
L4 Microkernel ::
Design Overview

Jim Huang ( 黃敬群 ) <jserv@0xlab.org>

Developer, 0xlab
July 17, 2012 / JuluOSDev

June 11, 2012 / CSIE, CSIE



Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2012 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and translations 
are welcome!

Latest update: July 17, 2012

http://creativecommons.org/licenses/by-sa/3.0/legalcode


On -Kernel Constructionμ

Jochen Liedtke (1953-2001)

15th ACM Symposium on Operating System 
Principles (1995)



Use Case: Low-cost 3G Handset

• Mobile Handsets
– Major applications runs on Linux

– 3G Modem software stack runs on RTOS 
domain

• Virtualization in multimedia Devices
– Reduces BOM (bill of materials)

– Enables the Reusability of legacy 
code/applications

– Reduces the system development time

• Instrumentation, Automation
– Run RTOS for Measurement and 

analysis

– Run a GPOS for Graphical Interface

Hypervisor



with Virtualization: single chiporiginal mobile phone:
two CPUs required

• Evoke’s UI functionalities including the 
touch screen is owned by the Linux 
apps while video rendering uses a 
rendering engine running on BREW.

• When a user requests a BREW app, 
Linux communciates with BREW in the 
other VM to start up the app. The 
BREW obtains access to the screen by 
using a frame buffer from a shared-
memory mapping.



Agenda • Myths of Microkernel
• Characteristics of 2nd generation 

microkernel
– memory, thread, IPC management

• Toward 3rd generation microkernel

• Real-world Deployment



Myths of Microkernel



Definition of Kernel
• The fundamental part of an Operating System.
• Responsible for providing secure access to the machine’s hardware for 

various programs.
• Responsible for deciding when and how long a program can use a certain 

hardware (multiplexing).



Monolithic  vs.  Microkernel
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Hybrid Kernel

• Combine the best of both worlds
– Speed and simple design of a monolithic kernel

– Modularity and stability of a microkernel

• Still similar to a monolithic kernel
– Disadvantages still apply here

• Example: Windows NT, BeOS, DragonFlyBSD



Exokernel

• Follows end-to-end principle
– Extremely minimal

– Fewest hardware abstractions as possible

– Just allocates physical resources to apps

• Old name(s): picokernel, nanokernel
• Example: MIT Exokernel, Nemesis, ExOS



Kernel Comparison

• Monolithic kernels
– Advantages: performance

– Disadvantages: difficult to debug and maintain

• Microkernels
– Advantages: more reliable and secure

– Disadvantages: more overhead

• Hybrid Kernels
– Advantages: benefits of monolithic and microkernels

– Disadvantages: same as monolithic kernels

• Exokernels
– Advantages: minimal and simple

– Disadvantages: more work for application developers



Definition of Microkernel

• A kernel technique that provides only the minimum 
OS services.
– Address Spacing

– Inter-process Communication (IPC)

– Thread Management

– Unique Identifiers

• All other services are done at user space 
independently.
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Microkernel Advantage

• A clear microkernel interface enforces a more 
modular system structure

• Servers can use the mechanisms provided by the 
microkernel like any other user program.

• So server malfunction is as isolated as any other user 
program’s malfunction

• The system is more flexible and tailorable. Different 
strategies and APIs, implemented by different severs, 
can coexist in the system



3 Generations of Microkernel

• Mach, Chorus (1985-1994)
– replace pipes with IPC (more general) 

– improved stability (vs monolithic kernels) 

– poor performance 

• L3 & L4 (1990-2001)
– Large improvements in IPC performance

– Written in assembly, poor portability

– only synchronus IPC (build async on top of sync) 

– very small kernel: more functions moved to userspace

• seL4, Coyotos, Nova (2000-present)
– platform independence 

– verification, security, multiple CPUs, etc.



Supervisor
Dispatches traps, interrupts, and exceptions delivered by 
hardware.

Real Time Executive
Controls allocation of processes and provides preemptive 
scheduling

Virtual Memory Manager
Manipulates VM hardware and memory resources.

IPC
Provides message Exchanging and Remote Procedure Calls 
(RPC).

1st Generation: Chorus Nucleus



Asynchronous IPC
Threads
Scheduling
Memory management
Resource access permissions
Device drivers (in some variants)
(All other functions are implemented outside kernel. )

API Size of Mach 3: 140 functions

1st Generation: CMU Mach



Checking resource access permissions on system 
calls.

Single user machines do not need to do this.

 Cache misses
Critical sections were too large.

Asynchronus IPC
Most calls only need synchronus IPC.

Synchronous IPC can be faster than asynchronous. 

Asynchronous IPC can be built on top of synchronous.

Virtual memory
How to prevent key processes from being paged out?

Mach microkernel performance issues



2nd Generation: L4

• “Radical” approach
• [Liedtke’93, Liedtke ‘95]:
• Strict minimality
• From-scratch design
• Fast primitives



3rd Generation: seL4

• [Elphinstone et al 2007, Klein et al 2009]
• Security-oriented design

– capability-based access control

– strong isolation

• Hardware resources subject to user-defined policies

– including kernel memory (no kernel heap)

– except time

– “Microhypervisor" concept

• Designed for formal verification



Classical L4 microkernel functionality

• Threads
• Scheduling
• Memory management
• (All other functions are implemented outside kernel)

• API size of L4:  7 functions
– Compare to 140 functions for Mach3



L4 Mimnimality Principle

• A concept is tolerated inside the microkernel only if 
moving it outside the kernel, i.e., permitting 
competing implementations, would prevent the 
implementation of the system's required functionality.

• Fred Books on conceptual integrity [Mythical Man 
Month]
– UNIX : Everything is a file

– Mach : IPC generalizes files

– L4 : Can it be put outside the kernel?



25

Architecture Version Text Total

X86 L4Ka 52k 98k

Itanium L4Ka 173k 417k

ARM OKL4 48k 78k

PPC-32 L4Ka 41k 135k

PPC-64 L4Ka 60k 205k

MIPS-64 NICTA 61k 100k

• Line of Code in OKL4
– ~9k LOC architecture-independent

– 0.5–6k LOC architecture/platform-specific

• Memory footprint kernel (not aggressively minimized):

– Using gcc (poor code density on RISC/EPIC architectures)

L4 Kernel size



Every system call terminates

No exceptions thrown

No arithmetic problems (e.g., overflow, divide by zero)

No null pointer de-references

No ill-typed pointer de-references

No memory leaks

No buffer overflows

No unchecked user arguments

Code injection attacks are impossible

Well-formed data structures

Correct book-keeping

No two objects overlap in memory

What properties do we expect from 
Kernel?



Characteristics of second 
generation microkernel:

memory, thread, IPC management





Tasks
• Represent unit of execution

– Execute user code (application)

– Execute kernel code (system calls, page 
faults, interrupts, exceptions)

• Subject to scheduling
– Quasi-parallel execution on one CPU

– Parallel execution on multiple CPUs

– Voluntarily switch to another thread 
possible

– Preemptive scheduling by the kernel 
according to certain parameters

• Associated with an address space
– Executes code in one task at one point 

in time

(Migration allows threads move to 
another task)

– Several threads can execute in one task

Threads
• Represent domain of protection and isolation

• Container for code, data and resources
• Address space: capabilities + memory 

pages
• management operations:

– Map: share page with other address 
space

– Grant: give page to other address 
space

– Unmap: revoke previously mapped 
page



L4 uniprocessor microkernel
Thread

Abstraction and unit of
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Identified by thread ID
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L4 uniprocessor micro kernel
Thread switch
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Kernel stack Kernel stack
▪
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L4 uniprocessor micro kernel
Scheduling

Scheduling implemented by kernel, based on 
priorities
Timeslice donation



Address Space
3 management operations

Map/Unmap
Share/revoke page with other address space

Grant
give page to other address space

Flush
The owner of an address space can flush any of its pages.

Pager Pager User Address space

Map

Map

Map

Grant



Recursive Address Space
(abandoned by seL4)



• Direct and indirect data copy
• UTCB message (special area)
• Special case: register-only message
• Pagefaults during user-level memory access possible

Messages: Copy Data



APP

P1

P0

App Fault P1 touches its
own page and
faults

P0 maps
then P1

• Page Faults are mapped to IPC
– Pager is special thread that receives page faults

– Page fault IPC cannot trigger another page fault

• Kernel receives the flexpage from pager and inserts mapping 
into page table of application

• Other faults normally terminate threads

Page Fault Handling



APP's address space Pager's address space

Data

Code

Pager Memory

Pager Code

Micro Kernel Page-Fault
handler

Call( .., fault address, fault eip, .. )

Send( app_id, fpage(,,),… )

Page Fault Handling



• Used to transfer memory pages and capabilities
• Kernel manipulates page tables
• Used to implement the map/grant operations

Messages: Map Reference



• Need to control who can send data to whom
– Security and isolation

– Access to resources

• Approaches
– IPC-redirection/introspection

– Central vs. Distributed policy and mechanism

– ACL-based vs. capability-based

Communications & Resource Control



Toward 3rd generation microkernel



Unsolved Problems in original L4

• L4 solved performance issue [Härtig et al, SOSP’97]
– “... but left a number of security issues unsolved"

• Problems addressed by seL4: ad-hoc approach to 
protection and resource management
– Global thread name space → covert channels

– Threads as IPC targets → insufficient encapsulation

– Single kernel memory pool → DoS attacks

– Insufficient delegation of authority →  limited 
flexibility, performance





How seL4 solves problem by designs

• Isolation: Memory management is user-level responsibility
– Kernel never allocates memory (post-boot)

– Kernel objects controlled by user-mode servers

• Performance: Memory management is fully delegatable
– Supports hierarchical system design

– Enabled by capability-based access control

• Realtime:  “Incremental consistency” design pattern
– Fast transitions between consistent states

– Restartable operations with progress guarantee

• Verification: No concurrency in the kernel
– Interrupts never enabled in kernel

– Interruption points to bound latencies

– Clustered multikernel design for multicores



seL4 in the first sight

• Formal verification
– Functional correctness

– Security/safety properties

• No kernel heap: all memory left after 
boot is handed to userland
– Resource manager can delegate to 

subsystems

– Operations requiring memory 
explicitly provide memory to kernel

• Result: strong isolation of subsystems 
and high performance
– Operate within delegated resources

– No interference



Move to Capability based design

• Don't need global names (task/thread IDs)
– Names (or IDs) are only valid within a task and have 

no meaning elsewhere

• Kernel objects are referenced through local IDs,
comparable to POSIX file descriptors or handles

• Creating a new (kernel) object returns an index into a 
task-local table, where in turn the pointer to the object 
is stored

• Kernel protects this capability table, therefore 
unforgeable



Capabilities



Capability space

• In-kernel memory table with pointers to kernel objects
• Sending a message to thread A merely requires the 

sender to have a capability to the portal cap
• Sender does not know which thread/task will receive it
• Receiver does not know who sent it (in general)
• Separation of subsystems, combinable, independent



Capabilities

• Kernel objects represent resources and communication 
channels

• Capability
– Reference to kernel object

– Associated with access rights

– Can be mapped from task to another task

• Capability table is task-local data structure inside the kernel
– Similar to page table

– Valid entries contain capabilities

• Capability handle is index number to reference entry into 
capability table

– Similar to file handle of POSIX

• Mapping capabilities establishes a new valid entry into
the capability table



Importance of Capabilities

• Everything is a file → Everything is a capability
• Object capabilities

– Tasks, threads, IPC portals, factories, semaphores

– Handles/pointers to kernel objects, can be created, 
delegated and destroyed

• Memory capabilities
– Resembles virtual memory pages

– Sending (mapping) a memory capability established shared 
memory between sender and receiver

• IO capabilities
– Abstraction for access to IO ports, delegating IO caps allows 

the receiving Task/Address space to access denoted IO 
ports



seL4 concpts

• Capabilities (Caps)
– mediate access

• Kernel objects:

– Threads (thread-control blocks, TCBs)

– Address spaces (page table objects, PDs, Pts)

– IPC endpoints (EPs, AsyncEPs)

– Capability spaces (Cnodes)

– Frames

– Interrupt objects

– Untyped memory

• System calls

– Send, Wait (and variants)

– Yield



Revised IPC

• OS services provided by (protected) user-level server 
processes
– invoked by IPC

• seL4 IPC uses a handshake through endpoints:
– Transfer points without storage capacity

– Message must be transferred instantly

• One partner may have to block
• Single copy user  user by kernel➞

• Two endpoint types:
– Synchronous (Endpoint)

– asynchronous (AsyncEP)



L4 Revisions



L4 History: V2 API
Original version by Jochen Liedtke (GMD) » 93–95

“Version 2” API
 i486 assembler
 IPC 20 times faster than Mach [SOSP 93, 95]
 Proprietary code base (GMD)

Other L4 V2 implementations:
L4/MIPS64: assembler + C (UNSW) 95–97

Fastest kernel on single-issue CPU (100 cycles on MIPS R4600)
 Open source (GPL)

L4/Alpha: PAL + C (Dresden/UNSW), 95–97
First released SMP version (UNSW)
Open source (GPL)

Fiasco (Pentium): C++ (Dresden), 97–99, ongoing development
Open source (GPL)

53



L4 History: X.1 API
Experimental “Version X” API

Improved hardware abstraction
Various experimental features (performance, security, 
generality)
Portability experiments

Implementations
Pentium: assembler, Liedtke (IBM), 97–98

Proprietary

Hazelnut (Pentium+ARM), C, Liedtke et al (Karlsruhe), 98–
99

Open source (GPL)

54



L4 History: X.2/V4 API
“Version 4” (X.2) API, 02

Portability, API improvements

L4Ka::Pistachio, C++ (plus assembler “fast path”)
x86, PPC-32, Itanium (Karlsruhe), 02–03

Fastest ever kernel (36 cycles on Itanium, NICTA/UNSW)

MIPS64, Alpha (NICTA/UNSW), 03
Same performance as V2 kernel (100 cycles single issue)

ARM, PPC-64 (NICTA/UNSW), x86-64 (Karlsruhe), 03–04
Open source (BSD license)

55



Real-world Deployment:
Virtualization drives performance 

improvements



Linux source has two cleanly separated parts
Architecture dependent
Architecture independent

In L4Linux
Architecture dependent code is modified for L4
Architecture independent part is unchanged
L4 not specifically modified to support Linux

L4Linux
where virtualization comes from



Linux kernel as L4 user service
Runs as an L4 thread in a single L4 address space
Creates L4 threads for its user processes
Maps parts of its address space to user process threads 
(using L4 primitives)
Acts as pager thread for its user threads
Has its own logical page table
Multiplexes its own single thread (to avoid having to 
change Linux source code)

L4Linux
where virtualization comes from



The statically linked and shared C libraries are 
modified

Systems calls in the lib call the Linux kernel using IPC

For unmodified native Linux applications, there is a 
“trampoline”

The application traps
Control bounces to a user-level exception handler
The handler calls the modified shared library
Binary compatible

L4Linux
where virtualization comes from



L4Linux [Härtig et al., SOSP’97]
5–10% overhead on macro-BMs

 6–7% overhead on kernel compile

MkLinux (Linux on Mach):
27% overhead on kernel compile

17% overhead with Linux in kernel

Performance is not acceptable!



L4 implementations on 
embedded processors

ARM, MIPS

Wombat: portable 
virtualized Linux for 
embedded systems

ARMv4/v5 thanks to fast 
context-switching tricks

NICTA L4 / OKL4



LmBench shows near native
performance with OKL4 3.0
on ARMv7 target

NetPerf
fully-loaded CPU and the
throughput degradation of the
virtualized is only 3% and 4%.



Codezero hypervisor

• Optimized for latest ARM cores (Cortex-A9/A15)
• L4 microkernel based design, written from scratch
• Capability based dynamic resource management
• Container oriented driver model: no modifications 

required for Linux





Micro-hypervisor

• Microvisor – OKL4 4.0
• Research projects such as NOVA, Coyotos, and 

seL4
• Aided by virtualizable ISA

• Microhypervisor
– the “kernel” part

– provides isolation

– mechanisms, no policies

– enables safe access to 
virtualization features to 
userspace

• VMM
– the “userland” part

– CPU emulation

– device emulation





Advantage of NOA architecture:
Reduce TCB of each VM

• Micro-hypervisor provides low-level protection 
domains
– address spaces

– virtual machines

• VM exits are relayed to VMM as IPC with selective 
guest state

• one VMM per guest in (root mode) userspace:
– possibly specialized VMMs to reduce attack surface

– only one generic VMM implemented



Adaptation/Optimizations



Process-orientation wastes RAM
Replaced by single-stack (event-driven) approach

Virtual TCB array wastes VAS, TLB entries
without performance benefits on modern hardware

Capabilities are better than thread UIDs

Provide uniform resource control model & avoid 
covert channels

Also: IPC timeouts are useless
Replaced by block/poll bit

Virtualization is essential
Re-think kernel abstractions

Learned from NICTA L4



Memory management
Page-fault handling
IPC Path
Mapping database
Base of the kernel debugger
Most code of L4 abstractions

Thread and address-space management

Generic parts in L4



Basic data types
Processor abstraction

IRQ control, sleep-mode support

Atomic operations
Page tables
Parts of L4 abstractions

Switch of CPU and FPU state

CPU specific optimizations

Processor-specific parts in L4



Processor modes
mapping to kernel mode and user mode, mode switches

Processor state
context switches

MMU/TLB
specific address-space/page-table code

Caches
specific cache-consistency handling

Cache consistency must be maintained (critical for

task switches)

IRQ controller
abstract controller interface

Hotspot in performance view



Optimized data structures and code
Minimize memory accesses

Minimize cache and TLB footprint

Minimize number of instructions for frequently used 
operations

Optimizations often depend on knowledge of HW
Cache size / associativity

TLB size / features (e.g., supported page sizes)

Available instructions in the ISA

Generic optimizations



http://0xlab.org
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