
L4 Microkernel ::
Design Overview

Jim Huang (黃敬群) <jserv@0xlab.org>

Developer, 0xlab
July 17, 2012 / JuluOSDev

June 11, 2012 / CSIE, CSIE

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2012 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and translations
are welcome!

Latest update: July 17, 2012

http://creativecommons.org/licenses/by-sa/3.0/legalcode

On -Kernel Constructionμ

Jochen Liedtke (1953-2001)

15th ACM Symposium on Operating System
Principles (1995)

Use Case: Low-cost 3G Handset

• Mobile Handsets
– Major applications runs on Linux

– 3G Modem software stack runs on RTOS
domain

• Virtualization in multimedia Devices
– Reduces BOM (bill of materials)

– Enables the Reusability of legacy
code/applications

– Reduces the system development time

• Instrumentation, Automation
– Run RTOS for Measurement and

analysis

– Run a GPOS for Graphical Interface

Hypervisor

with Virtualization: single chiporiginal mobile phone:
two CPUs required

• Evoke’s UI functionalities including the
touch screen is owned by the Linux
apps while video rendering uses a
rendering engine running on BREW.

• When a user requests a BREW app,
Linux communciates with BREW in the
other VM to start up the app. The
BREW obtains access to the screen by
using a frame buffer from a shared-
memory mapping.

Agenda • Myths of Microkernel
• Characteristics of 2nd generation

microkernel
– memory, thread, IPC management

• Toward 3rd generation microkernel

• Real-world Deployment

Myths of Microkernel

Definition of Kernel
• The fundamental part of an Operating System.
• Responsible for providing secure access to the machine’s hardware for

various programs.
• Responsible for deciding when and how long a program can use a certain

hardware (multiplexing).

Monolithic vs. Microkernel

Application Application

User mode

Supervisor mode

Hardware

Monolithic kernel

FS

Network stack

Driver Thread Control

H/W management

System call : open_File

Application Application

User mode

Supervisor mode

Hardware

System call : open_File
Thread Control

H/W management
IPC

FS
Network

Stack

Device
Driver

Monolithic vs. Microkernel

Hybrid Kernel

• Combine the best of both worlds
– Speed and simple design of a monolithic kernel

– Modularity and stability of a microkernel

• Still similar to a monolithic kernel
– Disadvantages still apply here

• Example: Windows NT, BeOS, DragonFlyBSD

Exokernel

• Follows end-to-end principle
– Extremely minimal

– Fewest hardware abstractions as possible

– Just allocates physical resources to apps

• Old name(s): picokernel, nanokernel
• Example: MIT Exokernel, Nemesis, ExOS

Kernel Comparison

• Monolithic kernels
– Advantages: performance

– Disadvantages: difficult to debug and maintain

• Microkernels
– Advantages: more reliable and secure

– Disadvantages: more overhead

• Hybrid Kernels
– Advantages: benefits of monolithic and microkernels

– Disadvantages: same as monolithic kernels

• Exokernels
– Advantages: minimal and simple

– Disadvantages: more work for application developers

Definition of Microkernel

• A kernel technique that provides only the minimum
OS services.
– Address Spacing

– Inter-process Communication (IPC)

– Thread Management

– Unique Identifiers

• All other services are done at user space
independently.

Device Drivers User Program
Memory
Managers

User Mode

Address spacing Thread
Management
and IPC

Unique
Identifiers

Microkernel Mode

Hardware

Microkernel

Microkernel Advantage

• A clear microkernel interface enforces a more
modular system structure

• Servers can use the mechanisms provided by the
microkernel like any other user program.

• So server malfunction is as isolated as any other user
program’s malfunction

• The system is more flexible and tailorable. Different
strategies and APIs, implemented by different severs,
can coexist in the system

3 Generations of Microkernel

• Mach, Chorus (1985-1994)
– replace pipes with IPC (more general)

– improved stability (vs monolithic kernels)

– poor performance

• L3 & L4 (1990-2001)
– Large improvements in IPC performance

– Written in assembly, poor portability

– only synchronus IPC (build async on top of sync)

– very small kernel: more functions moved to userspace

• seL4, Coyotos, Nova (2000-present)
– platform independence

– verification, security, multiple CPUs, etc.

Supervisor
Dispatches traps, interrupts, and exceptions delivered by
hardware.

Real Time Executive
Controls allocation of processes and provides preemptive
scheduling

Virtual Memory Manager
Manipulates VM hardware and memory resources.

IPC
Provides message Exchanging and Remote Procedure Calls
(RPC).

1st Generation: Chorus Nucleus

Asynchronous IPC
Threads
Scheduling
Memory management
Resource access permissions
Device drivers (in some variants)
(All other functions are implemented outside kernel.)

API Size of Mach 3: 140 functions

1st Generation: CMU Mach

Checking resource access permissions on system
calls.

Single user machines do not need to do this.

 Cache misses
Critical sections were too large.

Asynchronus IPC
Most calls only need synchronus IPC.

Synchronous IPC can be faster than asynchronous.

Asynchronous IPC can be built on top of synchronous.

Virtual memory
How to prevent key processes from being paged out?

Mach microkernel performance issues

2nd Generation: L4

• “Radical” approach
• [Liedtke’93, Liedtke ‘95]:
• Strict minimality
• From-scratch design
• Fast primitives

3rd Generation: seL4

• [Elphinstone et al 2007, Klein et al 2009]
• Security-oriented design

– capability-based access control

– strong isolation

• Hardware resources subject to user-defined policies

– including kernel memory (no kernel heap)

– except time

– “Microhypervisor" concept

• Designed for formal verification

Classical L4 microkernel functionality

• Threads
• Scheduling
• Memory management
• (All other functions are implemented outside kernel)

• API size of L4: 7 functions
– Compare to 140 functions for Mach3

L4 Mimnimality Principle

• A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e., permitting
competing implementations, would prevent the
implementation of the system's required functionality.

• Fred Books on conceptual integrity [Mythical Man
Month]
– UNIX : Everything is a file

– Mach : IPC generalizes files

– L4 : Can it be put outside the kernel?

25

Architecture Version Text Total

X86 L4Ka 52k 98k

Itanium L4Ka 173k 417k

ARM OKL4 48k 78k

PPC-32 L4Ka 41k 135k

PPC-64 L4Ka 60k 205k

MIPS-64 NICTA 61k 100k

• Line of Code in OKL4
– ~9k LOC architecture-independent

– 0.5–6k LOC architecture/platform-specific

• Memory footprint kernel (not aggressively minimized):

– Using gcc (poor code density on RISC/EPIC architectures)

L4 Kernel size

Every system call terminates

No exceptions thrown

No arithmetic problems (e.g., overflow, divide by zero)

No null pointer de-references

No ill-typed pointer de-references

No memory leaks

No buffer overflows

No unchecked user arguments

Code injection attacks are impossible

Well-formed data structures

Correct book-keeping

No two objects overlap in memory

What properties do we expect from
Kernel?

Characteristics of second
generation microkernel:

memory, thread, IPC management

Tasks
• Represent unit of execution

– Execute user code (application)

– Execute kernel code (system calls, page
faults, interrupts, exceptions)

• Subject to scheduling
– Quasi-parallel execution on one CPU

– Parallel execution on multiple CPUs

– Voluntarily switch to another thread
possible

– Preemptive scheduling by the kernel
according to certain parameters

• Associated with an address space
– Executes code in one task at one point

in time

(Migration allows threads move to
another task)

– Several threads can execute in one task

Threads
• Represent domain of protection and isolation

• Container for code, data and resources
• Address space: capabilities + memory

pages
• management operations:

– Map: share page with other address
space

– Grant: give page to other address
space

– Unmap: revoke previously mapped
page

L4 uniprocessor microkernel
Thread

Abstraction and unit of
execution
Identified by thread ID
Consist of

Instruction pointer
Stack
Registers, flags…

Thread state

L4 manages (preserve) only
IP, SP and registers

Task's
address space

Code

Tread
execution
paths

Data

Stack

L4 uniprocessor micro kernel
Thread switch

MicroKernel

Kernel stack Kernel stack
▪
▪

▪
▪

State State

Code
▪
▪

Stack

Code
▪
▪

Stack

CPU

I P

S P

Flags

Thread A Thread B

TCB A TCB B

Interrupt

Kernel
Code

IP/SP/Flags.. IP/SP/Flags..

L4 uniprocessor micro kernel
Scheduling

Scheduling implemented by kernel, based on
priorities
Timeslice donation

Address Space
3 management operations

Map/Unmap
Share/revoke page with other address space

Grant
give page to other address space

Flush
The owner of an address space can flush any of its pages.

Pager Pager User Address space

Map

Map

Map

Grant

Recursive Address Space
(abandoned by seL4)

• Direct and indirect data copy
• UTCB message (special area)
• Special case: register-only message
• Pagefaults during user-level memory access possible

Messages: Copy Data

APP

P1

P0

App Fault P1 touches its
own page and
faults

P0 maps
then P1

• Page Faults are mapped to IPC
– Pager is special thread that receives page faults

– Page fault IPC cannot trigger another page fault

• Kernel receives the flexpage from pager and inserts mapping
into page table of application

• Other faults normally terminate threads

Page Fault Handling

APP's address space Pager's address space

Data

Code

Pager Memory

Pager Code

Micro Kernel Page-Fault
handler

Call(.., fault address, fault eip, ..)

Send(app_id, fpage(,,),…)

Page Fault Handling

• Used to transfer memory pages and capabilities
• Kernel manipulates page tables
• Used to implement the map/grant operations

Messages: Map Reference

• Need to control who can send data to whom
– Security and isolation

– Access to resources

• Approaches
– IPC-redirection/introspection

– Central vs. Distributed policy and mechanism

– ACL-based vs. capability-based

Communications & Resource Control

Toward 3rd generation microkernel

Unsolved Problems in original L4

• L4 solved performance issue [Härtig et al, SOSP’97]
– “... but left a number of security issues unsolved"

• Problems addressed by seL4: ad-hoc approach to
protection and resource management
– Global thread name space → covert channels

– Threads as IPC targets → insufficient encapsulation

– Single kernel memory pool → DoS attacks

– Insufficient delegation of authority → limited
flexibility, performance

How seL4 solves problem by designs

• Isolation: Memory management is user-level responsibility
– Kernel never allocates memory (post-boot)

– Kernel objects controlled by user-mode servers

• Performance: Memory management is fully delegatable
– Supports hierarchical system design

– Enabled by capability-based access control

• Realtime: “Incremental consistency” design pattern
– Fast transitions between consistent states

– Restartable operations with progress guarantee

• Verification: No concurrency in the kernel
– Interrupts never enabled in kernel

– Interruption points to bound latencies

– Clustered multikernel design for multicores

seL4 in the first sight

• Formal verification
– Functional correctness

– Security/safety properties

• No kernel heap: all memory left after
boot is handed to userland
– Resource manager can delegate to

subsystems

– Operations requiring memory
explicitly provide memory to kernel

• Result: strong isolation of subsystems
and high performance
– Operate within delegated resources

– No interference

Move to Capability based design

• Don't need global names (task/thread IDs)
– Names (or IDs) are only valid within a task and have

no meaning elsewhere

• Kernel objects are referenced through local IDs,
comparable to POSIX file descriptors or handles

• Creating a new (kernel) object returns an index into a
task-local table, where in turn the pointer to the object
is stored

• Kernel protects this capability table, therefore
unforgeable

Capabilities

Capability space

• In-kernel memory table with pointers to kernel objects
• Sending a message to thread A merely requires the

sender to have a capability to the portal cap
• Sender does not know which thread/task will receive it
• Receiver does not know who sent it (in general)
• Separation of subsystems, combinable, independent

Capabilities

• Kernel objects represent resources and communication
channels

• Capability
– Reference to kernel object

– Associated with access rights

– Can be mapped from task to another task

• Capability table is task-local data structure inside the kernel
– Similar to page table

– Valid entries contain capabilities

• Capability handle is index number to reference entry into
capability table

– Similar to file handle of POSIX

• Mapping capabilities establishes a new valid entry into
the capability table

Importance of Capabilities

• Everything is a file → Everything is a capability
• Object capabilities

– Tasks, threads, IPC portals, factories, semaphores

– Handles/pointers to kernel objects, can be created,
delegated and destroyed

• Memory capabilities
– Resembles virtual memory pages

– Sending (mapping) a memory capability established shared
memory between sender and receiver

• IO capabilities
– Abstraction for access to IO ports, delegating IO caps allows

the receiving Task/Address space to access denoted IO
ports

seL4 concpts

• Capabilities (Caps)
– mediate access

• Kernel objects:

– Threads (thread-control blocks, TCBs)

– Address spaces (page table objects, PDs, Pts)

– IPC endpoints (EPs, AsyncEPs)

– Capability spaces (Cnodes)

– Frames

– Interrupt objects

– Untyped memory

• System calls

– Send, Wait (and variants)

– Yield

Revised IPC

• OS services provided by (protected) user-level server
processes
– invoked by IPC

• seL4 IPC uses a handshake through endpoints:
– Transfer points without storage capacity

– Message must be transferred instantly

• One partner may have to block
• Single copy user user by kernel➞

• Two endpoint types:
– Synchronous (Endpoint)

– asynchronous (AsyncEP)

L4 Revisions

L4 History: V2 API
Original version by Jochen Liedtke (GMD) » 93–95

“Version 2” API
 i486 assembler
 IPC 20 times faster than Mach [SOSP 93, 95]
 Proprietary code base (GMD)

Other L4 V2 implementations:
L4/MIPS64: assembler + C (UNSW) 95–97

Fastest kernel on single-issue CPU (100 cycles on MIPS R4600)
 Open source (GPL)

L4/Alpha: PAL + C (Dresden/UNSW), 95–97
First released SMP version (UNSW)
Open source (GPL)

Fiasco (Pentium): C++ (Dresden), 97–99, ongoing development
Open source (GPL)

53

L4 History: X.1 API
Experimental “Version X” API

Improved hardware abstraction
Various experimental features (performance, security,
generality)
Portability experiments

Implementations
Pentium: assembler, Liedtke (IBM), 97–98

Proprietary

Hazelnut (Pentium+ARM), C, Liedtke et al (Karlsruhe), 98–
99

Open source (GPL)

54

L4 History: X.2/V4 API
“Version 4” (X.2) API, 02

Portability, API improvements

L4Ka::Pistachio, C++ (plus assembler “fast path”)
x86, PPC-32, Itanium (Karlsruhe), 02–03

Fastest ever kernel (36 cycles on Itanium, NICTA/UNSW)

MIPS64, Alpha (NICTA/UNSW), 03
Same performance as V2 kernel (100 cycles single issue)

ARM, PPC-64 (NICTA/UNSW), x86-64 (Karlsruhe), 03–04
Open source (BSD license)

55

Real-world Deployment:
Virtualization drives performance

improvements

Linux source has two cleanly separated parts
Architecture dependent
Architecture independent

In L4Linux
Architecture dependent code is modified for L4
Architecture independent part is unchanged
L4 not specifically modified to support Linux

L4Linux
where virtualization comes from

Linux kernel as L4 user service
Runs as an L4 thread in a single L4 address space
Creates L4 threads for its user processes
Maps parts of its address space to user process threads
(using L4 primitives)
Acts as pager thread for its user threads
Has its own logical page table
Multiplexes its own single thread (to avoid having to
change Linux source code)

L4Linux
where virtualization comes from

The statically linked and shared C libraries are
modified

Systems calls in the lib call the Linux kernel using IPC

For unmodified native Linux applications, there is a
“trampoline”

The application traps
Control bounces to a user-level exception handler
The handler calls the modified shared library
Binary compatible

L4Linux
where virtualization comes from

L4Linux [Härtig et al., SOSP’97]
5–10% overhead on macro-BMs

 6–7% overhead on kernel compile

MkLinux (Linux on Mach):
27% overhead on kernel compile

17% overhead with Linux in kernel

Performance is not acceptable!

L4 implementations on
embedded processors

ARM, MIPS

Wombat: portable
virtualized Linux for
embedded systems

ARMv4/v5 thanks to fast
context-switching tricks

NICTA L4 / OKL4

LmBench shows near native
performance with OKL4 3.0
on ARMv7 target

NetPerf
fully-loaded CPU and the
throughput degradation of the
virtualized is only 3% and 4%.

Codezero hypervisor

• Optimized for latest ARM cores (Cortex-A9/A15)
• L4 microkernel based design, written from scratch
• Capability based dynamic resource management
• Container oriented driver model: no modifications

required for Linux

Micro-hypervisor

• Microvisor – OKL4 4.0
• Research projects such as NOVA, Coyotos, and

seL4
• Aided by virtualizable ISA

• Microhypervisor
– the “kernel” part

– provides isolation

– mechanisms, no policies

– enables safe access to
virtualization features to
userspace

• VMM
– the “userland” part

– CPU emulation

– device emulation

Advantage of NOA architecture:
Reduce TCB of each VM

• Micro-hypervisor provides low-level protection
domains
– address spaces

– virtual machines

• VM exits are relayed to VMM as IPC with selective
guest state

• one VMM per guest in (root mode) userspace:
– possibly specialized VMMs to reduce attack surface

– only one generic VMM implemented

Adaptation/Optimizations

Process-orientation wastes RAM
Replaced by single-stack (event-driven) approach

Virtual TCB array wastes VAS, TLB entries
without performance benefits on modern hardware

Capabilities are better than thread UIDs

Provide uniform resource control model & avoid
covert channels

Also: IPC timeouts are useless
Replaced by block/poll bit

Virtualization is essential
Re-think kernel abstractions

Learned from NICTA L4

Memory management
Page-fault handling
IPC Path
Mapping database
Base of the kernel debugger
Most code of L4 abstractions

Thread and address-space management

Generic parts in L4

Basic data types
Processor abstraction

IRQ control, sleep-mode support

Atomic operations
Page tables
Parts of L4 abstractions

Switch of CPU and FPU state

CPU specific optimizations

Processor-specific parts in L4

Processor modes
mapping to kernel mode and user mode, mode switches

Processor state
context switches

MMU/TLB
specific address-space/page-table code

Caches
specific cache-consistency handling

Cache consistency must be maintained (critical for

task switches)

IRQ controller
abstract controller interface

Hotspot in performance view

Optimized data structures and code
Minimize memory accesses

Minimize cache and TLB footprint

Minimize number of instructions for frequently used
operations

Optimizations often depend on knowledge of HW
Cache size / associativity

TLB size / features (e.g., supported page sizes)

Available instructions in the ISA

Generic optimizations

http://0xlab.org

	Slide 1
	Rights to copy
	Slide 3
	Virtualization Use Cases (cntd…)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Hybrid Kernels
	Exokernels
	Summary: Kernels
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	L4Linux
	Slide 58
	L4Linux – System Calls
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

