contains the following information:

• When the task isn't executing, a pointer to the stack containing the execution context.

• The priority of the task; the lowest priority is 0, the highest is 255.

• The state of the task, runnable or waiting.

• A pointer to the next task.

• If the task is waiting for something, the details of what it is waiting for.

• Thread-specific data such as errno.

• A pointer to a null-terminated string that names the task for debugging purposes.

Creating a task

You allocate task structures by declaring them as C variables.

CTL_TASK_t mainTask;

You create the first task by using ctl_task_init to turn the main program into a task. This function takes a pointer

to the task structure that represents the main task, its priority, and a name as parameters.

ctl_task_init(&mainTask, 255, "main");

This function must be called before any other CrossWorks tasking library calls. The priority (second parameter)

must be between 0 (the lowest priority) and 255 (the highest priority). It is advisable to create the first task with

the highest priority, which enables it to create other tasks without being descheduled. The name should point to

a zero-terminated ASCII string, which is shown in the Threads window.

You can create other tasks with the function ctl_task_run, which initializes a task structure and may cause a

context switch. You supply the same arguments as for ctl_task_init, together with the function the task will run

and the memory the task will use for its stack.

The function a task will run should take a void * parameter and not return any value.

void task1Fn(void *parameter)
{
 // task code goes in here
}

The parameter value is supplied to the function by the ctl_task_run call. Note that, when a task function returns,

the ctl_task_die function is called, terminating the task.

You must allocate the stack for the task as a C array of unsigned elements.

unsigned task1Stack[64];

CrossWorks for ARM Reference Manual Tasking Library User Guide

1061

The stack size you need depends on the CPU (i.e., the number of registers that must be saved), the function calls

the task will make, and (again depending on the CPU) the stack used for interrupt service routines. Running

out of stack space is a common problem for multitasking systems, and the resulting error behavior is often

misleading. Recommended practice is to initialize the stack to known values—that will make it easier to check

the stack's contents with the CrossWorks debugger if problems should occur.

memset(task1Stack, 0xba, sizeof(task1Stack));

Your ctl_task_run function call should look something like this:

ctl_task_run(&task1Task,
 12,
 task1Fn,
 0,
 "task1",
 sizeof(task1Stack) / sizeof(unsigned),
 task1Stack,
 0);

The first parameter is a pointer to the task structure. The second parameter is the priority (in this case 12) at

which the task will start executing. The third parameter is a pointer to the function to execute (in this case

task1Fn). The fourth parameter is the value supplied to the task function (zero, in this case). The fifth parameter

is a null-terminated string that names the task for debug purposes. The sixth parameter is the size of the stack, in

words. The seventh parameter is the pointer to the stack. The last parameter is for systems that have a separate

call stack, and its value is the number of words to reserve for that stack.

Changing a task's priority

You can change the priority of a task using ctl_task_set_priority. It takes a pointer to a task structure and the

new priority as parameters, and returns the old priority.

old_priority = ctl_task_set_priority(&mainTask, 255); // lock scheduler
//
// ... your critical code here
//
ctl_task_set_priority(old_priority);

To enable time slicing, you need to set the ctl_timeslice_period variable before any task scheduling occurs.

ctl_timeslice_period = 100; // time slice period of 100 ms

If you want finer control over the scheduling of tasks, you can call ctl_task_reschedule. The following example

turns main into a task and creates a second task. The main task ultimately will be the lowest-priority task that

switches the CPU into a power-saving mode when it is scheduled—this satisfies the requirement of always

having a task to execute and enables a simple, power-saving system to be implemented.

#include <ctl.h>

CrossWorks for ARM Reference Manual Tasking Library User Guide

1062

void task1(void *p)
{
 // task code; on return, the task will be terminated.
}

static CTL_TASK_t mainTask, task1Task;
static unsigned task1Stack[64];

int main(void)
{
 // Turn myself into a task running at the highest priority.
 ctl_task_init(&mainTask, 255, "main");

 // Initialize the stack of task1.
 memset(task1Stack, 0xba, sizeof(task1Stack));

 // Prepare another task to run.
 ctl_task_run(&task1Task, 1, task1, 0, "task1",
 sizeof(task1Stack) / sizeof(unsigned),
 task1Stack, 0);

 // Now that all the tasks have been created, go to the lowest priority task.
 ctl_task_set_priority(&mainTask, 0);

 // Main task, if activated because task1 is suspended, just
 // enters low-power mode and waits for task1 to run again
 // (for example, because an interrupt wakes it).
 for (;;)
 {
 // Go into low-power mode.
 sleep();
 }
}

Note that, initially, the main task is assigned the highest priority while it creates the other tasks; then it changes

its priority to the lowest value. This technique can be used, when multiple tasks are to be created, to ensure all

the tasks are created before they start to execute.

Note the use of sizeof when passing the stack size to ctl_task_run.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1063

Event sets
Event sets are a versatile way to communicate between tasks, manage resource allocation, and synchronize

tasks.

An event set is a means to synchronize tasks with other tasks and with interrupt service routines. An event set

contains a set of events (one per bit), and tasks can wait for one or more of these bits to be set (i.e., to have the

value 1). When a task waits on an event set, the events it is waiting for are matched against the current values—

if they match, the task can still execute. If they don't match, the task is put on the task list with details about the

event set and the events for which the task is waiting.

You allocate an event set by declaring it as C variable:

CTL_EVENT_SET_t e1;

A CTL_EVENT_SET_t is a synonym for an unsigned type. Thus, when an unsigned is 16 bits wide, an event set

will contain 16 events; and when it consists of 32 bits, an event set will contain 32 events.

An event set must be initialized before any tasks can use it. To initialize an event set, use ctl_events_init:

ctl_events_init(&e1, 0);

You can set and clear events in an event set using the ctl_events_set_clear function.

ctl_events_set_clear(&e1, 1<<0, 1<<15);

This example will set the bit-zero event and clear the bit-15 event. If any tasks are waiting on this event set,

the events they are waiting on will be matched against the new event set value, which could cause the task to

become runnable.

You can wait for events to be set using ctl_events_wait. You can wait for any of the events

in an event set to be set (CTL_EVENT_WAIT_ANY_EVENTS) or all of the events to be set

(CTL_EVENT_WAIT_ALL_EVENTS). You can also specify that when events have been set and have been

matched that they should be automatically reset (CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR and

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR). You can associate a timeout with a wait for an event set

to stop your application blocking indefinitely.

ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e1, 1<<15,
 CTL_TIMEOUT_NONE, 0);

This example waits for bit 15 of the event set pointed to by e1 to become set.

if (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e1, 1<<15,
 CTL_TIMEOUT_DELAY, 1000) == 0)
 {
 // ...timeout occurred

CrossWorks for ARM Reference Manual Tasking Library User Guide

1064

 }

This example uses a timeout and tests the return result to see if the timeout occurred.

You can use ctl_events_pulse to set and immediately clear events. A typical use for this would be to wake up

multiple threads and reset the events atomically.

Synchronizing with an ISR

The following example illustrates synchronizing a task with a function called from an ISR.

CTL_EVENT_SET_t e1;
CTL_TASK_s t1;

void ISRfn()
{
 // ...do work, and then...
 ctl_events_set_clear(&e1, 1<<0, 0);
}

void task1(void *p)
{
 for (;;)
 {
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e1, 1<<0,
 CTL_TIMEOUT_NONE, 0);
 //
 // ...do whatever needs to be done...
 //
 ctl_events_set_clear(&e1, 0, 1<<0);
 }
}

Synchronizing with more than one ISR

The following example illustrates synchronizing a task with functions called from two interrupt service routines.

CTL_EVENT_SET_t e1;
CTL_TASK_s t1;

void ISRfn1(void)
{
 // do work, and then...
 ctl_events_set_clear(&e1, 1<<0, 0);
}

void ISRfn2(void)
{
 // do work, and then...
 ctl_events_set_clear(&e1, 1<<1, 0);
}

CrossWorks for ARM Reference Manual Tasking Library User Guide

1065

void task1(void *p)
{
 for (;;)
 {
 unsigned e;
 e = ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 &e1, (1<<0) | (1<<1),
 CTL_TIMEOUT_NONE, 0);
 if (e & (1<<0))
 {
 // ISRfn1 completed
 }
 else if (e & (1<<1))
 {
 // ISRfn2 completed
 }
 else
 {
 // error
 }
 }
}

Resource serialization with an event set

The following example illustrates resource serialization of two tasks.

CTL_EVENT_SET_t e1;

void task1(void)
{
 for (;;)
 {
 // Acquire resource.
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 &e1, 1<<0,
 CTL_TIMEOUT_NONE, 0);
 // Resource is now been acquired.

 ?

 // Release acquired resource.
 ctl_events_set_clear(&e1, 1<<0, 0);
 // Resource is now released.
 }
}

void task2(void)
{
 for (;;)
 {
 // Acquire resource.
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 &e1, 1<<0,
 CTL_TIMEOUT_NONE, 0);
 // Resource is now acquired.

 ?

CrossWorks for ARM Reference Manual Tasking Library User Guide

1066

 // Release acquired resource.
 ctl_events_set_clear(&e1, 1<<0, 0);
 // Resource is now been released.
 }
}

void main(void)
{
 // Initialize event set.
 ctl_events_init(&e1, 1<<0);
 // Create tasks and let them run.
}

Note that e1 is initialized with the event set; without this, neither task would acquire the resource.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1067

Semaphores
CTL provides semaphores to use for synchronization and resource allocation.

A semaphore is a counter which tasks can wait for to be non-zero. When a semaphore is non-zero and a task

waits on it, the semaphore value is decremented and the task continues executing. When a semaphore is zero

and a task waits on it, the task will be suspended until the semaphore is signaled. When a semaphore is signaled

and no tasks are waiting for it, the semaphore's value is incremented. When a semaphore is signaled and tasks

are waiting, one of the tasks is made runnable.

You allocate a semaphore by declaring it as a C variable. For example:

CTL_SEMAPHORE_t s1;

A CTL_SEMAPHORE_t is a synonym for an unsigned type, so the maximum value of the counter is dependent

upon the word size of the processor (16 or 32 bits).

A semaphore must be initialized done before any tasks can use it. To initialize a semaphore, use

ctl_semaphore_init:

ctl_semaphore_init(&s1, 1);

To signal a semaphore, use ctl_semaphore_signal:

ctl_semaphore_signal(&s1);

The highest-priority task waiting on the semaphore pointed at by s1 will be made runnable by this call. If no

tasks are waiting on the semaphore, the semaphore's value is incremented.

To wait for a semaphore with an optional timeout, use ctl_semaphore_wait:

ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);

This example will block the task if the semaphore is zero, otherwise it will decrement the semaphore and

execution will continue.

if (ctl_semaphore_wait(&s1, CTL_TIMEOUT_ABSOLUTE, ctl_get_current_time()+1000) == 0)
 {
 // ...timeout occurred
 }

This example uses a timeout and tests the return result to see if the timeout occurred.

Task synchronization in an interrupt service routine

The following example illustrates synchronizing a task with a function called from an interrupt service routine.

CTL_SEMAPHORE_t s1;

void ISRfn()

CrossWorks for ARM Reference Manual Tasking Library User Guide

1068

{
 // Detected something, signal the waiting task.
 ctl_semaphore_signal(&s1);
}

void task1(void *p)
{
 for (;;)
 {
 // Wait for ISR to signal that an event happened.
 ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);
 // Deal with the event.
 }
}

Resource serialization with semaphore

The following example illustrates resource serialization of two tasks:

CTL_SEMAPHORE_t s1 = 1;

void task1(void)
{
 for (;;)
 {
 // Wait for resource.
 ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);
 // Resource has now been acquired, do something with it.

 ?

 // And now release it...
 ctl_semaphore_signal(&s1);
 // Resource is now released.
 }
}

void task2(void)
{
 for (;;)
 {
 ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);
 // Resource has now been acquired, do something with it.

 ?

 // And now release it...
 ctl_semaphore_signal(&s1);
 // Resource has now been released.
 }
}

int main(void)
{
 // Initialize semaphore.
 ctl_semaphore_init(&s1, 1);
}

Note that s1 is initialized to one; without this, neither task would acquire the resource.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1069

Mutexes
A mutex is a structure that can be used to serialize resource access. Tasks can lock and unlock mutexes. Each

mutex has a lock count that enables a task to recursively lock the mutex. Tasks must ensure that the number

of unlocks matches the number of locks. When a mutex has already been locked by another task, a task that

wants to lock it must wait until the mutex becomes unlocked. The task that locks a mutex is assigned a higher

priority than any other tasks waiting to lock that mutex; this avoids what is often called priority inversion, which

can prevent some tasks from ever getting access to a required resource. Mutexes cannot be used by interrupt

service routines.

You allocate a mutex by declaring it as a C variable. For example:

CTL_MUTEX_t mutex;

A mutex must be intitialized before any task can use it. To initialize a mutex, use ctl_mutex_init as in this

example:

ctl_mutex_init(&mutex);

You can lock a mutex with an optional timeout by using ctl_mutex_lock:

ctl_mutex_lock(&mutex, CTL_TIMEOUT_NONE, 0);

You can unlock a mutex by using ctl_mutex_unlock:

ctl_mutex_unlock(&mutex);

Note: Only the locking task must unlock a successfully-locked mutex.

Resource serialization with mutex

The following example illustrates resource serialization of two tasks.

CTL_MUTEX_t mutex;

void fn1(void)
{
 ctl_lock_mutex(&mutex, CTL_TIMEOUT_NONE, 0);
 ?
 ctl_unlock_mutex(&mutex);
}

void fn2(void)
{
 ctl_lock_mutex(&mutex, CTL_TIMEOUT_NONE, 0);
 ?
 fn1();
 ?
 ctl_unlock_mutex(&mutex);

CrossWorks for ARM Reference Manual Tasking Library User Guide

1070

}

void task1(void)
{
 for (;;)
 {
 fn2()
 }
}

void task2(void)
{
 for (;;)
 {
 fn1();
 }
}

int main(void)
{
 ?
 ctl_mutex_init(&mutex);
 ?
}

Note that task1 locks the mutex twice by calling fn2 which then calls fn1.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1071

Message queues
Message queues provide buffers between tasks and interrupt service routines.

A message queue is a structure that enables tasks to post and receive messages. A message is a generic (void)

pointer and, as such, can be used to send data that will fit into a pointer type (two or four bytes, depending upon

the processor's word size) or to pass a pointer to a block of memory. The message queue uses a buffer to enable

a number of posts to be completed without receives occurring. The buffer keeps the posted messages in FIFO

order, so the oldest message is received first. When the buffer isn't full, a post will put the message at the back of

the queue and the calling task continues execution. When the buffer is full, a post will block the calling task until

there is room for the message. When the buffer isn't empty, a receive will return the message from the front of

the queue and continue execution of the calling task. When the buffer is empty, a receive will block the calling

task until a message is posted.

Initializing a message queue

You allocate a message queue by declaring it as a C variable:

CTL_MESSAGE_QUEUE_t m1;

A message queue is initialized using ctl_message_queue_init:

void *queue[20];
?
ctl_message_queue_init(&m1, queue, 20);

This example uses a 20-element array for the message queue. The array is a void * so pointers to memory or

(cast) integers can be communicated via a message queue.

Posting to a message queue

You can post a message to a message queue with an optional timeout by using the ctl_message_queue_post

function.

ctl_message_queue_post(&m1, (void *)45, CTL_TIMEOUT_NONE, 0);

This example posts the integer 45 to the message queue.

You can post multiple messages to a message queue with an optional timeout using

ctl_message_queue_post_multi:

if (ctl_message_queue_post_multi(&m1, 4, messages, CTL_TIMEOUT_ABSOLUTE,
 ctl_get_current_time()+1000) != 4)
 {
 // timeout occurred
 }

CrossWorks for ARM Reference Manual Tasking Library User Guide

1072

This example tests the return result to see if the timeout occurred.

If you want to post a message and you cannot afford to block (e.g. inside an interrupt service routine), you

can use ctl_message_queue_post_nb (or ctl_message_queue_post_multi_nb if you want to post multiple

messages):

if (ctl_message_queue_post_nb(&m1, (void *)45) == 0)
 {
 // queue is full
 }

This example tests the return result to see if the post failed.

Receiving from a message queue

You can use ctl_message_queue_receive to receive a message with an optional timeout:

void *msg;
ctl_message_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);

This example receives the oldest message in the message queue.

Use ctl_message_queue_receive_multi to receive multiple messages from a message queue with an optional

timeout:

if (ctl_message_queue_multi_receive(&m1, 4, msgs, CTL_TIMEOUT_DELAY, 1000) != 4)
 {
 // timeout occurred
 }

This example tests the return result to see if the timeout occurred.

If you want to receive a message and you don't want to block (e.g., when executing interrupt service routine),

you can use ctl_message_queue_receive_nb (or ctl_message_queue_receive_multi_nb to receive multiple

messages).

if (ctl_message_queue_receive_nb(&m1, &msg) == 0)
 {
 // queue is empty
 }

Producer-consumer example

The following example uses a message queue to implement the producer-consumer problem.

CTL_MESSAGE_QUEUE_t m1;
void *queue[20];

void task1(void)
{
 ?
 ctl_message_queue_post(&m1, (void *)i, CTL_TIMEOUT_NONE, 0);

CrossWorks for ARM Reference Manual Tasking Library User Guide

1073

 ?
}

void task2(void)
{
 void *msg;
 ?
 ctl_message_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);
 ?
}

int main(void)
{
 ?
 ctl_message_queue_init(&m1, queue, 20);
 ?
}

Advanced use

You can associate event flags with a message queue that are set (and similarly cleared) when the message queue

is not full and not empty using the function ctl_message_queue_setup_events.

For example, you can use this to wait for messages to arrive from multiple message (or byte) queues:

CTL_MESSAGE_QUEUE_t m1, m2;
CTL_EVENT_SET_t e;
ctl_message_queue_setup_events(&m1, &e, 1<<0, 1<<1));
ctl_message_queue_setup_events(&m2, &e, 1<<2, 1<<3));
?
switch (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e, (1<<0) | (1<<2),
 CTL_TIMEOUT_NONE, 0))
 {
 case 1<<0:
 ctl_message_queue_receive(&m1, …
 break;
 case 1<<2:
 ctl_message_queue_receive(&m2, …
 break;
 }

This example sets up and waits for the not-empty event of message queue m1 and the not-empty event of

message queue m2. When the wait completes, it reads from the appropriate message queue. Note that you

should not use a ‘with auto clear’ event wait type when waiting for events associated with a message queue.

You can use ctl_message_queue_num_used to test how many messages are in a message queue and

ctl_message_queue_num_free to learn how many free messages are in a message queue. With these functions

you can poll the message queue:

while (ctl_message_queue_num_free(&m1) < 10)
 ctl_task_timeout_wait(ctl_get_current_time() + 1000);
ctl_message_queue_post_multi(&m1, 10, …

This example waits for 10 elements to be free before it posts 10 elements.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1074

Byte queues
Byte queues provide byte-based buffers between tasks and interrupt service routines.

A byte queue is a structure that enables tasks to post and receive data bytes. The byte queue has a buffer, which

enables a number of posts to be completed without receives occurring. The buffer keeps the posted bytes in

FIFO order, so the oldest byte is received first. When the buffer isn't full, a post will put the byte at the back of

the queue and the calling task continues execution. When the buffer is full, a post will block the calling task until

there is room for the byte. When the buffer isn't empty, a receive will return the byte from the front of the queue

and continue execution of the calling task. When the buffer is empty, a receive will block the calling task until a

byte is posted.

Initializing a byte queue

You allocate a byte queue by declaring it as a C variable:

CTL_BYTE_QUEUE_t m1;

A byte queue is initialized using ctl_byte_queue_init:

unsigned char queue[20];
?
ctl_byte_queue_init(&m1, queue, 20);

This example uses an 20-element array for the byte queue.

Posting to a byte queue

You can post a byte to a byte queue with an optional timeout using ctl_byte_queue_post:

ctl_byte_queue_post(&m1, 45, CTL_TIMEOUT_NONE, 0);

This example posts the byte 45 to the byte queue.

You can post multiple bytes to a byte queue with an optional timeout using ctl_byte_queue_post_multi:

if (ctl_byte_queue_post(&m1, 4, bytes, CTL_TIMEOUT_ABSOLUTE, ctl_get_current_time()+1000) !=
 4)
 {
 // timeout occurred
 }

This example uses a timeout and tests the return result to see if the timeout occurred.

If you want to post a byte and you don't want to block access (e.g., from an interrupt service routine), you can

use ctl_byte_queue_post_nb (or ctl_byte_queue_post_multi_nb to post multiple bytes).

CrossWorks for ARM Reference Manual Tasking Library User Guide

1075

if (ctl_byte_queue_post_nb(&m1, 45) == 0)
 {
 // queue is full
 }

This example tests the return result to see if the post failed.

Receiving from a byte queue

You can receive a byte with an optional timeout by using ctl_byte_queue_receive:

unsigned char msg;
ctl_byte_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);

This example receives the oldest byte in the byte queue.

You can receive multiple bytes from a byte queue with an optional timeout using

ctl_byte_queue_receive_multi:

if (ctl_byte_queue_receive_multi(&m1, 4, bytes, CTL_TIMEOUT_DELAY, 1000) != 4)
 {
 // timeout occurred
 }

This example tests the return result to see if the timeout occurred.

If you want to receive a byte and you don't want to block (e.g., from an interrupt service routine), you can use

ctl_byte_queue_receive_nb (or ctl_byte_queue_receive_multi_nb to receive multiple bytes).

if (ctl_byte_queue_receive_nb(&m1, &msg) == 0)
 {
 // queue is empty
 }

Producer-consumer example

The following example uses a byte queue to implement the producer-consumer problem.

CTL_BYTE_QUEUE_t m1;
void *queue[20];

void task1(void)
{
 ?
 ctl_byte_queue_post(&m1, (void *)i, CTL_TIMEOUT_NONE, 0);
 ?
}

void task2(void)
{

CrossWorks for ARM Reference Manual Tasking Library User Guide

1076

 void *msg;
 ?
 ctl_byte_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);
 ?
}

int main(void)
{
 ?
 ctl_byte_queue_init(&m1, queue, 20);
 ?
}

Advanced Use

You can associate event flags with a byte queue that are set (and similarly cleared) when the byte queue is not

full and not empty using the function ctl_byte_queue_setup_events.

For example, you can use this to wait for messages to arrive from multiple byte (or message) queues.

CTL_BYTE_QUEUE_t m1, m2;
CTL_EVENT_SET_t e;
ctl_byte_queue_setup_events(&m1, &e, 1<<0, 1<<1);
ctl_byte_queue_setup_events(&m2, &e, 1<<2, 1<<3);
?
switch (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e, (1<<0) | (1<<2),
 CTL_TIMEOUT_NONE, 0))
 {
 case 1<<0:
 ctl_byte_queue_receive(&m1, …
 break;
 case 1<<2:
 ctl_byte_queue_receive(&m2, …
 break;
 }

This example sets up and waits for the not-empty event of byte queue m1 and the not-empty event of byte

queue m2. When the wait completes, it reads from the appropriate byte queue. Note that you must not use a

‘with auto clear’ event wait type when waiting on events associated with a byte queue.

You can use ctl_byte_queue_num_used to test how many bytes are in a byte queue and

ctl_byte_queue_num_free to learn how many free bytes are in a byte queue. With these functions, you can poll

the byte queue:

while (ctl_byte_queue_num_free(&m1) < 10)
 ctl_task_timeout_wait(ctl_get_current_time()+1000);
ctl_byte_queue_post_multi(&m1, 10, …

This example waits for 10 elements to be free before it posts 10 elements.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1077

Timers and interrupts
This section deals with how CTL timers work.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1078

Global interrupts control
CTL provides functions that enable and disable the global interrupt enables of the processor. CTL uses this

mechanism when accessing the task list. It can also be used to provide a fast, mutual-exclusion facility for time-

critical uses.

You can disable interrupts by using ctl_global_interrupts_disable and you can enable interrupts by using

ctl_global_interrupts_enable.

If you don't know if interrupts are currently disabled, you can use ctl_global_interrupts_set. This will either

disable or enable interrupts, depending on the parameter, and will return the previous interrupt-enable state:

int en = ctl_global_interrupts_set(0); // disable
?
if (en)
 ctl_global_interrupts_enable(); // set to previous state

You can call a tasking library function that causes a task switch with global interrupts disabled. The tasking

library will ensure that, when the next task is scheduled, global interrupts are enabled.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1079

Timer support
The current time is held as a 32-bit value in the variable ctl_current_time. This variable is incremented by the

number held in ctl_time_increment each time an ISR calls ctl_increment_tick_from_isr.

void timerISR{void)
{
 ctl_increment_tick_from_isr();
 // Your timer code goes here.
}

int main(void)
{
 ctl_time_increment = 10;
 // User must set up timerISR to be called every 100 ms.
 ?

By convention, the timer implements a millisecond counter, but you can set the timer's interrupt-and-increment

rate to a value that is appropriate for your application.

You can atomically read ctl_current_time by using the ctl_get_current_time function on systems whose word

size is not 32 bits.

You can use ctl_timeout_wait to suspend execution of a task for a fixed period. Note: ctl_timeout_wait

takes as its parameter the time to resume execution, not the duration: always call this function with

ctl_get_current_time()+duration.

ctl_timeout_wait(ctl_get_current_time()+100);

This example suspends execution of the calling task for 100 ticks of the ctl_current_time variable.

The counter is implemented as a 32-bit number, so you can delay for a maximum of a 31-bit number.

ctl_timeout_wait(ctl_get_current_time() + 0x7fffffff);

This example suspends execution of the calling task for the maximum possible time.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1080

Interrupt service routines
Interrupt service routines (ISR) can communicate with CTL tasks using a subset of the CTL programming

interface. An ISR should not call any of the CTL functions that can block; if your ISR calls a blocking function,

ctl_handle_error will be called. To detect whether a task or an ISR has called a function, CTL uses the

global variable ctl_interrupt_count. Interrupt service routines must increment this variable on entry and

decrement it on exit. Any CTL functions called by an ISR that require a task reschedule will set the variable

ctl_reschedule_on_last_isr_exit.

On exit from an interrupt service routine, ctl_interrupt_count is decremented to zero and, if

ctl_reschedule_on_last_isr_exit is set (after resetting ctl_reschedule_on_last_isr_exit), a CTL reschedule

operation occurs. The support for writing ISRs differs, depending on the target. In general, on entry to an ISR the

following is needed:

// … preserve register state here
++ctl_interrupt_count;

…and, on exit from an ISR:

ctl_interrupt_count--;
if (ctl_interrupt_count == 0 && ctl_reschedule_on_last_isr_exit)
 {
 ctl_reschedule_on_last_isr_exit = 0;
 // reschedule
 }
else
 {
 // ...restore register state here
 }

CrossWorks for ARM Reference Manual Tasking Library User Guide

1081

Memory areas
Memory areas provide your application with dynamic allocation of fixed-sized memory blocks. Memory areas

should be used in preference to the standard C library malloc and free functions if the calling task cannot block

or if memory allocation is done by an ISR.

You allocate a memory area by declaring it as a C variable:

CTL_MEMORY_AREA_t m1;

Before using a memory area, you must initialize it using ctl_memory_area_init:

unsigned mem[20];
?
ctl_memory_area_init(&m1, mem, 2, 10);

This example uses a 20-element array for the memory area's working storage. The array is split into 10 blocks,

each block being two words in size.

To allocate a block from a memory area, use ctl_memory_area_allocate. If the memory block cannot be

allocated, zero is returned.

unsigned *block = ctl_memory_area_allocate(&m1);
if (block)
 {
 // Block has been allocated.
 }
else
 {
 // No block has been allocated.
 }

When you have finished with a memory block, use ctl_memory_area_free to return it to the memory area from

which it was allocated so it can be reused:

ctl_memory_area_free(&m1, block);

You can associate an event flag with the block available state of a memory queue to wait for a memory block to

become available:

CTL_MEMORY_AREA_t m0, m1, m2;
?
CTL_EVENT_SET_t e;
?
ctl_memory_area_setup_events(&m0, &e, 1<<0);
ctl_memory_area_setup_events(&m1, &e, 1<<1);
ctl_memory_area_setup_events(&m2, &e, 1<<2);
?
switch (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e, (1<<0)|(1<<1)|(1<<2),
 0, 0))
 {

CrossWorks for ARM Reference Manual Tasking Library User Guide

1082

 case 1<<0:
 x = ctl_memory_area_allocate(&m0, …
 break;
 case 1<<1:
 x = ctl_memory_area_allocate(&m1, …
 break;
 case 1<<2:
 x = ctl_memory_area_allocate(&m2, …
 break;
 }

This example sets up and waits for the block-available events of memory areas m0, m1, and m2. When the wait

completes, it attempts to allocate memory from the appropriate memory area. Note that you should not use a

with-auto-clear event wait type when waiting on events associated with a memory area.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1083

Task scheduling example
An example task list could be:

• task1, priority 2, waiting

• task2, priority 1, runnable

• task3, priority 1, executing

• task4, priority 1, runnable

• task5, priority 0, runnable

task2 waits, so task3 is selected to execute:

• task1, priority 2, waiting

• task2, priority 1, waiting

• task3, priority 1, executing

• task4, priority 1, runnable

• task5, priority 0, runnable

An interrupt occurs that makes task1 runnable, which is higher priority than task3 so task1 executes:

• task1, priority 2, executing

• task2, priority 1, waiting

• task3, priority 1, runnable

• task4, priority 1, runnable

• task5, priority 0, runnable

task1 waits, causing task3 to execute:

• task1, priority 2, waiting

• task2, priority 1, waiting

• task3, priority 1, executing

• task4, priority 1, runnable

• task5, priority 0, runnable

An interrupt occurs and task3 has used its timeslice period, so task4 is selected to execute:

• task1, priority 2, waiting

• task2, priority 1, waiting

• task3, priority 1, runnable

• task4, priority 1, executing

• task5, priority 0, runnable

An interrupt occurs and makes task2 runnable, but task4 hasn't used its timeslice period, so it is left to execute:

• task1, priority 2, waiting

• task2, priority 1, runnable

CrossWorks for ARM Reference Manual Tasking Library User Guide

1084

• task3, priority 1, runnable

• task4, priority 1, executing

• task5, priority 0, runnable

A interrupt occurs and task4 has used its timeslice period:

• task1, priority 2, waiting

• task2, priority 1, executing

• task3, priority 1, runnable

• task4, priority 1, runnable

• task5, priority 0, runnable

CrossWorks for ARM Reference Manual Tasking Library User Guide

1085

ARM implementation details

Processor modes

The ARM implementation of CTL uses System and IRQ processor modes. Other processor modes are not used

and, therefore, are available for use by the application. In normal execution, tasks run in System mode with IRQ

interrupts enabled.

When CTL requires exclusive access to variables, for example when traversing the task list, IRQ interrupts are

disabled. FIQ interrupts are always enabled by CTL. Co-operative context switching is done by changing to IRQ

mode (with IRQ interrupts disabled) and, consequently, uses the IRQ mode stack. Preemptive context switching

is done from an IRQ handler, which by definition is running in IRQ mode.

Register save order

When a task is not executing, the ARM register context is saved on the task's stack in the following order:

• PSR

• R15

• R14

• R12

• R3–R0

• R11–R4

…with the stack_pointer member of the task structure pointing to the R4 entry which requires 16 words of

memory.

For devices that have a VFP with 16 double precision registers the floating point registers are also saved as

follows:

• FPSR

• D7–D0

• PSR

• R15

• R14

• R12

• R3–R0

• R11–R4

• D15–D8

…with the stack_pointer member of the task structure pointing to the D8 entry (with 1 added to indicate that

the floating point registers have been saved) which requires 49 words of memory.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1086

For devices that have a VFP with 32 double precision registers the floating point registers are also saved as

follows:

• FPSR

• D7–D0

• PSR

• R15

• R14

• R12

• R3–R0

• R11–R4

• D31–D8

…with the stack_pointer member of the task structure pointing to the D8 entry (with 3 added to indicate that

the 32 double precision floating point registers have been saved) which requires 81 words of memory.

IRQ handler

On entry to an IRQ handler, the ctl_interrupt_count variable should be incremented. On exit from an IRQ

handler, the ctl_exit_isr routine should be called with a parameter in R0 specifying which registers have been

saved by the IRQ handler.

If ctl_exit_isr(0) is called, the registers should be saved, as in the following example:

irq_handler:
 …
 // store the APCS registers
 sub lr, lr, #4
 stmfd sp!, {r0-r3, r12, lr}
 //ctl_interrupt_count++
 ldr r2, =ctl_interrupt_count
 ldrb r3, [r2]
 add r3, r3, #1
 strb r3, [r2]
 …
 // handle interrupt, possibly re-enabling interrupts
 …
 // ctl_exit_isr(0)
 mov r0, #0
 ldr r1, =ctl_exit_isr
 bx r1

If ctl_exit_isr(!0) is called, the registers should be saved, as in the following example:

irq_handler:
 …
 // store all the registers
 stmfd sp!, {r0-r12, lr}
 mrs r0, spsr
 stmfd sp!, {r0}

CrossWorks for ARM Reference Manual Tasking Library User Guide

1087

 // ctl_interrupt_count++
 ldr r2, =ctl_interrupt_count
 ldrb r3, [r2]
 add r3, r3, #1
 strb r3, [r2]
 …
 // handle interrupt, possibly re-enabling interrupts
 …
 // ctl_exit_isr(!0)
 mov r0, sp
 ldr r1, =ctl_exit_isr
 bx r1

The first form (ctl_exit_isr(0)) is recommended because it uses less stack space and takes fewer machine

cycles. The second form (ctl_exit_isr(!0)) is provided for backwards compatibility with earlier releases of

CTL.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1088

Cortex-M implementation details

Processor modes and interrupts

All CTL threads run in privileged thread mode.

When CTL requires exclusive access to variables—for example when traversing the task list—interrupts are

disabled using calls to ctl_global_interrupts_disable and ctl_global_interrupts_enable.

The default implementation of global interrupt disable and enable for the Cortex-M3/M4 will set or clear the top

bit of the BASEPRI register. This enables interrupts that have the highest half of the available priority numbers

(lowest priority levels) to use CTL API calls. The lowest half of the available priority numbers (highest priority

levels) cannot use CTL API calls but will not be disabled during CTL API calls. If, for example, the device has four

priority bits, then priority numbers 8 through 15 can be used for interrupts that make CTL API calls and priorities

0 through 7 can be used for interrupts that cannot make CTL API calls.

The default implementation of global interrupts and enable for the Cortex-M0/M1 will set or clear the PRIMASK

register.

Exceptions

Context switching is implemented using the PendSV exception handler which should be set to run at the lowest

exception priority i.e. the highest exception priority number. The SVCall exception handler is not used.

Stacks

CTL threads must use the Cortex-M process stack pointer (psp) so that you don't need to allocate stack space for

exceptions in the CTL thread stacks. You can do this by specifying the size of the process stack with the Process

Stack Size project property.

Register save order

When a task is not executing, the register context is saved on the task's stack in the following order:

• PSR

• R15

• R14

• R12

• R3–R0

• R11–R4

CrossWorks for ARM Reference Manual Tasking Library User Guide

1089

…with the stack_pointer member of the task structure pointing to the R4 entry which requires 16 words of

memory.

For Cortex-M4F the 32 single precision floating point registers are also saved when they have been used by a

task. This changes the register context saved on the task's stack to:

• FPSR

• S15–S0

• PSR

• R15

• R14

• R12

• R3–R0

• R11–R4

• S31–S16

…with the stack_pointer member of the task structure pointing to the S16 entry (with 1 added to indicate that

the floating point registers have been saved) which requires 49 words of memory.

Interrupt handlers

A Cortex-M interrupt handler that uses CTL services should use the following template code for entry and exit:

void SysTick_ISR(void)
{
 ctl_enter_isr();
 …
 // handle interrupt here
 …
 ctl_exit_isr();
}

The call to ctl_enter_isr will increment the ctl_interrupt_count and the call to ctl_exit_isr will decrement the

ctl_interrupt_count and, if required, trigger the PendSV exception.

Note that you must ensure that an interrupt handler that uses CTL services cannot interrupt an interrupt handler

that does not use CTL services. You can do this by setting the interrupt priority of interrupt handlers that do not

use CTL services to be higher than those that do.

Interrupt handler support code (including ctl_enter_isr and ctl_exit_isr) is not part of CTL, but there are

common definitions that are available in ctl_api.h and will be defined by code or libraries supplied by the

CPU support package you are using.

System timer

The CPU support package you are using will use the Cortex-M SysTick timer to implement the CTL timer.

Typically, the timer will be programmed to interrupt at 10 millisecond intervals and increment the CTL timer by

10 to create the millisecond CTL timer.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1090

CTL Revisions
CTL has been supplied with various 1.x releases of CrossWorks, and its revision history is available in the

corresponding release notes—such releases are termed CTL V1. CTL is supplied in 2.x releases of CrossWorks and

is termed CTL V2. This document explains the differences between CTL V1 and CTL V2.

Scheduling implementation

In CTL V1, the executing task was removed from the task list and then put back on when it was descheduled.

In CTL V2, the executing task isn't moved from the task list. This change enables CTL to run on the Cortex-M3,

results in smaller code with faster context switching, and reduces the interrupt-lockout period.

In CTL V1, rescheduling would happen on exit from the last nested interrupt service routine. In CTL V2, a

reschedule only occurs on exit from the last nested interrupt service routine if the run state of a task has

changed.

Mutexes

POSIX thread-style mutexes have been added.

Task restore

The new function ctl_task_restore allows tasks that have been removed from the task list (using

ctl_task_remove) to be returned to the task list again.

Suspended task state

The new task state suspended has been added. It can be used instead of removing and restoring a task from the

task list.

Thread-specific data pointer

The new member data has been added to the task structure. It can be used to store thread-specific data.

Task execution time

The new global variable ctl_last_schedule_time has been added, and a new field execution_time has been

added to the task structure to hold the cumulative number of timer ticks since the task began executing.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1091

Change to global interrupt functions

The functions ctl_global_interrupts_disable and ctl_global_interrupts_enable no longer return the previous

interrupt-enables state. If you need that, use ctl_global_interrupts_set instead.

Other API changes

The function ctl_task_set_priority returns the old task priority.

Header file changes

In CTL V1, the file ctl/include/ctl_api.h contained CTL declarations and board-support declarations. In CTL V2,

the file ctl/include/ctl.h contains CTL declarations. In CTL V2, the file ctl/include/ctl_api.h includes ctl/source/

ctl.h and has board-support declarations for backwards compatibility.

Removed support for interrupt re-enabling

The following functions have been removed from CTL V2:

• ctl_global_interrupts_re_enable_from_isr

• ctl_global_interrupts_un_re_enable_from_isr

These are defined in ctl_api.h to use their libarm equivalents. Rather than use these functions, it is

recommended to re-enable interrupts in the irq_handler.

Removed support for programmable interrupt handler

The following functions have been removed from CTL V2:

• ctl_set_isr

• ctl_unmask_isr

• ctl_mask_isr

These functions are now declared in ctl_api.h and are implemented in board- and CPU-support packages.

Removed CPU-specific timer functions

The following functions have been removed from CTL V2:

CrossWorks for ARM Reference Manual Tasking Library User Guide

1092

• ctl_start_timer

• ctl_get_ticks_per_second

These functions are now declared in ctl_api.h and are implemented in support packages for the board and CPU.

Removed board-specific functions

The following functions have been removed from CTL V2:

• ctl_board_init

• ctl_board_set_leds

• ctl_board_on_button_pressed

These functions are now declared in ctl_api.h and are implemented in board-support packages.

Moved libc mutex

The declaration of the event set ctl_libc_mutex has been moved into the implementation of the libc multi-

threading helper functions.

Byte-queue and message-queue additions

Functions to post and receive multiple bytes/messages.

Functions to query the state of byte/message queues.

Function to associate events that are set when byte or message queues are not empty or not full.

Usage of ctl_global_interrupts_set

In CTL V2.1, the usage of ctl_global_interrupts_set has been replaced with usage of

ctl_global_interrupts_disable and ctl_global_interrupts_enable. These functions are now implemented

using compiler intrinsics in the default CTL build. You can rebuild with the C preprocessor symbol

__NO_USE_INTRINSICS__ defined if your application requires ctl_global_interrupts_set to be used.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1093

Complete API reference
This section contains a complete reference to the CrossWorks Tasking Library (CTL) API.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1094

<ctl.h>

API Summary

Tasks

ctl_task_die Terminate the executing task

ctl_task_init Create the initial task

ctl_task_remove Remove a task from the task list

ctl_task_reschedule Cause a reschedule

ctl_task_restore Put back a task on to the task list

ctl_task_run Start a task

ctl_task_set_priority Set the priority of a task

Timer

ctl_get_current_time Atomically return the current time

ctl_increment_tick_from_isr Increment tick timer

ctl_timeout_wait Wait until timeout has occurred

Event sets

ctl_events_init Initialize an event set

ctl_events_pulse Pulse events in an event set

ctl_events_set_clear Set and clear events in an event set

ctl_events_wait Wait for events in an event set

Semaphores

ctl_semaphore_init Initialize a semaphore

ctl_semaphore_signal Signal a semaphore

ctl_semaphore_wait Wait for a semaphore

Message queues

ctl_message_queue_init Initialize a message queue

ctl_message_queue_num_free Return number of free elements in a message queue

ctl_message_queue_num_used Return number of used elements in a message queue

ctl_message_queue_post Post message to a message queue

ctl_message_queue_post_multi Post messages to a message queue

ctl_message_queue_post_multi_nb Post messages to a message queue without blocking

ctl_message_queue_post_nb Post message to a message queue without blocking

ctl_message_queue_receive Receive message from a message queue

ctl_message_queue_receive_multi Receive messages from a message queue

CrossWorks for ARM Reference Manual Tasking Library User Guide

1095

ctl_message_queue_receive_multi_nb Receive messages from a message queue without
blocking

ctl_message_queue_receive_nb Receive message from a message queue without
blocking

ctl_message_queue_setup_events Associate events with the not-full and not-empty state
of a message queue

Bytes queues

ctl_byte_queue_init Initialize a byte queue

ctl_byte_queue_num_free Return number of free bytes in a byte queue

ctl_byte_queue_num_used Return number of used bytes in a byte queue

ctl_byte_queue_post Post byte to a byte queue

ctl_byte_queue_post_multi Post bytes to a byte queue

ctl_byte_queue_post_multi_nb Post bytes to a byte queue without blocking

ctl_byte_queue_post_nb Post byte to a byte queue without blocking

ctl_byte_queue_receive Receive a byte from a byte queue

ctl_byte_queue_receive_multi Receive multiple bytes from a byte queue

ctl_byte_queue_receive_multi_nb Receive multiple bytes from a byte queue without
blocking

ctl_byte_queue_receive_nb Receive a byte from a byte queue without blocking

ctl_byte_queue_setup_events Associate events with the not-full and not-empty state
of a byte queue

Mutexes

ctl_mutex_init Initialize a mutex

ctl_mutex_lock Lock a mutex

ctl_mutex_unlock Unlock a mutex

Interrupts

ctl_global_interrupts_disable Disable global interrupts

ctl_global_interrupts_enable Enable global interrupts

ctl_global_interrupts_set Enable/disable interrupts

Error handling

ctl_handle_error Handle a CTL error condition

Memory areas

ctl_memory_area_allocate Allocate a block from a memory area

ctl_memory_area_free Free a memory area block

ctl_memory_area_init Initialize a memory area

ctl_memory_area_setup_events Set memory area events

CrossWorks for ARM Reference Manual Tasking Library User Guide

1096

Types

CTL_BYTE_QUEUE_t Byte queue struct definition

CTL_ERROR_CODE_t Error cause

CTL_EVENT_SET_t Event set definition

CTL_EVENT_WAIT_TYPE_t Event set wait types

CTL_MEMORY_AREA_t Memory area struct definition

CTL_MESSAGE_QUEUE_t Message queue struct definition

CTL_MUTEX_t Mutex struct definition

CTL_SEMAPHORE_t Semaphore definition

CTL_STATE_t Task states

CTL_TASK_t Task struct definition

CTL_TIMEOUT_t Type of wait

CTL_TIME_t Time definition

System state variables

ctl_current_time The current time in ticks

ctl_interrupt_count Nested interrupt count

ctl_last_schedule_time The time (in ticks) of the last task schedule

ctl_reschedule_on_last_isr_exit Reschedule is required on last ISR exit

ctl_task_executing The task that is currently executing

ctl_task_list List of tasks sorted by priority

ctl_task_switch_callout A function pointer called on a task switch

ctl_time_increment Current time tick increment

ctl_timeslice_period Time slice period in ticks

CrossWorks for ARM Reference Manual Tasking Library User Guide

1097

CTL_BYTE_QUEUE_t

Synopsis

typedef struct {
 unsigned char *q;
 unsigned s;
 unsigned front;
 unsigned n;
 CTL_EVENT_SET_t *e;
 CTL_EVENT_SET_t notempty;
 CTL_EVENT_SET_t notfull;
} CTL_BYTE_QUEUE_t;

Description

CTL_BYTE_QUEUE_t defines the byte queue structure. The byte queue structure contains:

Member Description

q pointer to the array of bytes

s size of the array of bytes

front the next byte to leave the byte queue

n the number of elements in the byte queue

e the event set to use for the not empty and not full
events

notempty the event number for a not empty event

notfull the event number for a not full event

CrossWorks for ARM Reference Manual Tasking Library User Guide

1098

CTL_ERROR_CODE_t

Synopsis

typedef enum {
 CTL_ERROR_NO_TASKS_TO_RUN,
 CTL_UNSUPPORTED_CALL_FROM_ISR,
 CTL_MUTEX_UNLOCK_CALL_ERROR,
 CTL_UNSPECIFIED_ERROR
} CTL_ERROR_CODE_t;

Description

CTL_ERROR_CODE_t defines the set of errors that are detected by the CrossWorks tasking library; the errors are

reported by a call to ctl_handle_error.

Constant Description

CTL_ERROR_NO_TASKS_TO_RUN
A reschedule has occurred but there are no tasks
which are runnable.

CTL_UNSUPPORTED_CALL_FROM_ISR An interrupt service routine has called a tasking library
function that could block or is otherwise unsupported
when called from inside an interrupt service routine.

CTL_MUTEX_UNLOCK_CALL_ERROR A task called ctl_mutex_unlock passing a mutex which
it has not locked, or which a different task holds a lock
on. Only the task that successfully acquired a lock on a
mutex can unlock that mutex.

CTL_UNSPECIFIED_ERROR An unspecified error has occurred.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1099

CTL_EVENT_SET_t

Synopsis

typedef unsigned CTL_EVENT_SET_t;

Description

CTL_EVENT_SET_t defines an event set. Event sets are word sized 16 or 32 depending on the machine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1100

CTL_EVENT_WAIT_TYPE_t

Synopsis

typedef enum {
 CTL_EVENT_WAIT_ANY_EVENTS,
 CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 CTL_EVENT_WAIT_ALL_EVENTS,
 CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR
} CTL_EVENT_WAIT_TYPE_t;

Description

CTL_EVENT_WAIT_TYPE_t defines how to wait for an event set.

Constant Description

CTL_EVENT_WAIT_ANY_EVENTS
Wait for any of the specified events to be set in the
event set.

CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR Wait for any of the specified events to be set in the
event set and reset (clear) them.

CTL_EVENT_WAIT_ALL_EVENTS Wait for all of the specified events to be set in the
event set.

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR Wait for all of the specified events to be set in the
event set and reset (clear) them.

See Also

ctl_events_wait

CrossWorks for ARM Reference Manual Tasking Library User Guide

1101

CTL_MEMORY_AREA_t

Synopsis

typedef struct {
 unsigned *head;
 CTL_EVENT_SET_t *e;
 CTL_EVENT_SET_t blockavailable;
} CTL_MEMORY_AREA_t;

Description

CTL_MEMORY_AREA_t defines the memory area structure. The memory area structure contains:

Member Description

head the next free memory block

e the event set containing the blockavailable event

blockavailable the blockavailable event

CrossWorks for ARM Reference Manual Tasking Library User Guide

1102

CTL_MESSAGE_QUEUE_t

Synopsis

typedef struct {
 void ** q;
 unsigned s;
 unsigned front;
 unsigned n;
 CTL_EVENT_SET_t *e;
 CTL_EVENT_SET_t notempty;
 CTL_EVENT_SET_t notfull;
} CTL_MESSAGE_QUEUE_t;

Description

CTL_MESSAGE_QUEUE_t defines the message queue structure. The message queue structure contains:

Member Description

q pointer to the array of message queue objects

s size of the array of message queue objects

front the next element to leave the message queue

n the number of elements in the message queue

e the event set to use for the not empty and not full
events

notempty the event number for a not empty event

notfull the event number for a not full event

CrossWorks for ARM Reference Manual Tasking Library User Guide

1103

CTL_MUTEX_t

Synopsis

typedef struct {
 unsigned lock_count;
 CTL_TASK_t *locking_task;
 unsigned locking_task_priority;
} CTL_MUTEX_t;

Description

CTL_MUTEX_t defines the mutex structure. The mutex structure contains:

Member Description

lock_count number of times the mutex has been locked

locking_task the task that has locked the mutex

locking_task_priority the priority of the task at the time it locked the mutex

CrossWorks for ARM Reference Manual Tasking Library User Guide

1104

CTL_SEMAPHORE_t

Synopsis

typedef unsigned CTL_SEMAPHORE_t;

Description

CTL_SEMAPHORE_t defines the semaphore type. Semaphores are held in one word, 16 or 32 bits depending on

the machine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1105

CTL_STATE_t

Synopsis

typedef enum {
 CTL_STATE_RUNNABLE,
 CTL_STATE_TIMER_WAIT,
 CTL_STATE_EVENT_WAIT_ALL,
 CTL_STATE_EVENT_WAIT_ALL_AC,
 CTL_STATE_EVENT_WAIT_ANY,
 CTL_STATE_EVENT_WAIT_ANY_AC,
 CTL_STATE_SEMAPHORE_WAIT,
 CTL_STATE_MESSAGE_QUEUE_POST_WAIT,
 CTL_STATE_MESSAGE_QUEUE_RECEIVE_WAIT,
 CTL_STATE_MUTEX_WAIT,
 CTL_STATE_SUSPENDED
} CTL_STATE_t;

Description

CTL_STATE_t defines the states the task can be on.

Constant Description

CTL_STATE_RUNNABLE Task can run.

CTL_STATE_TIMER_WAIT Waiting for a time value.

CTL_STATE_EVENT_WAIT_ALL Waiting for all events to be set.

CTL_STATE_EVENT_WAIT_ALL_AC Waiting for all events to be set with auto clear.

CTL_STATE_EVENT_WAIT_ANY Waiting for any events to be set.

CTL_STATE_EVENT_WAIT_ANY_AC Waiting for any events to be set with auto clear.

CTL_STATE_SEMAPHORE_WAIT Task is waiting for a semaphore.

CTL_STATE_MESSAGE_QUEUE_POST_WAIT Task is waiting to post to a message queue.

CTL_STATE_MESSAGE_QUEUE_RECEIVE_WAIT Task is waiting to receive from a message queue.

CTL_STATE_MUTEX_WAIT Task is waiting for a mutex.

CTL_STATE_SUSPENDED Task cannot run.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1106

CTL_TASK_t

Synopsis

typedef struct {
 unsigned *stack_pointer;
 unsigned char priority;
 unsigned char state;
 unsigned char timeout_occured;
 CTL_TIME_t timeout;
 void *wait_object;
 CTL_EVENT_SET_t wait_events;
 int thread_errno;
 void *data;
 CTL_TIME_t execution_time;
 unsigned *stack_start;
 const char *name;
} CTL_TASK_t;

Description

CTL_TASK_t defines the task structure. The task structure contains:

Member Description

stack_pointer
the saved register state of the task when it is not
scheduled

priority the priority of the task

state the state of task CTL_STATE_RUNNABLE or
(CTL_STATE_*_WAIT_* | CTL_STATE_TIMER_WAIT) or
CTL_STATE_SUSPENDED

timeout_occured 1 if a wait timed out otherwise 0 - when state is
CTL_RUNNABLE

next next pointer for wait queue

timeout wait timeout value or time slice value when the task is
executing

wait_object the event set, semaphore, message queue or mutex to
wait on

wait_events the events to wait for

thread_errno thread specific errno

data task specific data pointer

execution_time number of ticks the task has executed for

stack_start the start (lowest address) of the stack

name task name

CrossWorks for ARM Reference Manual Tasking Library User Guide

1107

CTL_TIMEOUT_t

Synopsis

typedef enum {
 CTL_TIMEOUT_NONE,
 CTL_TIMEOUT_INFINITE,
 CTL_TIMEOUT_ABSOLUTE,
 CTL_TIMEOUT_DELAY,
 CTL_TIMEOUT_NOW
} CTL_TIMEOUT_t;

Description

CTL_TIMEOUT_t defines the type of timeout for a blocking function call.

Constant Description

CTL_TIMEOUT_NONE No timeout — block indefinitely.

CTL_TIMEOUT_INFINITE Identical to CTL_TIMEOUT_NONE.

CTL_TIMEOUT_ABSOLUTE The timeout is an absolute time.

CTL_TIMEOUT_DELAY The timeout is relative to the current time.

CTL_TIMEOUT_NOW The timeout happens immediately — no rescheduling
occurs.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1108

CTL_TIME_t

Synopsis

typedef unsigned long CTL_TIME_t;

Description

CTL_TIME_t defines the base type for times that CTL uses.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1109

ctl_byte_queue_init

Synopsis

void ctl_byte_queue_init(CTL_BYTE_QUEUE_t *q,
 unsigned char *queue,
 unsigned queue_size);

Description

ctl_byte_queue_init is given a pointer to the byte queue to initialize in q. The array that will be used to

implement the byte queue pointed to by queue and its size in queue_size are also supplied.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1110

ctl_byte_queue_num_free

Synopsis

unsigned ctl_byte_queue_num_free(CTL_BYTE_QUEUE_t *q);

Description

ctl_byte_queue_num_free returns the number of free bytes in the byte queue q.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1111

ctl_byte_queue_num_used

Synopsis

unsigned ctl_byte_queue_num_used(CTL_BYTE_QUEUE_t *q);

Description

ctl_byte_queue_num_used returns the number of used elements in the byte queue q.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1112

ctl_byte_queue_post

Synopsis

unsigned ctl_byte_queue_post(CTL_BYTE_QUEUE_t *q,
 unsigned char b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_post posts b to the byte queue pointed to by q. If the byte queue is full then the caller will

block until the byte can be posted or, if timeoutType is non-zero, the current time reaches timeout value.

ctl_byte_queue_post returns zero if the timeout occurred otherwise it returns one.

Note

ctl_byte_queue_post must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1113

ctl_byte_queue_post_multi

Synopsis

unsigned ctl_byte_queue_post_multi(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_post_multi posts n bytes to the byte queue pointed to by q. The caller will block

until the bytes can be posted or, if timeoutType is non-zero, the current time reaches timeout value.

ctl_byte_queue_post_multi returns the number of bytes that were posted.

Note

ctl_byte_queue_post_multi must not be called from an interrupt service routine.

ctl_byte_queue_post_multi does not guarantee that the bytes will be all be posted to the byte queue

atomically. If you have multiple tasks posting (multiple bytes) to the same byte queue then you may get

unexpected results.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1114

ctl_byte_queue_post_multi_nb

Synopsis

unsigned ctl_byte_queue_post_multi_nb(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b);

Description

ctl_byte_queue_post_multi_nb posts n bytes to the byte queue pointed to by q.

ctl_byte_queue_post_multi_nb returns the number of bytes that were posted.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1115

ctl_byte_queue_post_nb

Synopsis

unsigned ctl_byte_queue_post_nb(CTL_BYTE_QUEUE_t *q,
 unsigned char b);

Description

ctl_byte_queue_post_nb posts b to the byte queue pointed to by q. If the byte queue is full then the function

will return zero otherwise it will return one.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1116

ctl_byte_queue_receive

Synopsis

unsigned ctl_byte_queue_receive(CTL_BYTE_QUEUE_t *q,
 unsigned char *b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_receive pops the oldest byte in the byte queue pointed to by q into the memory pointed to by

b. ctl_byte_queue_receive will block if no bytes are available unless timeoutType is non-zero and the current

time reaches the timeout value.

ctl_byte_queue_receive returns zero if a timeout occurs otherwise 1.

Note

ctl_byte_queue_receive must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1117

ctl_byte_queue_receive_multi

Synopsis

unsigned ctl_byte_queue_receive_multi(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_receive_multi pops the oldest n bytes in the byte queue pointed to by q into the memory

pointed at by b. ctl_byte_queue_receive_multi will block until the number of bytes are available unless

timeoutType is non-zero and the current time reaches the timeout value.

ctl_byte_queue_receive_multi returns the number of bytes that have been received.

Note

ctl_byte_queue_receive_multi must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1118

ctl_byte_queue_receive_multi_nb

Synopsis

unsigned ctl_byte_queue_receive_multi_nb(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b);

Description

ctl_byte_queue_receive_multi_nb pops the oldest n bytes in the byte queue pointed to by q into the memory

pointed to by b. ctl_byte_queue_receive_multi_nb returns the number of bytes that have been received.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1119

ctl_byte_queue_receive_nb

Synopsis

unsigned ctl_byte_queue_receive_nb(CTL_BYTE_QUEUE_t *q,
 unsigned char *b);

Description

ctl_byte_queue_receive_nb pops the oldest byte in the byte queue pointed to by m into the memory pointed

to by b. If no bytes are available the function returns zero otherwise it returns 1.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1120

ctl_byte_queue_setup_events

Synopsis

void ctl_byte_queue_setup_events(CTL_BYTE_QUEUE_t *q,
 CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t notempty,
 CTL_EVENT_SET_t notfull);

Description

ctl_byte_queue_setup_events registers events in the event set e that are set when the byte queue q becomes

notempty or becomes notfull. No scheduling will occur with this operation, you need to do this before waiting

for events.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1121

ctl_current_time

Synopsis

CTL_TIME_t ctl_current_time;

Description

ctl_current_time holds the current time in ticks. ctl_current_time is incremented by

ctl_increment_ticks_from_isr.

Note

For portable programs without race conditions you should not read this variable directly, you should use

ctl_get_current_time instead. As this variable is changed by an interrupt, it cannot be read atomically on

processors whose word size is less than 32 bits without first disabling interrupts. That said, you can read this

variable directly in your interrupt handler as long as interrupts are still disabled.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1122

ctl_events_init

Synopsis

void ctl_events_init(CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t set);

Description

ctl_events_init initializes the event set e with the set values.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1123

ctl_events_pulse

Synopsis

void ctl_events_pulse(CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t set_then_clear);

Description

ctl_events_pulse will set the events defined by set_then_clear in the event set pointed to by e.

ctl_events_pulse will then search the task list, matching tasks that are waiting on the event set e, and make

them runnable if the match is successful. The events defined by set_then_clear are then cleared.

See Also

ctl_events_set_clear.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1124

ctl_events_set_clear

Synopsis

void ctl_events_set_clear(CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t set,
 CTL_EVENT_SET_t clear);

Description

ctl_events_set_clear sets the events defined by set and clears the events defined by clear of the event set

pointed to by e. ctl_events_set_clear will then search the task list, matching tasks that are waiting on the event

set e and make them runnable if the match is successful.

See Also

ctl_events_pulse.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1125

ctl_events_wait

Synopsis

unsigned ctl_events_wait(CTL_EVENT_WAIT_TYPE_t type,
 CTL_EVENT_SET_t *eventSet,
 CTL_EVENT_SET_t events,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_events_wait waits for events to be set (value 1) in the event set pointed to by eventSet with an optional

timeout applied if timeoutType is non-zero.

The waitType can be one of:

• CTL_EVENT_WAIT_ANY_EVENTS — wait for any of events in eventSet to be set.

• CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR — wait for any of events in eventSet to be set

and reset (clear) them.

• CTL_EVENT_WAIT_ALL_EVENTS — wait for all events in *eventSet to be set.

• CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR — wait for all events in eventSet to be set and

reset (clear) them.

ctl_events_wait returns the value pointed to by eventSet before any auto-clearing occurred or zero if the

timeout occurred.

Note

ctl_events_wait must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1126

ctl_get_current_time

Synopsis

CTL_TIME_t ctl_get_current_time(void);

Description

ctl_get_current_time atomically reads the value of ctl_current_time.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1127

ctl_global_interrupts_disable

Synopsis

int ctl_global_interrupts_disable(void);

Description

ctl_global_interrupts_disable disables global interrupts. If ctl_global_interrupts_disable is called and

interrupts are already disabled then it will return 0. If ctl_global_interrupts_disable is called and interrupts

are enabled then it will return non-zero which may or may not represent the true interrupt disabled state.

ctl_global_interrupts_disable is used to provide exclusive access to CTL data structures the implementation of it

may or may not disable global interrupts.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1128

ctl_global_interrupts_enable

Synopsis

void ctl_global_interrupts_enable(void);

Description

ctl_global_interrupts_enable enables global interrupts. ctl_global_interrupts_enable is used to provide

exclusive access to CTL data structures the implementation of it may or may not disable global interrupts.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1129

ctl_global_interrupts_set

Synopsis

int ctl_global_interrupts_set(int enable);

Description

ctl_global_interrupts_set disables or enables global interrupts according to the state enable. If enable is zero,

interrupts are disabled and if enable is non-zero, interrupts are enabled. If ctl_global_interrupts_set is called

and interrupts are already disabled then it will return 0. If ctl_global_interrupts_set is called and interrupts

are enabled then it will return non-zero which may or may not represent the true interrupt disabled state.

ctl_global_interrupts_set is used to provide exclusive access to CTL data structures the implementation of it may

or may not disable global interrupts.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1130

ctl_handle_error

Synopsis

void ctl_handle_error(CTL_ERROR_CODE_t e);

Description

ctl_handle_error is a function that you must supply in your application that handles errors detected by the

CrossWorks tasking library.

The errors that can be reported in e are are described in CTL_ERROR_CODE_t.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1131

ctl_increment_tick_from_isr

Synopsis

void ctl_increment_tick_from_isr(void);

Description

ctl_increment_tick_from_isr increments ctl_current_time by the number held in ctl_time_increment and does

rescheduling. This function should be called from a periodic interrupt service routine.

Note

ctl_increment_tick_from_isr must only be invoked by an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1132

ctl_interrupt_count

Synopsis

unsigned char ctl_interrupt_count;

Description

ctl_interrupt_count contains a count of the interrupt nesting level. This variable must be incremented

immediately on entry to an interrupt service routine and decremented immediately before return from the

interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1133

ctl_last_schedule_time

Synopsis

CTL_TIME_t ctl_last_schedule_time;

Description

ctl_last_schedule_time contains the time (in ticks) of the last task schedule.

Description

ctl_last_schedule_time contains the time of the last reschedule in ticks.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1134

ctl_memory_area_allocate

Synopsis

unsigned *ctl_memory_area_allocate(CTL_MEMORY_AREA_t *memory_area);

Description

ctl_memory_area_allocate allocates a block from the initialized memory area memory_area.

ctl_memory_area_allocate returns a block of the size specified in the call to ctl_memory_area_init or zero if no

blocks are available.

ctl_memory_area_allocate executes in constant time and is very fast. You can call ctl_memory_area_allocate

from an interrupt service routine, from a task, or from initialization code.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1135

ctl_memory_area_free

Synopsis

void ctl_memory_area_free(CTL_MEMORY_AREA_t *memory_area,
 unsigned *block);

Description

ctl_memory_area_free is given a pointer to a memory area memory_area which has been initialized and a

block that has been returned by ctl_memory_area_allocate. The block is returned to the memory area so that it

can be allocated again.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1136

ctl_memory_area_init

Synopsis

void ctl_memory_area_init(CTL_MEMORY_AREA_t *memory_area,
 unsigned *memory,
 unsigned block_size_in_words,
 unsigned num_blocks);

Description

ctl_memory_area_init is given a pointer to the memory area to initialize in memory_area. The array that is

used to implement the memory area is pointed to by memory. The size of a memory block is given supplied in

block_size_in_words and the number of block is supplied in num_blocks.

Note

memory must point to a block of memory that is at least block_size_in_words × num_blocks words long.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1137

ctl_memory_area_setup_events

Synopsis

void ctl_memory_area_setup_events(CTL_MEMORY_AREA_t *m,
 CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t blockavailable);

Description

ctl_memory_area_setup_events registers the events blockavailable in the event set e that are set when a block

becomes available in the the memory area m.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1138

ctl_message_queue_init

Synopsis

void ctl_message_queue_init(CTL_MESSAGE_QUEUE_t *q,
 void **queue,
 unsigned queue_size);

Description

ctl_message_queue_init is given a pointer to the message queue to initialize in q. The array that will be used to

implement the message queue pointed to by queue and its size in queue_size are also supplied.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1139

ctl_message_queue_num_free

Synopsis

unsigned ctl_message_queue_num_free(CTL_MESSAGE_QUEUE_t *q);

Description

ctl_message_queue_num_free returns the number of free elements in the message queue q.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1140

ctl_message_queue_num_used

Synopsis

unsigned ctl_message_queue_num_used(CTL_MESSAGE_QUEUE_t *q);

Description

ctl_message_queue_num_used returns the number of used elements in the message queue q.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1141

ctl_message_queue_post

Synopsis

unsigned ctl_message_queue_post(CTL_MESSAGE_QUEUE_t *q,
 void *message,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_post posts message to the message queue pointed to by q. If the message queue is

full then the caller will block until the message can be posted or, if timeoutType is non-zero, the current time

reaches timeout value. ctl_message_queue_post returns zero if the timeout occurred otherwise it returns one.

Note

ctl_message_queue_post must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1142

ctl_message_queue_post_multi

Synopsis

unsigned ctl_message_queue_post_multi(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_post_multi posts n messages to the message queue pointed to by q. The caller will

block until the messages can be posted or, if timeoutType is non-zero, the current time reaches timeout value.

ctl_message_queue_post_multi returns the number of messages that were posted.

Note

ctl_message_queue_post_multi must not be called from an interrupt service routine.

ctl_message_queue_post_multi function does not guarantee that the messages will be all be posted to the

message queue atomically. If you have multiple tasks posting (multiple messages) to the same message queue

then you may get unexpected results.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1143

ctl_message_queue_post_multi_nb

Synopsis

unsigned ctl_message_queue_post_multi_nb(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages);

Description

ctl_message_queue_post_multi_nb posts n messages to the message queue pointed to by m.

ctl_message_queue_post_multi_nb returns the number of messages that were posted.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1144

ctl_message_queue_post_nb

Synopsis

unsigned ctl_message_queue_post_nb(CTL_MESSAGE_QUEUE_t *q,
 void *message);

Description

ctl_message_queue_post_nb posts message to the message queue pointed to by q. If the message queue is

full then the function will return zero otherwise it will return one.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1145

ctl_message_queue_receive

Synopsis

unsigned ctl_message_queue_receive(CTL_MESSAGE_QUEUE_t *q,
 void **message,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_receive pops the oldest message in the message queue pointed to by q into the

memory pointed to by message. ctl_message_queue_receive will block if no messages are available unless

timeoutType is non-zero and the current time reaches the timeout value.

ctl_message_queue_receive returns zero if a timeout occurs otherwise 1.

Note

ctl_message_queue_receive must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1146

ctl_message_queue_receive_multi

Synopsis

unsigned ctl_message_queue_receive_multi(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_receive_multi pops the oldest n messages in the message queue pointed to by q into

the memory pointed to by message. ctl_message_queue_receive_multi will block until all the messages are

available unless timeoutType is non-zero and the current time reaches the timeout value.

ctl_message_queue_receive_multi returns the number of messages that were received.

Note

ctl_message_queue_receive_multi must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1147

ctl_message_queue_receive_multi_nb

Synopsis

unsigned ctl_message_queue_receive_multi_nb(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages);

Description

ctl_message_queue_receive_multi_nb pops the oldest n messages in the message queue pointed to by q into

the memory pointed to by message.

ctl_message_queue_receive_multi_nb returns the number of messages that were received.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1148

ctl_message_queue_receive_nb

Synopsis

unsigned ctl_message_queue_receive_nb(CTL_MESSAGE_QUEUE_t *q,
 void **message);

Description

ctl_message_queue_receive_nb pops the oldest message in the message queue pointed to by q into the

memory pointed to by message. If no messages are available the function returns zero otherwise it returns 1.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1149

ctl_message_queue_setup_events

Synopsis

void ctl_message_queue_setup_events(CTL_MESSAGE_QUEUE_t *q,
 CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t notempty,
 CTL_EVENT_SET_t notfull);

Description

ctl_message_queue_setup_events registers events in the event set e that are set when the message queue q

becomes notempty or becomes notfull. No scheduling will occur with this operation, you need to do this before

waiting for events.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1150

ctl_mutex_init

Synopsis

void ctl_mutex_init(CTL_MUTEX_t *m);

Description

ctl_mutex_init initializes the mutex pointed to by m.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1151

ctl_mutex_lock

Synopsis

unsigned ctl_mutex_lock(CTL_MUTEX_t *m,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_mutex_lock locks the mutex pointed to by m to the calling task. If the mutex is already locked by the calling

task then the mutex lock count is incremented. If the mutex is already locked by a different task then the caller

will block until the mutex is unlocked. In this case, if the priority of the task that has locked the mutex is less than

that of the caller the priority of the task that has locked the mutex is raised to that of the caller whilst the mutex

is locked. If timeoutType is non-zero and the current time reaches the timeout value before the lock is acquired

the function returns zero otherwise it returns one.

Note

ctl_mutex_lock must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1152

ctl_mutex_unlock

Synopsis

void ctl_mutex_unlock(CTL_MUTEX_t *m);

Description

ctl_mutex_unlock unlocks the mutex pointed to by m. The mutex must have previously been locked by the

calling task. If the calling task's priority has been raised (by another task calling ctl_mutex_unlock whilst the

mutex was locked), then the calling tasks priority will be restored.

Note

ctl_mutex_unlock must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1153

ctl_reschedule_on_last_isr_exit

Synopsis

unsigned char ctl_reschedule_on_last_isr_exit;

Description

ctl_reschedule_on_last_isr_exit is set to a non-zero value if a CTL call is made from an interrupt service routine

that requires a task reschedule. This variable is checked and reset on exit from the last nested interrupt service

routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1154

ctl_semaphore_init

Synopsis

void ctl_semaphore_init(CTL_SEMAPHORE_t *s,
 unsigned value);

Description

ctl_semaphore_init initializes the semaphore pointed to by s to value.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1155

ctl_semaphore_signal

Synopsis

void ctl_semaphore_signal(CTL_SEMAPHORE_t *s);

Description

ctl_semaphore_signal signals the semaphore pointed to by s. If tasks are waiting for the semaphore then the

highest priority task will be made runnable. If no tasks are waiting for the semaphore then the semaphore value

will be incremented.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1156

ctl_semaphore_wait

Synopsis

unsigned ctl_semaphore_wait(CTL_SEMAPHORE_t *s,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_semaphore_wait waits for the semaphore pointed to by s to be non-zero. If the semaphore is zero then the

caller will block unless timeoutType is non-zero and the current time reaches the timeout value. If the timeout

occurred ctl_semaphore_wait returns zero otherwise it returns one.

Note

ctl_semaphore_wait must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1157

ctl_task_die

Synopsis

void ctl_task_die(void);

Description

ctl_task_die terminates the currently executing task and schedules the next runnable task.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1158

ctl_task_executing

Synopsis

CTL_TASK_t *ctl_task_executing;

Description

ctl_task_executing points to the CTL_TASK_t structure of the currently executing task. The priority field

is the only field in the CTL_TASK_t structure that is defined for the task that is executing. It is an error if

ctl_task_executing is NULL.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1159

ctl_task_init

Synopsis

void ctl_task_init(CTL_TASK_t *task,
 unsigned char priority,
 const char *name);

Description

ctl_task_init turns the main program into a task. This function takes a pointer in task to the CTL_TASK_t

structure that represents the main task, its priority (0 is the lowest priority, 255 the highest), and a zero-

terminated string pointed by name. On return from this function global interrupts will be enabled.

The function must be called before any other CrossWorks tasking library calls are made.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1160

ctl_task_list

Synopsis

CTL_TASK_t *ctl_task_list;

Description

ctl_task_list points to the CTL_TASK_t structure of the highest priority task that is not executing. It is an error if

ctl_task_list is NULL.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1161

ctl_task_remove

Synopsis

void ctl_task_remove(CTL_TASK_t *task);

Description

ctl_task_remove removes the task task from the waiting task list. Once you you have removed a task the only

way to re-introduce it to the system is to call ctl_task_restore.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1162

ctl_task_reschedule

Synopsis

void ctl_task_reschedule(void);

Description

ctl_task_reschedule causes a reschedule to occur. This can be used by tasks of the same priority to share the

CPU without using timeslicing.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1163

ctl_task_restore

Synopsis

void ctl_task_restore(CTL_TASK_t *task);

Description

ctl_task_restore adds a task task that was removed (using ctl_task_remove) onto the task list and do

scheduling.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1164

ctl_task_run

Synopsis

void ctl_task_run(CTL_TASK_t *task,
 unsigned char priority,
 void (*entrypoint)(void *),
 void *parameter,
 const char *name,
 unsigned stack_size_in_words,
 unsigned *stack,
 unsigned call_size_in_words);

Description

ctl_task_run takes a pointer in task to the CTL_TASK_t structure that represents the task. The priority can be

zero for the lowest priority up to 255 which is the highest. The entrypoint parameter is the function that the task

will execute which has the parameter passed to it.

name is a pointer to a zero-terminated string used for debug purposes.

The start of the memory used to hold the stack that the task will execute in is stack and the size of the memory is

supplied in stack_size_in_words. On systems that have two stacks (e.g. Atmel AVR) then the call_size_in_words

parameter must be set to specify the number of stack elements to use for the call stack.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1165

ctl_task_set_priority

Synopsis

unsigned char ctl_task_set_priority(CTL_TASK_t *task,
 unsigned char priority);

Description

ctl_task_set_priority changes the priority of task to priority. The priority can be 0, the lowest priority, to 255,

which is the highest priority.

You can change the priority of the currently executing task by passing ctl_task_executing as the task

parameter. ctl_task_set_priority returns the previous priority of the task.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1166

ctl_task_switch_callout

Synopsis

void (*ctl_task_switch_callout)(CTL_TASK_t *);

Description

ctl_task_switch_callout contains a pointer to a function that is called (if it is set) when a task schedule occurs.

The task that will be scheduled is supplied as a parameter to the function (ctl_task_executing will point to the

currently scheduled task).

Note that the callout function is called from the CTL scheduler and as such any use of CTL services whilst

executing the callout function has undefined behavior.

Note

Because this function pointer is called in an interrupt service routine, you should assign it before interrupts are

started or with interrupts turned off.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1167

ctl_time_increment

Synopsis

unsigned ctl_time_increment;

Description

ctl_time_increment contains the value that ctl_current_time is incremented when

ctl_increment_tick_from_isr is called.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1168

ctl_timeout_wait

Synopsis

void ctl_timeout_wait(CTL_TIME_t timeout);

Description

ctl_timeout_wait takes the timeout (not the duration) as a parameter and suspends the calling task until the

current time reaches the timeout.

Note

ctl_timeout_wait must not be called from an interrupt service routine.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1169

ctl_timeslice_period

Synopsis

CTL_TIME_t ctl_timeslice_period;

Description

ctl_timeslice_period contains the number of ticks to allow a task to run before it will be preemptively

rescheduled by a task of the same priority. The variable is set to zero by default so that only higher priority tasks

will be preemptively scheduled.

CrossWorks for ARM Reference Manual Tasking Library User Guide

1170

CrossWorks for ARM Reference Manual Utilities Reference

1171

Utilities Reference

CrossWorks for ARM Reference Manual Utilities Reference

1172

Compiler driver
This section describes the switches accepted by the compiler driver, cc. The compiler driver is capable of

controlling compilation by all supported language compilers and the final link by the linker. It can also construct

libraries automatically.

In contrast to many compilation and assembly language development systems, with you don't invoke the

assembler or compiler directly. Instead you'll normally use the compiler driver cc as it provides an easy way to

get files compiled, assembled, and linked. This section will introduce you to using the compiler driver to convert

your source files to object files, executables, or other formats.

We recommend that you use the compiler driver rather than use the assembler or compiler directly because

there the driver can assemble multiple files using one command line and can invoke the linker for you too. There

is no reason why you should not invoke the assembler or compiler directly yourself, but you'll find that typing in

all the required options is quite tedious-and why do that when cc will provide them for you automatically?

CrossWorks for ARM Reference Manual Utilities Reference

1173

File naming conventions
The compiler driver uses file extensions to distinguish the language the source file is written in. The compiler

driver recognizes the extension .c as C source files, .cpp, .cc or .cxx as C++ source files, .s and .asm as assembly

code files.

The compiler driver recognizes the extension .o as object files, .a as library files, .ld as linker script files and .xml

as special-purpose XML files.

We strongly recommend that you adopt these extensions for your source files and object files because you'll find

that using the tools is much easier if you do.

C language files

When the compiler driver finds a file with a .c extension, it runs the C compiler to convert it to object code.

C++ language files

When the compiler driver finds a file with a .cpp extension, it runs the C++ compiler to convert it to object code.

Assembly language files

When the compiler driver finds a file with a .s or .asm extension, it runs the C preprocessor and then the

assembler to convert it to object code.

Object code files

When the compiler driver finds a file with a .o or .a extension, it passes it to the linker to include it in the final

application.

CrossWorks for ARM Reference Manual Utilities Reference

1174

Command-line options
This section describes the command-line options accepted by the CrossWorks compiler driver.

CrossWorks for ARM Reference Manual Utilities Reference

1175

-ansi (Warn about potential ANSI problems)

Syntax

-ansi

Description

Warn about potential problems that conflict with the relevant ANSI or ISO standard for the files that are

compiled.

CrossWorks for ARM Reference Manual Utilities Reference

1176

-ar (Archive output)

Syntax

-ar

Description

This switch instructs the compiler driver to archive all output files into a library. Using -ar implies -c.

Example

The following command compiles file1.c, file2.asm, and file3.c to object code and archives them into the library

file libfunc.a together with the object file file4.o.

cc -ar file1.c file2.asm file3.c file4.o -o libfunc.a

CrossWorks for ARM Reference Manual Utilities Reference

1177

-arch (Set ARM architecture)

Syntax

-arch=a

Description

Specifies the version of the instruction set to generate code for. The options are:

• -arch=v4T — ARM7TDMI and ARM920T

• -arch=v5TE — ARM9E, Feroceon and XScale

• -arch=v6 — ARM11

• -arch=v6M — Cortex-M0 and Cortex-M1

• -arch=v7A — Cortex-A8 and Cortex-A9

• -arch=v7M — Cortex-M3

• -arch=v7EM — Cortex-M4

• -arch=v7R — Cortex-R4

Example

To force compilation for V7A architecture you would use:

cc -arch=v7A …

CrossWorks for ARM Reference Manual Utilities Reference

1178

-be (Big Endian)

Syntax

-be

Description

Generate code for a big endian target.

CrossWorks for ARM Reference Manual Utilities Reference

1179

-c (Compile to object code, do not link)

Syntax

-c

Description

All named files are compiled to object code modules, but are not linked. You can use the -o option to name the

output if you just supply one input filename.

Example

The following command compiles file1.c and file4.c to produce the object files file1.o and file4.o.

cc -c file1.c file4.c

The following command compiles file1.c and produces the object file obj/file1.o.

cc -c file.c -o obj/file1.o

CrossWorks for ARM Reference Manual Utilities Reference

1180

-d (Define linker symbol)

Syntax

-dname=value

Description

You can define linker symbols using the -d option. The symbol definitions are passed to linker.

Example

The following defines the symbol, STACK_SIZE with a value of 512.

-dSTACK_SIZE=512

CrossWorks for ARM Reference Manual Utilities Reference

1181

-D (Define macro symbol)

Syntax

-Dname

-Dname=value

Description

You can define preprocessor macros using the -D option. The macro definitions are passed on to the respective

language compiler which is responsible for interpreting the definitions and providing them to the programmer

within the language.

The first form above defines the macro name but without an associated replacement value, and the second

defines the same macro with the replacement value value.

Example

The following defines two macros, SUPPORT_FLOAT with a value of 1 and LITTLE_ENDIAN with no replacement

value.

-DSUPPORT_FLOAT=1 -DLITTLE_ENDIAN

CrossWorks for ARM Reference Manual Utilities Reference

1182

-e (Set entry point symbol)

Syntax

-ename

Description

Linker option to set the entry point symbol to be name. The debugger will start execution from this symbol.

CrossWorks for ARM Reference Manual Utilities Reference

1183

-E (Preprocess)

Syntax

-E

Description

This option preprocesses the supplied file and outputs the result to the standard output.

Example

The following preprocesses the file file.c supplying the macros, SUPPORT_FLOAT with a value of 1 and

LITTLE_ENDIAN.

-E -DSUPPORT_FLOAT=1 -DLITTLE_ENDIAN file.c

CrossWorks for ARM Reference Manual Utilities Reference

1184

-exceptions (Enable C++ Exception Support)

Syntax

-exceptions

Description

Enables C++ exceptions to be compiled.

CrossWorks for ARM Reference Manual Utilities Reference

1185

-fabi (Floating Point Code Generation)

Syntax

-fabi=a

Description

Specifies the type of floating point code generation. The options are:

• -fabi=SoftFP — FPU instructions are generated, CPU registers are used for floating point parameters.

• -fabi=Hard — FPU instructions are generated, FPU registers are used for floating point parameters.

CrossWorks for ARM Reference Manual Utilities Reference

1186

-fpu (Set ARM FPU)

Syntax

-fpu=a

Description

Specifies the floating point unit to generate code for when the fpabi option has been supplied. The options are:

• -fpu=VFP — generate FPU instructions for ARM9 and ARM11

• -fpu=VFPv3-D32 — generate FPU instructions for CortexA

• -fpu=VFPv3-D16 — generate FPU instructions for CortexR

• -fpu=FPv4-SP-D16 — generate FPU instructions for CortexM4

CrossWorks for ARM Reference Manual Utilities Reference

1187

-F (Set output format)

Syntax

-Ffmt

Description

The -F option instructs the compiler driver to generate an additional output file in the format fmt. The compiler

driver supports the following formats:

• -Fbin — Create a .bin file

• -Fhex — Create a .hex file

• -Fsrec — Create a .srec file

The compiler driver will always output a .elf file as specified with the -o option. The name of the additional

output file is the same as the .elf file with the file extension changed.

For example

cc file.c -o file.elf -Fbin

will generate the files file.elf and file.bin.

CrossWorks for ARM Reference Manual Utilities Reference

1188

-g (Generate debugging information)

Syntax

-g

Description

The -g option instructs the compiler and assembler to generate source level debugging information for the

debugger to use.

CrossWorks for ARM Reference Manual Utilities Reference

1189

-g1 (Generate minimal debugging information)

Syntax

-g1

Description

The -g1 option instructs the compiler to generate debugging information that enables the debugger to be able

to backtrace only.

CrossWorks for ARM Reference Manual Utilities Reference

1190

-help (Display help information)

Syntax

-help

Description

Displays a short summary of the options accepted by the compiler driver.

CrossWorks for ARM Reference Manual Utilities Reference

1191

-io (Select I/O library implementation)

Syntax

-io=i

Description

This option specifies the I/O library implementation that is included in the linked image. The options are:

• -io=d — I/O library is implemented using debugIO e.g calls to printf will call debug_printf.

• -io=t — I/O library is implemented on the target, debugIO is not used.

• -io=t+d — I/O library is implemented on the target, debugIO is not used but debugIO is enabled.

CrossWorks for ARM Reference Manual Utilities Reference

1192

-I (Define user include directories)

Syntax

-Idirectory

Description

In order to find include files the compiler driver arranges for the compilers to search a number of standard

directories. You can add directories to the search path using the -I switch which is passed on to each of the

language processors.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon.

CrossWorks for ARM Reference Manual Utilities Reference

1193

-I- (Exclude standard include directories)

Syntax

-I-

Description

Usually the compiler and assembler search for include files in the standard include directory created when the

product is installed. If for some reason you wish to exclude these system locations from being searched when

compiling a file, the -I- option will do this for you.

CrossWorks for ARM Reference Manual Utilities Reference

1194

-J (Define system include directories)

Syntax

-Jdirectory

Description

The -J option adds directory to the end of the list of directories to search for source files included (using

triangular brackets) by the #include preprocessor command.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon in the property

CrossWorks for ARM Reference Manual Utilities Reference

1195

-K (Keep linker symbol)

Syntax

-Kname

Description

The linker removes unused code and data from the output file. This process is called deadstripping. To prevent

the linker from deadstripping unreferenced code and data you wish to keep, you must use the -K command line

option to force inclusion of symbols.

Example

If you have a C function, contextSwitch that must be kept in the output file (and which the linker will normally

remove), you can force its inclusion using:

-KcontextSwitch

CrossWorks for ARM Reference Manual Utilities Reference

1196

-L (Set library directory path)

Syntax

-Ldir

Description

Sets the library directory to dir. If -L is not specified on the command line, the default location to search for

libraries is set to $(InstallDir)/lib.

CrossWorks for ARM Reference Manual Utilities Reference

1197

-l- (Do not link standard libraries)

Syntax

-l-

Description

The -l option instructs the compiler driver not to link standard libraries. If you use this option you must supply

your own library functions or libraries.

CrossWorks for ARM Reference Manual Utilities Reference

1198

-make (Make-style build)

Syntax

-make

Description

The -make option avoids build steps based on the modification date of the output file and modification date of

the input file and its dependencies.

CrossWorks for ARM Reference Manual Utilities Reference

1199

-M (Display linkage map)

Syntax

-M

Description

The -M option prints a linkage map named the same as the linker output file with the .map file extension.

CrossWorks for ARM Reference Manual Utilities Reference

1200

-n (Dry run, no execution)

Syntax

-n

Description

When -n is specified, the compiler driver processes options as usual, but does not execute any subprocesses to

compile, assemble, archive or link applications.

CrossWorks for ARM Reference Manual Utilities Reference

1201

-nostderr (No stderr output)

Syntax

-nostderr

Description

When -nostderr is specified, any stderr output of subprocesses is redirected to stdout.

CrossWorks for ARM Reference Manual Utilities Reference

1202

-o (Set output file name)

Syntax

-o filename

Description

The -o option instructs the compiler driver to write linker or archiver output to filename.

CrossWorks for ARM Reference Manual Utilities Reference

1203

-oabi (Use oabi compiler)

Syntax

-oabi

Description

The -oabi option instructs the compiler driver to generate code and link libraries for the legacy GCC ARM ABI.

CrossWorks for ARM Reference Manual Utilities Reference

1204

-O (Optimize output)

Syntax

-Ox

Description

Pass the optimization option -Ox to the compiler and select library variant. The following options are supported:

• -O0 — No optimization, use libraries built with -O1.

• -O1 — Level 1 optimization, use libraries built with -O1.

• -O2 — Level 2 optimization, use libraries built with -O1.

• -O3 — Level 3 optimization, use libraries built with -O1.

• -Os — Optimize for size, use libraries built with -Os.

CrossWorks for ARM Reference Manual Utilities Reference

1205

-printf (Select printf capability)

Syntax

-printf=c

Description

The -printf option selects the printf capability for the linked executable. The options are:

• -printf=i — integer is supported

• -printf=li — long integer is supported

• -printf=ll — long long integer is supported

• -printf=f — floating point is supported

• -printf=wp — width and precision is supported

CrossWorks for ARM Reference Manual Utilities Reference

1206

-rtti (Enable C++ RTTI Support)

Syntax

-rtti

Description

Enables C++ run-time type information to be compiled.

CrossWorks for ARM Reference Manual Utilities Reference

1207

-R (Set section name)

Syntax

-R x name

Description

These options name the default name of the sections generated by the compiler/assembler to be name. The

options are:

• -Rc name — change the default name of the code section

• -Rd name — change the default name of the data section

• -Rk name — change the default name of the const section

• -Rz name — change the default name of the bss section

CrossWorks for ARM Reference Manual Utilities Reference

1208

-scanf (Select scanf capability)

Syntax

-scanf= c

Description

The -scanf option selects the scanf capability for the linked executable. The options are:

• -scanf=i — integer is supported

• -scanf=li — long integer is supported

• -scanf=ll — long long integer is supported

• -scanf=f — floating point is supported

• -scanf=wp — %[...] and %[^...] character class is supported

CrossWorks for ARM Reference Manual Utilities Reference

1209

-sd (Treat double as float)

Syntax

-sd

Description

The -sd option instructs the compiler to compile double as float and selects the appropriate library for linking.

CrossWorks for ARM Reference Manual Utilities Reference

1210

-Thumb (Generate Thumb code)

Syntax

-Thumb

Description

The -Thumb option instructs the compiler to generate Thumb code rather than ARM code and link in Thumb

libraries. This option is NOT needed for Cortex-M architectures.

CrossWorks for ARM Reference Manual Utilities Reference

1211

-v (Verbose execution)

Syntax

-v

Description

The -v switch displays command lines executed by the compiler driver.

CrossWorks for ARM Reference Manual Utilities Reference

1212

-w (Suppress warnings)

Syntax

-w

Description

This option instructs the compiler, assembler, and linker not to issue any warnings.

CrossWorks for ARM Reference Manual Utilities Reference

1213

-we (Treat warnings as errors)

Syntax

-we

Description

This option directs the compiler, assembler, and linker to treat all warnings as errors.

CrossWorks for ARM Reference Manual Utilities Reference

1214

-Wa (Pass option to tool)

Syntax

-Wtool option

Description

The -W command-line option passes option directly to the specified tool. Supported tools are

• -Wa — pass option to assembler

• -Wc — pass option to compiler

• -Wl — pass option to linker

Example

The following example passes the (compiler specific) -version option to the compiler

cc … -Wc-version

CrossWorks for ARM Reference Manual Utilities Reference

1215

-x (Specify file types)

Syntax

-x type

Description

The -x option causes the compiler driver to treat subsequent files to be of the following file type

• -xa — archives/libraries

• -xasm — assembly code files

• -xc — C code files

• -xc++ — C++ code files

• -xld — linker script files

• -xo — object code files

Example

The following command line enables an assembly code file with the extension .arm to be assembled.

cc -xasm a.arm

CrossWorks for ARM Reference Manual Utilities Reference

1216

-y (Use project template)

Syntax

-y t

Description

If required this option must be the first option on the command line. It instantiates a project template type

from the installed packages. The files and common project properties of the project template are used by the

compiler driver. Project configurations are not supported by the compiler driver, use crossbuild if you require

project configurations.

Example

The following command builds an executable based on the STM32_EXE project template.

cc -ySTM32_EXE -zTarget=STM32F100C4 file.c -o file.elf

CrossWorks for ARM Reference Manual Utilities Reference

1217

-z (Set project property)

Syntax

-z p = v

Description

Sets the value of the project property p to the value v.

Example

The following command compiles the file arguments and puts the resulting object files into the directory

objects.

cc -c file1.c file2.c -zbuild_output_directory=objects

CrossWorks for ARM Reference Manual Utilities Reference

1218

CrossBuild
CrossBuild is a program used to build your software from the command line without using CrossStudio. You

can, for example, use CrossBuild for nightly (automated) builds, production builds, and batch builds.

CrossWorks for ARM Reference Manual Utilities Reference

1219

Building with a CrossStudio project file
You can specify a CrossStudio project file:

Syntax

crossbuild [options…] project-file

You must specify a configuration to build using -config. For instance:

crossbuild -config "V5T Thumb LE Release" arm.hzp

The above example uses the configuration V5T Thumb LE Release to build all projects in the solution contained

in arm.hzp.

To build a specific project that is in a solution, you can specify it using the -project option. For example:

crossbuild -config "V5T Thumb LE Release" -project "libm" libc.hzp

This example will use the configuration V5T Thumb LE Release to build the project libm that is contained in

libc.hzp.

If your project file imports other project files (using the <import…> mechanism), when denoting projects you

must specify the solution names as a comma-separated list in parentheses after the project name:

crossbuild -config "V5T Thumb LE Release" -project "libc(C Library)" arm.hzp

libc(C Library) specifies the libc project in the C Library solution that has been imported by the project file

arm.hzp.

To build a specific solution that has been imported from other project files, you can use the -solution option.

This option takes the solution names as a comma-separated list. For example:

crossbuild -config "ARM Debug" -solution "ARM Targets,EB55" arm.hzp

In this example, ARM Targets,EB55 specifies the EB55 solution imported by the ARM Targets solution, which

was itself imported by the project file arm.hzp.

You can do a batch build using the -batch option:

crossbuild -config "ARM Debug" -batch libc.hzp

This will build the projects in libc.hzp that are marked for batch build in the configuration ARM Debug.

By default, a make-style build will be done—i.e., the dates of input files are checked against the dates of output

files, and the build is avoided if the output is up to date. You can force a complete build by using the -rebuild

option. Alternatively, to remove all output files, use the -clean option.

CrossWorks for ARM Reference Manual Utilities Reference

1220

To see the commands being used in the build, use the -echo option. To also see why commands are being

executed, use the -verbose option. You can see what commands will be executed, without executing them, by

using the -show option.

CrossWorks for ARM Reference Manual Utilities Reference

1221

Building without a CrossStudio project file
To use CrossBuild without a CrossStudio project, specify the name of an installed project template, the name of

the project, and the files to build. For example:

crossbuild -config … -template LM3S_EXE -project myproject -file main.c

Or, instead of a template, you can specify a project type:

crossbuild -config … -type "Library" -project myproject -file main.c

You can specify project properties with the -property option:

crossbuild … -property Target=LM3S811

CrossWorks for ARM Reference Manual Utilities Reference

1222

Command-line options
This section describes the command-line options accepted by CrossBuild.

CrossWorks for ARM Reference Manual Utilities Reference

1223

-batch (Batch build)

Syntax

-batch

Description

Perform a batch build.

CrossWorks for ARM Reference Manual Utilities Reference

1224

-config (Select build configuration)

Syntax

-config name

Description

Specify the configuration for a build. If the configuration name can't be found, CrossBuild will list the available

configurations.

CrossWorks for ARM Reference Manual Utilities Reference

1225

-clean (Remove output files)

Syntax

-clean

Description

Remove all output files resulting from the build process.

CrossWorks for ARM Reference Manual Utilities Reference

1226

-define (Define macro)

Syntax

-D macro=value

Description

Define a CrossWorks macro value for the build process.

CrossWorks for ARM Reference Manual Utilities Reference

1227

-echo (Show command lines)

Syntax

-echo

Description

Show the command lines as they are executed.

CrossWorks for ARM Reference Manual Utilities Reference

1228

-file (Build a named file)

Syntax

-file name

Description

Build the file name. Use with -template or -type.

CrossWorks for ARM Reference Manual Utilities Reference

1229

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

CrossWorks for ARM Reference Manual Utilities Reference

1230

-project (Specify project to build)

Syntax

-project name

Description

Specify the name of the project to build. When used with a project file, if CrossBuild can't find the specified

project, the names of available projects are listed.

CrossWorks for ARM Reference Manual Utilities Reference

1231

-property (Set project property)

Syntax

-project name=value

Description

Specify the value of a project property — use with -template or -type. If CrossBuild cannot find the specified

property, a list of the properties is shown.

CrossWorks for ARM Reference Manual Utilities Reference

1232

-rebuild (Always rebuild)

Syntax

-rebuild

Description

Always execute the build commands.

CrossWorks for ARM Reference Manual Utilities Reference

1233

-show (Dry run, don't execute)

Syntax

-show

Description

Show the command lines that would be executed, but do not execute them.

CrossWorks for ARM Reference Manual Utilities Reference

1234

-solution (Specify solution to build)

Syntax

-solution name

Description

Specify the name of the solution to build. If CrossBuild cannot find the given solution, the valid solution names

are listed.

CrossWorks for ARM Reference Manual Utilities Reference

1235

-studiodir (Specify CrossStudio directory)

Syntax

-studiodir name

Description

Override the default value of the $(StudioDir) macro.

CrossWorks for ARM Reference Manual Utilities Reference

1236

-template (Specify project template)

Syntax

-template name

Description

Specify the project template to use. If CrossBuild cannot find the specified template then a list of template

names is shown.

CrossWorks for ARM Reference Manual Utilities Reference

1237

-type (Specify project type)

Syntax

-type name

Description

Specify the project type to use. If CrossBuild cannot find the specified project type then a list of project type

names is shown.

CrossWorks for ARM Reference Manual Utilities Reference

1238

-verbose (Show build information)

Syntax

-verbose

Description

Show extra information relating to the build process.

CrossWorks for ARM Reference Manual Utilities Reference

1239

CrossLoad
The CrossLoad program can be used to download and, optionally, debug applications without using

CrossStudio.

In order to carry out a download or verify, CrossLoad needs to know what target interface to use. The supported

target interfaces vary between operating systems; to list the supported target interfaces, use the -listtargets

option:

crossload -listtargets

This command will produce a list of target interface names and descriptions, such as:

usb USB CrossConnect
parport Parallel Port Interface
sim Simulator

Use the -target option followed by the desired target interface's name to specify which interface to use:

crossload -target usb …

CrossLoad normally is used to download and/or verify projects created and built with CrossStudio. To do this,

you must specify the target interface you want to use, the CrossStudio solution file, the project name, and the

build configuration. The following command line will download and verify the debug version of the project

MyProject contained within the MySolution.hzp solution file, using a USB CrossConnect:

crossload -target usb -solution MySolution.hzp -project MyProject -config Debug

In some cases, it is useful to download a program that was not created with CrossStudio by using the settings

from an existing CrossStudio project. You might want to do this if your existing project describes specific loaders

or scripts required in order to download the application. To do this, you simply add the name of the file you want

to download to the command line. For example, the following command line will download the Intel hex file

ExternalApp.hex using the release settings of the project MyProject connecting, using a USB CrossConnect:

crossload -target usb -solution MySolution.hzp -project MyProject -config Release
 ExternalApp.hex

CrossLoad can download and verify a range of file types. The supported file types vary between systems; to list

the file types supported on your system, use the -listfiletypes option:

crossload -listfiletypes

This produces a list of the supported file types. For example:

hzx CrossStudio Executable File
bin Binary File
ihex Intel Hex File
hex Hex File

CrossWorks for ARM Reference Manual Utilities Reference

1240

tihex TI Hex File
srec Motorola S-Record File

CrossLoad will attempt to determine the type of any load file given to it. If it cannot do this, you may specify the

file type using the -filetype option:

crossload -target usb -solution MySolution.hzp -project MyProject -config Release
 ExternalApp.txt -filetype tihex

It is possible, with some targets, to download without specifying a CrossStudio project. In such cases, you only

need to specify the target interface and the load file. For example, the following will download myapp.s19 using

a USB CrossConnect:

crossload -target usb myapp.s19

Each target interface has a range of configurable properties allowing you to customize the default behaviour. To

list the target properties and their current values, use the -listprops option:

crossload -target parport -listprops

This command will list the parport target-interfaces properties, a description of what the properties are, and

their current values:

Name: JTAG Clock Divider
Description: The amount to divide the JTAG clock frequency.
Value : 1

Name: Parallel Port
Description: The parallel port connection to use to connect to target.
Value : Lpt1

Name: Parallel Port Sharing
Description: Specifies whether sharing of the parallel port with other device drivers or
 programs is permitted.
Value : No

You can modify a target property using the -setprop option. For example, the following command line would

set the parallel port interfaced used to lpt2:

crossload -target parport -setprop "Parallel Port"="Ltp2" …

CrossWorks for ARM Reference Manual Utilities Reference

1241

Command line debugging
You can instruct CrossLoad to start a command-line debugging session by using -debug and optional -break

and -script options. For example:

crossload -target sim -solution mysolution.hzp -project myproject -config "ARM RAM Debug" -
debug -break main

This will load the executable created with the ARM RAM Debug configuration for myproject onto the simulator

and run it until its main function is called.

A command prompt is then shown that will accept JavaScript statements. The debugger functionality is

accessed using the built-in JavaScript object Debug, so all debugger commands are be entered using the form

Debug.command().

CrossWorks for ARM Reference Manual Utilities Reference

1242

Managing breakpoints
You can set breakpoints on global symbols using the Debug.breakexpr("expr") method. The type of the symbol

will determine the breakpoint that is set. For example…

Debug.breakexpr("fn1")

…will set a breakpoint on entry to the fn1 function, and…

Debug.breakexpr("var1")

…will set a breakpoint when the variable var1 is written. This method can also be used set breakpoints on

addresses. For example…

Debug.breakexpr("0x248")

…will cause a breakpoint when the address 0x248 is executed, and…

Debug.breakexpr("(unsigned[1])0xec8")

…will cause a breakpoint when the word at the address 0xec8 is written.

You can use the Debug.breakline("filename", linenumber) method to set breakpoints on specific lines of code.

For example, to set a breakpoint at line number 4 of c:/directory/file.c, you can use:

Debug.breakline("c:/directory/file.c", 4)

Note the use of forward slashes when specifying filenames.

To refer to the current file (the one where the debugger is located), you can use the Debug.getfilename()

method. Similarly, the current line number is accessed using the Debug.getlinenumber() method. Using these

functions, you can set a breakpoint at a line-offset from the current position. For example…

Debug.breakline(Debug.getfilename(), Debug.getlinenumber()+4)

…will break at 4 lines after the current line.

You can use the Debug.breakdata("expr", value, readNotWrite) method to set a breakpoint for when a value is

written to a global variable. For example…

Debug.breakdata("var1", 4, false)

…will cause a breakpoint when the value 4 is written to variable var. The third parameter, readNotWrite

specifies whether a breakpoint is set on reading (true) or writing (false) the data.

Each method of setting a breakpoint accepts three optional arguments: temporary, counter, and hardware.

A temporary breakpoint is removed the next time it occurs. For example…

CrossWorks for ARM Reference Manual Utilities Reference

1243

Debug.breakexpr("fn1()", true)

…will break on entry to fn1 unless another breakpoint occurs before this one.

Counted breakpoints are ignored for the specified number of hits. For example…

Debug.breakexpr("fn1()", false, 9)

…will break the 10th time fn1 is called.

The hardware argument specifies whether the debugger should use a hardware breakpoint in preference to a

software breakpoint. This can be used to set breakpoints on code that is copied to RAM prior to the copying.

The breakexpr and breakline methods return a positive breakpoint number that can be used to delete the

breakpoint using the Debug.deletebreak(number) method. For example:

fn1bkpt = Debug.breakexpr("fn1")
…
Debug.deletebreak(fn1bkpt)

To delete all breakpoints, supply zero to the deletebreak method. Note that temporary breakpoints do not have

breakpoint numbers.

The Debug.showbreak(number) method displays information about a breakpoint.

To show all breakpoints, supply zero to the showbreak method.

Some targets support exception breakpoints, which can be listed using the Debug.showexceptions() method.

For example, on an ARM9 or XScale target:

> Debug.showexceptions()
Reset disabled
Undef enabled
SWI disabled
P_Abort enabled
D_Abort enabled
IRQ disabled
FIQ disabled
>

You can enable or disable an exception with the Debug.enableexception("exception", enable) method. For

example…

Debug.enableexception("IRQ", true)

…will enable breakpoints when the IRQ exception occurs.

Some targets support breakpoint chaining. This enables breakpoints to be paired, with one breakpoint enabling

another one. For example:

> first = Debug.breakdata("count", 3)

CrossWorks for ARM Reference Manual Utilities Reference

1244

> second = Debug.breakexpr("fn1")
> Debug.chainbreak(first, second)

When count is written with the value 3, the breakpoint at fn1 is enabled; so when fn1 is subsequently called, if

ever, the breakpoint occurs. To remove breakpoint chaining, specify 0 as the second argument. For example:

Debug.chainbreak(first, 0)

Deleting either of the chained breakpoints will break the chain.

CrossWorks for ARM Reference Manual Utilities Reference

1245

Displaying state
You can display the register state of the current context using the Debug.printregisters method, the local

variables of the current context using the Debug.printlocals() method and the global variables by using the

Debug.printglobals() method. To display single variables, use the Debug.print("expr"[,"format"]) method. For

example, where int i = -1:

> Debug.print("i")
0xffffffff
> Debug.print("i", "d")
-1
> Debug.print("i, "u")
4294967295
>

You can change the default radix, used when printing numbers, with the Debug.setprintradix(radix) method.

For example:

> Debug.setprintradix(10)
> Debug.print("i")
-1
> Debug.setprintradix(8)
> Debug.print("i)
037777777777
>

The Debug.print method is used to access registers…

> Debug.print("@pc")
0x000002ac
>

…and memory, too:

> Debug.print("((unsigned[2])0x0)")
[0xeafffffe, 0xe59ff018]
>

You can use the print method to update variables, registers, and memory using assignment operators:

> Debug.print("x=45")
0x0000002d
> Debug.print("x+=45")
0x0000005a
>

You can change whether character pointers are displayed as null-terminated strings using the

Debug.setprintstring(bool) method. For example, where const char *string = "hello":

> Debug.print("string")
hello
> Debug.print("string", "p")
0x00000770

CrossWorks for ARM Reference Manual Utilities Reference

1246

> Debug.setprintstring(false)
> Debug.print("string")
0x00000770
> Debug.print("string", "s")
hello
>

To change the maximum number of array elements that will be displayed, use the Debug.setprintarray(n)

method. For example, where unsigned array[4] = {1, 2, 3, 4}:

> Debug.print("array", "d")
[1, 2, 3, 4]
> Debug.setprintarray(2)
> Debug.print("array", "d")
[1, 2]

You can use the Debug.evaluate(expr) method to return the value of variables rather than displaying them. For

example…

> x = Debug.evaluate("x")
> if (x == -1) Debug.echo("x is 45")
x is 45
>

…where the method Debug.echo(str) outputs its string argument.

CrossWorks for ARM Reference Manual Utilities Reference

1247

Locating the current context
You can use the Debug.where() method to display a backtrace of the functions that have been called. Each entry

in the backtrace has its own framenumber which can be supplied to the Debug.locate(framenumber) method.

Framenumbers start at zero and are incremented for each function call. So framenumber zero is the current

location, framenumber one is the caller of the current location, and so on. For example…

> Debug.where()
0) int debug_printf(const char* fmt=5) C:\svn\shared\target\libc\debug_printf.c:6
1) int main() C:\tmp\try\main.c:17
2) ??? C:\svn\arm\arm\source\crt0.s:237
>

…then…

Debug.locate(1)

…will locate the debugger context at main and…

Debug.locate(0)

…will change the debugger location back to debug_printf.

When the debugger locates (either because locate has been called or it has stopped), the corresponding

source line is displayed. You can display source lines around the located line by using the Debug.list(before,

after) method, which specifies the number of lines to display before and after the located line.

You can set the debugger to locate (and step) to machine instructions using the method

Debug.setmode(mode). Setting the mode to 1 selects interleaved mode (source code interleaved with

assembly code). Setting the mode to 2 selects assembly mode (disassembly with source code annotation).

Setting the mode to 0 selects source mode. For example:

> Debug.setmode(2)
0000031C E1A0C00D mov r12, sp
> Debug.stepinto()
00000320 E92DD800 stmfd sp!, {r11-r12, lr-pc}
>Debug.setmode(0)
>

You can locate the debugger at a specified program counter by using the Debug.locatepc(pc) method. For

example, you can disassemble from specific address:

> Debug.setmode(2)
> Debug.locatepc(0x2f4)
000002F4 E59F30D0 ldr r3, [pc, #+0x0D0]
> Debug.list(0, 1)
000002F4 E59F30D0 ldr r3, [pc, #+0x0D0]
000002F8 E50B3020 str r3, [r11, #-0x020]
>

CrossWorks for ARM Reference Manual Utilities Reference

1248

You can locate the debugger to a full register context using the Debug.locateregisters(registers) method. This

method takes an array that specifies each register value, typically in ascending register number order. You can

use the Debug.printregisters() method to see the the order. For example, for an ARM7, ARM9, or XScale:

var a = new Array()
a[0] = 0 // r0 value
?
a[15] = 0x2f4 // pc value
a[16] = 0x10 // cspr value
Debug.locateregisters(a)

You can put the debugger context back at the stopped state by calling Debug.locate without any parameters:

Debug.locate()

CrossWorks for ARM Reference Manual Utilities Reference

1249

Controlling execution
To continue execution from a breakpoint, use the Debug.go() method. You can single step into function calls

with Debug.stepinto(). You can single step over function calls by using the Debug.stepover() method. To

complete execution of the current function, use the Debug.stepout() method.

You will get the debugger prompt immediately when the go, stepinto, stepover or stepout methods are called.

If you want to wait for the target to stop (for example in a script), you need to use the Debug.wait(mstimeout)

method, which returns 0 if the millisecond timeout occurred or 1 if execution has stopped. For example…

> Debug.go(); Debug.wait(1000)

…will wait for one second or until a breakpoint occurs. If a breakpoint isn't reached, you can use the method

Debug.breaknow() to stop execution. You can end the debug session with the Debug.quit() method.

CrossWorks for ARM Reference Manual Utilities Reference

1250

Command-line options
This section describes the command-line options accepted by CrossLoad.

Usage

crossload [options…] [files…]

ARM Usage

crossload [options…] [files…] -serve [arguments…]

CrossWorks for ARM Reference Manual Utilities Reference

1251

-break (Stop execution at symbol)

Syntax

-break symbol

Description

When used with the -debug option, this will stop execution at symbol.

CrossWorks for ARM Reference Manual Utilities Reference

1252

-config (Specify build configuration)

Syntax

-config name

Description

Specify the build configuration to use.

CrossWorks for ARM Reference Manual Utilities Reference

1253

-debug (Enter command line debugging)

Syntax

-debug

Description

Enable command-line debugging. A command prompt is displayed at which debugger commands can be

entered. The command prompt has a simple history and editing mechanism.

CrossWorks for ARM Reference Manual Utilities Reference

1254

-eraseall (Erase all flash memory)

Syntax

-eraseall

Description

Erase all flash memory rather than just the flash memory to be programmed.

CrossWorks for ARM Reference Manual Utilities Reference

1255

-filetype (Specify load file type)

Syntax

-filetype filetype

Description

Specify the type of the file to download. By default, CrossLoad will attempt to detect the file type, you should

use this option if CrossLoad cannot determine the file type or to override the detection and force the type to a

specific value. Use the -listfiletypes option to list the supported file types.

CrossWorks for ARM Reference Manual Utilities Reference

1256

-help (Display help)

Syntax

-help

Description

Display the command-line options CrossLoad accepts.

CrossWorks for ARM Reference Manual Utilities Reference

1257

-listfiletypes (Display supported load file types)

Syntax

-listfiletypes

Description

Lists all the supported file types.

CrossWorks for ARM Reference Manual Utilities Reference

1258

-listprops (Display target properties)

Syntax

-listprops

Description

List the target properties of the target specified by the -target option.

CrossWorks for ARM Reference Manual Utilities Reference

1259

-listtargets (Display supported target interfaces)

Syntax

-listtargets

Description

List all the supported target interfaces.

CrossWorks for ARM Reference Manual Utilities Reference

1260

-loadaddress (Set load address)

Syntax

-loadaddress address

Description

When downloading a load file that doesn't contain any address information, such a binary file, this option

specifies the base address to which the file should be downloaded.

CrossWorks for ARM Reference Manual Utilities Reference

1261

-loader (Specify loader configuration)

Syntax

-loader config

Description

Select the loader configuration to use for the download.

CrossWorks for ARM Reference Manual Utilities Reference

1262

-nodifferential (Inhibit differential download)

Syntax

-nodifferential

Description

Do not use differential downloading.

CrossWorks for ARM Reference Manual Utilities Reference

1263

-nodisconnect (Inhibit target disconnection)

Syntax

-nodisconnect

Description

Do not disconnect the target interface when finished.

CrossWorks for ARM Reference Manual Utilities Reference

1264

-nodownload (Inhibit download)

Syntax

-nodownload

Description

Do not download, just verify.

CrossWorks for ARM Reference Manual Utilities Reference

1265

-noverify (Inhibit verification)

Syntax

-noverify

Description

Do not verify the downloaded application.

CrossWorks for ARM Reference Manual Utilities Reference

1266

-packagesdir (Specify package directory)

Syntax

-packagesdir directory

Description

Set $(PackagesDir) to directory.

CrossWorks for ARM Reference Manual Utilities Reference

1267

-project (Specify project name)

Syntax

-project name

Description

Specify the name of the desired project.

CrossWorks for ARM Reference Manual Utilities Reference

1268

-quiet (Be silent)

Syntax

-quiet

Description

Do not output any progress messages.

CrossWorks for ARM Reference Manual Utilities Reference

1269

-script (Execute debug script)

Syntax

-script file

Description

When used with the -debug option, this will execute the debug commands in file.

CrossWorks for ARM Reference Manual Utilities Reference

1270

-serve (Run semihosting server)

Syntax

-serve

Description

Serve CrossStudio debug I/O operations. Any command-line arguments following this option will be passed to

the target application. The application can access them either by calling debug_getargs or by compiling the

startup code in crt0.s or crt0.asm with the FULL_LIBRARY C preprocessor symbol defined so that argc and argv

are passed to main.

CrossWorks for ARM Reference Manual Utilities Reference

1271

-setprop (Set target interface property)

Syntax

-setprop property=value

Description

Set the target interface property property to value.

CrossWorks for ARM Reference Manual Utilities Reference

1272

-solution (Specify solution file)

Syntax

-solution file

Description

Specify the CrossWorks solution file to use.

CrossWorks for ARM Reference Manual Utilities Reference

1273

-studiodir (Specify Studio directory)

Syntax

-studiodir directory

Description

Set $(StudioDir) to directory.

CrossWorks for ARM Reference Manual Utilities Reference

1274

-target (Specify target interface)

Syntax

-target name

Description

Specify the target interface to use. Use the -listtargets option to list the supported target interfaces.

CrossWorks for ARM Reference Manual Utilities Reference

1275

-verbose (Display additional status)

Syntax

-verbose

Description

Produce verbose output.

CrossWorks for ARM Reference Manual Utilities Reference

1276

CrossScript
CrossScript is a program that allows you to run CrossStudio's JavaScript (ECMAScript) interpreter from the

command line.

The primary purpose of CrossScript is to facilitate the creation of platform-independent build scripts.

Syntax

crossscript [options] file…

CrossWorks for ARM Reference Manual Utilities Reference

1277

Command-line options
This section describes the command-line options accepted by CrossScript.

CrossWorks for ARM Reference Manual Utilities Reference

1278

-define (Define global variable)

Syntax

-define variable=value

Description

CrossWorks for ARM Reference Manual Utilities Reference

1279

-help (Show usage)

Syntax

-help

Description

Display usage information and command line options.

CrossWorks for ARM Reference Manual Utilities Reference

1280

-load (Load script file)

Syntax

-load path

Description

Loads the script file path.

CrossWorks for ARM Reference Manual Utilities Reference

1281

-define (Verbose output)

Syntax

-verbose

Description

Produces verbose output.

CrossWorks for ARM Reference Manual Utilities Reference

1282

CrossScript classes
CrossScript provides the following predefined classes:

• BinaryFile

• CWSys

• ElfFile

• WScript

CrossWorks for ARM Reference Manual Utilities Reference

1283

Example uses
The following example demonstrates using CrossScript to increment a build number:

First, add a JavaScript file to your project called incbuild.js containing the following code:

function incbuild()
{
 var file = "buildnum.h"
 var text = "#define BUILDNUMBER "
 var s = CWSys.readStringFromFile(file);
 var n;
 if (s == undefined)
 n = 1;
 else
 n = eval(s.substring(text.length)) + 1;
 CWSys.writeStringToFile(file, text + n);
}

// Executed when script loaded.
incbuild();

Add a file called getbuildnum.h to your project containing the following code:

#ifndef GETBUILDNUM_H
#define GETBUILDNUM_H

unsigned getBuildNumber();

#endif

Add a file called getbuildnum.c to your project containing the following code:

#include "getbuildnum.h"
#include "buildnum.h"

unsigned getBuildNumber()
{
 return BUILDNUMBER;
}

Now, to combine these:

• Set the Build Options > Always Rebuild project property of getbuildnum.c to Yes.

• Set the User Build Step Options > Pre-Compile Command project property of getbuildnum.c to

"$(StudioDir)/bin/crossscript" -load "$(ProjectDir)/incbuild.js".

CrossWorks for ARM Reference Manual Utilities Reference

1284

Embed
Embed is a program that converts a binary file into a C/C++ array definition.

The primary purpose of the Embed tool is to provide a simple method of embedding files into an application.

This may be useful if you want to include firmware images, bitmaps, etc. in your application without having to

read them first from an external source.

Syntax

embed variable_name input_file output_file

variable_name is the name of the C/C++ array to be initialised with the binary data.

input_file is the path to the binary input file.

output_file is the path to the C/C++ source file to generate.

Example

To convert a binary file image.bin to a C/C++ file called image.h:

embed img image.bin image.h

This will generate the following output in image.h:

static const unsigned char img[] = {
 0x5B, 0x95, 0xA4, 0x56, 0x16, 0x5F, 0x2D, 0x47,
 0xC5, 0x04, 0xD4, 0x8D, 0x73, 0x40, 0x31, 0x66,
 0x3E, 0x81, 0x90, 0x39, 0xA3, 0x8E, 0x22, 0x37,
 0x3C, 0x63, 0xC8, 0x30, 0x90, 0x0C, 0x54, 0xA4,
 0xA2, 0x74, 0xC2, 0x8C, 0x1D, 0x56, 0x57, 0x05,
 0x45, 0xCE, 0x3B, 0x92, 0xAD, 0x0B, 0x2C, 0x39,
 0x92, 0x59, 0xB9, 0x9D, 0x01, 0x30, 0x59, 0x9F,
 0xC5, 0xEA, 0xCE, 0x35, 0xF6, 0x4B, 0x05, 0xBF
};

CrossWorks for ARM Reference Manual Utilities Reference

1285

Header file generator
The command line program mkhdr generates a C or C++ header file from a CrossWorks memory map file.

CrossWorks for ARM Reference Manual Utilities Reference

1286

Using the header generator
For each register definition in the memory map file a corresponding #define is generated in the header file. The

#define is named the same as the register name and is defined as a volatile pointer to the address.

The type of the pointer is derived from the size of the register. A four-byte register generates an unsigned long

pointer. A two-byte register generates an unsigned short pointer. A one-byte register will generates an unsigned

char pointer.

If a register definition in the memory map file has bitfields then preprocessor symbols are generated for each

bitfield. Each bitfield will have two preprocessor symbols generated, one representing the mask and one

defining the start bit position. The bitfield preprocessor symbol names are formed by prepending the register

name to the bitfield name. The mask definition has _MASK appended to it and the start definition has _BIT

appended to it.

For example consider the following definitions in the the file memorymap.xml.

<RegisterGroup start="0xFFFFF000" name="AIC" >
 <Register start="+0x00" size="4" name="AIC_SMR0">
 <BitField size="3" name="PRIOR" start="0" />
 <BitField size="2" name="SRCTYPE" start="5" />
 </Register>
 …

We can generate the header file associated with this file using:

mkhdr memorymap.xml memorymap.h

This generates the following definitions in the file memorymap.h.

#define AIC_SMR0 (*(volatile unsigned long *)0xFFFFF000)
#define AIC_SMR0_PRIOR_MASK 0x7
#define AIC_SMR0_PRIOR_BIT 0
#define AIC_SMR0_SRCTYPE_MASK 0x60
#define AIC_SMR0_SRCTYPE_BIT 5

These definitions can be used in the following way in a C/C++ program:

Reading a register

unsigned r = AIC_SMR0;

Writing a register

AIC_SMR0 = (priority << AIC_SMR0_PRIOR_BIT) | (srctype << AIC_SMR0_SRCTYPE_BIT);

Reading a bitfield

unsigned srctype = (AIC_SMR0 & AIC_SMR0_SRCTYPE_MASK) >> AIC_SMR0_SRCTYPE_BIT;

CrossWorks for ARM Reference Manual Utilities Reference

1287

Writing a bitfield

AIC_SMR0 = (AIC_SMR0 & ~AIC_SMR0_SRCTYPE_MASK) | ((srctype & AIC_SMR0_SRCTYPE_MASK) <<
 AIC_SMR0_SRCTYPE_BIT);

CrossWorks for ARM Reference Manual Utilities Reference

1288

Command line options
This section describes the command line options accepted by the header file generator.

Syntax

mkhdr inputfile outputfile targetname [option…]

inputfile is the name of the source CrossWorks memory map file. outputfile is the the name of the file to write.

CrossWorks for ARM Reference Manual Utilities Reference

1289

-regbaseoffsets (Use offsets from peripheral base)

Syntax

-regbaseoffsets

Description

Instructs the header generator to include offsets of registers from the peripheral base.

CrossWorks for ARM Reference Manual Utilities Reference

1290

-nobitfields (Inhibit bitfield macros)

Syntax

-nobitfields

Description

Instructs the header generator not to generate any definitions for bitfields.

CrossWorks for ARM Reference Manual Utilities Reference

1291

Package generator
To create a package the program mkpkg can be used. The set of files to put into the package should be

in the desired location in the $(PackagesDir) directory. The mkpkg command should be run with

$(PackagesDir) as the working directory and all files to go into the package must be referred to using

relative paths. A package must have a package description file that is placed in the $(PackagesDir)/

packages directory. The package description file name must end with _package.xml. If a package is to

create entries in the new project wizard then it must have a file name project_templates.xml.

For example, a package for the mythical FX150 processor would supply the following files:

• A project template file called targets/FX150/project_templates.xml. The format of the

project templates file is described in Project Templates file format.

• The $(PackagesDir)-relative files that define the functionality of the package.

• A package description file called packages/FX150_package.xml. The format of the package

description file is described in Package Description file format.

The package file FX150.hzq would be created using the following command line:

mkpkg -c packages/FX150.hzq targets/FX150/project_templates.xml … packages/
FX150_package.xml

You can list the contents of the package using the -t option:

mkpkg -t packages/FX150.hzq

You can remove an entry from a package using the -d option:

mkpkg -d packages/FX150.hzq -d fileName

You can add or replace a file into an existing package using the -r option:

mkpkg -r packages/FX150.hzq -r fileName

You can extract files from an existing package using the -x option:

mkpkg -x packages/FX150.hzq outputDirectory

You can automate the package creation process using a Combining project type.

• Using the new project wizard create a combining project in the directory $(PackagesDir).

• Set the Output File Path property to be $(PackagesDir)/packages/mypackage.hzq.

• Set the Combine command property to $(StudioDir)/bin/mkpkg -c $(CombiningOutputFilePath)

$(CombiningRelInputPaths).

• Add the files you want to go into the package into the project using the Project Explorer.

• Right-click the project node in the Project Explorer and choose Build.

When a package is installed, the files in the package are copied into the desired $(PackagesDir)-relative

locations. When a file is copied into the $(PackagesDir)/packages directory and its filename ends with

CrossWorks for ARM Reference Manual Utilities Reference

1292

_package.xml the file $(PackagesDir)/packages/installed_packages.xml is updated with an

entry:

<include filename="FX150_package.xml" />

During development of a package you can manually edit this file. The same applies to the file

$(PackagesDir)/targets/project_templates.xml which will contain a reference to your

project_templates.xml file.

Usage:

mkpkg [options] packageFileName file1 file2 …

Option Description

-c Create a new package.

-d Remove files from a package.

-r Replace files in a package.

-t List the contents of a package.

-v Be chatty.

-V Show version information.

CrossWorks for ARM Reference Manual Appendices

1293

Appendices

CrossWorks for ARM Reference Manual Appendices

1294

File formats
This section describes the file formats CrossWorks uses:

Memory Map file format
Describes the memory map file format that defines memory regions and registers in a microcontroller.

Section Placement file format
Describes the section placement file format that maps program sections to memory areas in the target

microcontroller.

Project file format
Describes the format of CrossStudio project files.

Project Templates file format
Describes the format of project template files used by the New Project wizard.

Property Groups file format
Describes the format of the property groups file you can use to define ‘meta-properties’.

Package Description file format
Describes the format of the package description files you use to create packages other users can install in

CrossStudio.

External Tools file format
Describes the format of external tool configuration files you use to extend the CrossWorks IDE.

CrossWorks for ARM Reference Manual Appendices

1295

Memory Map file format
CrossStudio memory-map files are structured using XML syntax for its simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format.

<!DOCTYPE Board_Memory_Definition_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="My Board">

A Root element has a name attribute — every element in a memory map file has a name attribute. Names

should be unique within a hierarchy level. Within a Root element, there are MemorySegment elements that

represent regions within the memory map.

<Root name="My Board">
 <MemorySegment name="Flash" start="0x1000" size="0x200" access="ReadOnly">

MemorySegment elements have the following attributes:

• start: The start address of the memory segment. A simple expression, usually a hexadecimal number with

a 0x prefix.

• size: The size of the memory segment. A simple expression, usually a hexadecimal number with a 0x

prefix.

• access: The permissible access types of the memory segment. One of ReadOnly, Read/Write,

WriteOnly, or None.

• address_symbol: A symbolic name for the start address of the memory segment.

• size_symbol: A symbolic name for the size of the memory segment.

• address_symbol: A symbolic name for the end address of the memory segment.

RegisterGroup elements are used to organize registers into groups. Register elements are used to define

peripheral registers:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >

RegisterGroup elements have the same attributes as MemorySegment elements. Register elements

have the following attributes:

• name: Register names should be valid C/C++ identifier names, i.e., alphanumeric characters and

underscores are allowed but names cannot start with a number.

• start: The start address of the memory segment. Either a C-style hexadecimal number or, if given a +

prefix, an offset from the enclosing element's start address.

• size: The size of the register in bytes, either 1, 2, or 4.

CrossWorks for ARM Reference Manual Appendices

1296

• access: The same as the access attribute of the MemorySegment element.

• address_symbol: The same as the address_symbol attribute of the MemorySegment element.

A Register element can contain BitField elements that represent the bits in a peripheral register:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />

BitField elements have the following attributes:

• name: The same as the name attribute of the RegisterGroup element.

• start: The starting bit position, 0–31.

• size: The total number of bits, 1–32.

A Bitfield element can contain Enum elements:

<Root name="My Board" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />
 <Enum name="Enum3" start="3" />
 <Enum name="Enum5" start="5" />

You can import CMSIS SVD files (see http://www.onarm.com/) into a memory map using the ImportSVD

element:

<ImportSVD filename="$(TargetsDir)/targets/Manufacturer1/Processor1.svd.xml">

The filename attribute is an absolute filename which is macro-expanded using CrossWorks system macros.

When a memory map file is loaded either for the memory map viewer or to be used for linking or debugging, it is

preprocessed using the (as yet undocumented) CrossWorks XML preprocessor.

http://www.onarm.com/

CrossWorks for ARM Reference Manual Appendices

1297

Section Placement file format
CrossStudio section-placement files are structured using XML syntax to enable simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Linker_Placement_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="Flash Placement">

A Root element has a name attribute. Every element in a section-placement file has a name attribute. Each

name should be unique within its hierarchy level. Within a Root element, there are MemorySegment elements.

These correspond to memory regions defined in a memory map file that will be used in conjunction with the

section-placement file when linking a program. For example:

 <Root name="Flash Placement">
 <MemorySegment name="FLASH">

A MemorySegment contains ProgramSection elements that represent program sections created by the C/

C++ compiler and assembler. The order of ProgramSection elements within a MemorySegment element

represents the order in which the sections will be placed when linking a program. The first ProgramSection

will be placed first and the last one will be placed last.

<Root name="My Board" >
 <MemorySegment name="FLASH">
 <ProgramSection name=".text">

ProgramSection elements have the following attributes:

• alignment: The required alignment of the program section; a decimal number specifying the byte

alignment.

• inputsections: An expression describing the input sections to be placed in this section. If you omit this

(recommended) and the section name isn't one of .text, .dtors, .ctors, .data, .rodata, or .bss, then the

equivalent input section of *(.name .name.*) is supplied to the linker.

• load: If Yes, the section is loaded. If No, the section isn't loaded.

• runin: This specifies the name of the section to copy this section to.

• runoffset: This specifies an offset from the load address that the section will be run from (ARM only).

• start: The optional start address of the program section, a hexadecimal number with a 0x prefix.

• size: The optional size of the program section in bytes, a hexadecimal number with a 0x prefix.

• address_symbol: A symbolic name for the start address of the section.

• end_symbol: A symbolic name for the end address of the section.

• size_symbol: A symbolic name for the size of the section.

• fill: The optional value used to fill unspecified regions of memory, a hexadecimal number with a 0x prefix.

CrossWorks for ARM Reference Manual Appendices

1298

When a section placement file is used for linking it is preprocessed using the (as yet undocumented) CrossWorks

XML preprocessor.

CrossWorks for ARM Reference Manual Appendices

1299

Project file format
CrossStudio project files are held in text files with the .hzp extension. Because you may want to edit project

files, and perhaps generate them, they are structured using XML syntax to enable simple construction and

parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE CrossStudio_Project_File>

The next entry is the solution element; there can only be one solution element in a project file. This

specifies the solution name displayed in the Project Explorer and has a version attribute that defines the file-

format version of the project file. Solutions can contain projects, projects can contain folders and files, and

folders can contain folders and files. This hierarchy is reflected in the XML nesting—for example:

<solution version="1" Name="solutionname">
 <project Name="projectname">
 <file Name="filename" />
 <folder Name="foldername">
 <file Name="filename2" />
 </folder>
 </project>
</solution>

Note that each entry has a Name attribute. Names of project elements must be unique to the solution, and

names of folder elements must be unique to the project, but names of files do not need to unique.

Each file element must have a file_name attribute that is unique to the project. Ideally, the file_name

is a file path relative to the project (or solution directory), but you can also specify a full file path, if you want to.

File paths are case-sensitive and use "/" as the directory separator. They may contain macro instantiations, so file

paths cannot contain the "$" character. For example…

<file file_name="$(StudioDir)/source/crt0.s" Name="crt0.s" />

…will be expanded using the value of $(StudioDir) when the file is referenced from CrossStudio.

Project properties are held in configuration elements with the Name attribute of the configuration element

corresponding to the configuration name, e.g., "Debug". At a given project level (i.e., solution, project, folder),

there can only be one named configuration element—i.e., all properties defined for a configuration are in single

configuration element.

<project Name="projectname">
 ?
 <configuration project_type="Library" Name="Common" />
 <configuration Name="Release" build_debug_information="No" />
 ?
</project>

You can use the import element to link projects:

<import file_name="target/libc.hzp" />

CrossWorks for ARM Reference Manual Appendices

1300

Project Templates file format
The CrossStudio New Project dialog works from a file called project_templates.xml in the targets

subdirectory of the CrossStudio installation directory. Because you may want to add your own new project types,

they are structured using XML syntax to enable simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Project_Templates_File>

The next entry is the projects element, which is used to group a set of new project entries into an XML

hierarchy.

<projects>
 <project> …
</projects>

Each entry has a project element that contains the class of the project (attribute caption), the name of the

project (attribute name), its type (attribute type) and a description (attribute description). For example:

<project caption="ARM Evaluator7T" name="Executable"
 description="An executable for an ARM Evaluator7T." type="Executable"/>

The project type can be one of these:

• Executable: — a fully linked executable.

• Library: — a static library.

• Object file: — an object file.

• Staging: — a staging project.

• Combining: — a combining project.

• Externally Built Executable: — an externally built executable.

The configurations to be created for the project are defined using the configuration element, which must

have a name attribute:

<configuration name="ARM RAM Release"/>

The property values to be created for the project are defined using the property element. If you have a

defined value, you can specify this using the value attribute and, optionally, set the property in a defined

configuration, such as:

<property name="target_reset_script" configuration="RAM"
 value="Evaluator7T_ResetWithRamAtZero()" />

Alternatively, you can include a property that will be shown to the user, prompting them to supply a value as

part of the new-project process.

<property name="linker_output_format"/>

CrossWorks for ARM Reference Manual Appendices

1301

The folders to be created are defined using the folder element. The folder element must have a name

attribute and can also have a filter attribute. For example:

<folder name="Source Files" filter="c;cpp;cxx;cc;h;s;asm;inc" />

The files to be in the project are specified using the file element. You can use build-system macros (see

Project macros) to specify files located in the CrossStudio installation directory. Files will be copied to the

project directory or just left as references, depending on the value of the expand attribute:

<file name="$(StudioDir)/source/crt0.s" expand="no"/>

You can define the set of configurations that can be referred to in the top-level configurations element:

<configurations>
 <configuration> …
</configurations>

This contains the set of all configurations that can be created when a project is created. Each configuration is

defined using a configuration element, which can define the property values for that configuration. For

example:

<configuration name="Debug">
 <property name="build_debug_information" value="Yes">

CrossWorks for ARM Reference Manual Appendices

1302

Property Groups file format
The CrossStudio project system provides a means to create new properties that change a number of project

property settings and can also set C pre-processor definitions when selected. Such properties are called property

groups and are defined in a property-groups file. The property-group file to use for a project is defined by the

Property Groups File property. These files usually define target-specific properties and are structured using XML

syntax to enable simple construction and parsing.

The first entry of the property groups file defines the XML document type, which is used to validate the file

format:

<!DOCTYPE CrossStudio_Group_Values>

The next entry is the propertyGroups element, which is used to group a set of property groups entries into

an XML hierarchy:

<propertyGroups>
 <grouphdots
 ?
 <grouphdots
</propertyGroups>

Each group has the name of the group (attribute name), the name of the options category (attribute group),

short (attribute short) and long (attribute long) help descriptions, and a default value (attribute default).

For example:

<group short="Target Processor" group="Build Options" short="Target Processor" long="Select
 a set of target options" name="Target" default="STR912FW44"/>

Each group has a number of groupEntry elements that define the enumerations of the group.

<group…\>
 <groupEntry>…
 …
 <groupEntry>…
</group>

Each groupEntry has the name of the entry (attribute name), e.g.:

<groupEntry name="STR910FW32">

A groupEntry has the property values and C pre-processor definitions that are set when the groupEntry is

selected; they are specified with property and cdefine elements. For example:

<groupEntry>…
 <property>…
 <cdefine>…
 <property>…
</groupEntry>

CrossWorks for ARM Reference Manual Appendices

1303

A property element has the property's name (attribute name), its value (attribute value), and an optional

configuration (attribute configuration):

<property name="linker_memory_map_file"
 value="$(StudioDir)/targets/ST_STR91x/ST_STR910FM32_MemoryMap.xml" />

A cdefine element has the C preprocessor name (attribute name) and its value (attribute value):

<cdefine value="STR910FM32" name="TARGET_PROCESSOR" />

CrossWorks for ARM Reference Manual Appendices

1304

Package Description file format
Package-description files are XML files used by CrossStudio to describe a support package, its contents, and any

dependencies it has on other packages.

Each package file must contain one package element that describes the package. Optionally, the package

element can contain a collection of file, history, and documentation elements to be used by

CrossStudio for documentation purposes.

The filename of the package-description file should match that of the package and end in "_package.xml".

Below is an example of two package-description files. The first is for a base chip-support package for the

LPC2000; the second is for a board-support package dependent on the first:

Philips_LPC2000_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" version="1.1"
 crossstudio_versions="8:1.6-" author="Rowley Associates Ltd" >
 <file file_name="$(TargetsDir)/Philips_LPC210X/arm_target_Philips_LPC210X.htm"
 title="LPC2000 Support Package Documentation" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Loader.hzp" title="LPC2000 Loader
 Application Solution" />
 <group title="System Files">
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Startup.s" title="LPC2000
 Startup Code" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Target.js" title="LPC2000
 Target Script" />
 </group>
 <history>
 <version name="1.1" >
 <description>Corrected LPC21xx header files and memory maps to include GPIO ports 2
 and 3.</description>
 <description>Modified loader memory map so that .libmem sections will be placed
 correctly.</description>
 </version>
 <version name="1.0" >
 <description>Initial Release.</description>
 </version>
 </history>
 <documentation>
 <section name="Supported Targets">
 <p>This CPU support package supports the following LPC2000 targets:

 LPC2103
 LPC2104
 LPC2105
 LPC2106
 LPC2131
 LPC2132
 LPC2134
 LPC2136
 LPC2138

 </p>
 </section>

CrossWorks for ARM Reference Manual Appendices

1305

 </documentation>
</package>

CrossFire_LPC2138_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" cpu_name="LPC2138"
 board_manufacturer="Rowley Associates" board_name="CrossFire LPC2138"
 dependencies="Philips_LPC2000" version="1.0">
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/CrossFire_LPC2138.hzp" title="CrossFire
 LPC2138 Samples Solution" />
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/ctl/ctl.hzp" title="CrossFire LPC2138 CTL
 Samples Solution" />
</package>

Package elements

The package element describes the support package, its contents, and any dependencies it has on other

packages. Valid attributes for this element are:

Attribute Description

author The author of the package.

board_manufacturer The manufacturer of the board supported by the
package (if omitted, CPU manufacturer will be used).

board_name The name of the specific board supported by the
package (only required for board-support packages).

cpu_family The family name of the CPU supported by the package
(optional).

cpu_manufacturer The manufacturer of the CPU supported by the
package.

cpu_name The name of the specific CPU supported by the
package (may be omitted if the CPU family is specified).

crossstudio_versions A string describing which version of
CrossStudio supports the package
(optional). The format of the string is target_id_number:version_range_string</
a>.

description A description of the package (optional).

dependencies A semicolon-separated list of packages the package
requires to be installed in order to work.

installation_directory The directory in which the package should be installed
(optional\--if undefined, defaults to "$(PackagesDir)").

title A short description of the package (optional).

CrossWorks for ARM Reference Manual Appendices

1306

version The package version number.

File elements

The file element is used by CrossStudio for documentation purposes by adding links to files of interest within

the package such as example project files and documentation.

Attribute Description

file_name The file path of the file.

title A description of the file.

Optionally, file elements can be grouped into categories using the group element.

Group elements

The group element is used for categorizing files described by file elements into a particular group.

Attribute Description

title Title of the group.

History elements

The history element is used to hold a description of the package's version history.

The history element should contain a collection of version elements.

Version element

The version element is used to hold the description of a particular version of the package.

Attribute Description

name The name of the version being described.

The version element should contain a collection of description elements.

Description elements

Each description element contains text that describes a feature of the package version.

CrossWorks for ARM Reference Manual Appendices

1307

Documentation elements

The documentation element is used to provide arbitrary documentation for the package.

The documentation element should contain a collection of one or more section elements.

Section elements

The section element contains package documentation in XHTML format.

Attribute Description

name The title of the documentation section.

target_id_number

The following table lists the possible target ID numbers:

Target ID

AVR 4

ARM 8

MSP430 9

MAXQ20 18

MAXQ30 19

version_range_string

The version_range_string can be any of the following:

• version_number: The package will only work on version_number.

• version_number-: The package will work on version_number or any future version.

• -version_number: The package will work on version_number or any earlier version.

• low_version_number-high_version_number: The package will work on low_version_number,

high_version_number or any version in between.

CrossWorks for ARM Reference Manual Appendices

1308

External Tools file format
CrossStudio external-tool configuration files are structured using XML syntax for its simple construction and

parsing.

Tool configuration files

The CrossStudio application will read the tool configuration file when it starts up. By default, CrossStudio will

read the file $(StudioUserDir)/tools.xml.

Structure

All tools are wrapped in a tools element:

<tools>
 ?
</tools>

Inside the tools element are item elements that define each tool:

<tools>
 <item name="logical name">
 ?
 </item>
</tools>

The item element requires an name attribute, which is an internal name for the tool, and has an optional wait

element. When CrossWorks invokes the tool on a file or project, it uses the wait element to determine whether

it should wait for the external tool to complete before continuing. If the wait attribute is not provided or is set to

yes, CrossStudio will wait for external tool to complete.

The way that the tool is presented in CrossStudio is configured by elements inside the

• element.

menu

The menu element defines the wording used inside menus. You can place a shortcut to the menu using an

ampersand, which must be escaped using & in XML, before the shortcut letter. For instance:

<menu>&PC-lint (Unit Check)</menu>

text

The optional text element defines the wording used in contexts other than menus, for instance when the tool

appears as a tool button with a label. If text is not provided, the tool's textual appearance outside the menu is

taken from the menu element (and is presented without an shortcut underline). For instance:

CrossWorks for ARM Reference Manual Appendices

1309

<text>PC-lint (Unit Check)</text>

tip

The optional tip element defines the status tip, shown on the status line, when moving over the tool inside

CrossStudio:

<tip>Run a PC-lint unit checkout on the selected file or folder</tip>

key

The optional key element defines the accelerator key, or key chord, to use to invoke the tool using the keyboard.

You can construct the key sequence using modifiers Ctrl, Shift, and Alt, and can specify more than one key in a

sequence (note: Windows and Linux only; OS X does not provide key chords). For instance:

<key>Ctrl+L, Ctrl+I</key>

message

The optional message element defines the text shown in the tool log in CrossStudio when running the tool. For

example:

<message>Linting</message>

match

The optional match element defines which documents the tool will operator on. The match is performed using

the file extension of the document. If the file extension of the document matches one of the wildcards provided,

the tool will run on that document. If there is no match element, the tool will run on all documents. For instance:

<match>*.c;*.cpp</match>

commands

The commands element defines the command line to run to invoke the tool. The command line is expanded

using macros applicable to the file derived from the current build configuration and the project settings. Most

importantly, the standard $(InputPath) macro expands to a full pathname for the target file.

Additional macros constructed by CrossStudio are:

• $(DEFINES) is the set of -D options applicable to the current file, derived from the current configuration

and project settings.

• $(INCLUDES) is the set of -I options applicable to the current file, derived from the current configuration

and project settings.

For instance:

CrossWorks for ARM Reference Manual Appendices

1310

<commands>
 "$(LINTDIR)/lint-nt" -i$(LINTDIR)/lnt "$(LINTDIR)/lnt/co-gcc.lnt"
 $(DEFINES) $(INCLUDES) -D__GNUC__ -u -b +macros -w2 -e537 +fie +ffn -width(0,4) -hF1
 "-format=%f:%l:%C:s%t:s%m" "$(InputPath)"
</commands>

In this example we intend $(LINTDIR) to point to the directly where PC-lint is installed and for $(LINTDIR) to be

defined as a CrossStudio global macro. You can set global macros using Project > Macros.

Note that additional " entities are placed around pathnames in the commands section—this is to ensure

that paths that contain spaces are correctly interpreted when the command is executed by CrossStudio.

CrossWorks for ARM Reference Manual Appendices

1311

General Build Properties

Build Options

Property Description

Always Rebuild
build_always_rebuild – Boolean

Specifies whether or not to always rebuild the project/
folder/file.

Build Quietly
build_quietly – Boolean

Suppress the display of startup banners and
information messages.

Enable Unused Symbol Removal
build_remove_unused_symbols – Boolean

Enable the removal of unused symbols from the
executable.

Exclude From Build
build_exclude_from_build – Boolean

Specifies whether or not to exclude the project/folder/
file from the build.

Include Debug Information
build_debug_information – Boolean

Specifies whether symbolic debug information is
generated.

Intermediate Directory
build_intermediate_directory – FileName

Specifies a relative path to the intermediate file
directory. This property will have macro expansion
applied to it. The macro $(IntDir) is set to this value.

Memory Map File
linker_memory_map_file – ProjFileName

The name of the file containing the memory map
description.

Memory Map Macros
linker_memory_map_macros – StringList

Macro values to substitue in memory map nodes. Each
macro is defined as name=value and are seperated by
;.

Output Directory
build_output_directory – FileName

Specifies a relative path to the output file directory.
This property will have macro expansion applied
to it. The macro $(OutDir) is set to this value. The
macro $(RootRelativeOutDir) is set relative to the Root
Output Directory if specified.

Project Dependencies
project_dependencies – StringList

Specifies the projects the current project depends
upon.

Project Directory
project_directory – String

Path of the project directory relative to the directory
containing the project file. The macro $(ProjectDir) is
set to the absolute path of this property.

Project Macros
macros – StringList

Specifies macro values which are expanded in project
properties. Each macro is defined as name=value and
are seperated by ;.

Project Type
project_type – Enumeration

Specifies the type of project to build. The options are
Executable, Library, Object file, Staging, Combining,
Externally Built Executable.

CrossWorks for ARM Reference Manual Appendices

1312

Property Groups File
property_groups_file_path – ProjFileName

The file containing the property groups for this project.
This is applicable to Executable and Externally Built
Executable project types only.

Root Output Directory
build_root_output_directory – FileName

Allows a common root output directory to be specified
that can be referenced using the $(RootOutDir) macro.

Suppress Warnings
build_suppress_warnings – Boolean

Don't report warnings.

Treat Warnings as Errors
build_treat_warnings_as_errors – Boolean

Treat all warnings as errors.

General Options

Property Description

Batch Build Configurations
batch_build_configurations – StringList

The set of configurations to batch build.

Inherited Configurations
inherited_configurations – StringList

The list of configurations that are inherited by this
configuration.

Package Options

Property Description

Package Dependencies
package_dependencies – StringList

Specifies the packages the current project depends
upon.

CrossWorks for ARM Reference Manual Appendices

1313

Combining Project Properties

Combining Options

Property Description

Combine Command
combine_command – String

The command to execute. This property will have
macro expansion applied to it with the macro
$(CombiningOutputFilePath) set to the output
filepath of the combine command and the macro
$(CombiningRelInputPaths) is set to the (project
relative) names of all of the files in the project.

Combine Command Working Directory
combine_command_wd – String

The working directory in which the combine command
is run. This property will have macro expansion applied
to it.

Output File Path
combine_output_filepath – String

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
combine_set_readonly – Boolean

Set the output file to read only or read/write.

CrossWorks for ARM Reference Manual Appendices

1314

Compilation Properties

Assembler Options

Property Description

Additional Assembler Options
asm_additional_options – StringList

Enables additional options to be supplied to the
assembler. This property will have macro expansion
applied to it.

Additional Assembler Options From File
asm_additional_options_from_file – ProjFileName

Enables additional options to be supplied to the
assembler from a file. This property will have macro
expansion applied to it.

Code Generation Options

Property Description

ARM Architecture
arm_architecture – Enumeration

Specifies the version of the instruction set to generate
code for. The options are:

• v4T - ARM7TDMI and ARM920T processors
• v5TE - ARM9E, Feroceon and XScale processors
• v6 - ARM11 processors
• v6M - Cortex-M0 and Cortex-M1 processors
• v7M - Cortex-M3 processors
• v7EM - Cortex-M4 processors
• v7R - Cortex-A processors
• v7A - Cortex-R processors

The corresponding preprocessor definitions:

• __ARM_ARCH_4T__
• __ARM_ARCH_5TE__
• __ARM_ARCH_6__
• __ARM_ARCH_6M__
• __ARM_ARCH_7M__
• __ARM_ARCH_7EM__
• __ARM_ARCH_7R__
• __ARM_ARCH_7A__

are defined.

CrossWorks for ARM Reference Manual Appendices

1315

ARM Core Type
arm_core_type – Enumeration

Specifies the core to generate code for. The options
are:

• ARM7TDMI
• ARM7TDMI-S
• ARM720T
• ARM920T
• ARM946E-S
• ARM966E-S
• ARM968E-S
• ARM926EJ-S
• ARM1136J-S
• ARM1136JF-S
• Cortex-M0
• Cortex-M0+
• Cortex-M1
• Cortex-M3
• Cortex-M4
• Cortex-R4
• Cortex-R4F
• Cortex-A8
• Cortex-A9
• XScale
• None

If this property is set to None then the architecture
value is used

ARM FP ABI Type
arm_fp_abi – Enumeration

Specifies the FP ABI type to generate code for. The
options are:

• Soft generate calls to the CrossWorks C library to
implement floating point operations.

• SoftFP generate VFP code to implement floating
point operations.

• Hard generate VFP code to implement floating
point operations and use VFP registers to pass
floating point parameters on function calls.

• None will not specify the FP ABI or the FPU.

CrossWorks for ARM Reference Manual Appendices

1316

ARM FPU Type
arm_fpu_type – Enumeration

Specifies the FPU type to generate code for. The
options are:

• VFP - ARM9/ARM11 based processors
• VFP9 - the same as VFP
• VFPv3-D32 - Cortex-A/Cortex-R based processors
• VFPv3-D16 - Cortex-A/Cortex-R based processors
• FPv4-SP-D16 - Cortex-M4 processors

The corresponding preprocessor definitions:

• __ARM_ARCH_VFP__
• __ARM_ARCH_VFPv3_D32__
• __ARM_ARCH_VFPv3_D16__
• __ARM_ARCH_FPv4_SP_D16__

are defined.

ARM/Thumb Interworking
arm_interwork – Enumeration

Specifies whether ARM/Thumb interworking code
should be generated. Setting this property to No
may result in smaller code sizes when compiling for
architecture v4T.

Byte Order
arm_endian – Enumeration

Specify the byte order of the target processor.

Debugging Level
gcc_debugging_level – Enumeration

Specifies the level of debugging information to
generate.

Emit Assembler CFI
gcc_emit_assembler_cfi – Boolean

Emit DWARF 2 unwind info using GAS .cfi_* directives
rather than a compiler generated .eh_frame section.

Enable Exception Support
cpp_enable_exceptions – Boolean

Specifies whether exception support is enabled for C+
+ programs.

Enable RTTI Support
cpp_enable_rtti – Boolean

Specifies whether RTTI support is enabled for C++
programs.

GCC Target
arm_gcc_target – Enumeration

Specifies which GCC compiler target to use.

Instruction Set
arm_instruction_set – Enumeration

Specifies the instruction set to generate code for.

Instrument Functions
arm_instrument_functions – Boolean

Specifies whether instrumentation calls are generated
for function entry and exit.

Long Calls
arm_long_calls – Boolean

Specifies whether function calls are made using
absolute addresses.

No COMMON
gcc_no_common – Boolean

Don't put globals

Omit Frame Pointer
gcc_omit_frame_pointer – Boolean

Specifies whether a frame pointer register is omitted if
not required.

Optimization Level
gcc_optimization_level – Enumeration

Specifies the optimization level to use.

CrossWorks for ARM Reference Manual Appendices

1317

Treat 'double' as 'float'
double_is_float – Boolean

Forces the compiler to make 'double' equivalent to
'float'.

Compiler Options
Property Description

Additional C Compiler Only Options
c_only_additional_options – StringList

Enables additional options to be supplied to the
C compiler only. This property will have macro
expansion applied to it.

Additional C Compiler Only Options From File
c_only_additional_options_from_file – ProjFileName

Enables additional options to be supplied to the C
compiler only from a file. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options
cpp_only_additional_options – StringList

Enables additional options to be supplied to the
C++ compiler only. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options From File
cpp_only_additional_options_from_file – ProjFileName

Enables additional options to be supplied to the C++
compiler only from a file. This property will have macro
expansion applied to it.

Additional C/C++ Compiler Options
c_additional_options – StringList

Enables additional options to be supplied to the C/C+
+ compiler. This property will have macro expansion
applied to it.

Additional C/C++ Compiler Options From File
c_additional_options_from_file – ProjFileName

Enables additional options to be supplied to the C/C
++ compiler from a file. This property will have macro
expansion applied to it.

Enforce ANSI Checking
c_enforce_ansi_checking – Boolean

Ensure programs conform to the ANSI-C/C++ standard.

Keep Assembly Source
arm_keep_assembly – Boolean

Specifies whether assembly code generated by the
compiler is kept.

Keep Preprocessor Output
arm_keep_preprocessor_output – Boolean

Specifies whether preprocessor output generated by
the compiler is kept.

Object File Name
build_object_file_name – FileName

Specifies a name to override the default object file
name.

Supply Absolute File Path
arm_supply_absolute_file_path – Boolean

Specifies whether absolute file paths are supplied to
the compiler.

Preprocessor Options
Property Description

Ignore Includes
c_ignore_includes – Boolean

Ignore the include directories properties.

CrossWorks for ARM Reference Manual Appendices

1318

Preprocessor Definitions
c_preprocessor_definitions – StringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions
c_preprocessor_undefinitions – StringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

System Include Directories
c_system_include_directories – StringList

Specifies the system include path. This property will
have macro expansion applied to it.

Undefine All Preprocessor Definitions
c_undefine_all_preprocessor_definitions – Boolean

Does not define any standard preprocessor definitions.

User Include Directories
c_user_include_directories – StringList

Specifies the user include path. This property will have
macro expansion applied to it.

Section Options

Property Description

Code Section Name
default_code_section – String

Specifies the default name to use for the program code
section.

Constant Section Name
default_const_section – String

Specifies the default name to use for the read-only
constant section.

Data Section Name
default_data_section – String

Specifies the default name to use for the initialized,
writable data section.

ISR Section Name
default_isr_section – String

Specifies the default name to use for the ISR code.

Vector Section Name
default_vector_section – String

Specifies the default name to use for the interrupt
vector section.

Zeroed Section Name
default_zeroed_section – String

Specifies the default name to use for the zero-
initialized, writable data section.

User Build Step Options

Property Description

Post-Compile Command
compile_post_build_command – String

A command to run after the compile command has
completed. This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the compiler command.

Post-Compile Working Directory
compile_post_build_command_wd – String

The working directory where the post-compile
command is run. This property will have macro
expansion applied to it.

Pre-Compile Command
compile_pre_build_command – String

A command to run before the compile command. This
property will have macro expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1319

Pre-Compile Command Output File Path
compile_pre_build_command_output_file_name – String

The pre-compile generated file name. This property
will have macro expansion applied to it.

Pre-Compile Working Directory
compile_pre_build_command_wd – String

The working directory where the pre-compile
command is run. This property will have macro
expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1320

Debugging Properties

Debugger Options

Property Description

ARM Floating Point Format
arm_fp_format – Enumeration

Specifies how to display double precision floating
point numbers.This can be used with Externally Built
Executable projects whose executables have been
built with FPA floating point format.

Additional Load File
debug_additional_load_file – ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File Address
debug_additional_load_file_address – String

The address to load the additional load file.

Additional Load File Type
debug_additional_load_file_type – Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Command Arguments
debug_command_arguments – String

The command arguments passed to the executable.
This property will have macro expansion applied to it.

Debug Dependent Projects
debug_dependent_projects – Boolean

Debugger will debug dependent projects.

Entry Point Symbol
debug_entry_point_symbol – String

Debugger will start execution at symbol if defined.

Load Offset
debug_load_file_offset – String

The offset to add to the load address of the load
file.This offset is added to any absolute relocations
of symbols (whose address is less than Load Offset
Symbol Limit) if the load file contains relocation
sections.

Load Offset Symbol Limit
debug_load_file_limit – String

If set apply the Load Offset logic to only those symbols
that have addresses less than the specified limit.

Read-only Software Breakpoints
arm_target_read_only_software_breakpoints – Enumeration

Specifies how software breakpoints set in read-only
(Flash) memory are handled. Options are Disabled
(no software breakpoints used), Permanent (software
breakpoints are set permanently on download), and
Dynamic (software breakpoints are set and cleared as
required).

Read-write Software Breakpoints
arm_target_read_write_software_breakpoints – Enumeration

Specifies software breakpoints set in read-write
memory are handled. Options are Disabled (no
software breakpoints used), Permanent (software
breakpoints are set permanently on download), and
Dynamic (software breakpoints are set and cleared as
required).

CrossWorks for ARM Reference Manual Appendices

1321

Startup Completion Point
debug_startup_completion_point – String

Specifies the point in the program where startup is
complete. Software breakpoints and debugIO will be
enabled after this point has been reached.

Working Directory
debug_working_directory – DirPath

The working directory for a debug session.

JTAG Chain Options
Property Description

JTAG Data Bits After
arm_linker_jtag_pad_post_dr – IntegerRange

Specifies the number of bits to pad the JTAG data
register after the target.

JTAG Data Bits After
arm_linker_jtag_pad_post_dr – IntegerRange

Specifies the number of bits to pad the JTAG data
register after the target.

JTAG Data Bits Before
arm_linker_jtag_pad_pre_dr – IntegerRange

Specifies the number of bits to pad the JTAG data
register before the target.

JTAG Data Bits Before
arm_linker_jtag_pad_pre_dr – IntegerRange

Specifies the number of bits to pad the JTAG data
register before the target.

JTAG Instruction Bits After
arm_linker_jtag_pad_post_ir – IntegerRange

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction after
the target.

JTAG Instruction Bits After
arm_linker_jtag_pad_post_ir – IntegerRange

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction after
the target.

JTAG Instruction Bits Before
arm_linker_jtag_pad_pre_ir – IntegerRange

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction before
the target.

JTAG Instruction Bits Before
arm_linker_jtag_pad_pre_ir – IntegerRange

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction before
the target.

Simulator Options
Property Description

Memory Simulation Filename
arm_simulator_memory_simulation_filename – ProjFileName

Specifies the dll that simulates the memory system.
This property will have macro expansion applied to it.

Memory Simulation Parameter
arm_simulator_memory_simulation_parameter – String

Parameter passed to the memory simulation on
creation or the jtag path (preir; postir; predr; postdr) to
another memory simulation.

Memory Simulation Parameter Macros
arm_simulator_memory_simulation_parameter_macros – StringList

Macros to apply to the parameter passed to the
memory simulation on creation.

CrossWorks for ARM Reference Manual Appendices

1322

Num Trace Entries
arm_simulator_num_trace_entries – Integer

The number of trace entries to store.

Run Target Loader
arm_simulator_run_target_loader – Boolean

Run the target loader.

Target Control Options

Property Description

ARM Debug Interface
arm_target_debug_interface_type – Enumeration

Specifies the type of debug interface the target has.

Connect with reset
arm_target_connect_with_reset – Boolean

Hold the target in hardware reset on connect and
stops the target. This requires the nSRST signal to be
connected and the target debug hardware to work
when in reset.

Coprocessor Instruction Execution Address
arm_target_coprocessor_execute_address – String

Specifies the address of read/write memory that the
debugger can use to execute coprocessor instructions.

Debug Handler File Path
arm_target_debug_handler_file_path – ProjFileName

The file path to the debug handler to use, this entry
should be blank if no debug handler is required. This
property will have macro expansion applied to it.

Debug Handler Load Address
arm_target_debug_handler_load_address – String

The address to load the debug handler.

Do Not Use bkpt Instruction
arm_target_do_not_use_bkpt – Boolean

Specifies that the bkpt instructions should not be
used when setting software breakpoints on ARM
architectures that support the instruction.

Monitor Mode Debug
arm_target_monitor_mode_debug – Boolean

Specifies whether the debug handler is a monitor
mode debug handler.

Monitor Mode Memory
arm_target_monitor_mode_memory – Boolean

Specifies whether to use monitor mode memory
accesses.

Processor Stop Timeout
arm_target_processor_stop_timeout – IntegerRange

The timeout period for stopping the processor in
milliseconds.

Restrict Memory Accesses
arm_target_restrict_memory_accesses – Boolean

Specifies whether memory accesses should be
restricted to known memory segments and their
associated access attributes.

Restrict Memory Accesses
arm_target_restrict_memory_accesses – Boolean

Specifies whether memory accesses should be
restricted to known memory segments and their
associated access attributes.

Stop CPU Using DBGRQ
arm_target_stop_cpu_using_dbgrq – Boolean

Specifies whether the CPU should be stopped by
asserting DBGRQ rather than by using breakpoints.

Target Interface Type
arm_target_interface_type – Enumeration

Specifies the type of interface the target has.

CrossWorks for ARM Reference Manual Appendices

1323

Use Debug Handler
arm_target_use_debug_handler – Enumeration

Specifies whether to use a debug handler.

Target Loader Options
Property Description

Applicable Loaders
arm_target_loader_applicable_loaders – StringList

The set of target loaders that are applicable to the
configuration

Applicable Loaders
arm_target_loader_applicable_loaders – StringList

The set of target loaders that are applicable to the
configuration

Can Erase All
arm_target_loader_can_erase_all – Boolean

Loader can erase all of memory

Can Erase All
arm_target_loader_can_erase_all – Boolean

Loader can erase all of memory

Can Erase Range
arm_target_loader_can_erase_range – Boolean

Loader can erase a range of memory

Can Erase Range
arm_target_loader_can_erase_range – Boolean

Loader can erase a range of memory

Can Lock All
arm_target_loader_can_lock_all – Boolean

Loader can lock all of memory

Can Lock All
arm_target_loader_can_lock_all – Boolean

Loader can lock all of memory

Can Lock Range
arm_target_loader_can_lock_range – Boolean

Loader can lock a range of memory

Can Lock Range
arm_target_loader_can_lock_range – Boolean

Loader can lock a range of memory

Can Only Download After Erase
arm_target_loader_can_only_download_after_erase – Boolean

Loader can only download after erase

Can Only Download After Erase
arm_target_loader_can_only_download_after_erase – Boolean

Loader can only download after erase

Can Only Verify With Download
arm_target_loader_can_only_verify_with_download – Boolean

Loader can only verify with download

Can Only Verify With Download
arm_target_loader_can_only_verify_with_download – Boolean

Loader can only verify with download

Can Peek
arm_target_loader_can_peek – Boolean

Loader can peek memory

Can Peek
arm_target_loader_can_peek – Boolean

Loader can peek memory

Can UnLock All
arm_target_loader_can_unlock_all – Boolean

Loader can unlock all of memory

CrossWorks for ARM Reference Manual Appendices

1324

Can UnLock All
arm_target_loader_can_unlock_all – Boolean

Loader can unlock all of memory

Can UnLock Range
arm_target_loader_can_unlock_range – Boolean

Loader can unlock a range of memory

Can UnLock Range
arm_target_loader_can_unlock_range – Boolean

Loader can unlock a range of memory

Default Loader
arm_target_loader_default_loader – String

The default target loader to use for the configuration

Default Loader
arm_target_loader_default_loader – String

The default target loader to use for the configuration

Erase All
target_loader_erase_all – Enumeration

If set to Yes, all of the FLASH memory on the target will
be erased prior to downloading the application. If set
to No, only the areas of FLASH containing the program
being downloaded will be erased. If set to Default the
behaviour is target specific.

Erase All
target_loader_erase_all – Enumeration

If set to Yes, all of the FLASH memory on the target will
be erased prior to downloading the application. If set
to No, only the areas of FLASH containing the program
being downloaded will be erased. If set to Default the
behaviour is target specific.

Erase All Timeout
arm_target_loader_erase_all_timeout – IntegerRange

The timeout period for an erase all operation in
milliseconds.

Erase All Timeout
arm_target_loader_erase_all_timeout – IntegerRange

The timeout period for an erase all operation in
milliseconds.

First Loader Program Section
arm_target_loader_first_program_section – String

The loader's first program section. This parameter
is only required if the program being downloaded
overwrites the loader.

First Loader Program Section
arm_target_loader_first_program_section – String

The loader's first program section. This parameter
is only required if the program being downloaded
overwrites the loader.

Last Loader Program Section
arm_target_loader_last_program_section – String

The loader's last program section. This parameter
is only required if the program being downloaded
overwrites the loader.

Last Loader Program Section
arm_target_loader_last_program_section – String

The loader's last program section. This parameter
is only required if the program being downloaded
overwrites the loader.

Loader File Path
arm_target_flash_loader_file_path – ProjFileName

The file path to the loader, this entry should be blank if
no loader program is required. This property will have
macro expansion applied to it.

Loader File Path
arm_target_flash_loader_file_path – ProjFileName

The file path to the loader, this entry should be blank if
no loader program is required. This property will have
macro expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1325

Loader File Type
arm_target_flash_loader_type – Enumeration

Talk to the loader via the comms channel or via RAM.

Loader File Type
arm_target_flash_loader_type – Enumeration

Talk to the loader via the comms channel or via RAM.

Loader Load Offset
arm_target_flash_loader_load_offset – String

The offset to load the loader at. This is applicable for
loaders built with Emit Relocations.

Loader Load Offset
arm_target_flash_loader_load_offset – String

The offset to load the loader at. This is applicable for
loaders built with Emit Relocations.

Loader Parameter
arm_target_loader_parameter – String

The parameter to pass to the loader on startup.

Loader Parameter
arm_target_loader_parameter – String

The parameter to pass to the loader on startup.

Loader Timeout
arm_target_loader_operation_timeout – IntegerRange

The timeout period for loader operations in
milliseconds.

Loader Timeout
arm_target_loader_operation_timeout – IntegerRange

The timeout period for loader operations in
milliseconds.

No Load Sections
target_loader_no_load_sections – StringList

Names of (loadable) sections not to load.

No Load Sections
target_loader_no_load_sections – StringList

Names of (loadable) sections not to load.

Reset After Download
arm_target_loader_reset_after_download – Boolean

Specifies whether the target should be reset after a
program has been downloaded by a loader.

Reset After Download
arm_target_loader_reset_after_download – Boolean

Specifies whether the target should be reset after a
program has been downloaded by a loader.

Target Script Options
Property Description

Attach Script
target_attach_script – String

The script that is executed when the target is attached
to.

Attach Script
target_attach_script – String

The script that is executed when the target is attached
to.

Connect Script
target_connect_script – String

The script that is executed when the target is
connected to.

Connect Script
target_connect_script – String

The script that is executed when the target is
connected to.

Debug Begin Script
target_debug_begin_script – String

The script that is executed when the debugger begins
a debug session.

Debug Begin Script
target_debug_begin_script – String

The script that is executed when the debugger begins
a debug session.

CrossWorks for ARM Reference Manual Appendices

1326

Debug End Script
target_debug_end_script – String

The script that is executed when the debugger ends a
debug session.

Debug End Script
target_debug_end_script – String

The script that is executed when the debugger ends a
debug session.

Debug Interface Reset Script
target_debug_interface_reset_script – String

The script that is executed to reset the debug interface.
If not specified the default debug interface reset will
be carried out instead.

Debug Interface Reset Script
target_debug_interface_reset_script – String

The script that is executed to reset the debug interface.
If not specified the default debug interface reset will
be carried out instead.

Disconnect Script
target_disconnect_script – String

The script that is executed when the target is
disconnected from.

Disconnect Script
target_disconnect_script – String

The script that is executed when the target is
disconnected from.

Get Part Name Script
target_get_partname_script – String

The script that returns the part name of the connected
target.

Get Part Name Script
target_get_partname_script – String

The script that returns the part name of the connected
target.

Loader Reset Script
target_loader_reset_script – String

The script that is executed when the target is reset
prior to downloading a loader program. If not specified
"Reset Script" will be used instead.

Loader Reset Script
target_loader_reset_script – String

The script that is executed when the target is reset
prior to downloading a loader program. If not specified
"Reset Script" will be used instead.

Match Part Name Script
target_match_partname_script – String

The script that matches the part name of the
connected target prior to start debugging. The macro
$(TARGET) is substituted with the Target project
property group value.

Match Part Name Script
target_match_partname_script – String

The script that matches the part name of the
connected target prior to start debugging. The macro
$(TARGET) is substituted with the Target project
property group value.

Reset Script
target_reset_script – String

The script that is executed when the target is reset.

Reset Script
target_reset_script – String

The script that is executed when the target is reset.

Run Script
target_go_script – String

The script that is executed when the target is run.

Run Script
target_go_script – String

The script that is executed when the target is run.

Stop Script
target_stop_script – String

The script that is executed when the target is stopped.

CrossWorks for ARM Reference Manual Appendices

1327

Stop Script
target_stop_script – String

The script that is executed when the target is stopped.

TAP Reset Script
target_TAP_reset_script – String

The script that is executed when the TAP is reset.

Target Extras Script
target_extras_script – String

The script that is executed to supply extra menu
entries in the targets window context menu.

Target Extras Script
target_extras_script – String

The script that is executed to supply extra menu
entries in the targets window context menu.

Target Script File
target_script_file – FileName

The target script file.

Target Script File
target_script_file – FileName

The target script file.

Target Trace Options

Property Description

ETM Global Timestamping Enable
arm_target_etm_global_timestamping_enable – Boolean

Enable the ETM global timestamping if supported.

ETM Trace Port Size
arm_target_trace_port_size – Enumeration

Specifies the ETM trace port size.

MTB RAM Address
arm_target_mtb_ram_address – IntegerHex

Specifies the MTB RAM Address - note that this must
be aligned to the MTB RAM size.

MTB RAM Size
arm_target_mtb_ram_size – Enumeration

Specifies the MTB RAM Size

Trace Initialize Script
target_trace_initialize_script – String

The script that is executed to initialize the target
trace hardware. When executed this script has the
macro $(TraceInterfaceType) expanded with value
of the Trace Interface Type property, typically it is
EnableTrace("$(TraceInterfaceType)").

Trace Interface Type
arm_target_trace_interface_type – Enumeration

Specifies the type of trace interface.

CrossWorks for ARM Reference Manual Appendices

1328

Externally Built Executable Project Properties

External Build Options

Property Description

Build Command
external_build_command – String

The command line to build the executable.

Clean Command
external_clean_command – String

The command line to clean the executable.

Debug Symbols File
external_debug_symbols_file_name – ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it.

Debug Symbols Load Address
external_debug_symbols_load_address – String

The (code) address to be added to the debug symbol
(code) addresses.

Executable File
external_build_file_name – ProjFileName

The name of the externally built executable. This
property will have macro expansion applied to it.

Load Address
external_load_address – String

The address to load the externally built executable.

Load File Type
external_load_file_type – Enumeration

The file type of the externally built executable. The
options are Detect, elf, bin, ihex, hex, tihex, srec.

Start Address
external_start_address – String

The address to start the externally built executable
running from.

CrossWorks for ARM Reference Manual Appendices

1329

File and Folder Properties

(Information)

Property Description

File Name
file_name – String

The name of the file. This property will have global
macro expansion applied to it. The following macros
are set based on the value: $(InputDir) relative
directory of file, $(InputName) file name without
directory or extension, $(InputFileName) file name,
$(InputExt) file name extension, $(InputPath) absolute
path to the file name, $(RelInputPath) relative path
from project directory to the file name.

Name
Name – String

Names the item. The macro $(ProjectNodeName) is set
to this value.

Platform
Platform – String

Specifies the platform for the project. The macro
$(Platform) is set to this value.

File Options

Property Description

File Encoding
file_codec – Enumeration

Specifies the encoding to use when reading and
writing the file.

File Open Action
file_open_with – Enumeration

Specifies how to open the file when it is double
clicked.

File Type
file_type – Enumeration

The type of file. Default setting uses the file extension
to determine file type.

Flag
file_flag – Enumeration

Flag which you can use to draw attention to important
files in your project.

Folder Options

Property Description

Dynamic Folder Directory
path – DirPath

Dynamic folder directory specification.

Dynamic Folder Filter
filter – String

Dynamic folder directory specification.

CrossWorks for ARM Reference Manual Appendices

1330

Dynamic Folder Recurse
recurse – Boolean

Dynamic folder recurse into subdirectories.

Filter
filter – StringList

A filter used when adding new files to the project.

Project Options

Property Description

Flag
project_flag – Enumeration

Flag which you can use to draw attention to important
projects in your solution.

Solution Options

Property Description

Flag
solution_flag – Enumeration

Flag which you can use to draw attention to important
projects in your solution.

CrossWorks for ARM Reference Manual Appendices

1331

Library Project Properties

Library Options

Property Description

Library File Name
build_output_file_name – FileName

Specifies a name to override the default library file
name.

CrossWorks for ARM Reference Manual Appendices

1332

Executable Project Properties

Library Options
Property Description

I/O Library Name
link_IOLibraryName – Enumeration

Specifies the IO library (printf etc) to use.

Include Standard Libraries
link_include_standard_libraries – Boolean

Specifies whether the standard libraries should be
linked into your application.

Library Instruction Set
arm_library_instruction_set – Enumeration

Specifies the instruction set variant of the libraries to
link with.

Library Optimization
arm_library_optimization – Enumeration

Specifies whether to link with libraries optimized for
speed or size.

Standard Libraries Directory
link_standard_libraries_directory – String

Specifies where to find the standard libraries

Use GCC Libraries
arm_use_gcc_libraries – Boolean

Use GCC exception and RTTI libraries.

Use Multi Threaded Libraries
link_use_multi_threaded_libraries – Boolean

Specifies whether to use thread safe standard libraries.

Linker Options
Property Description

Additional Input Files
linker_additional_files – StringList

Enables additional object and library files to be
supplied to the linker.

Additional Linker Options
linker_additional_options – StringList

Enables additional options to be supplied to the linker.

Additional Linker Options From File
linker_additional_options_from_file – ProjFileName

Enables additional options to be supplied to the linker
from a file.

Additional Output Format
linker_output_format – Enumeration

The format used when creating an additional linked
output file.

Check For Memory Segment Overflow
arm_library_check_memory_segment_overflow – Boolean

Specifies whether the linker should check whether
program sections fit in their memory segments.

DebugIO Implementation
arm_link_debugio_type – Enumeration

Specifies which DebugIO mechanism to link in.
Options are Breakpoint (hardware breakpoint
instruction and memory locations are used, not not
available on v4t architecture), DCC (ARM debug
communication channel is used), and Memory Poll
(memory locations are polled).

CrossWorks for ARM Reference Manual Appendices

1333

DebugIO Supported
linker_DebugIO_enabled – Boolean

Is DebugIO supported.

Emit Relocations
arm_linker_emit_relocations – Boolean

Output relocation information into the executable.

Entry Point
gcc_entry_point – String

Specifies the entry point of the program.

Executable File Name
build_output_file_name – FileName

Specifies a name to override the default executable file
name.

Gap Fill Value
arm_linker_gap_fill – IntegerHex

The value to fill gaps between sections.

Generate Map File
linker_map_file – Boolean

Specifies whether to generate a linkage map file.

Keep Symbols
linker_keep_symbols – StringList

Specifies the symbols that should be kept by the linker
even if they are not reachable.

Linker
arm_linker_variant – Enumeration

Specifies which linker to use.

Linker Symbol Definitions
link_symbol_definitions – StringList

Specifies one or more linker symbol definitions.

Section Placement File
linker_section_placement_file – ProjFileName

The name of the file containing section placement
description.

Section Placement Macros
linker_section_placement_macros – StringList

Macro values to substitue in section placement nodes -
MACRO1=value1;MACRO2=value2.

Strip Symbols
gcc_strip_symbols – Boolean

Specifies whether symbols should be stripped.

Suppress Warning on Mismatch
arm_linker_no_warn_on_mismatch – Boolean

No warning on mismatched object files/libraries.

Treat Linker Warnings as Errors
arm_linker_treat_warnings_as_errors – Boolean

Treat linker warnings as errors.

Printf/Scanf Options
Property Description

Printf Floating Point Supported
linker_printf_fp_enabled – Boolean

Are floating point numbers supported by the printf
function group.

Printf Integer Support
linker_printf_fmt_level – Enumeration

The largest integer type supported by the printf
function group.

Printf Supported
linker_printf_enabled – Boolean

Is printf supported.

Printf Width/Precision Supported
linker_printf_width_precision_supported – Boolean

Enables support for width and precision specification
in the printf function group.

CrossWorks for ARM Reference Manual Appendices

1334

Scanf Classes Supported
linker_scanf_character_group_matching_enabled – Boolean

Enables support for %[...] and %[^...] character class
matching in the scanf functions.

Scanf Floating Point Supported
linker_scanf_fp_enabled – Boolean

Are floating point numbers supported by the scanf
function group.

Scanf Integer Support
linker_scanf_fmt_level – Enumeration

The largest integer type supported by the scanf
function group.

Scanf Supported
linker_scanf_enabled – Boolean

Is scanf supported.

Runtime Memory Area Options

Property Description

Heap Size
arm_linker_heap_size – IntegerRange

The size of the heap in bytes.

Main Stack Size
arm_linker_stack_size – IntegerRange

The size of the main stack in bytes.

Process Stack Size
arm_linker_process_stack_size – IntegerRange

The size of the process stack in bytes.

Stack Size (Abort Mode)
arm_linker_abt_stack_size – IntegerRange

The size of the Abort mode stack in bytes.

Stack Size (FIQ Mode)
arm_linker_fiq_stack_size – IntegerRange

The size of the FIQ mode stack in bytes.

Stack Size (IRQ Mode)
arm_linker_irq_stack_size – IntegerRange

The size of the IRQ mode stack in bytes.

Stack Size (Supervisor Mode)
arm_linker_svc_stack_size – IntegerRange

The size of the Supervisor mode stack in bytes.

Stack Size (Undefined Mode)
arm_linker_und_stack_size – IntegerRange

The size of the Undefined mode stack in bytes.

Stack Size (User/System Mode)
arm_linker_stack_size – IntegerRange

The size of the User/System mode stack in bytes.

User Build Step Options

Property Description

Link Patch Command
linker_patch_build_command – String

A command to run after the link but prior to additional
binary file generation. This property will have
macro expansion applied to it with the additional
$(TargetPath) macro set to the output filepath of the
linker command.

CrossWorks for ARM Reference Manual Appendices

1335

Link Patch Working Directory
linker_patch_build_command_wd – String

The working directory where the link patch command
is run. This property will have macro expansion applied
to it.

Post-Link Command
linker_post_build_command – String

A command to run after the link command has
completed. This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the linker command.

Post-Link Working Directory
linker_post_build_command_wd – String

The working directory where the post-link command is
run. This property will have macro expansion applied
to it.

Pre-Link Command
linker_pre_build_command – String

A command to run before the link command. This
property will have macro expansion applied to it.

Pre-Link Working Directory
linker_pre_build_command_wd – String

The working directory where the pre-link command is
run. This property will have macro expansion applied
to it.

CrossWorks for ARM Reference Manual Appendices

1336

Staging Project Properties

Staging Options

Property Description

Output File Path
stage_output_filepath – String

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
stage_set_readonly – Boolean

Set the output file to read only or read/write.

Stage Command
stage_command – String

The command to execute. This property will have
macro expansion applied to it with the additional
$(StageOutputFilePath) macro set to the output
filepath of the stage command.

Stage Command Working Directory
stage_command_wd – String

The working directory in which the stage command is
run. This property will have macro expansion applied
to it.

Stage Post-Build Command
stage_post_build_command – String

The command to execute after staging commands
have executed. This property will have macro
expansion applied to it.

Stage Post-Build Command Working Directory
stage_post_build_command_wd – String

The working directory where the post build command
runs. This property will have macro expansion applied
to it.

CrossWorks for ARM Reference Manual Appendices

1337

System Macros

System Macro Values

Property Description

$(Date)
$(Date) – String

Day Month Year e.g. 21 June 2011.

$(DateDay)
$(DateDay) – String

Year e.g. 2011.

$(DateMonth)
$(DateMonth) – String

Month e.g. June.

$(DateYear)
$(DateYear) – String

Day e.g. 21.

$(DesktopDir)
$(DesktopDir) – String

Path to users desktop directory e.g. c:/users/mpj/
Desktop.

$(DocumentsDir)
$(DocumentsDir) – String

Path to users documents directory e.g. c:/users/mpj/
Documents.

$(HomeDir)
$(HomeDir) – String

Path to users home directory e.g. c:/users/mpj.

$(HostArch)
$(HostArch) – String

The CPU architecture that CrossStudio is running on
e.g. x86.

$(HostDLL)
$(HostDLL) – String

The file extension for dynamic link libraries on the CPU
that CrossStudio is running on e.g. .dll.

$(HostDLLExt)
$(HostDLLExt) – String

The file extension for dynamic link libraries used by
the operating system that CrossStudio is running on
e.g. .dll, .so, .dylib.

$(HostEXE)
$(HostEXE) – String

The file extension for executables on the CPU that
CrossStudio is running on e.g. .exe.

$(HostOS)
$(HostOS) – String

The name of the operating system that CrossStudio is
running on e.g. win.

$(Micro)
$(Micro) – String

The CrossWorks target e.g. ARM.

$(PackagesDir)
$(PackagesDir) – String

Path to the users packages directory e.g. c:/users/mpj/
AppData/Local/Rowley Associates Limited/CrossWorks
for ARM/packages.

$(Platform)
$(Platform) – String

The CrossWorks target e.g. arm

CrossWorks for ARM Reference Manual Appendices

1338

$(SamplesDir)
$(SamplesDir) – String

Path to the samples subdirectory of the packages
directory e.g. c:/users/mpj/AppData/Local/Rowley
Associates Limited/CrossWorks for ARM/packages/
samples.

$(StudioDir)
$(StudioDir) – String

The install directory of CrossStudio e.g. c:/Program
Files(x86)/Rowley Associates Limited/CrossWorks for
ARM 2.0.

$(StudioMajorVersion)
$(StudioMajorVersion) – String

The major release version of CrossStudio e.g. 2.

$(StudioMinorVersion)
$(StudioMinorVersion) – String

The minor release version of CrossStudio e.g. 0.

$(StudioName)
$(StudioName) – String

The name of CrossStudio e.g. CrossStudio for ARM.

$(StudioRevision)
$(StudioRevision) – String

The release revision of CrossStudio e.g. 11.

$(StudioUserDir)
$(StudioUserDir) – String

The directory containing the packages directory e.g. c:/
users/mpj/AppData/Local/Rowley Associates Limited/
CrossWorks for ARM.

$(TargetID)
$(TargetID) – String

ID number representing the CrossWorks target.

$(TargetsDir)
$(TargetsDir) – String

Path to the targets subdirectory of the packages
directory e.g. c:/users/mpj/AppData/Local/Rowley
Associates Limited/CrossWorks for ARM/packages/
targets.

$(Time)
$(Time) – String

Hour:Minutes:Seconds e.g. 15:34:03.

$(TimeHour)
$(TimeHour) – String

Hour e.g. 15.

$(TimeMinute)
$(TimeMinute) – String

Hour e.g. 34.

$(TimeSecond)
$(TimeSecond) – String

Hour e.g. 03.

CrossWorks for ARM Reference Manual Appendices

1339

Build Macros

Build Macro Values
Property Description

$(CombiningOutputFilePath)
$(CombiningOutputFilePath) – String

The full path of the output file of the combining
command.

$(CombiningRelInputPaths)
$(CombiningRelInputPaths) – String

The relative inputs to the combining command.

$(Configuration)
$(Configuration) – String

The build configuration e.g. ARM Flash Debug.

$(EXE)
$(EXE) – String

The default file extension for an executable file
including the dot e.g. .elf.

$(GCCTarget)
$(GCCTarget) – String

The value of the GCC Target project property.

$(InputDir)
$(InputDir) – String

The absolute directory of the input file.

$(InputExt)
$(InputExt) – String

The extension of an input file not including the dot e.g
cpp.

$(InputFileName)
$(InputFileName) – String

The name of an input file relative to the project
directory.

$(InputName)
$(InputName) – String

The name of an input file relative to the project
directory without the extension.

$(InputPath)
$(InputPath) – String

The absolute name of an input file including the
extension.

$(IntDir)
$(IntDir) – String

The macro-expanded value of the Intermediate
Directory project property.

$(LIB)
$(LIB) – String

The default file extension for a library file including the
dot e.g. .lib.

$(LibExt)
$(LibExt) – String

The architecture and build specific library extension.

$(OBJ)
$(OBJ) – String

The default file extension for an object file including
the dot e.g. .o.

$(OutDir)
$(OutDir) – String

The macro-expanded value of the Output Directory
project property.

$(PackageExt)
$(PackageExt) – String

The file extension of a CrossWorks package file e.g.
hzq.

$(ProjectDir)
$(ProjectDir) – String

The absolute value of the Project Directory project
property of the current project. If this isn't set then the
directory containing the solution file.

CrossWorks for ARM Reference Manual Appendices

1340

$(ProjectName)
$(ProjectName) – String

The project name of the current project.

$(ProjectNodeName)
$(ProjectNodeName) – String

The name of the selected project node.

$(RelInputPath)
$(RelInputPath) – String

The relative path of the input file to the project
directory.

$(RootOutDir)
$(RootOutDir) – String

The macro-expanded value of the Root Output
Directory project property.

$(RootRelativeOutDir)
$(RootRelativeOutDir) – String

The relative path to get from the path specified by
the Output Directory project property to the path
specified by the Root Output Directory project
property.

$(SolutionDir)
$(SolutionDir) – String

The absolute path of the directory containing the
solution file.

$(SolutionExt)
$(SolutionExt) – String

The extension of the solution file without the dot.

$(SolutionFileName)
$(SolutionFileName) – String

The filename of the solution file.

$(SolutionName)
$(SolutionName) – String

The basename of the solution file.

$(SolutionPath)
$(SolutionPath) – String

The absolute path of the solution file.

$(StageOutputFilePath)
$(StageOutputFilePath) – String

The full path of the output file of the stage command.

$(TargetPath)
$(TargetPath) – String

The full path of the output file of the link or compile
command.

CrossWorks for ARM Reference Manual Appendices

1341

BinaryFile
The following table lists the BinaryFile object's member functions.

BinaryFile.crc32(offset, length) returns the CRC-32 checksum of an address range length bytes long, starting
at offset. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

BinaryFile.length() returns the length of the binary file in bytes.

BinaryFile.load(path) loads binary file from path.

BinaryFile.peekBytes(offset, length) returns byte array containing length bytes peeked from offset.

BinaryFile.peekUint32(offset, littleEndian) returns a 32-bit word peeked from offset. The littleEndian argument
specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be big endian.

BinaryFile.pokeBytes(offset, byteArray) poke byte array byteArray to offset.

BinaryFile.pokeUint32(offset, value, littleEndian) poke a value to 32-bit word located at offset. The littleEndian
argument specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be
big endian.

BinaryFile.resize(length, fill) resizes the binary image to length bytes. If the operation extends the size, the
binary image will be padded with bytes of value fill.

BinaryFile.save(path) saves binary file to path.

BinaryFile.saveRange(path, offset, length) saves part of the binary file to path. The offset argument specifies
the byte offset to start from. The length argument specifies the maximum number of bytes that should be
saved.

CrossWorks for ARM Reference Manual Appendices

1342

CWSys
The following table lists the CWSys object's member functions.

CWSys.copyFile(srcPath, destPath) copies file srcPath to destPath.

CWSys.crc32(array) returns the CRC-32 checksum of the byte array array. This function computes a CRC-32
checksum on a block of data using the standard CRC-32 polynomial (0x04C11DB7) with an initial value of
0xFFFFFFFF. Note that this implementation doesn't reflect the input or the output and the result is inverted.

CWSys.fileExists(path) returns true if file path exists.

CWSys.fileSize(path) return the number of bytes in file path.

CWSys.getRunStderr() returns the stderr output from the last CWSys.run() call.

CWSys.getRunStdout() returns the stdout output from the last CWSys.run() call.

CWSys.makeDirectory(path) create the directory path.

CWSys.packU32(array, offset, number, le) packs number into the array at offset.

CWSys.readByteArrayFromFile(path) returns the byte array contained in the file path.

CWSys.readStringFromFile(path) returns the string contained in the file path.

CWSys.removeDirectory(path) remove the directory path.

CWSys.removeFile(path) deletes file path.

CWSys.renameFile(oldPath, newPath) renames file oldPath to be newPath.

CWSys.run(cmd, wait) runs command line cmd optionally waits for it to complete if wait is true.

CWSys.unpackU32(array, offset, le) returns the number unpacked from the array at offset.

CWSys.writeByteArrayToFile(path, array) creates a file path containing the byte array array.

CWSys.writeStringToFile(path, string) creates a file path containing string.

CrossWorks for ARM Reference Manual Appendices

1343

Debug
The following table lists the Debug object's member functions.

Debug.breakexpr(expression, count, hardware) set a breakpoint on expression, with optional ignore count
and use hardware parameters. Return the, none zero, allocated breakpoint number.

Debug.breakline(filename, linenumber, temporary, count, hardware) set a breakpoint on filename and
linenumber, with optional temporary, ignore count and use hardware parameters. Return the, none zero,
allocated breakpoint number.

Debug.breaknow() break execution now.

Debug.deletebreak(number) delete the specified breakpoint or all breakpoints if zero is supplied.

Debug.disassembly(source, labels, before, after) set debugger mode to disassembly mode. Optionally specify
source and labels to be displayed and the number of bytes to disassemble before and after the located program
counter.

Debug.echo(s) display string.

Debug.enableexception(exception, enable) enable break on exception.

Debug.evaluate(expression) evaluates debug expression and returns it as a JavaScript value.

Debug.getfilename() return located filename.

Debug.getlineumber() return located linenumber.

Debug.go() continue execution.

Debug.locate(frame) locate the debugger to the optional frame context.

Debug.locatepc(pc) locate the debugger to the specified pc.

Debug.locateregisters(registers) locate the debugger to the specified register context.

Debug.print(expression, fmt) evaluate and display debugexpression using optional fmt. Supported formats are
b binary, c character, d decimal, e scientific float, f decimal float, g scientific or decimal float, i signed decimal, o
octal, p pointer value, s null terminated string, u unsigned decimal, x hexadecimal.

Debug.printglobals() display global variables.

Debug.printlocals() display local variables.

Debug.quit() stop debugging.

Debug.setprintarray(elements) set the maximum number of array elements for printing variables.

Debug.setprintradix(radix) set the default radix for printing variables.

Debug.setprintstring(c) set the default to print character pointers as strings.

Debug.showbreak(number) show information on the specified breakpoint or all breakpoints if zero is
supplied.

Debug.showexceptions() show the exceptions.

Debug.source(before, after) set debugger mode to source mode. Optionally specify the number of source
lines to display before and after the location.

Debug.stepinto() step an instruction or a statement.

CrossWorks for ARM Reference Manual Appendices

1344

Debug.stepout() continue execution and break on return from current function.

Debug.stepover() step an instruction or a statement stepping over function calls.

Debug.stopped() return stopped state.

Debug.wait(ms) wait ms millseconds for a breakpoint and return the number of the breakpoint that hit.

Debug.where() display call stack.

CrossWorks for ARM Reference Manual Appendices

1345

ElfFile
The following table lists the ElfFile object's member functions.

ElfFile.crc32(address, length, virtualNotPhysical, padding) returns the CRC-32 checksum of an address range
length bytes long, located at address. If virtualNotPhysical is true or undefined, address is a virtual address
otherwise it is a physical address. If padding is defined, it specifies the byte value used to fill gaps in the
program. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

ElfFile.findProgram(address) returns an object with start, the data and the size to allocate of the Elf program
that contains address.

ElfFile.getEntryPoint() returns the entry point in the ELF file.

ElfFile.getSection(name) returns an object with start and the data of the Elf section corresponding to the
name.

ElfFile.isLittleEndian() returns true if the Elf file has numbers encoded as little endian.

ElfFile.load(path) loads Elf file from path.

ElfFile.peekBytes(address, length, virtualNotPhysical, padding) returns byte array containing length bytes
peeked from address. If virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a
physical address. If padding is defined, it specifies the byte value used to fill gaps in the program.

ElfFile.peekUint32(address, virtualNotPhysical) returns a 32-bit word peeked from address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeBytes(address, byteArray, virtualNotPhysical) poke byte array byteArray to address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeUint32(address, value, virtualNotPhysical) poke a value to 32-bit word located at address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.save(path) saves Elf file to path.

ElfFile.symbolValue(symbol) returns the value of symbol in Elf file.

CrossWorks for ARM Reference Manual Appendices

1346

TargetInterface
The following table lists the TargetInterface object's member functions.

TargetInterface.beginDebugAccess() puts the target into debug state if it is not already in order to
carry out a number of debug operations. The idea behind beginDebugAccess and endDebugAccess is
to minimize the number of times the target enters and exits debug state when carrying out a number of
debug operations. Target interface functions that require the target to be in debug state (such as peek and
poke) also use beginDebugAccess and endDebugAccess to get the target into the correct state. A nesting
count is maintained, incremented by beginDebugAccess and decremented by endDebugAccess. The initial
processor state is recorded on the first nested call to beginDebugAccess and this state is restored when the
final endDebugAccess is called causing the count to return to it initial state.

TargetInterface.commReadWord() returns a word from the ARM7/ARM9 debug comms channel.

TargetInterface.commWriteWord(word) writes a word to the ARM7/ARM9 debug comms channel.

TargetInterface.cycleTCK(n) provide n TCK clock cycles.

TargetInterface.delay(ms) waits for ms milliseconds

TargetInterface.downloadDebugHandler() downloads the debug handler as specified by the Debug Handler
File Path/Load Address project properties and uses the debug handler for the target connection.

TargetInterface.endDebugAccess(alwaysRun) restores the target run state recorded at the first nested call to
beginDebugAccess. See beginDebugAccess for more information. If alwaysRun is non-zero the processor will
exit debug state on the last nested call to endDebugAccess.

TargetInterface.eraseBytes(address,length) erases a length block of target memory starting at address.

TargetInterface.error(message) terminates execution of the script and outputs a target interface error
message to the target log.

TargetInterface.executeFunction(address, parameter, timeout) calls a function at address with the parameter
and returns the function result. The timeout is in milliseconds.

TargetInterface.executeMCR(opcode) interprets/executes the opcode assuming it to be an MRC instruction
and returns the value of the specified coprocessor register.

TargetInterface.executeMCR(opcode, value) interprets/executes the opcode assuming it to be an MCR
instruction that writes value to the specified coprocessor register.

TargetInterface.fillScanChain(bool, lsb, msb) sets bits from lsb (least significant bit) to msb (most significant
bit) in internal buffer to bool value.

TargetInterface.getDebugRegister(address) returns the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

TargetInterface.getICEBreakerRegister(r) returns the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug register r.

TargetInterface.getProjectProperty(savename) returns the value of the savename project property.

TargetInterface.getRegister(registername) returns the value of the register, register is a string specifying the
register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr, r8_fiq,
r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt, spsr_abt,
r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

CrossWorks for ARM Reference Manual Appendices

1347

TargetInterface.getTDO() return the TDO signal.

TargetInterface.getTargetProperty(savename) returns the value of the savename target property.

TargetInterface.go() allows the target to run.

TargetInterface.idcode() returns the JTAG idcode of the target.

TargetInterface.implementation() returns a string defining the target interface implementation.

TargetInterface.isStopped() returns true if the target is stopped.

TargetInterface.message(message) outputs a target interface message to the target log.

TargetInterface.packScanChain(data, lsb, msb) packs data from lsb (least significant bit) to msb (most
significant bit) into internal buffer.

TargetInterface.peekBinary(address, length, filename) reads a block of bytes from target memory starting at
address for length bytes and writes them to filename.

TargetInterface.peekByte(address) reads a byte of target memory from address and returns it.

TargetInterface.peekBytes(address, length) reads a block of bytes from target memory starting at address for
length bytes and returns the result as an array containing the bytes read.

TargetInterface.peekMultUint16(address, length) reads length unsigned 16-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekMultUint32(address, length) reads length unsigned 32-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekUint16(address) reads a 16-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekUint32(address) reads a 32-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekWord(address) reads a word as an unsigned integer from target memory from address
and returns it.

TargetInterface.pokeBinary(address, filename) reads a block of bytes from filename and writes them to target
memory starting at address.

TargetInterface.pokeByte(address, data) writes the byte data to address in target memory.

TargetInterface.pokeBytes(address, data) writes the array data containing 8-bit data to target memory at
address.

TargetInterface.pokeMultUint16(address, data) writes the array data containing 16-bit data to target memory
at address.

TargetInterface.pokeMultUint32(address, data) writes the array data containing 32-bit data to target memory
at address.

TargetInterface.pokeUint16(address, data) writes data as a 16-bit value to address in target memory.

TargetInterface.pokeUint32(address, data) writes data as a 32-bit value to address in target memory.

TargetInterface.pokeWord(address, data) writes data as a word value to address in target memory.

TargetInterface.readBinary(filename) reads a block of bytes from filename and returns them in an array.

TargetInterface.reset() resets the target, optionally executes the reset script and lets the target run.

CrossWorks for ARM Reference Manual Appendices

1348

TargetInterface.resetAndStop(delay) resets the target by cycling nSRST and then stops the target. delay is the
number of milliseconds to hold the target in reset.

TargetInterface.resetAndStopAtZero(delay) sets a breakpoint on the instruction at address zero execution,
resets the target by cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to
hold the target in reset.

TargetInterface.resetDebugInterface() resets the target interface (not the target).

TargetInterface.runFromAddress(address, timeout) start the target executing at address and waits for a
breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runTestIdle() moves the target JTAG state machine into Run-Test/Idle state

TargetInterface.runToAddress(address, timeout) sets a breakpoint at address, starts the target executing and
waits for the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.scanDR(length, count) scans length bits from the internal buffer into the data register and
puts the result into the internal buffer (count specifies the number of times the function is done).

TargetInterface.scanIR(length, count) scans length bits from the internal buffer into the instruction register
and puts the result into the internal buffer (count specifies the number of times the function is done).

TargetInterface.selectDevice(irPre, irPost, drPre, drPost) sets the instruction and data register (number of
devices) pre and post bits.

TargetInterface.setDBGRQ(v) sets/clears the DBGRQ bit of the ARM7/ARM9 debug control register.

TargetInterface.setDebugInterfaceProperty("reset_delay", N) set the XScale reset delay property to N.
TargetInterface.setDebugInterfaceProperty("post_reset_delay", N) set the XScale post reset delay property to
N.
TargetInterface.setDebugInterfaceProperty("post_reset_cycles", N) set the XScale post reset cycles property
to N.
TargetInterface.setDebugInterfaceProperty("post_ldic_cycles", N) set the XScale ldic cycles property to N.
TargetInterface.setDebugInterfaceProperty("sync_exception_vectors", bool) turn on/off the XScale sync
exception vectors property.
TargetInterface.setDebugInterfaceProperty("peek_flash_workaround", bool) turn on/off the ARMv6M/
ARMv7M peek flash memory workaround debug property.
TargetInterface.setDebugInterfaceProperty("adiv5_fast_delay_cycles", N) set the ADIv5 fast delay cycles
property to N (FTDI2232 target interfaces only).
TargetInterface.setDebugInterfaceProperty("use_adiv5_AHB", bool) set the ARMv7A/ARMv7R debug
property to turn on/off usage of the ADIv5 AHB MEM-AP.
TargetInterface.setDebugInterfaceProperty("max_ap_num", N) set the ADIv5 debug property to limit the
number of AP's to detect to N.
TargetInterface.setDebugInterfaceProperty("component_base", N) set the ARMv7A/ARMv7R debug property
that specifies the base address N of the CoreSight debug component.

TargetInterface.setDebugRegister(address, value) set the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

TargetInterface.setDeviceTypeProperty(type) sets the target interface's Device Type property string to type.
This would typically be used by a Connect Script to override the default Device Type property and provide a
custom description of the connected target.

CrossWorks for ARM Reference Manual Appendices

1349

TargetInterface.setICEBreakerBreakpoint(n, address, addressMask, data, dataMask, control, controlMask)
sets the ARM7/ARM9 watchpoint n registers.

TargetInterface.setICEBreakerRegister(r, value) set the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug register r.

TargetInterface.setMaximumJTAGFrequency(hz) allows the maximum TCK frequency of the currently
connected JTAG interface to be set dynamically. The speed setting will only apply for the current connection
session, if you reconnect the setting will revert to the speed specfied by the target interface properties. Calls to
this function will be ignored if adaptive clocking is being used.

TargetInterface.setNSRST(v) sets/clears the NSRST signal.

TargetInterface.setNTRST(v) sets/clears the NTRST signal.

TargetInterface.setRegister(registername, value) sets the register to the value, register is a string specifying
the register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr,
r8_fiq, r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt,
spsr_abt, r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

TargetInterface.setTDI(v) clear/set TDI signal.

TargetInterface.setTMS(v) clear/set TMS signal.

TargetInterface.setTargetProperty(savename) set the value of the savename target property.

TargetInterface.stop() stops the target.

TargetInterface.stopAndReset(delay) sets a breakpoint on any instruction execution, resets the target by
cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to hold the device in
reset.

TargetInterface.trst() resets the target interface (not the target).

TargetInterface.type() returns a string defining the target interface type.

TargetInterface.unpackScanChain(lsb, msb) unpacks data from lsb (least significant bit) to msb (most
significant bit) from internal buffer and returns the result.

TargetInterface.waitForDebugState(timeout) waits for the target to stop or the timeout in milliseconds.

TargetInterface.writeBinary(array, filename) write the bytes in array to filename.

CrossWorks for ARM Reference Manual Appendices

1350

WScript
The following table lists the WScript object's member functions.

WScript.Echo(s) echos string s to the output terminal.

	Contents
	Introduction
	What is CrossWorks?
	What we don't tell you
	Activating your product
	Text conventions
	Additional resources
	Release notes

	CrossStudio Tutorial
	Activating CrossWorks
	Managing support packages
	Creating a project
	Managing files in a project
	Setting project options
	Building projects
	Exploring projects
	Using the debugger
	Low-level debugging
	Debugging externally built applications

	CrossStudio User Guide
	CrossStudio standard layout
	Menu bar
	Title bar
	Status bar
	Editing workspace
	Docking windows
	Dashboard

	CrossStudio help and assistance
	Creating and managing projects
	Solutions and projects
	Creating a project
	Adding existing files to a project
	Adding new files to a project
	Removing a file, folder, project, or project link
	Project macros

	Building your application
	Creating variants using configurations
	Project properties
	Unique properties
	Aggregate properties

	Configurations and property values
	Dependencies and build order
	Linking and section placement
	Using source control
	Source control capabilities
	Choosing your source-control provider
	Connecting to the source-control system
	Opening a project from source control
	Files source-control status
	Source-control operations
	Adding files to source control
	Checking files out
	Checking files in
	Undoing a check out
	Getting the latest version
	Showing differences between files
	Merging files
	Source-control explorer
	Source-control properties
	Visual SourceSafe provider
	SourceOffSite provider
	Subversion provider
	CVS provider

	Package management
	Exploring your application
	Project explorer
	Source navigator window
	Symbol browser
	Memory usage window

	Editing your code
	Basic editing
	Moving the insertion point
	Selecting text
	Adding text
	Deleting text
	Using the clipboard
	Undo and redo
	Drag and drop
	Searching

	Advanced editing
	Indenting source code
	Commenting out sections of code
	Changing letter case
	Indenting

	Bookmarks
	Find and Replace window
	Clipboard-ring window
	Regular expressions

	Debugging windows
	Locals window
	Globals window
	Watch window
	Register window
	Memory window
	Breakpoints window
	Call Stack window
	Threads window
	Execution Profile window
	Trace window
	Debug file search editor

	Breakpoint expressions
	Debug expressions
	Utility windows
	Output window
	Properties window
	Targets window
	Terminal emulator window
	Script Console window
	Debug Immediate window
	Downloads window
	Latest News window

	Memory-map editor
	Environment options dialog
	Building Environment Options
	Debugging Environment Options
	IDE Environment Options
	Programming Language Environment Options
	Source Control Environment Options
	Text Editor Environment Options
	Windows Environment Options

	ARM target support
	Target startup code
	Startup code
	memory-map files
	Project configurations
	Target script file
	Program loading
	Debug Capabilities
	Trace Capabilities

	Target interfaces
	ARM Simulator target interface
	CrossConnect Target Interface
	Segger J-Link Target Interface
	Olimex ARM-USB-OCD Target Interface
	Amontec JTAGkey Target Interface
	P&E UNIT Interface DLL Target Interface
	ST-LINK Target Interface
	ST-LINK/V2 Target Interface
	Kinetis OSJTAG Target Interface
	Stellaris ICDI Target Interface
	Macraigor Wiggler (20 and 14 pin) Target Interface
	Generic FT2232 Target Interface
	Generic Target Interface

	C Library User Guide
	Floating point
	Single and double precision

	Multithreading
	Thread safety in the CrossWorks library
	Implementing mutual exclusion in the C library

	Input and output
	Customizing putchar

	Complete API reference
	<assert.h>
	__assert
	assert

	<cross_studio_io.h>
	debug_abort
	debug_break
	debug_clearerr
	debug_enabled
	debug_exit
	debug_fclose
	debug_feof
	debug_ferror
	debug_fflush
	debug_fgetc
	debug_fgetpos
	debug_fgets
	debug_filesize
	debug_fopen
	debug_fprintf
	debug_fprintf_c
	debug_fputc
	debug_fputs
	debug_fread
	debug_freopen
	debug_fscanf
	debug_fscanf_c
	debug_fseek
	debug_fsetpos
	debug_ftell
	debug_fwrite
	debug_getargs
	debug_getch
	debug_getchar
	debug_getd
	debug_getenv
	debug_getf
	debug_geti
	debug_getl
	debug_getll
	debug_gets
	debug_getu
	debug_getul
	debug_getull
	debug_kbhit
	debug_loadsymbols
	debug_perror
	debug_printf
	debug_printf_c
	debug_putchar
	debug_puts
	debug_remove
	debug_rename
	debug_rewind
	debug_runtime_error
	debug_scanf
	debug_scanf_c
	debug_system
	debug_time
	debug_tmpfile
	debug_tmpnam
	debug_ungetc
	debug_unloadsymbols
	debug_vfprintf
	debug_vfscanf
	debug_vprintf
	debug_vscanf

	<ctype.h>
	isalnum
	isalpha
	isblank
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	tolower
	toupper

	<errno.h>
	EDOM
	EILSEQ
	ERANGE
	__errno
	errno

	<float.h>
	DBL_DIG
	DBL_EPSILON
	DBL_MANT_DIG
	DBL_MAX
	DBL_MAX_10_EXP
	DBL_MAX_EXP
	DBL_MIN
	DBL_MIN_10_EXP
	DBL_MIN_EXP
	DECIMAL_DIG
	FLT_DIG
	FLT_EPSILON
	FLT_EVAL_METHOD
	FLT_MANT_DIG
	FLT_MAX
	FLT_MAX_10_EXP
	FLT_MAX_EXP
	FLT_MIN
	FLT_MIN_10_EXP
	FLT_MIN_EXP
	FLT_RADIX
	FLT_ROUNDS

	<intrinsics.h>
	__breakpoint
	__cdp
	__cdp2
	__clrex
	__clz
	__dbg
	__disable_fiq
	__disable_interrupt
	__disable_irq
	__dmb
	__dsb
	__enable_fiq
	__enable_interrupt
	__enable_irq
	__fabs
	__fabsf
	__get_APSR
	__get_BASEPRI
	__get_CONTROL
	__get_CPSR
	__get_FAULTMASK
	__get_PRIMASK
	__isb
	__ldc
	__ldc2
	__ldc2_noidx
	__ldc2l
	__ldc2l_noidx
	__ldc_noidx
	__ldcl
	__ldcl_noidx
	__ldrbt
	__ldrex
	__ldrexb
	__ldrexd
	__ldrexh
	__ldrht
	__ldrsbt
	__ldrsht
	__ldrt
	__mcr
	__mcr2
	__mcrr
	__mcrr2
	__mrc
	__mrc2
	__mrrc
	__mrrc2
	__nop
	__pld
	__pli
	__qadd
	__qadd16
	__qadd8
	__qasx
	__qdadd
	__qdbl
	__qdsub
	__qflag
	__qsax
	__qsub
	__qsub16
	__qsub8
	__rbit
	__rev
	__rev16
	__revsh
	__sadd16
	__sadd8
	__sasx
	__sel
	__set_APSR
	__set_BASEPRI
	__set_CONTROL
	__set_CPSR
	__set_FAULTMASK
	__set_PRIMASK
	__sev
	__shadd16
	__shadd8
	__shasx
	__shsax
	__shsub16
	__shsub8
	__smlabb
	__smlabt
	__smlad
	__smladx
	__smlalbb
	__smlalbt
	__smlald
	__smlaldx
	__smlaltb
	__smlaltt
	__smlatb
	__smlatt
	__smlawb
	__smlawt
	__smlsd
	__smlsdx
	__smlsld
	__smlsldx
	__smuad
	__smuadx
	__smulbb
	__smulbt
	__smultb
	__smultt
	__smulwb
	__smulwt
	__smusd
	__smusdx
	__sqrt
	__sqrtf
	__ssat
	__ssat16
	__ssax
	__ssub16
	__ssub8
	__stc
	__stc2
	__stc2l
	__stc_noidx
	__stcl
	__strbt
	__strex
	__strexb
	__strexd
	__strexh
	__strht
	__strt
	__swp
	__swpb
	__sxtab16
	__sxtb16
	__uadd16
	__uadd8
	__uasx
	__uhadd16
	__uhadd8
	__uhasx
	__uhsax
	__uhsub16
	__uhsub8
	__uqadd16
	__uqadd8
	__uqasx
	__uqsax
	__uqsub16
	__uqsub8
	__usad8
	__usad8a
	__usat
	__usat16
	__usax
	__usub8
	__uxtab16
	__uxtb16
	__wfe
	__wfi
	__yield

	<iso646.h>
	and
	and_eq
	bitand
	bitor
	compl
	not
	not_eq
	or
	or_eq
	xor
	xor_eq

	<itm.h>
	ITM_channel_enabled
	ITM_send_byte
	ITM_send_half_word
	ITM_send_pc
	ITM_send_word

	<libarm.h>
	libarm_dcc_read
	libarm_dcc_write
	libarm_disable_fiq
	libarm_disable_irq
	libarm_disable_irq_fiq
	libarm_enable_fiq
	libarm_enable_irq
	libarm_enable_irq_fiq
	libarm_get_cpsr
	libarm_isr_disable_irq
	libarm_isr_enable_irq
	libarm_mmu_flat_initialise_level_1_table
	libarm_mmu_flat_initialise_level_2_small_page_table
	libarm_mmu_flat_set_level_1_cacheable_region
	libarm_mmu_flat_set_level_2_small_page_cacheable_region
	libarm_restore_irq_fiq
	libarm_run_dcc_port_server
	libarm_set_cpsr
	libarm_set_fiq
	libarm_set_irq

	<limits.h>
	CHAR_BIT
	CHAR_MAX
	CHAR_MIN
	INT_MAX
	INT_MIN
	LLONG_MAX
	LLONG_MIN
	LONG_MAX
	LONG_MIN
	SCHAR_MAX
	SCHAR_MIN
	SHRT_MAX
	SHRT_MIN
	UCHAR_MAX
	UINT_MAX
	ULLONG_MAX
	ULONG_MAX
	USHRT_MAX

	<locale.h>
	lconv
	localeconv
	setlocale

	<math.h>
	acos
	acosf
	acosh
	acoshf
	asin
	asinf
	asinh
	asinhf
	atan
	atan2
	atan2f
	atanf
	atanh
	atanhf
	cbrt
	cbrtf
	ceil
	ceilf
	cos
	cosf
	cosh
	coshf
	exp
	expf
	fabs
	fabsf
	floor
	floorf
	fmax
	fmaxf
	fmin
	fminf
	fmod
	fmodf
	fpclassify
	frexp
	frexpf
	hypot
	hypotf
	isfinite
	isinf
	isnan
	isnormal
	ldexp
	ldexpf
	log
	log10
	log10f
	logf
	modf
	modff
	pow
	powf
	scalbn
	scalbnf
	signbit
	sin
	sinf
	sinh
	sinhf
	sqrt
	sqrtf
	tan
	tanf
	tanh
	tanhf

	<setjmp.h>
	longjmp
	setjmp

	<stdarg.h>
	va_arg
	va_copy
	va_end
	va_start

	<stddef.h>
	NULL
	offsetof
	ptrdiff_t
	size_t
	wchar_t

	<stdio.h>
	getchar
	gets
	printf
	putchar
	puts
	scanf
	snprintf
	sprintf
	sscanf
	vprintf
	vscanf
	vsnprintf
	vsprintf
	vsscanf

	<stdlib.h>
	EXIT_FAILURE
	EXIT_SUCCESS
	RAND_MAX
	abs
	atexit
	atof
	atoi
	atol
	atoll
	bsearch
	calloc
	div
	div_t
	exit
	free
	itoa
	labs
	ldiv
	ldiv_t
	llabs
	lldiv
	lldiv_t
	lltoa
	ltoa
	malloc
	qsort
	rand
	realloc
	srand
	strtod
	strtof
	strtol
	strtoll
	strtoul
	strtoull
	ulltoa
	ultoa
	utoa

	<string.h>
	memccpy
	memchr
	memcmp
	memcpy
	memmove
	mempcpy
	memset
	strcasecmp
	strcasestr
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strdup
	strerror
	strlcat
	strlcpy
	strlen
	strncasecmp
	strncasestr
	strncat
	strnchr
	strncmp
	strncpy
	strndup
	strnlen
	strnstr
	strpbrk
	strrchr
	strsep
	strspn
	strstr
	strtok
	strtok_r

	<time.h>
	asctime
	asctime_r
	clock_t
	ctime
	ctime_r
	difftime
	gmtime
	gmtime_r
	localtime
	localtime_r
	mktime
	strftime
	time_t
	tm

	<wchar.h>
	WCHAR_MAX
	WCHAR_MIN
	WEOF
	wchar_t
	wcscat
	wcschr
	wcscmp
	wcscpy
	wcscspn
	wcsdup
	wcslen
	wcsncat
	wcsnchr
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnstr
	wcspbrk
	wcsrchr
	wcsspn
	wcsstr
	wcstok
	wcstok_r
	wint_t
	wmemccpy
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmempcpy
	wmemset
	wstrsep

	C++ Library User Guide
	Standard template library
	Subset API reference
	<new> - memory allocation
	operator delete
	operator new
	set_new_handler

	LIBMEM User Guide
	Using the LIBMEM library
	Light version of LIBMEM
	Writing LIBMEM drivers
	LIBMEM loader library
	Complete API reference
	<libmem.h>
	LIBMEM_ADDRESS_IN_RANGE
	LIBMEM_ADDRESS_IS_ALIGNED
	LIBMEM_ALIGNED_ADDRESS
	LIBMEM_CFI_CMDSET_AMD_EXTENDED
	LIBMEM_CFI_CMDSET_AMD_STANDARD
	LIBMEM_CFI_CMDSET_INTEL_EXTENDED
	LIBMEM_CFI_CMDSET_INTEL_STANDARD
	LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED
	LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD
	LIBMEM_CFI_CMDSET_NONE
	LIBMEM_CFI_CMDSET_RESERVED
	LIBMEM_CFI_CMDSET_SST_PAGE_WRITE
	LIBMEM_CFI_CMDSET_WINBOND_STANDARD
	LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD
	LIBMEM_INLINE
	LIBMEM_KB
	LIBMEM_MB
	LIBMEM_RANGE_OCCLUDES_RANGE
	LIBMEM_RANGE_OVERLAPS_RANGE
	LIBMEM_RANGE_WITHIN_RANGE
	LIBMEM_STATUS_CFI_ERROR
	LIBMEM_STATUS_ERROR
	LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW
	LIBMEM_STATUS_INVALID_DEVICE
	LIBMEM_STATUS_INVALID_PARAMETER
	LIBMEM_STATUS_INVALID_RANGE
	LIBMEM_STATUS_INVALID_WIDTH
	LIBMEM_STATUS_LOCKED
	LIBMEM_STATUS_NOT_IMPLEMENTED
	LIBMEM_STATUS_NO_DRIVER
	LIBMEM_STATUS_SUCCESS
	LIBMEM_STATUS_TIMEOUT
	LIBMEM_VERSION_NUMBER
	_libmem_driver_functions_t
	_libmem_driver_handle_t
	_libmem_driver_paged_write_ctrlblk_t
	_libmem_ext_driver_functions_t
	_libmem_flash_info_t
	_libmem_geometry_t
	_libmem_sector_info_t
	libmem_busy_handler_fn
	libmem_busy_handler_fn_t
	libmem_cfi_get_info
	libmem_crc32
	libmem_crc32_direct
	libmem_driver_crc32_fn_t
	libmem_driver_erase_fn_t
	libmem_driver_fill_fn_t
	libmem_driver_flush_fn_t
	libmem_driver_inrange_fn_t
	libmem_driver_lock_fn_t
	libmem_driver_page_write_fn_t
	libmem_driver_paged_write
	libmem_driver_paged_write_fill
	libmem_driver_paged_write_flush
	libmem_driver_paged_write_init
	libmem_driver_read_fn_t
	libmem_driver_unlock_fn_t
	libmem_driver_write_fn_t
	libmem_drivers
	libmem_enable_timeouts
	libmem_erase
	libmem_erase_all
	libmem_fill
	libmem_flush
	libmem_foreach_driver
	libmem_foreach_driver_fn_t
	libmem_foreach_sector
	libmem_foreach_sector_fn_t
	libmem_foreach_sector_in_range
	libmem_foreach_sector_in_range_ex
	libmem_get_driver
	libmem_get_driver_sector_size
	libmem_get_geometry_size
	libmem_get_number_of_regions
	libmem_get_number_of_sectors
	libmem_get_sector_info
	libmem_get_sector_number
	libmem_get_sector_size
	libmem_get_ticks
	libmem_get_ticks_fn
	libmem_get_ticks_fn_t
	libmem_lock
	libmem_lock_all
	libmem_read
	libmem_register_am29f200b_driver
	libmem_register_am29f200t_driver
	libmem_register_am29f400bb_driver
	libmem_register_am29f400bt_driver
	libmem_register_am29fxxx_driver
	libmem_register_am29lv010b_driver
	libmem_register_cfi_0001_16_driver
	libmem_register_cfi_0001_8_driver
	libmem_register_cfi_0002_16_driver
	libmem_register_cfi_0002_8_driver
	libmem_register_cfi_0003_16_driver
	libmem_register_cfi_0003_8_driver
	libmem_register_cfi_amd_driver
	libmem_register_cfi_driver
	libmem_register_cfi_intel_driver
	libmem_register_driver
	libmem_register_ram_driver
	libmem_register_sst39xFx00A_16_driver
	libmem_register_st_m28w320cb_driver
	libmem_register_st_m28w320ct_driver
	libmem_set_busy_handler
	libmem_ticks_per_second
	libmem_unlock
	libmem_unlock_all
	libmem_write

	<libmem_loader.h>
	LIBMEM_RPC_LOADER_FLAG_PARAM
	LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE
	LIBMEM_RPC_LOADER_MAGIC_NUMBER
	libmem_dcc_loader_set_param_fn_t
	libmem_dcc_loader_start
	libmem_dcc_rpc_loader_exit
	libmem_dcc_rpc_loader_start
	libmem_rpc_loader_exit
	libmem_rpc_loader_start

	Tasking Library User Guide
	Overview
	Tasks
	Event sets
	Semaphores
	Mutexes
	Message queues
	Byte queues
	Timers and interrupts
	Global interrupts control
	Timer support
	Interrupt service routines

	Memory areas
	Task scheduling example
	ARM implementation details
	Cortex-M implementation details
	CTL Revisions
	Complete API reference
	<ctl.h>
	CTL_BYTE_QUEUE_t
	CTL_ERROR_CODE_t
	CTL_EVENT_SET_t
	CTL_EVENT_WAIT_TYPE_t
	CTL_MEMORY_AREA_t
	CTL_MESSAGE_QUEUE_t
	CTL_MUTEX_t
	CTL_SEMAPHORE_t
	CTL_STATE_t
	CTL_TASK_t
	CTL_TIMEOUT_t
	CTL_TIME_t
	ctl_byte_queue_init
	ctl_byte_queue_num_free
	ctl_byte_queue_num_used
	ctl_byte_queue_post
	ctl_byte_queue_post_multi
	ctl_byte_queue_post_multi_nb
	ctl_byte_queue_post_nb
	ctl_byte_queue_receive
	ctl_byte_queue_receive_multi
	ctl_byte_queue_receive_multi_nb
	ctl_byte_queue_receive_nb
	ctl_byte_queue_setup_events
	ctl_current_time
	ctl_events_init
	ctl_events_pulse
	ctl_events_set_clear
	ctl_events_wait
	ctl_get_current_time
	ctl_global_interrupts_disable
	ctl_global_interrupts_enable
	ctl_global_interrupts_set
	ctl_handle_error
	ctl_increment_tick_from_isr
	ctl_interrupt_count
	ctl_last_schedule_time
	ctl_memory_area_allocate
	ctl_memory_area_free
	ctl_memory_area_init
	ctl_memory_area_setup_events
	ctl_message_queue_init
	ctl_message_queue_num_free
	ctl_message_queue_num_used
	ctl_message_queue_post
	ctl_message_queue_post_multi
	ctl_message_queue_post_multi_nb
	ctl_message_queue_post_nb
	ctl_message_queue_receive
	ctl_message_queue_receive_multi
	ctl_message_queue_receive_multi_nb
	ctl_message_queue_receive_nb
	ctl_message_queue_setup_events
	ctl_mutex_init
	ctl_mutex_lock
	ctl_mutex_unlock
	ctl_reschedule_on_last_isr_exit
	ctl_semaphore_init
	ctl_semaphore_signal
	ctl_semaphore_wait
	ctl_task_die
	ctl_task_executing
	ctl_task_init
	ctl_task_list
	ctl_task_remove
	ctl_task_reschedule
	ctl_task_restore
	ctl_task_run
	ctl_task_set_priority
	ctl_task_switch_callout
	ctl_time_increment
	ctl_timeout_wait
	ctl_timeslice_period

	Utilities Reference
	Compiler driver
	File naming conventions
	Command-line options
	-ansi (Warn about potential ANSI problems)
	-ar (Archive output)
	-arch (Set ARM architecture)
	-be (Big Endian)
	-c (Compile to object code, do not link)
	-d (Define linker symbol)
	-D (Define macro symbol)
	-e (Set entry point symbol)
	-E (Preprocess)
	-exceptions (Enable C++ Exception Support)
	-fabi (Floating Point Code Generation)
	-fpu (Set ARM FPU)
	-F (Set output format)
	-g (Generate debugging information)
	-g1 (Generate minimal debugging information)
	-help (Display help information)
	-io (Select I/O library implementation)
	-I (Define user include directories)
	-I- (Exclude standard include directories)
	-J (Define system include directories)
	-K (Keep linker symbol)
	-L (Set library directory path)
	-l- (Do not link standard libraries)
	-make (Make-style build)
	-M (Display linkage map)
	-n (Dry run, no execution)
	-nostderr (No stderr output)
	-o (Set output file name)
	-oabi (Use oabi compiler)
	-O (Optimize output)
	-printf (Select printf capability)
	-rtti (Enable C++ RTTI Support)
	-R (Set section name)
	-scanf (Select scanf capability)
	-sd (Treat double as float)
	-Thumb (Generate Thumb code)
	-v (Verbose execution)
	-w (Suppress warnings)
	-we (Treat warnings as errors)
	-Wa (Pass option to tool)
	-x (Specify file types)
	-y (Use project template)
	-z (Set project property)

	CrossBuild
	Building with a CrossStudio project file
	Building without a CrossStudio project file
	Command-line options
	-batch (Batch build)
	-config (Select build configuration)
	-clean (Remove output files)
	-define (Define macro)
	-echo (Show command lines)
	-file (Build a named file)
	-packagesdir (Specify packages directory)
	-project (Specify project to build)
	-property (Set project property)
	-rebuild (Always rebuild)
	-show (Dry run, don't execute)
	-solution (Specify solution to build)
	-studiodir (Specify CrossStudio directory)
	-template (Specify project template)
	-type (Specify project type)
	-verbose (Show build information)

	CrossLoad
	Command line debugging
	Managing breakpoints
	Displaying state
	Locating the current context
	Controlling execution

	Command-line options
	-break (Stop execution at symbol)
	-config (Specify build configuration)
	-debug (Enter command line debugging)
	-eraseall (Erase all flash memory)
	-filetype (Specify load file type)
	-help (Display help)
	-listfiletypes (Display supported load file types)
	-listprops (Display target properties)
	-listtargets (Display supported target interfaces)
	-loadaddress (Set load address)
	-loader (Specify loader configuration)
	-nodifferential (Inhibit differential download)
	-nodisconnect (Inhibit target disconnection)
	-nodownload (Inhibit download)
	-noverify (Inhibit verification)
	-packagesdir (Specify package directory)
	-project (Specify project name)
	-quiet (Be silent)
	-script (Execute debug script)
	-serve (Run semihosting server)
	-setprop (Set target interface property)
	-solution (Specify solution file)
	-studiodir (Specify Studio directory)
	-target (Specify target interface)
	-verbose (Display additional status)

	CrossScript
	Command-line options
	-define (Define global variable)
	-help (Show usage)
	-load (Load script file)
	-define (Verbose output)

	CrossScript classes
	Example uses

	Embed
	Header file generator
	Using the header generator
	Command line options
	-regbaseoffsets (Use offsets from peripheral base)
	-nobitfields (Inhibit bitfield macros)

	Package generator

	Appendices
	Technical
	File formats
	Memory Map file format
	Section Placement file format
	Project file format
	Project Templates file format
	Property Groups file format
	Package Description file format
	External Tools file format

	Property categories
	General Build Properties
	Combining Project Properties
	Compilation Properties
	Debugging Properties
	Externally Built Executable Project Properties
	File and Folder Properties
	Library Project Properties
	Executable Project Properties
	Staging Project Properties

	Macros
	System Macros
	Build Macros

	Script classes
	BinaryFile
	CWSys
	Debug
	ElfFile
	TargetInterface
	WScript

