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Preface

This book covers the design and use of finite state-machines (FSMs) in digital systems. It

includes stand-alone applications and systems that use microprocessors, microcontrollers, and

memorycontrolleddirectly from theFSM,aswell asother commonsituations found inpractical

digital systems. The emphasis is on obtaining a good understanding of FSMs, how they can be

used, and where to use them.

Thepopular andwidelyusedVeriloghardwaredescription language (HDL) is introducedand

applied to the description andverificationofmanyof the designs in the book. In addition to logic

gate andBooleanequation-level stylesofVerilogdescription, there is alsoachapter covering the

useofHDLat the so-calledbehavioural level,wherebyadesign is describedusing thehigh-level

features provided by Verilog HDL.

There is also a chapter using the One Hot technique, commonly used to implement FSMs in

field programmable gate arrays with examples on the development of dynamic memory access

(DMA) controllers and data sequence detectors. Asynchronous (event-driven) FSMs not

requiring a clock signal are covered in achapter using a technique that allows rapiddevelopment

of reliable systems. A chapter on the use of Petri-net-based controllers is included, allowing

parallel-based digital FSMs to be developed.

In the development of digital systems, microcontrollers have been used for many years to

control digital inputs and outputs, as well as process analogue information. Now, using the

techniques in this book, FSM-based designs can be implemented using a deterministic model,

the state diagram, as a design aid. Once developed, the state diagram can be used to implement

the final system using either Boolean equations obtained directly from the state diagram, or a

behaviouralVerilogHDLdescription, againdevelopeddirectly fromthestatediagram.External

devices, such as memory, address counters and comparators, can be implemented either from

the Boolean equations that define their operation or via behavioural-level descriptions in

Verilog HDL.

The book is targeted at undergraduate final-year students of Electrical, Electronic, and

Communications Electronic Engineering, as well as postgraduate students and practising

Electronic Design Engineers who want to know how to develop FSM-based systems quickly.

The bookwill assume an understanding of basic logic design and Boolean algebra, as would be

expected of a final-year undergraduate. The book sequence follows.



The first three chapters are in the form of a linear frame programmed learning format to help

the reader learn the essential concepts of synchronous FSM design.

This set of notes has been used with undergraduate final-year students at our university for

some years now and has been well received by the students. These chapters cover the idea of

basic FSM design and synthesis. Once this is covered, the book reverts to a more familiar text.

However, the first three chapters, being linear, can be read in the same style as themore familiar

text if the reader desires.

A breakdown of the chapters in the book now follows.

Chapter 1 contains an introduction to FSMs, the Mealy and Moore models of an FSM,

differencesbetweensynchronous (clock-driven)FSMsandasynchronous (event-driven)FSMs,

the state diagram and how it can be used to indicate sequential behaviour and the inputs and

outputs of a system. This follows with a number of examples of FSMs to illustrate the way in

which they can be developed to meet particular specifications.

Chapter 2 covers the use of external hardware and how this hardware can be controlled by the

FSM. The examples include how to create wait states using external timers, how to control

analogue-to-digital converters, and memory devices. This opens up the possibilities of FSM-

based systems that are not normally covered in other books.

Chapter 3 is a continuationof theprogrammed learning text, looking at synthesizationof state

diagrams using T flip-flops and D flip-flops, as well as initialization techniques.

The remaining chapters of the book will be in a more conventional format.

Chapter 4 covers synchronous (clock-driven) FSM examples, some with simulation. This

chapter gives some practical examples commonly found in real applications, such as a digital

waveform synthesizer and asynchronous serial transmit and receive blocks.

Chapter 5 is an introduction to theuseof ‘OneHotting’ in synchronousFSMdesign.Amongst

the examples covered is a DMA controller and serial bit stream code detection.

Chapter 6 is an introduction to Verilog HDL and how to use it at the gate level and the

Boolean equation level, together with how to combine different modules to form a complete

system.

Chapter 7 introduces the basic lexical elements of the Verilog HDL. Emphasis is placed on

those aspects of the language that support the description of synthesizable combinational and

sequential logic.

Chapter 8 takes a more detailed look at the Verilog HDL, with emphasis on behavioural

modelling of FSM designs. It covers using an HDL to implement synchronous FSMs at the

behavioural level - with examples.

Chapter 9 is an introduction to asynchronous (event-driven) design of FSMs from initial

concepts through to the design of asynchronous FSMs to given specifications. This will also

include a brief discussion of race problems with asynchronous designs and how to overcome

them.

Chapter 10 is an introduction to synchronous Petri nets, and how they can be used to

implement both sequential and parallel FSMs. Petri nets allow the design of parallel FSMs

with synchronized control. This chapter shows how a Petri net can be designed and synthesized

as an electronic circuit using D-type flip-flops.

Each chapter contains exampleswith solutions,manyofwhich have been used by the authors

in real practical systems.

There is a CD-ROM included with the book containing a digital simulation program to

aid the reader in learning and verifying the many examples given in the book. The program

xii Preface



is based on Verilog HDL. This tool has been used to simulate most of the examples in the

book.

Also on the CD-ROM are folders containing many of the book’s examples, complete with

test-bench descriptions to allow the simulations to be run directly on a PC-based computer.

Peter Minns BSc(H) PhD CEng MIET

Ian Elliott BSc(H) MPhil CEng MIET

Newcastle Upon Tyne
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1
Introduction to Finite-State
Machines and State Diagrams
for the Design of Electronic
Circuits and Systems

1.1 INTRODUCTION

This chapter, andChapters 2 and3, iswritten in the formof a linear frame, programmed learning

text. The reason for this is to help the reader to learn the basic skills required to design clocked

finite-state machines (FSMs) so that they can develop their own designs based on traditional T

flip-flops and D flip-flops. Later, other techniques will be introduced, such as One Hot,

asynchronous FSMs, and Petri nets; these will be developed along the same lines as the work

covered in this chapter, but not using the linear frame, programmed learning format.

The text is organized into frames, each frame following on consecutively from the previous

one, butat times the readermaybe redirected toother frames,dependingupon the response to the

questions asked. It is possible, however, to read the programmed learning chapters as a normal

book.

There are tasks set throughout the frames to test your understanding of the material.

Tomake it easier to identify input andoutput signals, inputswill be in lowercaseandoutputs in

uppercase.

Please read the Chapters 1–3 first and attempt all the questions before moving on to the later

chapters. The reason for this approach is that the methods used in the book are novel, powerful,

and when used correctly can lead to a rapid approach to the design of digital systems that use

FSMs.

Chapters 1–5, 9 and10makeuse of techniques to developFSM-based systems at the equation

and gate level, where the designer has complete control of the design.

Chapters 6–8 can be read as a self-contained study of the Verilog hardware description

language (HDL).

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



1.2 LEARNING MATERIAL

Frame 1.1 What is an FSM?

AnFSM is a digital sequential circuit that can follow a number of predefined states under the

control of one ormore inputs. Each state is a stable entity that themachine can occupy. It can

move from this state to another state under the control of an outside-world input.

FSM

p

q

Clock
Y

Z

X

Primary

Inputs

Primary

Outputs

Figure 1.1 Block diagram of an FSM-based application.

Figure 1.1 shows an FSMwith three outside-world inputs p, q, and the clock, and three

outside-world outputs X, Y, and Z are shown. Note that some FSMs have a clock input and

are called synchronous FSMs, i.e. those that do not belong to a type of FSM called

asynchronous FSMs.However,most of this text will deal with themore usual synchronous

FSMs, which do have a clock input. Asynchronous FSMs will be dealt with later in the

book.

As noted above, inputs use lower case and output upper case names.

A synchronous FSM can move between states only if a clock pulse occurs.

Task Drawablockdiagramfor anFSMwithfive inputs x,y, z, t, anda clock, andwith two

outputs P and Q.

Go to Frame 1.2 after attempting this question.

Frame 1.2

The FSM with five inputs x, y, z, t, and a clock, and with two outputs P and Q is shown in

Figure 1.2.

2 Introduction to Finite-State Machines and State Diagrams



FSM

P

Q
Clock

y

z

x

t

Figure 1.2 Block diagram with inputs, outputs, and a clock input.

The reader may wish to go back and reread Frame 1.1 if the answer was incorrect.

Each state of the FSM needs to be identifiable. This is achieved by using a number of

internal (to the FSMblock) flip-flops. An FSMwith four states would require two flip-flops,

since twoflip-flops can store 22 ¼ 4 state numbers.Each state has aunique state number, and

states are usually assigned numbers as s0 (state 0), s1, s2, and s3 (for the four-state example).

The rule here is

Number of states ¼ 2Number of flip�flops;

for which

Number of flip flops ¼ log10ðNumber of statesÞ
log10ð2Þ

:

SoanFSMwith13 stateswould require 24flip-flops (i.e. 16 states, ofwhich13are used in the

FSM); that is:

Number of flip flops ¼ log10ð13Þ
log10ð2Þ

¼ 3:7:

This must be rounded up to the nearest integer, i.e. 4.

Tasks 1. How many flip-flops would be required for an FSM using 34 states?

2. What would the state numbers be for this FSM?

After answering these questions, go to Frame 1.3.

Frame 1.3

The answers to the questions are as follows:

1. How many flip-flops would be required for an FSM using 34 states?

26 ¼ 64

Learning Material 3



would accommodate 34 states. In general:

24 ¼ 16 states; 25 ¼ 32 states; 26 ¼ 64 states; 27 ¼ 128 states; etc:

2. What would the state numbers be for this FSM?

These would be

s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17,

s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, s32, s33.

The unused states would be s34–s63.

Note, in this book, lower case ‘s’will be used to represent states to avoid confusion of state

s0 with the word ‘so’ or ‘So’.

Aswell as containingflip-flops to define the individual states of the FSMuniquely, there is

also combinational logic that defines the outside-world outputs. In addition, the outside-

world inputs connect to combinational logic to supply the flip-flops inputs.

Go to Frame 1.4.

Frame 1.4

Figure 1.3 illustrates the internal architecture for a Mealy FSM.

OutPut
DecoderNext

State
Decoder

Memory
Elements

Flip
Flops

Feed-Forward input to output

Feedback

Next
State

Present
State

Outside
World
Inputs

Outside
World

Outputs

Figure 1.3 Block diagram of a Mealy state machine structure.
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This diagram shows that the FSM has a number of inputs that connect to the Next State

Decoder (combinational) logic. TheQ outputs of thememory element Flip-Flops connect to

the Output Decoder logic, which in turn connects to the Outside World Outputs.

The Flip-Flops outputs are used as Next State inputs to the Next State Decoder, and it is

these that determine the next state that the FSM will move to. Once the FSM has moved to

this Next State, its Flip-Flops acquire a new Present State, as dictated by the Next State

Decoder.

Note that some of the OutsideWorld Inputs connect directly to the Output Decoder logic.

This is the main feature of the Mealy-type FSM.

Go to Frame 1.5.

Frame 1.5

Another architectural form for an FSM is the Moore FSM.

The Moore FSM (Figure 1.4) differs from the Mealy FSM in that it does not have the feed-

forward paths.

OutPut
DecoderNext

State
Decoder

Memory
Elements

Flip
Flops

Feedback

Next
State

Present
State

Outside
World
Inputs

Outside
World

Outputs

Figure 1.4 Block diagram of a Moore state machine structure.

This type of FSM is very common.Note that theOutsideWorldOutputs are a function of the

Flip-Flops outputs only (unlike the Mealy FSM architecture, where the Outside World

Outputs are a function of Flip-Flops outputs and some Outside World Inputs).

Both the Moore and Mealy FSM designs will be investigated in this book.

Go to Frame 1.6.

Learning Material 5



Frame 1.6

Complete the following:

A Moore FSM differs to that of a Mealy FSM in that it has

_____________________________________________________________________.

This means that the Moore FSM outputs depend on

_____________________________________________________________________

_____________________________________________________________________

whereas the Mealy FSM outputs can depend upon ____________________________________.

Go back and read Frame 1.4 and Frame 1.5 for the solutions.

_____________________________________________________________________.

Frame 1.7

Look at the Moore FSM architecture again, but with removal of all of the Outside World

Inputs, apart from the clock.Also remove theOutputDecoding logic.What is left shouldbe a

very familiar architecture. This is shown in Figure 1.5.

Next
State

Decoder

Memory
Elements

Flip
Flops

Feedback

Next
State

Present
State

Outside
World
Inputs

Outside
World

Outputs

Figure 1.5 Block diagram of a Class C state-machine structure.

This architecture is in fact the synchronous counter that is used in many counter applica-

tions. Note that an Up/Down counter would have the additional outside-world input ‘Up/

Down’, which would be used to control the direction of counting.

The Flip-Flops outputs in this architecture are used to connect directly to the outside-

world.Note that, in a synchronous (clock-driven) FSM, one of the inputswould be the clock.

Go to Frame 1.8.

6 Introduction to Finite-State Machines and State Diagrams



Frame 1.8

Historically, two types of state diagramhave evolved: one for the design ofMealy FSMs and

one for the design of Moore-type FSMs. The two are known as Mealy state diagrams and

Moore state diagrams respectively.

These days, amore general type of state diagram can be used to design both theMealy and

Moore types of FSM. This is the type of state diagram that will be used throughout the

remainder of this book.

A state diagram shows each state of the FSM and the transitions to and from that state to

other states. The states are usually drawnas circles (but somepeople like to use a square box)

and the transitionbetween states is shownasanarrowed line connecting the states (Figure1.6).

s0 s1

State 2State 1

Transitional
line between

two states

_|

Figure 1.6 Transition between states.

In addition to the transitional line between states there is an input signal name (Figure 1.7).

s0 s1

State 2State 1

Transitional
line between
two states

In this case the transition 
will occur when the clock 
pulse occurs, moving the 
FSM from s0 to s1, but 

only if st = 1

Clock pulse (0 to 1 transition)

st

Figure 1.7 Outside-world input to cause transition between states.

In the above diagram, the transition between state s0 and s1 will occur only if the Outside

World Input st¼ 1 and a 0-to -1 transition occurs on the clock input.

Learning Material 7



Task What changes would be needed to the state diagram of Figure 1.9 to make the

transition between s0 and s1 occur when input st¼ 0?

After attempting this question, go to Frame 1.9.

Frame 1.9

The answer is shown in Figure 1.8.

s0 s1

State 2State 1

Transitional
line between
two states

In this case the transition 
will occur when the clock 
pulse occurs and input st 
is at logic 0, moving the 

FSM from s0 to s1

Clock pulse (0 to 1 transition)

/st

Figure 1.8 Outside-world input between states.

Here, st has been replaced with /st, indicating that st must be logic 0 before a transition to s1

can take place), i.e. /st means ‘NOT st’; hence, when st¼ 0, /st¼ 1.

Note that outside-world inputs always lie along the transitional lines.

The state diagrammust also show how the outside-world outputs are affected by the state

diagram. This is achieved by placing the outside-world outputs either

� inside the state circle/square (Figure 1.9), or

� alongside the state circle/square.

In this diagram, outside-world outputs P and Q are shown inside the state circles. In this

particular case,P is logic 1 in state s0, and changes to logic 0when theFSMmoves to state s1.

Output Q does not change in the above transaction, remaining at logic 0 in both states.

Inputs like st are primary inputs; outputs like P and Q are primary outputs.

Task Draw a block diagram showing inputs and outputs for the state diagram of

Figure 1.9.
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s0 s1

State 2State 1

/st

Outside World Input st

         /P,/QP, /Q

Outside World Outputs

Figure 1.9 Showing placing of outside-world outputs.

Now go to Frame 1.10.

Frame 1.10

The block diagram will look like Figure 1.10.

FSM

st

Clock

Q

P

Outside World
Input st

Outside World
Outputs P and Q

Figure 1.10 The block diagram for state diagram of Figure 1.9.

This is easily obtained from the state diagram since inputs are located along transitional

lines and outputs inside (or along side) the state circle.

Recall that in Frame 1.2 each state had to have a unique state number and that a number of

flip-flops were needed to perform this task. These flip-flops are part of the internal design of

theFSMand are used to produce an internal count sequence (theyare essentially acting like a

synchronous counter, but one that is controlled by the outside-world inputs). The internal

count sequenceproducedby theflip-flops is used to control theoutside-worlddecoder so that

outputs can be turned on and off as the FSM moves between states.
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In Frames 1.4 and1.5 the architecture for theMealy andMooreFSMswere shown. In both

cases, the memory elements shown are the flip-flops discussed in the previous paragraph.

At this stage it isperhapsworthwhile lookingat a simpleFSMdesign indetail to seewhat it

looks like. This will bring together all the ideas discussed so far, as well as introducing a few

new ones. However, try answering the following questions before moving on to test your

understanding so far:

Tasks 1. A Mealy FSM differs from a Moore FSM in . . .. (See Frames 1.4 and 1.5.)

2. The circles in a state diagram are used to. . .. (See Frames 1.8 and 1.9.)

3. Outside World Inputs are shown in a state diagram where? (See Frames 1.8

and 1.9.)

4. OutsideWorld Outputs are shown in a state diagram where? (See Frame 1.9.)

5. The internal flip-flops in an FSM are used to . . .. (See Frame 1.10.)

Go to Frame 1.11

Frame 1.11 Example of an FSM: a single-pulse generator circuit with
memory

The ideahere is todevelopacircuit basedonanFSMthatwill producea single output pulse at

its primary output P whenever its primary input s is taken to logic 1. In addition, a primary

outputL is to be set to logic 1whenever input s is taken to logic 1, and cleared to logic 0when

the input s is released to logic 0. Output L acts as a memory indicator to indicate that a pulse

has just beengenerated.TheFSMis tobeclockdriven, so it alsohas an input clock.Theblock

diagram of this circuit is shown in Figure 1.11.

Single-Pulse
Generator

with
Memory

FSM

Input s

Clock

Output L

Output P

Figure 1.11 Block diagram of single-pulse with memory FSM.

A suitable state diagram is shown in Figure 1.12.

Inthisstatediagramthesling(loopgoingtoandfroms0) indicatesthatwhile inputs is logic0

(/s) theFSMwill remaininstates0regardlessofhowmanyclockpulsesareapplied to theFSM.

Only when input s goes to logic 1 (s) will the FSMmove from state s0 to s1, and then only

whenaclockpulsearrives.Once in state s1, theFSMwill set its outputsPandL to logic1, and

on the next clock pulse the FSM will move from state s1 to state s2.
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The reasonwhy theFSMwill stay in state s1 for onlyoneclockpulse is because, in state s1,

the transition from this state to state s2 occurs on a clock pulse only. Once the FSMarrives in

state s2 it will remain there whilst input s ¼ 1. As soon as the input s goes to logic 0 (/s) the

FSM will move back to state s0 on the next clock pulse.

Since the FSM remains in state s1 for only a single clock pulse, and since P ¼ 1 only in

state s1, the FSMwill produce a single output pulse. Note that the memory indicator L will

remain at logic 1 until s is released, so providing the user with an indication that a pulse has

been generated.

Note in the FSM state diagram (Figure 1.12) that each state has a unique state identity s0,

s1, and s2.

Note also that each state has been allocated a unique combination of flip-flop states:

� state s0 uses the flip-flop combination A ¼ 0, B ¼ 0, i.e. both flip-flops reset;

� state s1 uses the flip-flop combination A ¼ 1, B ¼ 0, i.e. flip-flop A is set;

� state s2uses the flip-flopcombinationA ¼ 0,B ¼ 1, i.e. flip-flopA is reset, flip-flopB is set.

The A and B flip-flops values are known as the secondary state variables.

The flip-flop outputs are seen to define each state. TheA andB outputs of the twoflip-flops

could be used to determine the state of the FSM from the state of the A and B flip-flops. The

code sequence shown in Figure 1.12 follow a none unit distance coding, sincemore than one

flip-flop changes state in some transitions.

Go to Frame 1.12.

Frame 1.12 The output signal states

It would also be possible to tell in which state the output Pwas to be logic 1, i.e. in state s1,

where the flip-flop output logic levels are A ¼ 1 and B ¼ 0.

Therefore, the output P ¼ A � =B (where the middot is the logical AND operation). Note

that the flip-flops are used to provide a unique identity for each state.

Similarly, output L is logic 1 in states s1 and s2 and, therefore, L ¼ s1þ s2.

L ¼ s1þ s2 ¼ A � =Bþ =A � B:

/P,/L

s0

P,L

s1

/P,L

s2

_|s _|

/s _|

AB
00

AB
10

AB
01

/s s

Secondary State Variables

Sling Sling

Figure 1.12 State diagram for single-pulse with memory FSM.
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Also, see that since each state can be defined in terms of the flip-flop output states, the

outside-world outputs can also be defined in terms of the flip-flop output states since the

outside-world’s output states themselves are a function of the states (P is logic one in state s1,

and state s1 is defined in terms of the flip-flop outputs A � =B).

L is defined by A � =Bþ =A � B:

The allocation of uniquevalues offlip-flopoutputs is rather an arbitrary process. In theory,

any values can be used so long as each state has a unique combination. This means that one

cannot have more than one state with the flip-flop values of say A � =B.
In practice, it is common to assign flip-flop values so that the transition between each state

involves only oneflip-flop changing state. This is knownas following aunit distancepattern.

This has not been done in the example abovebecause there are twoflip-flopchanges between

states s1 and s2.

The single-pulse generator with memory state diagram could be made to follow a unit

distance pattern by adding an extra state. This extra state could be inserted between states s2

and s0, having the same outputs for P and L as state s2.

Go to Frame 1.13.

Frame 1.13

The completed state diagram with unit distance patterns for flip-flops is shown in

Figure 1.13.

/P,/L

s0

P,L

s1

/P,L

s2

_|s _|

/s _|

AB
00

AB
10

AB
11

/s

s

_|

AB
01

/P,L

s3

Additional
Dummy state

Figure 1.13 State diagram for single-pulse generator with memory.

Note that the added state has the unique name of s3 and the unique flip-flop assignment of

A ¼ 0andB ¼ 1. It alsohas theoutputsP ¼ 0, as itwouldbe in state s0 (the state it is going to

go towhen s ¼ 0). Also, L is retained at logic 1 until the input s is low, since L is thememory

indicator and needs to be held high until the operator releases s.

In this design, the additionof the extra state hasnot added anymoreflip-flops to thedesign,

since two flip-flops can have a maximum of 22 ¼ 4 states (recall Frames 1.2 and 1.3).
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The single pulse generatorwithmemoryFSM is to have an additional input added (called r)

whichwill,whenhigh (logic1), cause theFSMtoflash thePoutputat theclock rate.Whenever

the r input is reverted to logic 0, the FSMwill resume its single pulsewithmemory operation.

Tasks 1. Draw the block diagram for the FSM.

2. Draw the state diagram for this modified FSM.

Go to Frame 1.14 to see the result.

Frame 1.14

The block diagram is shown in Figure 1.14.

Single-Pulse
Generator

with
Memory

FSM

Input s

Clock

Output L

Output P

New
input

r

Figure 1.14 Block diagram for the FSM.

The new state diagram is shown in Figure 1.15.

/P,/L

s0

P,L

s1

/P,L

s2

_|s _|

/s _|

AB
00

AB
10

AB
11

/s

/r_|

AB
01

/P,L

s3

r_|

s

Figure 1.15 Single-pulse generator with multi-pulse feature.

The additional input has been added and a new transition from s2 to s1. Note that, when

r ¼ 1, the FSM is clocked between states s1 and s2. This will continue until r ¼ 0.

In this condition, thePoutputwill pulse onandoff at the clock rate as long as input r is held

at logic 1.
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An alternative way of expressing output L

In the state diagram of Figure 1.15, L ¼ s1þ s2þ s3 ¼ A � =Bþ A � Bþ = A � B ¼
Aþ =A � B. Therefore, L ¼ Aþ B. See Appendix A and the auxiliary rule for the method

of how this Boolean equation is obtained.

An alternative way of expressing L is in terms of its low state:

L ¼ =ðs0Þ ¼ =ð=A � =BÞ:
This implies that when A ¼ 0 and B ¼ 0; L ¼ 0.

Dealing with active-low signals

The state diagram fragment inFigure 1.16 illustrateshowanactive-low signal (in this case

CS) that is low in states s4, s5 and s6 is obtained.

s4
/CS,W,R

s5
/CS,/W,R

s6
/CS,W,R

s7
CS,W,R

CS = /(s4 + s5 +s6)

W = /s5

s4
s5
s6

CS (active low)

s4
s5
s6

CS (active low)

s4 s5  s6  CS
0    0    0    1
0    0    1    0
0    1    0    0
1    0    0    0

Dealing with active low Outputs

Figure 1.16 Dealing with active-low outputs.

Also, the active-lowsignalW is obtained aswell. From this it canbe inferred that, to obtain

the active-lowoutput, all states inwhich the output is lowmust be negated. This is a common

occurrence in FSMs and will be used quite often.

Finally:

� If anoutput is high inmore states than it is low, then the active-lowequationmight produce

a minimal result.

� If the output is low in more states than it is high, then the active-high form of the output

equation will produce the more minimal result.

Go to Frame 1.15.
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Frame 1.15

Theprevious frameshave considered theflip-flopoutput patterns.These are often referred to

as the secondary state variables (Figure 1.17).

Single  Pulse
Generator

with
Memory

FSM

Input s

Clock
Output L

Output P

Secondary State Variables 
A and B inside

Primary OutputsPrimary Inputs

Figure 1.17 Block diagram showing secondary state variables in the FSM.

These are called secondary state variables because they are (from the FSM architecture

viewpoint) internal to the FSM. Consider the Outside World inputs and outputs as being

primary; then, it seems sensible to call the flip-flop outputs secondary state variables (state

variables because they define the states of the state machine).

The outputs in theFSMare seen to bedependent upon the secondary statevariables orflip-

flops internal to the FSM. Looking back to Frame 1.5, see that Moore FSM outputs are

dependent upon the flip-flop outputs only. The Output Decoding logic in the single-pulse

generator with memory example is

P ¼ s1 ¼ A � =B
(see Frame 1.13) and

L ¼ s1þ s2þ s3 ¼ A � =Bþ A � Bþ =A � B ¼ Aþ =A � B ¼ Aþ B

(auxiliary rule again), i.e. it consists of one AND gate and an OR gate. This means that the

single-pulse generator with memory design is a Moore FSM.

How could the single-pulse generator design be converted into a Mealy FSM?

Onewaywould be tomake the outputP depend on the FSM being in state s1 (A � =B), but
also gate it with the clock when it is low. This would make the P output have a pulse width

equal to the clock pulse, but only in state s1, and only when the clock is low. This would be

providing a feed-forward path from the (clock) input to the P (output).

Task How could the state diagram be modified to do this?

Try modifying the state diagram, then go to Frame 1.16 to check the answer.
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Frame 1.16

The modified state diagram is shown in Figure 1.18.

/P,/L

s0

P=/clk,
L
s1

/P,L

s2

s _| _|

/s _|

AB
00

AB
10

AB
11

/s

s

_|

AB
01

/P,L

s3

Additional
Dummy state

Figure 1.18 State diagram with Mealy output P.

Notice that, now, the output P is only equal to logic 1 when

� the FSM is in state s1 where flip-flop outputs are A ¼ 1 and B ¼ 0;

� the clock signal is logic 0.

The FSM enters state s1, where the P output will only be equal to logic 1 when the clock is

logic 0. The clockwill be logic 1when the FSMenters state s1 (0-to-1 transition); it will then

go to logic0 (whilst still in state s1) andPwill go to logic1.Then,when theclockgoesback to

logic 1, the FSMwillmove to state s2 and the flip-flop outputswill no longer beA � =B, so the
Poutputwill go lowagain.Therefore, thePoutputwill onlybe logic1 for the time theclock is

zero in state s1.

The timing diagram in Figure 1.19 illustrates this more clearly.

ThewaveformsshowbothversionsofP (under theAandBwaveforms inFigure1.19).Ascan

be seen, theMooreversion raisesP for thewhole duration that the FSMis in state s1,whereas

the Mealy version raises P for the time that the clock is low during state s1.

However, the bottom waveform for the Mealy P output illustrates what can happen as a

result of a delay in the /clk signal, along with the change of state from s0 to s1(/A/B to A/B).

Here, a glitch has been produced in the P signal as a result of the delay between clk and its

complement /clk, after theA signal change. This is brought about by the clk signal causingA

to change to logic 1while the /clk signal is still at logic 1due to thedelaybetween the clk and /

clk signals. This must be avoided.

This example is not unique; different delays can result in other unexpected outputs

(glitches) from signal P. Essentially, if two signal changes occur, then a glitch can be

produced in P as a result in the delays between signals (static 1 hazards).

Note that theP output signal is delayed in time as a result of the delays in signalsA,B, and

the /clk.Thisdelay isnot so important as longas it doesnotoverrun theclockperiod (which in

most practical cases it will not).
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It is best not to use the clock signal to create Mealy outputs. Also, as will be discussed in

Chapter 3, it is wise, where possible, to use a unit distance coding for A and B variables to

avoid two signal changes from occurring together; but more on this later.

Now for another example.

Task Producea statediagramfor anFSMthatwill generate a101pattern in response tom

going high. The input m must be returned low before another 101 pattern can be

produced.

After attempting this task, go to Frame 1.17.

Frame 1.17

Thesolution to thisproblem is touse thebasicarrangementof the single-pulsegenerator state

diagram and insert more states to generate the required 101 pattern. This will be developed

stage by stage so as to build up the complete design (Figure 1.20).

Start byfirstwaiting for the input s to become logic 1. Therefore, in state s0,wait for s ¼ 1.

Once the input s ¼1 and the clock changes 0 to 1, the FSM is required to move into the next

state s1, where P will be raised to the logic 1 level.

The next state s2will be used to generate the required logic 0 at theP output. And then the

next state s3 will be needed to generate the last P ¼ 1.

Note that the FSMmust leave state s3 on a clock pulse so that P ¼ 1 for the duration of a

single clock pulse only.

clk

A

B

P=A/B

P=A/B ^ /clk

L

s

s0s3s2s1s0

Moore Output

Mealy Output (ideal)

/clk

Mealy Output due to
Clock and other signal

delays

P=A/B ^ /clk

Figure 1.19 Timing diagram showing Moore and Mealy outputs.
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Thefinal state required is tomonitor for the input s ¼ 0 condition. This state should return

the FSM back to state s0.

Task Complete the FSM state diagram.

Now go to Frame 1.18.

Frame 1.18

The completed state diagram is shown in Figure 1.21.

/P

s0

P

s1

/P

s2

_|s _|

/s _|

/s

_|

P

s3

/P

s4

_|

s

Figure 1.21 Complete state diagram for the 101 pattern-generator.

TheBooleanequation forP in thisdiagramisP ¼ s1þ s3.However, it is possible tomake theP

outputaMealyoutput that isonlyequal toonewhen instatess1ands2,andonly ifan inputy ¼ 1.

Then:

P ¼ s1 � yþ s3 � y;

s0
/P

s0
/P

s1
P

s0
/P

s1
P

s2
/P

s0
/P

s1
P

s2
/P

s3
P

Wait for s going high to 
start sequence

s_|

s_|

s_|

s_|

_|

_| _|

_| _| _|

When s=1 move to s1 
and raise P

On next clock pulse 
move to s2 and 

lower P

On next clock pulse move to s3 and make P=1

Figure 1.20 Development of the 101 pattern-generator sequence.
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since Pmust be high in both states s1 and s3, but only when the input y is high.

A note on slings

A sling has been used for each state with an outside-world input along the transitional line.

This is not really necessary, because slings are not used to obtain the circuits to perform the

FSM function in modern state diagrams. In fact, they are really only included for cosmetic

reasons, to improve the readabilityof thedesign.Fromnowon, slingswill onlybeusedwhere

they improve the readability of the state diagram.

Task Now try modifying the state diagram tomake it produce a 1010 sequence of clock

pulses (in thesamemanner shown inFigure1.21,butwith thePoutputpulse in state

s3 to be conditional on a new input called x. If x ¼ 0, the FSM should produce the

output sequence 1000 atP. If x ¼ 1, then the output sequence at P should be 1010.

After drawing the state diagram, move to Frame 1.19.

Frame 1.19

The modified state diagram is shown in Figure 1.22.

/P

s0

P

s1

/P

s2

_|s _|

/s _|

/s

_|

P=x
s3

/P

s4

_|

s

Figure 1.22 Modified state diagram with output P as a Mealy output.

In this state diagram, the input signal x is used as a qualifier in state s3 so that the outputP is

only logic 1 in this state when the clock is logic 1.

In state s3, the output P will only produce a pulse if the x input happens to be logic 1.

A pulse will always be produced in state s1.

It can be seen that if x ¼ 0, thenwhen the input s is raised to logic 1, the FSMwill produce

the sequence 1000 at output P.

If x ¼ 1, then when s is raised to logic 1, the FSM will produce a 1010 sequence at the

outputP. This FSM is an example of aMealy FSM, since the outputP is a function of both the

state and the input x, i.e. the input x is fed forward to the output decoding logic. Therefore, the

equation for P is

P ¼ s1þ s3 � x:
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Itwould be easy tomodify the FSMso that the 1000 sequence atP is produced if x ¼ 1 and

the 1010 sequence is produced if x ¼ 0.

Tasks 1. Produce the Boolean equation for P in state s3 that would satisfy this require-

ment.

2. Then, assign a unit distance code to the state diagram (refer to Frames 1.12 and

1.13 for why).

3. Finally, produce a timing diagram of the modified FSM.

After this, go to Frame 1.20.

Frame 1.20

The answer to Task 1 in Frame 1.19 is as follows: the Boolean equation for P which will

produce a P 1010 sequence when x ¼ 0 is

P ¼ s1þ s3 � =x:
Note that in this case the qualifier for P is NOT x, rather than with x.

The answer to Task 2 in Frame 1.19, with regard to assigning a unit distance code to the

state diagram, is shown in Figure 1.23.

/P

s0

P

s1

/P

s2

_|s _|

/s _|

/s

_|

P=/x
s3

/P

s4

_|

ABC
000

ABC
100

ABC
110

ABC
011

ABC
001

s

Figure 1.23 State diagram with unit-distance coding of state variables.

The equation for P in s3 (it could be written outside the state circle if there is not enough

room to show it inside the state circle) is conditional on the x input being logic 0. It is very

likely that you will have come up with a different set of values for the secondary state

assignments to those obtained here. This is perfectly all right, since there is no real preferred

set of assignments, apart from trying to obtain a unit distance coding.

Somecheatinghas takenplace here, since the transition between states s2 and s3 is not unit

distance (since flip-flops A and C both change states). A unit distance coding could be

obtained if an additional dummy state is added (as was the case in Frame 1.13 for the single-

pulse generator with memory FSM).
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However, in this example, one must be careful where one places the dummy state. If a

dummy state is added between states s1 and s2, for example, then it would alter the P output

sequence so that instead of producing, say, 1010, the sequence 10010 would be produced.

A safe place to add a dummy statewould be between states s3 and s4, or between states s4

and s0, since they are outside the ‘critical’ P-sequence-generating part of the state diagram.

Move to Frame 1.21 for the timing waveform diagram solution.

Frame 1.21

The answer to Task 3 in Frame 1.19 is as follows.

A solution is shown in Figure 1.24 based on the secondary state assignment that was used

earlier, so your solution could well be different.

Clk

A

B

C

s

x

P= A/B/C + /ABC/x

s0 s1 s2 s3 s4 s0 s0

Note: P does not become logic 1 until x=0 in
state s3, and P goes to logic 0 when FSM
leaves state s3, even though x still logic 0

Figure 1.24 Timing diagram showing the effect of input x on output P.

Note that in this solution the input x has been change to logic 0 in the middle of the clock

pulse in state s3 just to illustrate the effect that this would have on the outputP. Note that the

output pulse on P is not a full clock high period in state s3.

This is a very realistic event, since the outside-world input x (indeed, any outside-world

input) can occur at any time.

1.3 SUMMARY

At this point, the basics of what an FSM is and how a state diagram can be developed for a

particular FSM design have been covered:

� how the outputs of the FSM depend upon the secondary state variables;
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� that the secondary statevariables canbe assigned arbitrarily, but that following aunit distance

code is good practice;

� anumberof simpledesignshave shownhowaMealyorMooreFSMcanbe realized in theway

in which the output equations are formed.

However, the state diagram needs to be realized as a circuit made up of logic gates and flip-

flops; this part of the development process is very much a mechanized activity, which will be

covered in Chapter 3.

Chapter 2 will look at a number of FSM designs that control outside-world devices in an

attempt to provide some feel for the designof state diagrams for FSMs.Thepacewill be quicker,

as it will be assumed that the preceding work has been understood.
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2
Using State Diagrams to
Control External Hardware
Subsystems

2.1 INTRODUCTION

In real-worldproblems there is often aneed touse external subsystems, suchashardware timers/

counters, analogue-to-digital converters (ADCs), memory devices, and handshake signals to

communicate with external devices.

This chapter looks at how a state diagram (and, hence, an FSM) can be used to control such

devices. This opens up amuchwider range of activities for the FSM and can lead to solutions in

hardware that can be implemented in a relatively short time.

In later chapters, the ideas explored in this chapter will be used to develop some interesting

real-world systems.

2.2 LEARNING MATERIAL

Frame 2.1

One of the most common requirements in an FSM is the need to wait in a state for some

predefined period. For example, a need to turn on an outsideworld output for a certain period

of time, then turn it off again. This could be done by just allocating a number of consecutive

states with the required output held high, but this would be very wasteful of states (and the

correspondingflip-flopsneeded to implement theFSM) for all butvery short delays.Thebest

way of dealing with this kind of requirement is to use an external timer unit that can be

controlled by the FSM.

A typical timer unit might look something like the illustration in Figure 2.1.

The timer unit has two inputs, the clock input clk and the start timer input ts, and a single

output TO. From the timing diagram (Figure 2.1) for this timer unit, the timer output TOwill

go high when the timer start input ts makes a 0-to-1 transition. The output TO will remain

high until the time period has elapsed, after which it will go low.

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



Timer
Module

Clock

Input ts
to start
timer

Output
TO

ts

TO

Timer period

Figure 2.1 Timing module.

In Figure 2.2, TS, an output from the FSM, is used to start the timer prior to the time-out

state. Then, on the next clock pulse the FSM moves into the time-out state. In the time-out

state, the TS signal is returned low and the timer output signal ‘to’ is monitored by the FSM,

which is looking for this ‘to’ signal going low, signalling the end of the timer period. At this

point, the FSM will leave the time-out state.

/TS
sn

TS
sn+1

/TS
sn+2

to

/to_|

Prior to
starting
timer

Start the
timer

Time-out state
wait here till

timer times out

_| _|

Note: The output signal TO is an input signal to the FSM, hence its
lower case name to.

Figure 2.2 State sequence to control the timing module.

Note that theFSMwillwait in state snþ2until the signal ‘to’goes low.Therefore, the time

spent in state snþ 2 will be dictated by the timer unit.

Also note here that the timer output signal ‘to’ is in lower case now, since it is an input

to the FSM, whereas the timer input signal TS is uppercase, since it is an output from

the FSM.

Now please turn to Frame 2.2.
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Frame 2.2

An example of how the timer unit could be used now follows.

FSM

Timer

sense

Vcc

gnd

R

C

To
ts

TS

P

st

clk
To process to be 

timed

ts

To

Start
timer

Stop timer

to

Figure 2.3 Block diagram showing how to use the timing module.

In Figure 2.3, the FSM is controlling a timer unit. This timer unit happens to be a little

different to the one seen in Frame 2.1 in that it does not have a clock input. It is in fact a timer

based around anRC charging circuit (a practical devicewould be the 555 timer units that are

readily available). This does not alter things in anyway as far as the FSM is concerned. Note

that the actual time delay would be given by

To ¼ 1:1� C � R:

if Timer is a 555 timer chip.

The start input St starts theFSMfromstate s0.The ideahere is to turnon the processP for a

period of time (dictated by theRC time constant of the timer unit), then turn it back off again.

Task Produce the state diagram to do this. Then go to Frame 2.3 for a solution.

Frame 2.3

The state diagram to implement the arrangement shown in Figure 2.3 is shown in Figure 2.4.

The processP is turned on in state s1, since the timer is started in this state, before the FSM

moves into the time-out state s2. TheFSMwill remain in state s2monitoring the timer output

signal ‘to’ until the timer has timed out, and then move to state s3 to stop the process P.
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/P, TS
s3

/P, TS
s0

P, TS
s2

P, /TS
s1

st_|

_|

/to_|

/st_|

to

Wait for st
input

Start-timer
and process

Wait for timer to time out
Process remains on

Timer timed out
Stop process

Figure 2.4 State diagram using the Timer module.

Using this arrangement allows the FSM to be held in thewait state for any length of time,

depending only on the value of the RC time constant.

Go to Frame 2.4.

Frame 2.4

Having seen how to control an outsideworld device like a timer, the next stage is to see how

other outside world devices can be controlled. This is really what FSMs are all about,

controlling outside world devices.

Now look at how an FSM can be used to control

� an ADC;

� a memory device.

Controlling an ADC

ADCs are used to convert analogue data into digital form. They are needed to allow digital

computers to be able to process data from the real world (which is essentially analogue in

nature). Most systems that use an ADC will be controlled from a microprocessor

(or microcomputer). However, it is often the case that a system (or part of a system) will

be implemented using a customized chip design, a programmable logic device (PLD), or

even a field programmable logic array (FPGA). Consider the ADC shown in Figure 2.5.

This ADC has (as is usually the case) a Start Conversion input SC and an End Of

Conversion output eoc.
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FSM

A

D

Vin

Digital Count 

Value

eocSC

SC

eoc

s2s1s0

/SC

s0

SC

s1

/SC

s2

eoc_|_| /eoc_|

Figure 2.5 Controlling an ADC from a state diagram.

The analogue input anddigital outputs are connected to the external circuit and are not part

of the FSM, since they form the data flow part of the system. The FSM is used to control the

system components (the ADC in this case).

The segment of state diagram shows how the ADC is controlled by an FSM.

FSM

Memory

S/H

Flash
ADC

Address
counter

cs w

SC eoc CS W CC RC

f

intackreset

clk

Sample/
Hold

S/H

Address
 counter full

Reset
counter

Counter
clock

Figure 2.6 Block diagram for a small DAS.
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The FSM starts the ADC conversion in state s1 and waits for the eoc1 signal from the

ADC to say that a digital value is available at the outputs of the ADC. At this point the FSM

will move into state s2. Here, it will wait for eoc to return low before moving on to the next

state.

Now consider the small data acquisition system (DAS) shown in Figure 2.6.

In this system there is an ADC and a number of other outside world devices.

Go to Frame 2.5.

Frame 2.5

This particular example is a bit more complicated than the examples looked at so far;

however, it can be separated out into more manageable parts, as will be revealed.

The diagram shown in Figure 2.6 uses the FSM to control a sample-and-hold (S/H)

amplifier, ADC, a random access memory (RAM) device, and a simple binary counter.

All these outside world components allow the FSM to be able to

� sample a.c. analogue data from the outside world;

� store the data in RAM.

These could be under the control of a remote end device (which could be amicrocomputer).

Before attempting to produce a state diagram for this FSM, discussion is required on how

an FSM can control the RAM and counter.

Consider Figure 2.7, which shows a memory device controlled by an FSM.

Thememory device is written to/read from in snþ3 (on the rising edge of the read orwrite

signal). Note that the memory device has a collection of address input lines (commonly

called the address bus) and a set of data lines called the data bus. If the memory is read, only

the data bus lines will be outputs. If the memory is a RAM, then the data bus lines will be

bidirectional. Thismeans that the /R and /W control signals can be used to condition the data

bus lines tobeeither inputs (when /W is used)oroutputs (when /R is used). Inaddition, there is

a chip select input to select the memory chip.

Further information onmemory device timing

Figure 2.8 shows all the waveforms associated with a memory device.

The address bus selects a particular memory location at time T1 (the address bus lines

changing just after theT1starts). This causes the chip selectCEsignal tobecomeactive (low)

at time T2 (allowing for propagation delays through the logic).

At time T3, the write signalW is activated (active low) and, as a result of this action, the

memory chip data bus is taken out of its normal tri-state condition so it can accept input data.

1Note that some ADCs have a busy signal instead of the eoc. These ADCs raise the busy signal when SC is asserted,

lowering it when the conversion is complete.
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At time T4 (after a suitable time has been allowed for the memory to settle) the writeW

signal is taken high, then the chip select signal CEwill be taken high to deselect thememory

chip. It is during this transition (0 to 1) of the W signal that the data are written into the

memory chip. Note that in somememory chips the CE andW signals appear to go high in T4

Memory

CS

W

R

RWCS

Chip
select

Write
control

Read
control

sn+4sn+3sn+2sn+1sn

Memory
timing

DataAddr

Figure 2.7 Control of a memory device.

CE W R

Address

Bus
Data Bus

Memory

Chip

Address

Bus

CE

W

Data

Bus
etats-irTetats-irT

T1 T2 T3 T4

Chip

Enable

Write Read

Figure 2.8 Timing of the control of a memory device.
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at the same time. Themicroprocessor will hold CE low long enough to allow theW signal to

write thedata into thememorydevice.This is usuallybecause thepropagationdelay is longer

in the CE path due to additional address decoding logic.

In a system controlled by an FSM, this can be done in thewaveform diagram sequence, as

shown earlier in this frame in Figure 2.7. However, an alternative arrangement could be to

cause the CE signal to be delayed within the memory chip. This would be possible if the

memory was being implemented in an HDL to be contained in an FPGA, perhaps also

containing the FSM.

The main thing here is to ensure that the data can be written into the RAM before it is

deselected.

Note: the signalsCEandWneed tobecontrolledby theFSMwhenever thememory is tobe

written to or read from.

Note that ifW is replacedbyR then thememorycycle is a readmemory cycle inwhichdata

stored in the memory chip will be output from the chip.

The read operation follows the same basic sequence as thewrite signal, and the arguments

discussed earlier about delaying the chip select also apply.

Now go to Frame 2.6 to see how the memory chip can be controlled from an FSM.

Frame 2.6

To access the memory device, the chip select line must be asserted (this means that the chip

select linemust be active, in this case active is logic 0). Then,write data into theRAMdevice

by lowering thewrite signal line. A little later, raise thewrite line to logic 1 towrite the data

into the RAM device.

To read the contents of theRAM, first select the chip select line bymaking it go low, then a

little time later set the read line low.

In most cases, ‘chip select and read’ or ‘chip select and write’ control lines can be raised

high (todisassert them) at the same time. It is usually at thispoint in thecycle that thememory

device is read orwritten; but, if there is a doubt about chip select remaining low long enough

for the write or read operation to take place, then it is best to raise write or read first before

raising the chip select signal.

In practice, the data buswill remain active for a fewnanoseconds (typically 10 ns) in order

for thedata tobewrittenor readbymemory inmemorycontrolledbyamicroprocessor, but in

an FSM-controlled system the design engineer should ensure that this occurs either by

adding another state to the statemachine or by creating a delay on the chip select signal in the

memory device.

The segment of timing diagrams of Figure 2.7 in Frame 2.5 illustrates this process.

When reading from and writing to memory devices, the process of reading and writing is

implied to be from the point of view of the controlling device. The controlling device in a

microprocessor system is themicroprocessor. In our case, the controlling device is the FSM.

Task Tryproducing a segmentof state diagram tocontrol thememorydevice forwriting.

Now go to Frame 2.7 to find out whether it is correct.
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Frame 2.7

The segment of state diagram to control the memory illustrated in Frames 2.5 and 2.6 is

illustrated in Figure 2.9.

FSM
f

RWCS

clk

Memory

dataaddr

Address

Counter

sn
CS,W,R

sn+1

/CS,W,R

sn+2

/CS,/W,R

sn+3

/CS,W,R

sn+4

CS,W,R

sn+5

CS,W,R
PC

_|

_|

_|

_|

_|

Memory Write

PCRC

Reset

counter

Pulse

counter

Memory

full

sn+6

/PC

Figure 2.9 Using an FSM to control the writing of data to a memory device.

In state sn, all controls are disasserted. In sn þ 1 the chip select line CS is active; then,

in state sn þ 2, the write control line W is active. In state sn þ 3,W is deactivated to write

the data into the memory, and it is at this point that the data are written into the memory

device. Finally, in state sn þ 4, the chip select CS is raised to deselect the memory

device.

To read or write to a memory device, the data transaction will occur in the memory

element currently accessed by the address bus. To access another memory element,

another address needs to be selected; this is done by the address counter. This is what the

counter in Figure 2.6 (and in Figure 2.9) is being used for. In this case, each memory

location is selected in sequence by incrementing the binary counter after accessing each

memory location.

Note that in state sn þ 5 the signal PC is set high. This increments the counter, thereby

incrementing the address to point to the next consecutive memory location.
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The counter can be reset to zero by sending the signal RC to logic 0. It can be incremented by

the FSMwith a pulse to the PC signal. In this way, eachmemory location of thememory can be

accessedsequentially.Notethat theaddresscounter is incrementedafterdisassertingthememory

chip. This is because the address on thememory chip should not be changedwhile it is selected.

Go to Frame 2.8.

Frame 2.8

Task Having seen how the individual outsideworld devices are controlled inFigure 2.6, try

to produce a state diagram to implement the FSM used to control the system.

The FSM is to wait in state s0 until it receives an interrupt signal from the remote end

device over the int signal line. When this occurs, the FSM is to

� obtain a sample of data;

� perform an analogue-to-digital conversion;

� store the converted value into the memory device;

� increment the counter to point to the next available memory location.

The FSM should keep on doing this until thememory device is full. The FSMwill know this

when the f input (from the counter) goes high.

At this point, the FSM is to send an acknowledge signal to the remote end device using the

ACK signal line; then, once the signal line int is low (remember, it was asserted high at the

beginning of the sequence), it is to return to state s0 ready for another cycle.

When completed, go to Frame 2.9.

Frame 2.9

The complete state diagram is illustrated in Figure 2.10. Your state diagram may not look

quite like this one, as there is more than one way of drawing a state diagram and there is no

‘one’ correct solution. However, the diagram in Figure 2.10 is very concise.

Thefirst thing to note is that the reset lineRCused to hold thememory address counter reset

is held active (asserted) in state s0. Thereafter, it is held in its disasserted state (i.e. RC¼ 1).

Not all states show this, but the sequential nature of the state diagram implies it.

When the int input is asserted, the FSMmoves into state s1, removing the reset from the

address counter and simultaneously asserting the sample-and-hold amplifier S/H¼ 1.

On the next clock pulse, the FSMmoves to state s2, where (with the S/H still set) the start

conversion signal of the ADC is asserted SC¼ 1. At this point, the FSMwaits for the end of

conversion signal eoc¼ 1; then, on the next clock pulse, it moves to state s3, where the S/H

signal is disasserted (S/H¼ 0), since the ADC has converted the analogue data into digital

form.While in state s3 the chip select in asserted (CS¼ 0) and the FSMwaits in state s3 for

eoc to be returned low. When this happens, on the next clock pulse the FSM moves to s4,

where the memory device write signal lineW is asserted low to set up the memory data bus

lines as inputs. This allows the ADC digital output value to be input to the memory.
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The next clock pulsewillmove the FSM into state s5,whereW is disasserted high, thereby

writing the ADC value into the memory chip.

TheFSMnowmoves into state s6on the next clockpulse to deselect thememory (CS¼1).

Go to Frame 2.10.

Frame 2.10

At this stage in the FSM cycle, the FSM is in state s6.

The state machinewill nowmove to state s7, where CCwill be asserted high. On the next

clockpulse, the statemachinemoves to s8,whereCCwill go low.The0-to-1 transitionon this

signal line, caused by the FSMmoving from state s6 to s7, will cause the address counter to

increment. Note that, in state s6, the CS andW signals are now both high (disasserted).

In state s8 the FSM can move, either to state s1, if the signal f is disasserted low (hence

repeating the sequence s1 to s8), or, if signal f is asserted, the FSM canmove from s8 into s9.

The signal f is used to indicate whether the address counter has reached the end of the

memory. If it has not reached the end of the memory (f ¼ 0) then another cycle is started,

otherwise the FSMmoves into state s9 where the ACK signal will be asserted high to let the

external device know that the FSMhas completed its tasks. The FSMwill wait for the signal

int going low.

Bywaiting for int to go low, the FSMwill be ready for the next low to high transition on int

to start the next cycle of operations. Note that the external device will need to lower the int

signal to complete the handshake. On seeing int go low, the FSM lowers the ACK signal to

complete the handshake.

The forgoingexample isquite acomplexoneandshowshowanFSMcanbeused tocontrol

a complex sequence to control a number of outside world devices.

s0
/RC

s1
S/H=1,

RC

s2
SC

s3
S/H=0,

/SC, /CS

s4
/W

s5
W

s6
CS

s7
CC=1

s8
CC=0

s9

int_|

eoc_|

f_|

/int_|

_|

/eoc_|

_|

_|_|

_|

/f_|

ACK

/ACK

Figure 2.10 State diagram for the DAS.
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As seen from this example, the development of a state diagram is largely an intuitive

process. However, by applying the techniques discussed in this book the reader

can become experienced in developing their own state diagrams to control external devices.

Some of the ideas put forward in this text are as follows:

� ANDing clock and other input signals to an outside world output to form Mealy outputs

(Frame 1.16, Figure 1.18);

� using dummy states to obtain unit distance coding (Frames 1.12 and 1.13);

� using an external timer to provide a wait state (Frame 2.1);

� using theFSMtocontrol outsideworlddevices likeADC(Frame2.4)andmemorydevices

(Frame 2.5).

The steps necessary to get from a state diagram to a functional circuit are verymechanical

and will be discussed in Chapter 3.

However, before looking at Chapter 3, there are a number of other techniques that need to

be considered.

Move on to Frame 2.11.

Frame 2.11

Consider the block diagram of an FSM in Figure 2.11.

FSM

d

P

Clock

Data input

Output

Figure 2.11 Block diagram for the data-input FSM.

In this particular FSM, a single clock pulse is required at the outputPwhenever thed input

is asserted high twice.

Task Tryproducing a state diagram for this one, then turn toFrame2.12 to see a solution.
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Frame 2.12

The block diagram of Frame 2.11 is repeated in Figure 2.12.

FSM

d

P

Clock

Data input

Output

Figure 2.12 Block diagram for the data-input FSM.

Thepoint to note here is tomonitor the input for change.This implies the need tomonitord

for two assertions.

Themonitoringofd is very important in this example, since theFSMmustdeterminewhen

d has been asserted twice. To do this, monitord going high, thenmonitord going low (at this

point, d has gone high then low once). Continue to monitor d going high again, followed by

monitoring d going low (at this point, d has gone high then low twice).

The state diagram is shown in Figure 2.13.

/P
s0

/P
s1

/P
s2

P
s3

/P
s4

/d_|d_|

d_|

_|

/d_|

Output P = s3 = /A.B.C.

ABC
000

ABC
101

ABC
111

ABC
011

ABC
010

Figure 2.13 State diagram to detect two 1-to-0 transitions of d input.

In this state diagram, the FSMmonitors the d input going high, then low (s0 and s1), then

monitors d going high again (s2 and s3). In state s3, the FSM knows that d has been asserted

twice, so the outputP is allowed to become asserted high. The FSMmoves out of state s3 on

the next clock pulse and waits in state s4 for the d input to go low before moving back into

state s0. So, inputs with multiple assertions must be monitored by the FSM.

Note that in Figure 2.13 the state assignments between s0 and s1 and between s4 and s0

arenot unit distance.Youmight like to try toobtainaunit distancecoding for the statediagram.
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Apossible solution is as follows. A dummy state needs to be added to the state diagram, a

possible placewould be between s3 and s4 (call it s5). Then, the following unit distance state

assignment could be applied: s0 ¼ 000, s1¼ 100, s2 ¼ 110, s3¼ 111, s5(dummy) ¼ 011,

s4¼ 001.

Go to Frame 2.13.

Frame 2.13 A sequence detector

Consider the example shown in Figure 2.14.

FSM

d

Z

Clock

Data input

Output

Figure 2.14 Block diagram for the 110 sequence detector.

This detector has the timing diagram shown in Figure 2.15.

clk

d

Z

d is sampled on the rising 
edge of the clock

s0 s1 s4s3s2 s0s5

Figure 2.15 Possible timing diagram for the 110 sequence detector.

Note, d is sampled on the 0-to-1 transition of the clock (shown by the arrows in n

Figure 2.15).
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The FSM changes state on the 0-to-1 clock transition also. The timing diagram illustrates

how the FSM is to do this.

In the timing diagram of Figure 2.15, d follows a 110 sequence. In practice, of course, one

needs to produce an FSM that can identify the 110 sequence from all other possible

sequences. Only the 110 sequence, however, should produce a Z output pulse.

Task Assume that the d input is a succession of pulses, i.e. 1 ! 0 ! 1 ! 0 is two D

pulses. Try producing a state diagram for such an FSM.

Hint Produce the state diagram for detecting the required 110 sequence first, then add to

this state diagram the necessary transitions to cover all other sequences.

Go to Frame 2.14 to see the solution.

Frame 2.14

The state diagram for the 110 sequence detector is shown in Figure 2.16.

s0
/Z

s1 s3s2

s4s5
Z

s6
/Z

s7
/Z

d_|/d_|d_|

/d_|

/d_|

d_|

_|

_|

Unused states go back to 
s0

ABC
000

ABC
100

ABC
110

ABC
111

ABC
011

ABC
001

ABC
101

ABC
010

d_|

/d_|
d_|

_|

Figure 2.16 State diagram for the 110 sequence detector.

Thesequences0, s1, s2, s3, s4ands5detects the110sequence (note theassumption that the

d input is a succession of pulses).

The loop back terms catering for all other sequences are to return the FSMback to state s0

in order to keep on detecting the 110 sequence. The timing diagram of Figure 2.15 should

help to explain the different transitions.
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Note that the state diagramaboveuses six states. The secondary statevariables alloweight

states; therefore, there are twostates that arenot used.Whatwouldhappen if theFSMwere to

fall intooneof these twounused states?Theanswer to this question is that theFSMwouldnot

be able to get out of the unused state and the FSM would ‘hang’.

To avoid this calamity, it is common to direct all unused states back to state s0 so that the

FSMcan recover from thismisadventure.This is shown inFigure2.16,where states s6 and s7

are directed back to state s0 on the next clock pulse.

Note that when using D-type flip-flops to implement the state machine, getting into an

unusedstatewill automaticallycause theFSMtoreset to state s0; therefore, it isnotnecessary

to connect unused states back to s0 in this case. More on this later.

2.3 SUMMARY

This chapter has dealt with theway inwhich FSMs can be used to control external hardware in a

digital system. Later chapters will illustrate how these and other external devices can be

controlled by an FSM. One of the implications from this work is that many of the applications

normally developed using microcontrollers can be implemented using FSMs and hardware

logic. The block diagram and state diagram approach seen in Chapters 1 and 2 can be used, in

conjunction with modern HDLs to make this possible. The advantage, in some cases, will be a

design that uses less logic than a similar design using a microcontroller. You will see this

possibility later on when you have read later chapters.

For now, the next stage in our work is to see how a state diagram can be used to create a logic

circuit to realize the design. This work is covered in Chapter 3.
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3
Synthesizing Hardware
from a State Diagram

3.1 INTRODUCTION TO FINITE-STATE MACHINE SYNTHESIS

At this point, the main requirements to design an FSM have been covered. However, the ideas

discussed need to be practised and applied to a range of problems. This will follow in later

chapters of the book and provide ways of solving particular problems.

In the development of a practical FSM there is a need to be able to convert the state diagram

description into a real circuit that can be programmed into a PLD, FPGA, or other application-

specific integrated circuit (ASIC). As it turns out, this stage is very deterministic and

mechanized.

FSM synthesis can be performed at a number of levels.

Develop an FSM using flip-flops, which can be:

– D-type flip-flops;

– T-type flip-flops;

– JK-type flip-flops.

Use ahigh-levelHDLsuchasVHDL.This canbeused to enter the state diagramdirectly into the

computer. The HDL can then be used to produce a design based upon any of the above flip-flop

types using one of a number of technologies.

It is also possible to take the state diagramand convert it into aCprogramand, hence, produce

a solution suitable for implementation using a micro-controller.

Byusing thedirect synthesis approach, or anHDL, thefinal designcanbe implementedusing:

� discrete transistor–transistor logic (TTL) or complementary metal oxide–semiconductor

(CMOS) components (direct synthesis);

� PLDs;

� FPGAs;

� ASICs;

� a very large-scale integration chip.

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



Most technologies supportD- andT-typeflip-flops, and in practice thesedevices are used a lot

in industrial designs; therefore, this book will look at the way in which T flip-flops and D flip-

flops canbeused in adesign.Note: JKflip-flops can alsobeused, but these are not covered in this

book.

This chapterwill look at the implementation of an FSMusingT-type flip-flops and thenmove

on to look at designs using D-type flip-flops.

Why T- and D-type flip-flops?

These are the most common types of flip-flop used today. The reason is that the T type can be

easily implemented fromaD type, and theD type requires only six gates (comparedwith the JK

type,which requiresabout10gates).Thismeans thatD-typeflip-flopsoccupy lesschiparea than

JK types. Another reason is that the D-type flip-flop is more stable than the JK flip-flop.

D-type flip-flops are naturally able to reset, in that if theD input is at logic 0, then the flip-flop

will naturally reset on the next clock input pulse (see later on in this chapter). This canbe of great

benefit in the design of FSMs.

Go to Frame 3.1 to find out how to use the T flip-flop.

3.2 LEARNING MATERIAL

Frame 3.1 The T-type flip-flop

A T-type flip-flop can be implemented with a standard D-type flip-flop, as illustrated in

Figure 3.1.

Q

QSET

CLR

D

Q
output 

T input

Clk

T  Qn  Qn=1

0   0       0        No change

1   0       1        Toggle

0   1       0        Toggle

1   1       1        No change

Figure 3.1 Diagram and characteristics of a T flip-flop.

As can be seen from the diagram, theTflip-flop is implemented by using aDflip-flopwith

an exclusive OR gate. The table under the flip-flop shows its characteristics.

In this table, Qn is the present state output of the flip-flop (prior to a clock pulse),

whilst Qn þ 1 is the next state output of the flip-flop (after the clock pulse). The table

shows that the flip-flop will change state on each clock pulse provided that the t input is

high. But if the T input is low, then the flip-flop will not change state.
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Therefore, use the t input to control the flip-flop, since, whenever the flip-flop is to change

state, simply set the t input high; otherwise it is held low.

Go to Frame 3.2.

Frame 3.2 The T flip-flop example

Consider the simple single-pulsegeneratorwithmemoryexampleofFrame1.13 reproduced

in Figure 3.2.

/P,/L

s0

P,L

s1

/P,L

s2

s _| _|

/s _|

AB
00

AB
10

AB
11

/s

s

_|

AB
01

/P,L

s3

Figure 3.2 State diagram for the single-pulse generator with memory.

Follow the state transitions for secondary state variable A and write down the state

term wherever there is a 0-to-1 or a 1-to-0 transition in A. In the above state diagram

there is a 0-to-1 transition in A between states s0 and s1, and a 1-to-0 transition between

states s2 and s3. Therefore, write down

A � T ¼ s0 � sþ s2:

This equation defines the logic that will be connected to the T input of flip-flop A.

Whenever the FSM is in state s0, and input s is high, the T input of flip-flopAwill be high.

Whenever the T input is high, the flip-flop will toggle. Since in state s0 both flip-flops are

reset, then in state s0, when s goes to logic 1, the next clock pulsewill cause the flip-flopA to

go from 0 to 1.

In state s1, the T input to flip-flop Awill be at logic 0 since there is no term to hold this

input high in these states. Therefore, in state s1 the flip-flop A will not toggle with the

clock pulse. When the FSM reaches state s2, the T input will go high again and the next

clock pulse will cause the flip-flop to toggle back to its reset state as intended. Note that

in state s3 the T input to flip-flop Awill be low again, so the flip-flop will not toggle on

the next clock pulse in state s3.
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Note that the equation for A � T uses the present state condition to set the t line high. This
isnecessary inorder tomakesure that theflip-flopwill toggleon thenextclockpulse.The logic

being produced here, therefore, is that of the next state decoder of the FSM (see Frame 1.4).

Task Try producing the equation for the input logic for the T input on flip-flop B.

Then go to Frame 3.3 to see the solution.

Frame 3.3

The equation for the T input of flip-flop B is

B � T ¼ s1þ s3 � =s:
Since in state s1 theB � T input needs to be logic 1, so that on the next clock pulse the flip-flop
will change froma reset state to a set state.Note that there is no outsideworld input condition

between states s1 and s2.

The second term s3 � /swill cause theBflip-flop to toggle from its set state to its reset state

in state s3 when the outside world input s¼ 0 on the next clock pulse.

In summary, look for the 0-to-1 or 1-to-0 transition in each flip-flop.

Task Now try the example in Figure 3.3 and also produce the output equations for this

design,but with output L being high in s3 only if a new input R is logic 1.

/K,/L

s0

K,/L

s1

/K,/L

s2

x _| _|

/x_|

AB
00

AB
01

AB

A.T =
B.T =

K =
L =

11

/x

x

_|

AB
10

/K,L

s3

Figure 3.3 State diagram example for implementation using T flip-flops.

Now turn to Frame 3.4.
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Frame 3.4

The modified state diagram is shown in Figure 3.4.

/K,/L

s0

K,/L

s1

/K,/L

s2

_|x _|

/x_|

AB
00

AB
01

AB
11

/x

x

_|

AB
10

/K,/L
L=R
s3

Figure 3.4 State diagram example for implementation using T flip-flops.

The equations for A � T and B � T are

A � T ¼ s1þ s3 � =x
B � T ¼ s0 � xþ s2:

The outside world outputs are

K ¼ s1 ¼ =A � B
L ¼ s3 � R ¼ A � =B � R:

The equation for L is a Mealy output in which the value of L can only be logic 1 in state

s3, but only if input R is also logic 1. Refer to Frames 3.1–3.3 for the method if

necessary.

Please now turn to Frame 3.5.

Frame 3.5

Task Attempt the following examples. Produce the flip-flop equations and output

equations for each of the state diagrams indicated. If you are not too sure, reread

Frames 3.1–3.4 before starting to do the problems.
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State diagram in Frame 1.19, Figure 1.22, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 011

s4 001

State diagram in Frame 2.3, Figure 2.4, using the following secondary state variables:

AB

s0 00

s1 10

s2 11

s3 01

State diagram in Frame 2.12, Figure 2.13, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 111

s4 011

s5 001

State diagram in Frame 2.9, Figure 2.10, using the following secondary state variables:

ABCD

s0 0000

s1 1000

s2 1100

s3 1110

s4 1111

s5 0111

s6 0011

s7 1011

s8 1001

s9 0001

See Frame 3.6 for the solution to these problems.
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Frame 3.6

The answers to the problems in Frame 3.5 are as follows.

For the state diagram of Frame 1.19, Figure 1.22:

ABC Answer

s0 000 A � T¼ s0 � sþ s2¼ /A/B/C � sþ AB/C

s1 100 B � T¼ s1þ s3¼ A/B/Cþ /ABC

s2 110 C � T¼ s2þ s4 � /s¼ AB/Cþ /A/BC � /s
s3 011

s4 001 P¼ s1þ s3 � x¼ A/B/Cþ /ABC � x

For the state diagram of Frame 2.3, Figure 2.4:

AB Answer

s0 00 A � T¼ s0 � stþ s2 � /to¼ /A/B � stþ AB � /to
s1 10 B � T¼ s1þ s3 � /st¼ A/Bþ /AB � /st
s2 11

s3 01 P¼ s1þ s2¼ A, TS (active-low)¼ /s1¼ /(A/B)

For the state diagram of Frame 2.12, Figure 2.13:

ABC Answer

s0 000 A � T¼ s0 � dþ s3¼ /A/B/C � dþ ABC

s1 100 B � T¼ s1 � /dþ s4 � /d¼ A/B/C � /dþ /ABC � /d
s2 110 C � T¼ s2 � dþ s4 � /d¼ AB/C � dþ /ABC � /d
s3 111

s4 011 P¼ s3¼ ABC

For the state diagram of Frame 2.9, Figure 2.10:

ABCD Answer

s0 0000
A � T ¼ s0 � intþ s4þ s6þ s8 � f

¼ =A=B=C=D � int þ ABCDþ =A=BCDþ A=B=CD � f
s1 1000

s2 1100

s3 1110 B � T¼ s1þ s5¼ A/B/C/Dþ /ABCD

s4 1111

s5 0111 C � T¼ s2 � eocþ s7¼ AB/C/D � eocþ A/BCD

s6 0011

s7 1011
D � T¼ s3 � =eocþ s8 � =f þ s9= � int

¼ ABC=D � =eocþ A=B=CD � =f þ =A=B=CD � =int
s8 1001

s9 0001

RC¼ /s0¼ /(/A/B/C/D) active-low output

S/H¼ s1þ s2¼ A/C/D
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Frame 3.7

The answers for the state diagram of Frame 2.14, Figure 2.16 are

A � T ¼ s0 � d þ s1 � d þ s2 � =d þ s3þ s7

¼ =A=B=C � d þ A=B=C � d þ AB=C � =d þ ABC þ A=BC

¼ =B=C � d þ AB � =d þ AC

B � T ¼ s1 � =d þ s2 � =d þ s3 � d þ s4þ s6

¼ A=C � =d þ BC � d þ =AB

C � T ¼ s2 � d þ s3 � d þ s4 � d þ s5þ s7

¼ AB � d þ BC � d þ =BC

Z ¼ s5

¼ =A=BC:

The complete cycle of designing an FSMand synthesizing it using T-type flip-flops has been

completed.

T-type flip-flops, as has already been seen in Frame 3.1, can be implemented from a basic

D-typeflip-flop, using an exclusiveORgate. SomePLDs support both theD- andT-typeflip-

flops, so FSM designs can be implemented using these PLDs.

Some PLD devices can be programmed to be eitherD-type or T-type flip-flops. However,

most PLD devices support D-type flip-flops, particularly the cheaper PLD devices, such as

the 22v10. Therefore, it is worthwhile considering how D-type flip-flops can be used to

synthesize FSMs.

As it turnsout, usingD-typeflip-flops to synthesizeFSMsrequires a little thought, so some

timewill be spent looking at the techniques required in order tomake use ofD-type flip-flops

in the design of FSMs. This will be time well spent, since it opens up a large number of

potential devices that can be used to design FSMs.

Turn to Frame 3.8.

SC¼ s2¼ AB/C/D

CS¼ /(s3þ s4þ s5)¼ /(ABCþ BCD) active-low output

W¼ /s4¼ /(ABCD) active-low output

CC¼ s7¼ A/BCD

If you are having difficulty in seeing how the active-low output equations are obtained, skip

forward to Frame3.25 (and Frame 3.26) for an explanation, then return to this frame.

Task Finally, try producing the equations for the state diagram of Frame 2.14,

Figure 2.16; it has already been assigned secondary state variables. The answer

is in Frame 3.7.

46 Synthesizing Hardware from a State Diagram



Frame 3.8 Synthesizing FSMs using D-type flip-flops: the D-type flip-flop
equations

Consider the basic D flip-flop device shown in Figure 3.5.

D Q

clock

Data input

Data Flip-Flop

Asynchronous reset input

Steering Table
Qn  Qn+1 D
0     0        0
0     1        1

1     0        0
1     1        1

Figure 3.5 Diagram and characteristics of a D flip-flop.

The D-type flip-flop has a single data input D (apart from the clock input).

� The data line must be asserted high before the clock pulse, for theQ output to be clocked

high by the 0-to-1 transition of the clock.

� For the Q output to remain high, the D input must be held high so that subsequent clock

pulses will clock the 1 on the D input into the Q output.

These two bullet points are very important and should be remembered when using D-type

flip-flops.

Consider the waveforms shown in Figure 3.6 applied to a D flip-flop.

Clk

D

Q

Timing  markers for 0-to-1 transistions

Figure 3.6 Incomplete timing diagram for a D flip-flop.
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Task Complete the timing diagram for the output Q.

Hint: study the content of this frame and the steering table.

Go to Frame 3.9 after completing the diagram.

Frame 3.9

The completed timing diagram is illustrated in Figure 3.7.

Clk

D

Q

Transistion is high during 0-to-1 transistions
of the clock, so not seen by the D flip-flop.

Figure 3.7 Complete timing diagram for a D flip-flop.

The trick here is to look at the value of the D line whenever the clock input makes a

transition from 0 to 1; whatever the D line logic level is, the Q output level becomes.

This is because theD-typeflip-flop sets itsQoutput towhatever theD input logic level is at

the time of the clock 0-to-1 transition.

In the timing waveform, theD input is held high over two clock periods. This means that

the Q output will also be held high over the same two clock periods.

Note the point on the timingwaveformwhen theD inputmakes a transition to logic 1 for a

briefperiod (betweenclockpulses).Theflip-flop isunable to see this transitionof theD input,

so the flip-flop is unable to respond.

Note: the flip-flop can only update its Q output at the 0-to-1 transition of the clock input.

Go to Frame 3.10.

Frame 3.10

Having covered the basics of the D flip-flop, consider the state diagram in Figure 3.8.
It is, of course, the single-pulse generatorwithmemoryFSMseen inFrame 1.13.Thiswill

be synthesized using D-type flip-flops.
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The equation for flip-flop A is

A � D ¼ s0 � sþ s1 ¼ =A=B � sþ A � =B ¼ =B � sþ A � =B ðusing Aux ruleÞ:

Note, the D line of flip-flop A needs to be set in state s0 and held set over state s1.

Now consider the equation for flip-flop B:

B � D ¼ s1þ s2þ s3 � s ¼ A � =Bþ A � Bþ =A � B � s ¼ Aþ =A � B � s ¼ Aþ B � s:

Thefirst term sets theD line high in state s1,whilst the second termholds theD line high over

state s2. But what is happening in the third term?

In state s3 theD line needs to be held high if the input s is not logic 1, sincewhen s¼ 0 the

FSMshould return to state s0 (by resetting flip-flopB). Therefore,whilst s¼ 1, the third term

in the equation forB � Dwill be high.When s¼0, this termwill become logic 0and theBflip-

flop will reset, causing the FSM to move to state s0.

Negate the input term (s in this case) with s3 to hold the D input of the flip-flop high.

Rule 1 Whenever there is a 1-to-0 transition with an input term present along a

transitional line of the state diagram, thenAND the statewith the negated input.

Turn to Frame 3.11.

Frame 3.11

Now consider the state diagram shown in Figure 3.9.

This is just a modification of the single-pulse generator FSM which allows the FSM to

producemultiplepulses if inputk ¼ 1andm ¼ 1,andmultiplepulsesevery fourclockcycles

if k ¼ 1 and m ¼ 0.

s0

/P,/L

s1

P,/L

s2

/P,L

s3

/P,L

_|s_|

_|

/s_|

/s

s

AB
00

AB
10

AB
11

AB
01

Figure 3.8 State diagram for implementing using D flip-flops.
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s0

/P,/L

s1

P,/L

s2

/P,L

s3

/P,L

k_|s_|

/m_|

/s_|

/s 

s

AB
00

AB
10

AB
11

AB
01

m_|

Figure 3.9 State diagram with two-way branch.

The equation for the A flip-flop is

A � D ¼ s0 � sþ s1þ s2 � m:
Thefirst term is to set theA � D input high for thenext clockpulse to set theflip-flopand cause

the FSM to move into state s1.

The second termis tohold theflip-flopsetbetween states s1ands2.Note that the input term

along the transitional line between state s1 and s2 (k) is not present in the second term. This is

because it is not needed. The flip-flop is to remain set regardless of the state of the input k.

Rule 2 A term denoting a transition between two states where the flip-flop remains set

does not need to include the input term.

The third term in the equation for A � D is a bit more complicated. This term is a holding

term for the two-waybranch state s2. In state s2, the transitional pathbetween states s2 and s3

is a 1-to-0 transition. Therefore, apply Rule 1 (defined in Frame 3.10). The term is therefore

s2 � m. The other path, between states s2 and s1, is a 1-to-1 transition.Note: the termdenoted

by the s2 to s1 transition is not present in the equation for A � D. This is because it is not
required. The third rule is as follows.

Rule 3 A two-way branch in which one path is a 1-to-0 transition and the other a 1-to-1

transitionwill always produce a term involving the state and the 1-to-0 transition

with the input along the 1-to-0 transitional line negated. The 1-to-1 transitional

path will be ignored.

Go to Frame 3.12.

Frame 3.12

To see why these three rules apply, look at the state diagram of Frame 3.11 again, which is

reproduced in Figure 3.10 for convenience.
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Rule 1 Whenever there is a 1-to-0 transition with an input term present along a

transitional line of the state diagram, the state is ANDedwith the negated input.

A1-to-0 transitionwith an input along the transitional line connecting the two states needs

to be ANDedwith the negated input condition along the transitional line in order to hold the

flip-flop set until the input condition along the transitional line becomes true.

A 1-to-0 transition without an input along the transitional line connecting the two states

does not need to be included in the equation, since the FSMwill always be able to follow the

transition and the flip-flop will always be able to reset.

Rule 2 A term denoting a transition between two states where the flip-flop remains set

does not need to include the input term.

In the above state diagram the transitionbetween state s1 and s2 forflip-flopA is s1 � kþ s1

� /k, i.e. it does notmatterwhat state the input k is sinceA is to remain 1 regardless ofwhether

it is in state s1 or s2. Therefore, s1 � kþ s1 � /k¼ s1 by Boolean logical adjacency rule.

Rule 3 A two-way branch in which one path is a 1-to-0 transition and the other a 1-to-1

transitionwill always produce a term involving the state and the 1-to-0 transition

with the input along the 1-to-0 transitional line negated. The 1-to-1 transitional

path will be ignored.

In the above state diagram the two-way branch involves a 1-to-0 transition and a 1-to-1

transition. In state s2, flip-flop Awill remain set if m¼ 1 and must reset if m¼ 0.

Go to Frame 3.13.

Frame 3.13

The diagram in Figure 3.11 illustrates all possible conditions for a two-way branch in a state

diagram.

s0
/P, /L

s1 
P, /L

s2
/P, L

s3

/P, L

k_|s_|

/m_|

/s_|

/s

s

AB
00

AB
10

AB
11

AB
01

m_|

Figure 3.10 State diagram with two-way branch.
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ABCD
1101

sn

ABCD
0110
sn+2

ABCD
0101
sn+1

p_| q_|

Da = sn.(/p./q)
Db = sn
Dc = sn.q
Dd = sn./q

Figure 3.11 State diagram segment showing different conditions in a two-way branch.

In particular, note the condition for flip-flop A in a two-way branch with both transitions

being1 to0.The termDA¼ sn � (/p � /q) implies that thenegationof the input termalongeach

transitional line is being used. Only if both p¼ 0 and q¼ 0 will the FSM remain in state sn.

Study the diagram carefully and then go to Frame 3.14.

Frame 3.14

Look at the state diagram segments shown in Figure 3.12.

Sn n

Sn

Sn

s0

p

ABC
100

ABC
010

A·d = Sn·/p

B·d = Sn·p  

C·d = no term required

p

/l

ABC
011

ABC
110

ABC
100

ABC
000

ABC
010

1.

2.

A·d =

B·d =

C·d =

A·d =

B·d =

C·d =

Sn+1

Sn+1

Sn+1

Figure 3.12 Some two-way branch examples for the reader.
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Task Complete the two sets of D flip-flop equations.

When these have been completed, go to Frame 3.15.

Frame 3.15

The answers to the two problems in Frame 3.14 are as follows:

1. A � D ¼ sn � p
B � D ¼ sn

C � D ¼ sn � =p:
2. A � D ¼ sn � =p � l; since both p¼ 0 and l¼ 1 are needed to stay in sn

B � D ¼ sn � p, since there is a 0-to-1 transition between sn and snþ 1

C � D, no term required.

Refer to Frames 3.8–3.14 for the method if required. Now try the following problem.

Task The FSM illustrated in Figure 3.13, which is to be synthesized with D-type flip-

flops, has two states with two-way branches. Produce the equations for the twoD

flip-flops, as well as the output equation for X.

s0
/X

s1
/X

s2
X

s3
/X

s_|  q_|

/sp_|/q_|

sp_|
AB

00

AB

10

AB

11

AB

01

s

q

sp
X

clk

Figure 3.13 An example with multiple two-way branches.

Go to Frame 3.16 after completing this example.
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Frame 3.16

The solution to the problem in Frame 3.15 is

A � D ¼ s0 � sþ s1 � qþ s2 � =sp:
Since s0 � s is a set term, s1 � q is the 1-to-0 transition between s1 and s0, and s2 � /sp is the

1-to-0 transition between s2 and s3:

B � D ¼ s1 � qþ s2 � spþ s3:

Since s1 � q is the set term, s2 � sp is the 1-to-0 transition holding termbetween s2 and s1, and

s3 is the holding term in state s3. Note that there is no way of leaving state s3. The output

equation isX¼ s2,whichmakes theFSMaMooreFSMbecause theoutput is a functionof the

secondary state variables.

Toprovide awayout of s3, and to provide an initializationmechanism, it iswise to provide

a reset input to all FSMs. In any case, one should always provide a means of initializing the

FSM to a known state.

Resetting the flip-flops

If the flip-flops have asynchronous reset inputs (see Figure 3.14), then this is easily

accomplished by a common connection to all reset inputs.

Q

QSET

CLR

D

Q

QET

CLR

D

B

C

Asynchronous 
reset

Synchronous 
reset

Clock

Clock

Synchronous reset will
reset the flip-flop on the 
rising edge of the clock 
input

Asynchronous reset will 
reset the flip-flop 
independently of the clock

D = (B + C ).reset

Figure 3.14 Circuit diagrams showing asynchronous and synchronous resetting of a D flip-flop.

If theflip-flopsdonothaveanasynchronousreset input(oranyreset input), thenasynchronous

reset can be provided by ANDing a reset input to eachD input. In the case of the synchronous

input, thereset line(whichisactive-low) isnormallyheldhigh; thisenables the logicforeachflip-

flopD input.Lowering the reset linedisables theANDgatesandresults in theD inputsalsogoing

low.The next clock pulse, therefore,will cause the flip-flops to reset.Note that the flip-flopswill

reset on the rising edge of the clock pulse for positive-edge-triggered flip-flops.

Go to Frame 3.17.
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Frame 3.17

Task Try producing the D flip-flop equations and the output equations for each of the

following state diagrams. If you are not too sure, then reread Frames 3.8 to 3.16 again

before starting to do the problems.

State diagram in Frame 1.19, Figure 1.22, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 011

s4 001

State diagram in Frame 2.3, Figure 2.4, using the following secondary state variables:

AB

s0 00

s1 10

s2 11

s3 01

State diagram in Frame 2.12, Figure 2.13, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 111

s4 011

State diagram in Frame 2.9, Figure 2.10, using the following secondary state variables:

ABCD

s0 0000

s1 1000

s2 1100

s3 1110

s4 1111
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s5 0111

s6 0011

s7 1011

s8 1001

s9 0001

See Frame 3.18 for the solution to these problems.

Frame 3.18

The solutions to the problems in Frame 3.17 are as follows.

State diagram in Frame 1.19, Figure 1.22:

ABC Answer

s0 000 A � D¼ s0 � sþ s1¼ /A/B/C � sþ A/B/C¼ /B/C � sþ A/B/C

s1 100 B � D¼ s1þ s2¼ A/C

s2 110 C � D¼ s2þ s3þ s4 � s¼ AB/Cþ /ABCþ /A/BC � s¼ AB/Cþ /ABCþ /ACs

s3 011

s4 001 P¼ s1þ s3 � x¼ A/B/Cþ /ABC � x with x input

State diagram in Frame 2.3, Figure 2.4:

AB Answer

s0 00 A � D¼ s0 � stþ s1þ s2 � to¼ /B � stþ A/Bþ A � to
s1 10 B � D¼ s1þ s2þ s3 � st¼ Aþ B � st
s2 11

s3 01 P¼ s1þ s2¼ A

TS¼ /s1¼ /(A/B) active-low output

State diagram in Frame 2.12, Figure 2.13:

ABC Answer

s0 000 A � D ¼ s0 � d þ s1þ s2

¼ =A=B=C � d þ A=B=C þ AB=C

¼ =B=C � d þ A=B=C þ AB=C

¼ =B=C � d þ A � =C
s1 100

s2 110 B � D ¼ s1 � =d þ s2þ s3þ s4 � d
¼ A=B=C � =d þ AB=C þ ABC þ =ABC � d
¼ A=C � =d þ ABþ BC � d

s3 111
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State diagram in Frame 2.9, Figure 2.10:

ABCD Answer

s0 0000 A � D ¼ s0 � intþ s1þ s2þ s3þ s6þ s7þ s8 � =f
¼ =B=C=D � intþ A=C=Dþ AB=Dþ =BCDþ A=BD � =f

s1 1000

s2 1100

s3 1110 B � D ¼ s1þ s2þ s3þ s4

¼ A � =B=C=Dþ A=C=D � E þ ABC

¼ A=C=Dþ ABCs

s4 1111

s5 0111 C � D ¼ s2 � eocþ s3þ s4þ s5þ s6

¼ AB=D � eocþ ABC þ BCDþ =ACD
s6 0011

s7 1011 D � D ¼ s3 � =eocþ s4þ s5þ s6þ s7þ s8 � f þ s9 � int
¼ ABC � =eocþ CDþ A=BD � f þ =A=BD � ints8 1001

s9 0001
RC¼ /s0¼ /(/A/B/C/D)

S/H¼ s1þ s2¼ A/C/D

SC¼ s2¼ AB/C/D

CS¼ /(s3þ s4þ s5)¼ /(ABCþ BCD)

W¼ /s4¼ /(ABCD)

CC¼ s7¼ A/BCD

Note: active-low outputs are shown here with right-hand side negated.

Task Oncethesehavebeencompleted, trytakingthesingle-pulsegeneratorexampleofFrame

3.10, Figure 3.8, and produce the D-type flip-flop equations and output equations.

Finally,produceacircuitdiagramfortheFSMusingD-typeflip-flopswithasynchronous

reset inputs and other logic gates.When complete, go to Frame 3.19.

Frame 3.19

The complete design for the single-pulse generator with memory is given below;

The design equations

A � D ¼ s0 � sþ s1 ¼ A=Bþ =B � s
B � D ¼ s1þ s2þ s3 � s ¼ Aþ B � s

P ¼ s1 ¼ A=B and L ¼ B:

s4 011 C � D ¼ s2 � d þ s3þ s4 � d
¼ AB=C � d þ ABC þ =ABC � d
¼ AB � d þ ABC þ BC � d

P ¼ s3 ¼ A � B � C
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The circuit diagram of Figure 3.15 shows the memory elements (flip-flops), input decoding

logic (A � D and B � D logic), and output decoding logic (for the output P).

Q

QSET

CLR

D

Q

QSET

CLR

D

A

/B

s
Clk

Asynchronous reset

BA

L

P

/B/A

Figure 3.15 Circuit for the single-pulse generator with memory using an asynchronous reset.

If flip-flopswith asynchronous reset inputs are not available, then a synchronous reset can

be used, ANDed with the A � D and B � D logic, as illustrated in Figure 3.16.

Q

QSET

CLR

D

Q

QSET

CLR

D

A

/B

s

Clk

Synchronous reset

BA

L

P

/B/A

Additional AND gate needed to allow 
input B.d to become zero when reset is 

zero

Figure 3.16 Circuit for the single-pulse generator with memory using a synchronous reset.

In this illustration, the reset line is connected to the AND logic of each D input. Note the

additionof theextraANDgate to the input logicofB � D so thatwhenreset¼0,B � D¼0also.

Go to Frame 3.20.
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Frame 3.20

So now, all aspects of designing FSMs have been covered: from initial specification, to

construction of the state diagram, to synthesizing the circuit used to implement the FSM.

A run through the complete design process will now be undertaken. Consider these steps for

the single-pulse generator FSM.

The Specification
The block diagram showing inputs and outputs is first constructed (Figure 3.17). This would

be supplemented with awritten specification describing the required behaviour of the FSM.

Single-Pulse

Generator

with Memory

s

Clock input

P

L

reset

x

Figure 3.17 Block diagram for the single-pulse generator with memory.

‘The FSM is to produce a single pulse at its output P whenever the input s goes high. No

other pulse shouldbeproduced at the output until shasgone low, thenhighagain. In addition,

anoutputL is to indicate that thePpulsehas takenplace, tobe cancelledwhen sgoes low.The

L output can be disabled by asserting input x to logic 1.’

The next step is to produce the state diagram. This is not a trivial step, since it requires the

use of a number of techniques developed during this programme of work. This is the skilled

part of the development process.

Go to Frame 3.21.

Frame 3.21

The state diagram is shown in Figure 3.18.

Now assign secondary state variables to the state diagram in order to continue with the

synthesis of the FSM. Then, develop the equations for the flip-flops next state decoder, and

output logic.

The design equations

A � D ¼ ðs0 � sþ s1Þ � reset ¼ ðA=Bþ =B � sÞ � reset
B � D ¼ ðs1þ s2þ s3 � sÞ � reset ¼ ðAþ B � sÞ � reset
P ¼ s1 ¼ A=B
L ¼ s2 � xþ s3 � x ¼ B � x:

Finally, the circuit is produced from theequations (Figure3.19).Note that outputL is aMealy

output because it used the input x.
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The design can then be simulated to ensure that it is functioning according to the original

specification.

Simulation

Note here that the output L is conditional upon input x, so that it can only be logic 1 in states

s2 and s3, and then only if input x is logic 1 also. This is illustrated in the waveforms in

Figure 3.20.

s0
/ P,/ L

s1
P,/ L

s2
/ P,L=x

s3

/ P,L=x

s

/s

/s

s

AB

00

AB

10

AB

11

AB
01

Figure 3.18 State diagram for the single-pulse generator with memory.

Q

QSET

CLR

D

Q

QSET

CLR

D

A

/B

s

Clk

Synchronous reset

BA

P

/B/A

x
L

Figure 3.19 Circuit diagram of the single-pulse generator with memory.
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Clk

A

B

P=A/B

L

s

s0s3s2s1s0

Moore output

Mealy output

x

Figure 3.20 Timing diagram for the single-pulse generator with memory.

Go to Frame 3.22.

Frame 3.22

In some cases there is a need to use three-way (or more) branches. This has been avoided up

until now, but the rules can be used to resolve all pathways. However, each path must be

mutually exclusive.

Consider the diagram in Figure 3.21.

s0

s1

s3

s2

ABC

011

ABC

100

ABC

101

ABC

100

A.d = s0(x+y+z)  since any path takes A to 1.     

B.d = s0.(/x. /y . /z)

C.d = s0.(/x./y) no need to include z

x_|

y_|

z_|

Figure 3.21 State diagram segment with three-way branch.
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Here, the input A � d for flip-flop A has 0-to-1 transition in all three paths. To meet the

requirements for the D flip-flop, all leaving terms (x, y, and z) need to be logically ORed to

provide a transition when any input becomes active.

In the case ofB � d there are three 1-to-0 transitionpaths; this canbe dealtwith byusing the
1-to-0 negation rule for all three paths, as shown.

In the case of C � d there are two 1-to-0 transitions and one 1-to-1 transition. In this

case the 1-to-0 negate rule is applied to the two 1-to-0 transition paths, both ANDed

because they both have to be true to keep the FSM in s0. The 1-to-1 transition is, as

usual, ignored.

Go to Frame 3.23.

Frame 3.23

Task Consider the state diagram fragment in Figure 3.22.

Complete the equations for A � d, B � d, and C � d.

s0

s1

s2

s3

s4

s5

s6

x_|

y_|

z_|

_|

_|

_|

ABC
010

A.d = 

B.d = 

C.d =

ABC
010

ABC
110

ABC
100 ABC

101

ABC
011

ABC
111

Figure 3.22 Incomplete three-way branch example.

When completed, go to Frame 3.24.
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Frame 3.24

The three equations are illustrated in Figure 3.23.

s0

s1

s2

s3

s4

s5

s6

x_|

y_|

z_|

_|

_|

_|

ABC

010

A.d = s0.y + s1 + s2 + s3 + s4 + s5 + s6.

B.d = s0./y + s1 + s3 + s4 + s6.

C.d = s0.z + s2 + s3 + s5 + s6.

ABC

010
ABC

110

ABC

100
ABC

101

ABC

011
ABC

111

Figure 3.23 Solution to the three-way branch example.

In the equation forB � D, the term s0 � /y is keeping the FSM in state s0. In the equation for

C � D, the term s0 � z will hold the FSM in state s0 until z¼ 1. So the rules for D flip-flops

developed earlier still apply.

Go to Frame 3.25.
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Frame 3.25 Recapon how to dealwithmultistateMoore active-lowoutputs

In some state diagram designs there is a need to write an output equation in its ‘active-

low’ form rather than in its ‘active-high’ form. This is particularly true when control-

ling memory devices, where the chip select line from the FSM to the memory device is

often active-low. If this signal was dealt with as an active-high signal, then all states

where the chip select line was not active would have to be written into the equation for

chip select (CS).

The illustration in Figure 3.24 shows a typical example.

s4
/CS,W,R

s5
/CS,/W,R

s6
/CS,W,R

s7
CS,W,R

CS = /(s4 + s5 +s6)

W = /s5

s4
s5
s6

CS (active low)

s4
s5
s6

CS (active low)

s4 s5   s6 Cs

0    0    0    1

0    0    1    0

0    1    0    0

1    0    0    0

Dealing with active low Outputs

Figure 3.24 Dealing with active-low inputs.

In this example, CS is logic 0 (active) in states s4, s5 and s6, but high again in state s7.

The three states s4, s5 and s6 are all ORed and the whole OR expression inverted (NOR).

This can, if preferred, bewritten either in theNOR form, or, by applyingDeMorgan’s rule in

the form of an AND gate with all inputs inverted.

Go to Frame 3.26.

64 Synthesizing Hardware from a State Diagram



Frame 3.26

Now consider the situation when an output is to be active-low, but only in a particular state,

and then only if a particular input is at a certain logic level (Mealy active-low output). How

can this be represented in a state diagram? Figure 3.25 illustrates how.

s4
/CS,W,R

s5
/CS,

/W=/x,

R

s6
/CS,

W,

/R=x

s7
CS,W,R

W = /(s5 • /x)   Here W is
logic 0, but only in state s5, and
then only if input x is logic 0

R = /(s6 • x)  Here R is logic 0,
but only in state s6, and then
only if input x is logic 1

Dealing with active low Outputs

Figure 3.25 Dealing with active-low outputs.

In state s5, the outputW is represented by

=W ¼ =x:

This implies that, in state s5,W is tobe logic0,butonly in state s5, andonly if input x is logic0.

When the equation forW is written, it also needs to contain the state s5 as

W ¼ =ðs5 � =xÞ:
Note the whole of the right-hand side of the equation is inverted to provide the active-low

output.

In a similar manner, in state s6 the output R is represented as

=R ¼ x;

indicating that, in state s6,outputR is tobe logic0,butonly if inputx is logic1.Theequation is

written as

R ¼ =ðs6 � xÞ:

Here, as with theW signal, the whole right-hand side of the equation is also inverted.
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3.3 SUMMARY

This chapter has looked at the method of synthesizing a logic circuit from the state diagram.

Methods have been developed to make this process simple and effective for implementation

using bothT-type flip-flops andD-type flip-flops. Thesemethods are used in the development of

further examples in Chapter 4.

At this point, the main techniques to be used in the development of synchronous design of

FSMs have been completed and the rest of the book follows a more traditional format.

There is one more method to be considered in synchronous design, namely that of the ‘One

Hot’ technique, which will be dealt with in Chapter 5.
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4
Synchronous Finite-State
Machine Designs

This chapter looks at a numberof practical designs using the techniques developed inChapters 1

to 3. It compares the conventional design of FSMs with the design proposed in the book. This

illustrates howmore effective the latter method is in developing a given design. The traditional

method of designing FSMs is common in a lot of textbooks on digital design. It makes use of

transition tables and can become cumbersome to use when dealing with designs having a large

number of inputs. Even for designs having few inputs, the method used in Chapters 1–3 is

quicker and easier to use.

Most designers involved in the development of FSMs make use of unused secondary state

assignments to help reduce the flip-flop input and output equations. This practice is investigated

with some interesting results.

The chapter covers a number of practical system designs. Some have simulation waveforms

showing theFSMdesignworking.TheVerilogHDLcode used to create the simulationswill not

be shown, as VerilogHDL code development is not covered until later on in the book. However,

the respectiveVerilog codes are available on theCDROMdisk that is includedwith this book, as

are the Verilog tools used to view the simulations.

Eight examples are discussed in this chapter, with each example introducing techniques that

help to solve the particular requirements in the design being investigated.

4.1 TRADITIONAL STATE DIAGRAM SYNTHESIS METHOD

Before continuing with the development of FSM systems based on the synthesization method

covered in Chapters 1–3, it is worth investigating the more popular traditional method of

synthesization used by many system designers. Then see what solutions are obtained by using

both methods. It should be possible to obtain the same results, or at least results that are of a

similar level of complexity (i.e. number of gates).

Consider the state diagram shown in Figure 4.1. This, being a four-state diagram, will

need two D-type flip-flops. Using the traditional synthesization method, begin by con-

structing a state table containing the present state (PS) values and the next state (NS)

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



values for A and B, for all possible values of the input x. One then adds to this the next

states for the inputs Da and Db, for all possible values of x. The result is the state table

shown in Table 4.1.

The values for A and B in Table 4.1 are obtained by inspection of the state diagram in

Figure 4.1. For example, in state s0 (PS of AB ¼ 00) in col1 the NS of AB for x ¼ 0 will

be 00 in col2; however, if x ¼ 1, the NS of AB ¼ 01 in col3 (i.e. s1).

The values for the NS Da and Db values will follow the NS values for AB because in a

D flip flop the output of the flip flop (A, B) follows the Da and Db inputs.

The reader can follow the rest of the rows in Table 4.1 to complete the state table.

Table 4.1 Present state–next state table for the state machine.

col1 col2 col3 col4 col5

PS NS NS NS NS

AB AB AB DaDb DaDb

x ¼ 0 x ¼ 1 x ¼ 0 x ¼ 1

Row1 00 00 01 00 01

Row2 01 11 01 11 01

Row3 11 00 10 00 10

Row4 10 11 00 11 00

/Z
s0

/Z
s1

/Z
s2

Z
s3

x_| /x_|

/x_|

x_|
/x_|

x_|

AB
00

AB
01

AB
11

AB
10

Figure 4.1 A state diagram used in the comparison.
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The next step is to obtain the Da and Db equations from the state table by writing

down the product terms where Da ¼ 1 in both columns x ¼ 0 and x ¼ 1.

Consider, for example, Da ¼ 1 when A changes 0 to 1; look for PS A ¼ 0 to NS A ¼ 1

in row 2, and PS A ¼ 1 to NS A ¼ 1 in row 3 of columns 1, 3 (x ¼ 1):

� when PS AB ¼ 01 (row 2) and x ¼ 0, flip-flop A should set, and the product term /AB/x is

required;

� whenPSAB ¼ 01 and x ¼ 1 (row2, col3), flip-flopA should be reset, and the term /ABx is not

required;

� when PS AB ¼ 10 (row 4) and x ¼ 0, flip-flop A should set, and the term A/B/x is

required;

� when PS AB ¼ 11 (row 3) and x ¼ 1, flip-flop A should be set, and term ABx is required.

Therefore, the D input terms for Da are

D�a ¼ =AB�=xþ A=B�=xþ AB�x;

which cannot be reduced. For D �b¼ /A/B �xþ /AB � /xþ /AB �xþ A/B � /x we have

D�b ¼ =A�xþ =ABþ A=B�=x:

The output equation for Z ¼ s3 ¼ A=B, since this is a Moore state machine.

Now do the problem using the synthesization method described in Chapters 1�3.

From the state diagram directly:

Da ¼ s1�=xþ s2� xþ s3�=x
¼ =AB�=xþ AB�xþ A=B�=x

Db ¼ s0� xþ s1þ s3�=x
¼ =A=B� xþ =ABþ A=B

¼ =A� xþ =ABþ A=B�=x:

This is the same as obtained using the traditional method.

Themain advantage of themethod used inChapters 1–3, over the traditionalmethod, is that it

does not require the use of the state table. It is also much easier to usewhen the number of input

variables is large (as is the case in largepracticalFSMdesigns) since the sizeof thepresent state–

next state table increases as more inputs are added.

4.2 DEALING WITH UNUSED STATES

Whendeveloping statediagrams that use less than the2n states forn secondary statevariables the

question of what to do with the unused states arises. Consider the state diagram of Figure 4.2.
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From the state assignment used in this example there are

Used states Unused states

s0¼ 000 s5¼ 010

s1¼ 100 s6¼ 110

s2¼ 101 s7¼ 001

s3¼ 111

s4¼ 011

The equations for D flip-flops are:

A � d ¼ s0 � sþ s1þ s2þ s3 � z
¼ ���=A =B=C � sþ A=B���=C þ A=B���=C þ A���=BC � z:

The crossed-out literals are a result of applying logical adjacency and the aux rule (see

Appendix A). The result is

A � d ¼ =B=C � sþA=BþAC � z
B �d ¼ s2 � yþ s3 � =zþ s4

¼ A=BC � yþ���=ABC � =zþ =ABC

¼ A=BC � yþBC � =zþ =ABC

C � d ¼ s1 � xþ s2 � yþ s3þ s4

¼ A=B=C � xþA���=B=C � yþ���=ABCþ���=ABC:

s0
/P, /Q

s1
P, /Q

s2
P,Q

s3
/P,Q

s4
/P,/Q

ABC
000

ABC
100

ABC
101

ABC
111

ABC
011

s_|
x_|

/y_|

y_|

z_|

/z_|

Figure 4.2 A state diagram using less than the 23 states.
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Again, the crossed-out terms are using logical adjacency and the aux rule.

C � d ¼ A=B=C � xþ AC � yþ BC:

The output equations:

P ¼ s1þ s2 ¼ A=B=C þ A=BC

P ¼ A=B

Q ¼ s2þ s3 ¼ A=BC þ ABC

Q ¼ A=BC þ ABC ¼ AC:

If the state machine falls into the unused state s5 (/AB/C) then the result will be

A � d ¼ 0;B � d ¼ 0; and C � d ¼ 0 the state machine falls into s0:

If the state machine falls into unused state s6 (AB/C):

A � d ¼ 0;B � d ¼ 0; andC � d ¼ 0 again; the state machine will fall into s0:

If state machine falls into the unused state s7 (/A/BC):

A � d ¼ 0;B � d ¼ 0; and C � d ¼ 0 with next state being s0 again:

This shows that the FSM designed with D-type flip-flops will be self- resetting.

Note that ifTflip-flops are used, then theFSMwill not be self-resetting since theT input either

toggles with T ¼ 1 or remains in its current statewith T ¼ 0. The only way to ensue that it does

return to s0 is to make transitions available for this, as illustrated in Figure 4.3. Clearly, this

requires more product terms in the equations for A � t, B � t, and C � t.
In general, if the state machine has a lot of 1-to-1 transitions and few 1-to-0 and

0-to-1 transitions, then T flip-flops may need less terms and, hence, a possible deduction in

logic.

If the state machine has few 1-to-1 transitions the D flip-flop solution may result in fewer

terms. However, the self-resetting features of theD flip-flopmay provide a greater advantage in

the overall design.

The rest of this chapter contains anumberofpractical examples,makinguse of the techniques

developed in the first three chapters.

4.3 DEVELOPMENT OF A HIGH/LOW ALARM INDICATOR SYSTEM

Figure 4.4 illustrates a block diagram for the proposed system. In Figure 4.4, the FSM is used to

control anADCandmonitor the converted analogue signal levels until either the low-level limit

or the high-level limit is exceeded. The low- and high-level values are set up on the Lo-word/

Hi-word inputs, which could be dual in-line switches. The comparators are standard 8-bit
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Figure 4.4 Block diagram for the High/Low detector system.
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Figure 4.3 The arrangement needed for T flip-flops.
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comparator circuits similar to the standard7485devices.These couldeasilybe incorporated into

a PLD/FPGA along with the FSM.

In this application it is assumed that, when theADC outputA exceeds the Hi-word, hi will go

to logic 1. AnADCoutput less than the Lo-wordwill make lo go to logic 1. TheADC could be a

separate device or its digital circuits could be implemented on a PLD/FPGA device and an

external R/2R network connected to the chip.

Thesystemis to startwhenstgoeshigh. It shouldperformanalogue-to-digital conversionsat a

regular sampling frequency dictated by the system clock and when either the Hi-word or Lo-

wordare exceeded, turnon theappropriateLEDindicator andstop. It canbe returned to its initial

state by operation of the reset button. Note that in this example the alarm will not sound for an

ADC output that is equal either to Hi-word or Lo-word.

From this specification, a state diagramcanbe developed. The control of theADCwill follow

in much the same way that was used in Chapter 2.

The two digital comparators being combinational logic will give an output dependent on the

level of the ADC output.When the ADC output is equal to or less than hi-word but greater than

Lo-word, thenboth loandhiwill be low, signifying that theADCvalue isbetween the two limits.

When the ADC output is greater than Hi-word, then hi will be logic 1 and is to sound the alarm

and turnon theHLindicator.When theADCoutput is less thanLo-word, then lobecomes logic1

and the alarm turns on the LL indicator.

A state diagramhas been developed as shown in Figure 4.5. Looking at this state diagram, the

systemsits in s0 frompoweron reset andwaits for the start input togohigh.Then theADCsignal

SC is raised to perform an analogue-to-digital conversion. After this the system falls into s2.

Here, the outputs from the two comparators are checked, and if either the Hi-word or the Lo-

word limit has been exceeded then the state machine will fall into s3. If, however, neither limit

has been exceeded, then the statemachinewill fall back into s1 to perform another analogue-to-

digital conversion.

/SC,LL,HL,
/AL
s0

SC
s1

/SC
s2

AL
/LL=lo
/HL=hi

s3

st_| eoc_|

lo+hi_|

/(lo+hi) _|

In s3  /LL = lo is in fact LL = /(s3.lo)

In s3  /HL = hi which is HL = /(s3.hi)

Both are mealy outputs

Note: /(lo + hi) is the same as  lo +  hi

AB
00

AB
10

AB
11

AB
01

Figure 4.5 A possible state diagram for the problem.
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Looking at the two-way branch state s2, it is clear that the inverseof loþ hi is /(loþ hi).As an

aside, if one applies DeMorgan’s rule to /(loþ hi) one gets /lo � /hi, indicating for the transition
from s2 to s1 that both lo and hi must be low.

Moving on to look at s3, one can see that the two outputs HL and LL are dictated by the logic

state of the comparator outputs lo and hi so that in s3 theHL indicator should be active if hi¼ 1,

whereas the LL indicator should be active if lo¼ 1.

/HL¼ hi in s3 indicates that HL must be active low. The output equation for HL will be

written as

HL ¼ =ðs3 � hiÞ;

whichmeans thatHLwill be logic0whenhi¼ 1, butonlywhen the statemachine is in s3.This is

defining a Mealy active low output. This is how it was defined in Chapter 3.

In a similar way, LL ¼ =ðs3 � loÞ:

The best way to remember this idea is to think of the /HL¼ hi equation in the s3 state as

representing the equation HL ¼ /ðs3 � hiÞ, but then written inside the state circle one does not
need to include the s3, as it is implied.

Replacing the state number s3with its secondary statevariablevalueAB ¼ 01, the twoMealy

outputs can be written as

HL ¼ =ðs3 � hiÞ ¼ =ð=A � B � hiÞ and LL ¼ =ðs3 � loÞ ¼ =ð=A � B � loÞ;

which results in two three-input NAND gates. Remember, active low signals are inverted

(see Chapter 3).

So, from the equation for HL ¼ =ð=A � B � hiÞ it can be seen that, when in state s3, A ¼ 0

ð=A ¼ 1Þ, B ¼ 1, and if hi¼ 1 then the output of the NAND gate will be zero, which is exactly

what is required to light the LED indicator (active low output).

Havinggone into somedetail to describe the logicbehind theMealyoutputs, thenext step is to

determine the equations for the two flip-flopsA andB.Using themethod described in Chapter 3

for D flip-flops, these are

A � d ¼ s0 � stþ s1þ s2 � =ðloþ hiÞ ¼ =A � =B � stþ A � =Bþ A � B � =hi � =lo:

The equation for A � d could be simplified using the Auxiliary rule to form

A � d ¼ =B � stþ A � =Bþ A � =lo � =hi:

Moving on to flip-flop B:

B � d ¼ s1 � eocþ s2 � ðloþ hiÞ þ s3: ¼ A � =B � eocþ A � B � loþ A � B � hiþ =A � B:

Again, using the Auxiliary rule:

B � d ¼ A � =B � eocþ B � loþ B � hiþ =A � B:
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The remaining Moore-type outputs are SC ¼ s1 ¼ A � =BandAL ¼ s3 ¼ =AB.
The next stage would be to develop a Verilog HDL file describing the circuit for the FSM,

and comparators. This has been done and is contained on the CDROM in the Chapter 4

folder.

4.3.1 Testing the Finite-State Machine using a Test-Bench Module

In this simulation (Figure 4.6), a test-bench module is added to the Verilog code in order to

test the FSM. To do this, test all paths of the state diagram. In the simulation of Figure 4.6

this has been achieved by first following the path s0 ! s1 ! s2 ! s3 with a low limit

exceeded and the FSM remains in s3 (A ¼ 0, B ¼ 1) until a reset (rst ¼ 0) is applied. Then,

the sequence is repeated with a Hi limit exceeded, followed by another reset. Finally, the

sequence s0 ! s1 ! s2 ! s1 ! s2 ! s1 ! s2 ! s1 ! s2 ! s0 is followed, represent-

ing a no limits exceeded until finally another rst ¼ 0 resets the FSM back to s0. Thus, in this

way the FSM is tested.

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns

test.clk

test.rst

test.st

test.eoc

test.hi
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test.SC
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test.A
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Figure 4.6 Simulation of the FSM controller.
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4.4 SIMPLE WAVEFORM GENERATOR

Sometimes there is a need to generate a waveform to order, perhaps to test a product on an

assembly line. An oscillator could be used for this purpose, but it can be tedious to build an

oscillator todo this if thewaveform isnot apure sinewave, squarewave, ramp, or triangular.One

way of generating a complex waveform would be to use a microcontroller with a digital-to-

analogue converter (DAC). The complex waveform could be stored into read only memory

(ROM) and accessed via the microcontroller. However, this seems overkill. There are also

potential sampling frequency limitationswith themicrocontroller.An alternativewaywould be

to use a clockedFSM.The sampling rate could thenbe controlled by the clock rate,whichwould

be limited by that of a PLD or FPGA. The complex waveform is still stored in a ROM but the

ROM is controlled by the FSM.

Consider the block diagram of Figure 4.7. In this system, raising the st input starts the

waveform generator. Eachmemory location is accessed in sequence and its content, a digitized

sample of thewaveform, is sent to theDACtobeconverted to ananalogue form.When the endof

memory is reached, the address counter simply runs over to the zero location and starts again.

Setting the st input lowstops the system.Theactual sampling rate and, hence, theperiodof the

waveform can be calculated once the state diagram is completed. The output of the DAC will

need to be filtered to remove the sampling frequency component – this can be accomplished

using a simple first-order low-pass filter section if the sampling frequency is much higher than

the highest synthesized waveform frequency. (Usually, it is to satisfy Shannon’s sampling

theory.)

The state diagram now needs to be developed. A little thought reveals that the block diagram

itself provides an indication of the sequence required.

R

C

DAC
Data

Latch

Memory
Counter

Clocked FSM

Address

Bus

Data

Bus

D Q
Vout

P      CC        full       CS       EN                   LP

  rst                  st

FSM
Reset

Start

Waveform
genration

Filtered

output

0V

Figure 4.7 Block diagram for simple waveform generator.
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1. Initially, the address counter needs to be cleared to provide the necessary zero address for the

first location of the memory. The system should remain in state s0 until the start input st is

asserted (high).

2. Thememory then needs to be enabled, selected, and allowed to settle, after which the data in

thememory locationwill beavailable at thedata latch inputs.Then thedataneed tobe latched

into the data latch to be available at the input of the DAC.

3. At this stage, the address counter needs to be incremented so as to point to the next memory

location and the sequence in 2 repeated again as long as the start input is still asserted (high).

Note that, in this problem, the end of memory location is not an issue, since the address counter

can be allowed to overrun and start from location zero again. This does imply that thewaveform

information canbefitted into thememorydevice so that thewaveform is produced seamlessly. It

would be possible to add further logic to the system to ensure that this was always the case, but

this is not done in this example.

The statediagramcannowbedeveloped following the sequenceof activitiesdescribedabove.

In Figure 4.8, the state diagram is seen to follow the sequential requirements for the system.

Note that in s3 thePoutput is aMealyoutput.P is gatedwith the clockandcanonlygohighwhen

in s3, and then onlywhen the clock is low. This ensures that the address counter is pulsed (on the

rising edge ofP) after thememory enable EN is disasserted (high). Therefore, thememory data

outputs will be tri-state during the change of memory address. The Data Latch ensures that the

DACalwayshasavaliddata sampleat its input.Note that analternativearrangement foroutputP

would be to provide an additional state between s3 and s1 inwhichP ¼ 1. This would avoid the

potential for a glitch at P output (as discussed in Chapter 1).

Clk

P

EN

P = s3./clk

EN = s3

s3          s1         s2         s3         s1

/P,/CC,
CS,EN

/LP

s0

CC, /CS,
 /EN

s1

LP

s2

/LP,EN
P = /clk

s3

st_|_|

_|_|

AB
00

AB
10

AB
11

AB
01Cycle time is 3xclk

Figure 4.8 The complete state diagram for a simple waveform generator.
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The equations can now be developed:

A � d ¼ s0 � stþ s1þ s3

¼ =A � =B � stþ A � =Bþ =A � B
¼ =B � stþ A � =Bþ =A � B
B � d ¼ s1þ s2

¼ A � =Bþ A � B
¼ A:

Outputs are

CC ¼ =s0 ¼ =ð=A � =BÞ an active low output:

CS ¼ s0 ¼ =A � =B although an active low signal it is only high in s 0:

LP ¼ s2 ¼ A � B:
EN ¼ s0þ s3 ¼ =A high in these two states:

P ¼ s3 � =clk ¼ =A � B � =clk a Mealy output gated with the clock:

In Verilog, these equations can be entered directly, but using the Verilog convention for

logic:

AND is & OR is j NOT is � exclusive OR is :̂

These equations would be contained in an assign block thus:

assign
A. d¼� B& st|A&�B|�A& B,
B.d¼ A,
CC¼� (� A & � B);
CS¼� A& � B,
LP¼ A&B,
EN¼� A,
P¼� A&B&� clk;

AppendixCcontains a tutorial onhowtoproduceaVerilogfile to simulate a statemachine.Also,

much more detail is available in Chapters 6 to 8.

4.4.1 Sampling Frequency and Samples per Waveform

From the state diagram of Figure 4.8 it is apparent that the system cycles though three states for

every memory access, so the sampling period is three times the clock period.

Therefore, for a sampling frequency of 300� 103 Hz, a clock of 300�103�3¼ 900�103 Hz

is required. For a critical sampling-rate application, a dummy state could be added to make the

sampling frequency four times the clock frequency (for example).

The size of the memory can be whatever is required for the systems use, and will dictate the

size of the address counter. If the memory is 1 Kbyte, the address counter needs to be
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Number of flip-flops in address counter ¼ lnð1024Þ=lnð2Þ ¼ 10:

The simulation of the FSM is illustrated in Figure 4.9.

4.5 THE DICE GAME

In this example the system consists of seven LED indicators, a p input, and a clock. The block

diagramof the system is shown inFigure 4.10,with a single push switchp.Theclock input could

be a simple oscillator circuit using a 555 timer chip running at 100 Hz so as to provide aflicker to

add effect.

The LED indicators are arranged as illustrated in Figure 4.11 to look more realistic. In this

design it is assumed that low-current LEDs are usedwith a forward current of 2 mA.Thismakes

the current-limiting resistors 1800� for a 5 Vsupply. It is also assumed that theFSMoutputs are

open drain. Figure 4.11 illustrates how the seven LED indicators would look for each number

displayed. The situation when all LEDs are off is not shown.

The state machine is simple to develop, as all that is required is to display each number in

sequence, but at a speed that the user cannot follow. The state diagram consists of seven states,

each one to display a given LED pattern. The transition between each state is conditional on the

input p being equal to one for each transition.When the user releases the p button the FSMwill

stop in a state. Because of the frequency of the clock, the user will not be able to follow the state

sequence, thus realizing the chance element of the game. Note that if the clock frequency is too

high then all the LED indicators will appear to be on when the p button is pressed. Having a

0ns 100ns 200ns 300ns

test.st

test.clk

test.rst

test.A

test.B

test.P

test.CC

test.CS

test.EN

test.LP

Figure 4.9 Simulation results for the FSM of the waveform synthesizer.
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Figure 4.11 Dice format for numbers.

Vdd = 5 V

FSM

L1

L2

L3

L4

L5

L6

p

100 Hz
Clock

LED1

LED2

LED3

LED4

LED5

LED6

Block Diagram of Dice Game

LED7
L7

Figure 4.10 Block diagram of the dice game FSM
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slower clock frequency leads to a flicker effect and, thus, adds to the excitement of the game.

Figure 4.12 shows the state diagram for the system.

4.5.1 Development of the Equations for the Dice Game

A � d ¼ s1 � pþ s2þ s3þ s4þ s5 � =p
¼ =A � B � =C � pþ A � B � =C þ A � =B � =C þ A � =B � C þ A � B � C � =p:

This can be reduced to

A � d ¼ B � =C � pþ A � =C þ A � =pþ A � =B
B � d ¼ s0 � pþ s1þ s2 � =pþ s4 � pþ s5þ s6 � =p

¼ =A � =B � =C � pþ =A � B � =C þ A � B � =C � =pþ A � =B � C � p
þ A � B � C þ =A � B � C � =p;

which reduces to

B � d ¼ =A �=C � pþ =A � B �=C þ A � C � pþ A � B � C þ B �=p
C � d ¼ s3 � pþ s4þ s5þ s6 � =p

¼ A � =B � =C � pþ A �=B � C þ A � B � C þ =A � B � C �=p;

L1,L2,L3
L4,L5,L6
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to s6 at a rate of 10 ms per

state.
The user will not be able to
follow the sequence at this

rate

Figure 4.12 State diagram for the dice game.
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reducing to

C � d ¼ A � =B � pþ B � C � =pþ A � C:

The outputs (LEDs are active low) are

L1 ¼ ðs0þ s1Þ¼ð=A � =B �=Cþ=A � B �=C ¼ =A �=CÞ using active high in s0 and s1only:

L2 ¼ ðs0þ s1þ s2þ s3Þ ¼ =C using active high in these states only:

L3 ¼ =s6ðactive lowÞ ¼ =ð=A � B � CÞ:
L4 ¼ =s6 ¼ =ð=A � B � CÞ low in s6 only; hence invert:

L5 ¼ =ðs4þ s5þ s6Þ ¼ =ðA � C þ B � CÞ low in only these states; hence invert:

L6 ¼ =ðs2þ s3þ s4þ s5þ s6Þ or ðs0þ s1Þ only high in s0 or s1 giving ð=A � =CÞ:
L7 ¼ =ðs1þ s3þ s5Þ ¼ =ð=A � B � =C þ A � =B � =C þ A � B � CÞ:

Figure 4.13 illustrates thediceFSMrunning through each state.The secondary statevariables

a, b, and c can be seen to be moving through each state. The outputs L1 to L7 are responding as

expected and are illustrated in Figure 4.11.
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Figure 4.13 Simulation of the dice game.
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In Figure 4.14, the input p has been simulated as ‘on’ then ‘off’. The FSM is seen to have

stopped in state s3, then started again when p is set to logic 1.

Note that in both simulations the time-scale is in nanoseconds, but in practice the clockwould

be slowed down to a 10 ms period.

4.6 BINARY DATA SERIAL TRANSMITTER

The next example involves sending the 4-bit binary codes of a counter to a shift register to be

serially shifted out over a serial transmission line.

Figure 4.15 shows the block diagram for a possible system. The FSM is used to control the

operation of the Binary Counter and the Parallel Loading Shift Register. Both of these devices

could be designed using the techniques described in Appendix B on counting methods. This

leads to a Verilog description (module) for each device.

The system is started by raising the st input to logic 1. This is to cause the FSM to remove

the reset from the Binary Counter and then load the current count value of the counter into

the parallel inputs of the shift register. On releasing the parallel load input LD to logic 1, the

shift register will clock the count value out over its transmit output (TX) at the baud rate

dictated by the clock. When the shift register is empty its RE signal will go high and this

0ns 50ns 100ns 150ns 200ns 250ns 300ns
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Figure 4.14 Dice game simulation with p input released showing FSM stopped in s3.
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will be seen by the FSM, which will then determine whether the last count value has been

sent. This is seen by the FSM when done = 1, detected by the detector block (an AND gate).

If not the last counter value, then the next count value will be loaded into the shift register

and the sequence repeated until all count values have been sent. At this point the system

will stop and wait for st to be returned to its inactive state before returning the FSM to its

s0 state.

From the above description, the state diagram in Figure 4.16 is developed. This state

diagram is correct, but it is difficult to obtain a unit distance code for the secondary state

variables. If a dummy state s7 is added, then a unit distance coding between s6 and s0 can

be obtained for the secondary state variables A, B, and C. Note: it is not apparent from

Figure 4.17, but the outputs in state s7 are the same as the state it is going to (s0), apart

from the RC output. The s5 to s1 transition is not unit distance. If glitches are produced in

any outputs, then dummy states could be introduced between s5 and s1 to establish unit

distance coding. The reader might like to try to establish a unit distance code for the state

diagram. This would require introducing an additional state variable (flip-flop), since all 23

states have been used in this design.

Using Figure 4.17, the equations for the FSM are obtained from the state diagram and

implemented using D flip-flops:

A � d ¼ s1þ s2þ s3þ s4

¼ =A � B �=C þ A � B�=C þ A �=B �=C þ A �=B � C;
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Parallel Loading Shift
Register (includes Re

counter)
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CB RC

rst

st

reLD

done

Reset counter

Clock Counter
q0      q1      q2       q3

reset

RE

Register empty flag

Det

Load

Clk

Figure 4.15 Block diagram of the binary data serial transmitter.
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Figure 4.16 State diagram for the binary data serial transmitter.
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Figure 4.17 State diagramwith additional dummystate s7 to obtain unit distance code for the secondary

state variables.
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reducing to

A � d ¼ B �=C þ A �=B
B � d ¼ s0 � stþ s1þ s4 � reþ s5þ s6 � st

¼ =A �=B �=C � stþ=A � B � =C þ A � =B � C � reþ A � B � C þ =A � B � C � st;

reducing to

B � d ¼ =A �=C � st þ =A � B �=C þ A � C � reþ B � C � stþ A � B � C
C � d¼s3þ s4þs5 � doneþ s6 ¼ A � =B �=C þ A � =B � CþA � B � C � doneþ=A � B � C;

reducing to

C � d ¼ A � =Bþ B � C � doneþ =A � B � C:
The outputs (all Moore) are

RC ¼ =s0ðactive lowÞ ¼ =ð=A � =B � =CÞ
LD ¼ =ðs2Þ ¼ =ðAB=CÞ
CB ¼ s3ðactive highÞ ¼ A � =B � =C:

The serial transmitter simulation is shown in Figure 4.18. The state machine is tracked

through its state sequence in the usual way by comparing the A, B, and C values in Figure 4.18

with the state diagram A, B, and C values in Figure 4.17.
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Figure 4.18 Simulation of the binary data serial transmitter.
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4.6.1 The RE Counter Block in the Shift Register of Figure 4.15

The shift register in Figure 4.15 has an output RE to flag the point at which the register is empty.

This can easily beobtainedbyusing a four-stageBinaryCounter that becomesenabledwhen the

load input is disasserted (high). The counter can then be clockedwith the same clock as the shift

register; then,when it reaches itsmaximumcount 1000, themost significant bit is used as theRE

signal. Table 4.2 illustrates the effect.

FromTable 4.2 it can be seen thatwhen the counter reaches the eighth clock pulse the counter

rolls over to set themost significant bit of the counterD to logic 1. This bit acts as theRE register

empty bit. After shifting out the binary number, the FSMwill return to its s0 state, where theRC

output will once again go low and reset both the Binary Counter and the RE counter in the shift

register. Note that in this particular design an additional flip-flopE could be added to the binary

counter and this used as the RE output instead

The equations to describe the RE counter can be developed from thematerial in Appendix B

on counting applications. The equations, using T-type flip-flops, are

A � t ¼ 1

B � t ¼ A

C � t ¼ A � B
D � t ¼ A � B � C
RE ¼ D:

This last example has illustrated how a complete design can be developed in terms of Boolean

equations that can be directly implemented in Verilog HDL (or any other HDL for that matter).

There are examples in Appendix B showing how a synchronous binary counter can be

implemented using T flip-flops. Of course, the counter could be implemented as an asynchro-

nous (ripple-through) counter if desired.

Table 4.2 Illustrating the effect of a binary counter used to determine shift register empty.

Binary counter

RE

D C B A Count value

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8 Shift register empty when D ¼ 1

1 0 0 1 9 D output stays set
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Also in Appendix B is an example of a parallel loading shift register using D flip-flops. The

equations for a four-stage shift register are repeated below from Appendix B:

Q0 � d ¼ din � ldþ po � =ld ðB:7Þ
Q1 � d ¼ q0 � ldþ p1 � =ld ðB8Þ
Q2 � d ¼ q1 � ldþ p2 � =ld ðB:9Þ
Q3 � d ¼ q2 � ldþ p3 � =ld ðB:10Þ
Sft clk ¼ clk � ld: ðB:11Þ

Figure 4.19 shows the schematic circuit for the 4-bit parallel loading shift register developed

from Equations (B.7)–(B.11).

4.7 DEVELOPMENT OF A SERIAL ASYNCHRONOUS RECEIVER

Often, there is a requirement to use serial transmission and receiving of data in a digital system.

Although there are lots of serial devices on themarket, it is useful to be able to implement one’s

own design directly to incorporate into an FPGA device. The advantage of this approach is that

the baud rate and protocols can be dictated by the designer, as can how the device will be

controlled.

In this example, the serial data input is encapsulated into an asynchronous data packet with

start (st) and stop (sp) protocol bits that have been added to the serial transmission packet. These
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Figure 4.19 The 4-bit parallel loading shift register from Equations (B.9) to (B.12).
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are used to provide a means of identifying the data packets as they arrive. This allows the data

packets to arrive at any time and at any selected rate (dictated by the baud rate).

The problem with receiving data is that it is necessary to ensure that the shift register is

clocked with correct data bits. To do this the FSM clock is used to drive an FSM to create a shift

register clock RXCK in the middle of the data bit time period. This RXCK clock pulse can be

seen in Figure 4.20 as the arrowed pulses occurring every third clk pulse. Thus, the clk signal

runs four times faster than the RXCK signal generated by the FSM. Note, the FSM needs to

detect the start of the data packet by looking for the 1-to-0 transition on the receiver input.

The block diagram for the serial asynchronous receiver is illustrated in Figure 4.21. The FSM

is used to create the shift register clock, and to control the operation of the serial asynchronous

receiver. The Divide by 11 Counter is used to count out the 11 bits that make up the protocol

packet. This provides a shift register full signal rxf to indicate to the FSM that a complete data

packet has arrived. TheData Latch is used for collecting the received data from the shift register

to send to the outside world device controlling the asynchronous receiver.

The FSM must wait for start (by monitoring for the st bit change 1 to 0); this is just the first

receive bit coming into the shift register. When detected, shift the data into the shift register. If

the stopbit isnot correct, then theFSMcan issueanerrorvia signalERR.Note, in thisversion the

start bit is testedalongwith the twostopbits via anANDgate (error detection signal ed) toensure

packet alignment after the completepacket is received, the receiver rx input is held at logic1bya

pull-up resistor so that the start bit (active low)canbedetected.The ack signal is available so that

the outside world device using the system can respond to an error condition (no error means

successful packet received). Healthy data packets will be latched into the data latch ready to be

read by the controlling device.

The signal CDC is used to clear the shift register and set st to logic 1, i.e. the flip-flop

representing the start bit of the shift register needs to be pre-set so that it can be cleared by the

incoming start bit from the serial line.

Clk

st d0 d1 d2 d3 d4 d5 d6 d7 sp1 sp2

The FSM controls the operation of the sample data pulse
clock rxck that clocks the shift register (arrowed every third
pulse).

This ensures that the data are sampled near the middle of
the data bit area of the packet  Note that the 1-to-0
transition of the start bit st is used to synchronize the
receiver to the beginning of the data packet.

st start bit and sp1, and sp2 stop bits are the protocol bits
d0 to d7 are the data bits (payload).

Figure 4.20 Protocol of the serial asynchronous receiver.
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The en signal is used to enable and start the asynchronous receiver. This is necessary to ensure

that the system startsmonitoring the clock so as to issue the shift register clock pulse (RXCK) at

the right time (in the middle of the data bit period).

Figure 4.22 illustrates the state diagram for the system. In Figure 4.22, the FSMwaits for the

enable signal en going high and start signal st going low; it thenmoves through states s1, s2, and

s4 andonto s5 to shift the start bit into the shift register. This is required in order to ensure that the

start bit is detected and then shifted at the right time. In state s5, the shift register clockRXCK is

pulsed toplace the start bit into the shift register. It then falls into state s6, sendingRXCKlowand

proceeds to cycle through the second loop consisting of states s5, s6, s7, and s8.

These states count out the clock cycles and produce a shift register clock pulse (RXCK) at the

right time near the middle of each data bit. After all 11 bits have been clocked into the shift

register the 11-bit counter will issue a receive register full signal rxf, and the FSMwill now fall

into state s9,where thestart andstopbits are tested (edshouldbe logic1). If ed ¼ 0, then theFSM

will move into s10 and issue the error signal.

The controlling device can then reset the asynchronous receiver and start again. If no error,

then the FSMmoves to s11 to latch the data in the shift register into the data latch ready for the

controlling device to read (OQ0 to OQ7). It will also issue a data ready signal (DRY) to the

controlling device, which will acknowledge this by raising an ack signal. The FSM can then

move back to s0 via s12 (when ack goes low) towait for the next data packet. The DRYand ack

signals form a handshake mechanism between the FSM and the controlling device.
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FSM
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Figure 4.21 Block diagram of the serial asynchronous receiver.
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The device enable signal en will be left high until all data packets have been received.

Note that the state assignments miss s3, which was removed from the state diagram during

development when state s3 was no longer needed (owing to an error in the design at that time).

State diagram development tends to be an iterative process.

4.7.1 Finite-State Machine Equations

A � d ¼ s0 � en � =stþ s1þ s2þ s4þ s5þ s8

B � d ¼ s1þ s2þ s4þ s5 � rxf þ s7þ s8þ s9þ s10þ s11 � =ack
C � d ¼ s2þ s4þ s5 � =rxf þ s6þ s7þ s8þ s9 � edþ s11þ s12 � ack
D � d ¼ s4þ s5þ s6þ s7þ s8þ s9 � =edþ s10

RXCK ¼ s5 ¼ ABCD

PD ¼ dry ¼ s11 ¼ =ABC=D

ERR ¼ s10 ¼ =AB=CD:

The reader may like to complete these to form the equations in terms of A, B, C, and D.

The complete asynchronous serial receiver block is simulated, together with all the modules

in Figure 4.21, in Appendix B.
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Figure 4.22 State diagrams for the serial asynchronous receiver.
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4.8 ADDING PARITY DETECTION TO THE SERIAL RECEIVER SYSTEM

The foregoing example could be improved upon bymaking the first stop bit sp1 into a parity bit.

The parity bit would require combinational logic to check each bit of the protocol packet for

either evenparity or odd parity. Thiswould require an exclusiveORblockmade upof the 11 bits

of the packet.

For example, odd parity would require an odd parity output OP at the Transmitter of

OP ¼ bo^b1^b2^b3^b4^b5^b6^b7^b8^b9^b10:

Or, including the protocol bits:

OPnþ1 ¼ st^d0^d1^d2^d3^d4^d5^d6^d7^OPn ^sp:

Thisoutputwouldbe testedby theFSMfor logic1. If logic0, thiswould indicate thatoneormore

of the received bits was faulty.

Note that even parity EP can be detected by complementing the OP signal:

EPn ¼ =OPn:

To implement the parity detector term, two input exclusive OR gates are cascaded with the last

exclusive OR gate providing the OPn signal. The output of the parity block at the receiver is P.

The inputsd0,d1; . . . ; d7will beobtained from theoutputof the shift register in eachcase (see

Figure 4.21).

4.8.1 To Incorporate the Parity

The parity detector inputs are connected to the outputs of the shift register and its output OPn
made available as an input to the FSMvia the last two bit comparator comparingOPn andOPnþ1

in Figure 4.23.

Figure 4.24 shows the new protocol with the parity bit OPn (shown in lower case)

replacing sp1.

Figure4.25 shows theadditionalparityblockadded to theblockdiagram.Thisversiondetects

stop and parity bit errors at the output of the shift register; the start bit has not been tested (but

could be included if desired).

Figure 4.26 illustrates the modified state diagram with ODD parity detection. Note that

the input parity bit OPnþ1 must be compared with the generated parity bit OPn. If both

are the same, then there is no parity error. This comparison can be made with a 2-bit

exclusive NOR gate having an output P (OPn ¼¼ OPnþ1) being logic 1 if there is no

parity error and logic 0 otherwise. This output is an input p to the state machine (see

Figure 4.25).

In state s9, the bit sp is checked to find out whether the whole packet has been input, and s11

nowtests for anoddparity error. In either casea failurewill result in theFSMaborting the receive

packet process and falling into state s10 to await a reset from the controlling device. The logic

used in Figure 4.21 could be used to detect for start and stop bits if desired.
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Figure 4.23 Arrangement of the parity generation and detection logic.

Parity bit opn is the receive parity bit from the transmitter

Clk

st d0 d1 d2 d3 d4 d5 d6 d7 opn sp2

Serial signal protocol example

st start bit and sp1 and sp2 stop bits are the protocol bits
do to d7 are the data bits (payload)

Shift register clocked inside each data bit area

Figure 4.24 Protocol with parity detection bit added.
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4.8.2 D-Type Equations for Figure 4.26

In the following equations, the variable P is the output of the parity check (OPn = OPnþ1)

connected to the input p of the FSM. See Figure 4.23.

A � d ¼ s0 � en � =stþ s1þ s2þ s4þ s5þ s8þ s9� sp
¼ =A=B=C=D � en � =stþ A=B=C=Dþ AB=C=Dþ ABC=Dþ ABCD

þ=ABCDþ AB=CD � sp
B � d ¼ s1þ s2þ s4þ s5 � rxf þ s7þ s8þ s9 � =spþ s10þ s11þ s12 � =ack

¼ A=B=C=Dþ AB=C=Dþ ABC=Dþ ABCD � rxf þ =A=BCD þ =ABCD

þAB=CD � =spþ =AB=CDþ A=B=CDþ =ABC=D � =ack
C � d ¼ s2þ s4þ s5 � =rxf þ s6þ s7þ s8þ s11 � pþ s12þ s13 � ack

¼ AB=C=Dþ ABC=Dþ ABCD � =rxf þ A=BCDþ =A=BCDþ =ABCD

þ A=B=CD � pþ =ABC=Dþ =A � =B � C � =D � ack
D � d ¼ s4þ s5þ s6þ s7þ s8þ s9þ s10þ s11 � =p

¼ ABC=Dþ ABCD þ A=BCDþ =A=BCDþ =ABCDþ AB=CD

þ =AB=CDþ A=B=CD � p:
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Figure 4.25 Block diagram with parity block added.
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The outputs are as they were in the state diagram of Figure 4.22, except for

ERR ¼ s10 ¼ =AB=CD

PD ¼ dry ¼ s12 ¼ =ABC=D

RXCK ¼ s5 ¼ A � B � C � D:
The FSM part can be simulated, and this is illustrated in Figure 4.27. In this simulation, the test

sequence is

s0; s1; s2; s4; s5; s6; s7; s8; s5; s9; s11; s12; s13; s0; s1; s2; s4; s5; s9; s10; s0; s1; s2; s4; s5; s9;

s11; s10:

This ensures that all paths of the state diagram have been tested.

This should now be followed by a series of tests of all the other components, i.e. the shift

register, the divide-by-11 counter, and the parity block, beforegoingon to test thewhole system.

4.9 AN ASYNCHRONOUS SERIAL TRANSMITTER SYSTEM

Havingdeveloped an asynchronous receivermodule, an asynchronous transmitter is required to

complete the serial device. Figure 4.28 shows the block diagram for an asynchronous serial

transmitter.
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Figure 4.26 The state diagram with odd parity added to FSM.
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In Figure 4.28, the inputData Latch provides the data to be transmitted and the protocol bits st

and sp are set to their expected values before being loaded into the Shift Register via the LD

output from the FSM. Note that there is no need for a slower transmit clock, as the FSM can

provide the shift register pulse at the right time.

The sequence is started by data being presented onto the parallel data inputs then the send

inputbeingsenthighby thecontrollingdevice.TheFSMthen loads thedata into the shift register

and starts transmitting it out to line. The Divide by 11 Counter records the point at which the

packet has been sent to line by raising the Transmit Register Empty (txe) signal high. The FSM

can then send a Request To Send (RTS) signal to the controlling device to inform it that the data

packet has been sent. The controlling device can set the ack signal high to say it has acknowl-

edged this operation.

A possible solution is illustrated in Figure 4.29.

It is important to ensure that the clock signal to the shift register is the same frequency as the

one used in the asynchronous receiver block. If it is not, then the receiver will not be able to

receive the data packets. Even if the two clocks are different by only a small amount, a frame

error could arise. This is when the difference in clock speeds produces a small difference in

the total packet time and, hence, one or more data bits can be lost. In effect, start and stop bits

must be sent and received correctly.
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Figure 4.27 Simulation of the FSM for the serial receiver.
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Total packet time ¼ 11� 1=ðclock frequencyÞ:

For example, if the transmitter shift register clock is 1 MHz (usually referred to as the baud rate),

then

Total packet time ¼ 11� 1=ð1� 106Þ ¼ 11� 1 ms ¼ 11 ms in duration:

The receiver shift register clock does have a tolerance; this is a result of the fact that the data are

sampled within a four-clock window (see Figure 4.20) and a small difference in the two packet

lengths can be accommodated.

In some commercial Universal Asynchronous Receiver Transmitter (UART) devices, 16

(rather than4) is used for the clk signal used to generate the shift register clock (RXCK), giving a

greater resolution for detecting the logic value of the data bits.

Generally, if the clocks in both the transmitter and the receiver are of a high accuracy (as one

would expect from crystal oscillators), then there is usually not a problem. It would be easy to

restructure the receiver state diagrams of Figures 4.22 and 4.26 to accommodate a higher

resolution shift register clock by addingmore states in the loop comprising s5 to s8, and adding

states between s1 to s5 for the start bit. However, such a design could make use of the One Hot

method covered in Chapter 5.

Note that the FSM clock is four times that of the baud rate.

The state diagram for the asynchronous transmitter is illustrated in Figure 4.29. In this

state diagram, the shift register is clocked every four FSM clock pulses as it moves between
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Figure 4.28 Block diagram for an asynchronous serial transmitter.
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s4, s8, s9, and s5. Note that for a 1 �s baud rate the transmitter FSM clock would need to be

4 MHz.

4.9.1 Equations for the Asynchronous Serial Transmitter

A � d ¼ s0 � sendþ s1þ s2þ s3þ s4þ s5 � =txe
¼ =B � =C � =D � sendþ A � =B � =Dþ A � C � =Dþ A � B � =Dþ B � =C � =D � =txe

B � d ¼ s2þ s3þ s4þ s5þ s8þ s9þ s6 � =ack
¼ A � C � =Dþ B � =C þ =A � B � =D � =ack

C � d ¼ s1þ s2þ s5 � txeþ s6þ s7 � ack
¼ A � =B � =Dþ =A � B � =D � txeþ =A � C � =D

D � d ¼ s4þ s8

¼ A � B � =C � =Dþ A � B � =C � D
¼ A � B � =C

PD ¼ s1 ¼ A � =B � =C � =D
CLKOUT ¼ s4 ¼ A � B � =C � =D
LD ¼ =s2 ¼ =ðA � =B � C � =DÞ
RTS ¼ s6 ¼ =A � B � C � =D:
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Figure 4.29 State diagram for the asynchronous serial transmitter.
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A simulation of the FSM results in the waveforms of Figure 4.30. In this simulation, the test

sequence is s0, s1, s2, s3, s4, s8, s9, s5, s4, s8, s9, s5, s6, s7, s0.

Using the asynchronous transmitter and receiver FSMs just described, it would be possible

with modern FPGAs to run at quite high baud rates, as illustrated below.

FSM clock Receiver Transmitter clock Baud rate

RXCK CLKOUT

4MHz 1MHz 1MHz 1 mega baud

8 MHz 2MHz 2MHz 2 mega baud

16 MHz 4MHz 4MHz 4 mega baud

32 MHz 8MHz 8MHz 8 mega baud

80 MHz 20MHz 20MHz 20 mega baud

Both transmit and receiver units use the same FSM clock frequency generated with their own

clock circuits.

Thehigher baud rateswouldneed to use twisted-pair cables over relatively short transmission

distances up to around 1 m. Transmission line effects would need to be taken into account, but

this is beyond the scope of this book.
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Figure 4.30 Simulation of the serial transmitter FSM.
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4.10 CLOCKED WATCHDOG TIMER

Mostmicrocontrollers thesedayshaveabuilt inwatchdogtimer(WDT).TheWDTisanaddressable

device that can bewritten to on a regular basis. The idea is that the timer (usually a down counter) is

regularlywritten toreinitialize it toaknowncountvalue.Betweenwrites, thecounterwillbeclocked

towardszero. If themicrocontrollerdoesnotwrite to theWDTbetweencountdownperiods, then the

counter will reset to zero and this action can be used to reset the microcontroller.

TheWDT thus acts as a safeguard to prevent themicrocontroller from running out of control

(jumping to an instruction that is not part of the program sequence), perhaps due to a transient in

the power system.

Another use is in amicroprocessor-based systemwhere the operating system (perhaps a real-

time operating system) can regularly reset theWDTand, hence, provide ameans of determining

a microprocessor system failure.

The application program running on themicrocontroller needs towrite regularly to theWDT

to prevent it from reaching the reset state.

Although most microcontrollers have this feature, a lot of microprocessor systems do not.

Therefore, a circuit would need to be designed for this purpose.

The clocked FSM system shown in Figure 4.31 is a basic system designed to perform the

action of aWDT. The system needs to be designed around the specificmemory/IO cycle timing

of the microprocessor. In Figure 4.31 the memory/IO write cycle is based around a four-clock

pulse cycle time T1 to T4.

clk
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Down

Counter

clk

ce WDP

iow

initialize
Initialize
counter

To
reset
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Figure 4.31 Block diagram for a WDT for a microprocessor system.
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The system is controlled by anFSMthatmonitors the chip enable ce controlled by the address

decoding logic. This can respond to a particular address from the microprocessor. In addition,

the iow signal controlled by the microprocessor is also monitored by the FSM. When the

microprocessor addresses theWDT, ce goes low, followed by iow in theT2 clock period.On the

rising edge of the T3 clock period, the WDT pulse is generated. The FSM must produce this

watchdogpulse (WDP)at exactly the right time in thewrite cycle (T3period).Both theFSMand

the down counter are clocked by the same microprocessor clock clk.

InAppendixB, the design of a downbinary counter is described andSectionB.1 shows how this

canbedone.Toprovide this counterwith afixed startingvalue (to count down from), theflipflips of

the counter canbepreset to aknownvalue,usingaparallel loadingcounter (seeSectionB.3).This is

thepurposeoftheinitializeinputinFigure4.31(essentiallyaparallel loadinputtothedowncounter).

Note that this same input provides the initial state for the FSM (whichwill be state zero). The

WDPwill provide frequent reinitialization pulses to the down counter and, thus, prevent it from

reaching its zero state (which would otherwise cause a microprocessor reset).

A suitable state diagram is illustrated in Figure 4.32,wherein the FSMwaits in state s0 for the

microprocessor to write to the address of the WDT. This will cause ce to go low during the T1

state of the memory/IO cycle (see Figure 4.31) so that on the T2 rising clock edge the FSMwill

move into s1. Here, it waits for the microprocessor to lower iow; then, on the next clock pulse

(T3), the FSM will move into state s2, where it will lower the WDP output signal. On the next

clock pulse (T4), the FSMwillmove to s3, raising theWDP, andwait for the ce signal to go high.

Thiswill occur at the endof thememory/IOwrite cycle andwill be seenby theFSMon the rising

edge of T1.

The equations for the FSM that follow are from Figure 4.32.

/ce_|(T2)

/iow_|(T3)

_|(T4)

ce_|(T1)

WDP

s0

WDP

s1

/WDP

s2

WDP

s3

AB
00

AB
10

AB
11

AB
01

Each clock pulse corresponds to a T state

Figure 4.32 State diagram for the WDT.
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4.10.1 D Flip-Flop Equations

A � d ¼ s0 � =ceþ s1

¼ =A � =B � =ceþ A � =B
¼ =B � ceþ A � =B
B � d ¼ s1 � =iowþ s2þ s3 � =ce
¼ A � =B � =iowþ A � Bþ =A � B � =ce
¼ A � =iowþ A � Bþ B � =ce:

4.10.2 Output Equation

WDP ¼ =ðs2Þ ¼ =ðA � BÞ:

Theequation for cewoulddependupon thedesiredaddressassigned to theWDT.Forexample, if

the address assigned was 300h (11 0000 0000 binary), then the equation would result in

ce ¼ =ða9 � a8 � =a7 � =a6 � =a5 � =a4 � =a3 � =a2 � =a1 � =a0Þ:

0ns 50ns 100ns 150ns 200ns

test.rst

test.clk

test.ce

test.iow

test.WDP

test.A

test.B

Figure 4.33 The WDT FSM simulation.
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There could be additional qualifier signals, i.e. in a PC using the IOmemorymap the signal /aen

would be required in order to distinguish between dynamic memory access (DMA) cycles and

IO cycles (see Chapter 5 for DMA). Also, the /iow signal would be needed to identify a write

cycle.

The above equation for ce would then be

ce ¼ =ða9 � a8 � =a7 � =a6 � =a5 � =a4 � =a3 � =a2 � =a1 � =a0 � =aen � =iowÞ:
The equations to describe the down counter are repeated below from Appendix B for conve-

nience.

Qn � t ¼
Yp¼n

p¼1
ð=qpÞ for an n-stage counter;with the first T mflip-flop q0 � t input ¼ 1:

This equation expands to

Q0 � t ¼ 1

Q1 � t ¼ =q0

Q2 � t ¼ =q0 � =q1
Q3 � t ¼ =q0 � =q1 � =q2
Q4 � t ¼ =q0 � =q1 � =q2 � =q3:

for a four-stage down counter.

Note that the counter needs anasynchronous initialization signal connected to eachTflip-flop

to form the parallel loading input logic (see Equation (B.4) and Figure B.4).

Figure 4.33 shows the FSM in action. The output WDP goes low during state s2 after the

address-decoding ce and iow have been detected going low in sequence. The FSM state

transitions are clearly seen in the flip-flop A and B outputs.

Note that in theabovesimulation there areadditional clockpulses.Thesehavebeengenerated

by the test benchgenerator to test for theFSMremaining in states s0ands1until changes in thece

and iowsignalsoccur.Thiswouldnothappen inpractice, since themicroprocessorhascontrolof

iow and the address-decoding logic ce.

4.11 SUMMARY

In thischapter, anumberofpractical exampleshavebeendevelopedusing theblockdiagramand

state diagram approach developed in the Chapters 1–3. These have then been implemented in

terms of D-type flip-flops. You may well decide to use some of these examples in your own

designs, or expand upon them to make them fit your own requirements.

In the next chapter, the idea of having a state for each D-type flip-flop will be introduced,

leading to systems that do not need secondary state variables.
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5
The One Hot Technique in
Finite-State Machine Design

5.1 THE ONE HOT TECHNIQUE

The FSMs designed up to now have used secondary state variables to identify each state. This

requires the use of unit distance assignment, where possible, to try to avoid potential glitches in

output signals.

An alternativewould be to assign a flip-flop for each state. Although this may be considered

wasteful, it has the advantage that it would in theory avoid the generation of output glitches,

since each statewould have its ownflip-flop.At anyone time, only oneflip-flopwould be set, i.e.

the one corresponding to the state the FSM was currently in.

This idea is called ‘OneHotting’ and ismuchused inFSMdesigns that are targeted toFPGAs.

This is because FPGAs have an architecture that consists ofmany cells that can be programmed

to be flip-flops, or gates. So a large number of flip-flops is not difficult to achieve. A PLD, on the

other hand, has an architecture with only a limited number of flip-flops controlled from AND/

OR ‘sum of product’ terms.

Another feature of theOneHot technique is that it can require fewer logic levels because there

isno required logic fromother statevariables apart fromtheprimary inputs andprevious state(s).

This can result in faster logic speeds.

The method of implementing a ‘One Hot’ FSM will now be described.

Consider Figure 5.1. In this example of the use of the One Hot technique, the single-pulse

generator with memory problem is revisited. It uses three states (rather than the four-state FSM

used in the original design). This is possible because one does not have to consider unit distance

coding and, hence, there are no secondary state variables.

The equations on the right inFigure 5.1 are the equations necessary to synthesize theFSM.To

understand where these come from, consider the One Hot state diagram.

Initially, the FSM should be in state s0. This can be arranged via an initialization input so that

theflip-floprepresenting state s0 (calledFFS0) is set, andallotherflip-flops (FFS1andFFS2)are

reset.

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



Consider state s0. Here, the FSM should remain in state s0 until the condition to exit s0 occurs.

This is, of course, when the primary input signal s becomes logic 1.

However, the flip-flop FFS0 needs a signal on itsD input that will keep it in the set state. The

required signal is

s0 � =s:

This is obtained from the fact that the FSM is in state s0 and the ‘leaving condition’ from state s0

is s, so that while s is not true, i.e. s¼ 0, or /s, the flip-flop should remain set.

This term s0 � /s is known as a ‘hold term’ because it holds the FFS0 set until it is required to

change to the next state, s1.

Also, when the FSM reaches state s2 it will only return to state s0 when the signal s is logic 0.

So there is another term:

s2 � =s:

This is known as the ‘set term’, or ‘turn on’ term, for the flip-flop.

The complete equation for the state s0 flip-flop FFS0 is

s0 � d ¼ s2 � =s|fflfflffl{zfflfflffl}
set term

þ s0 � =s|fflfflffl{zfflfflffl}
hold term

:

Nowconsider state s1. The condition to enter state s1 iswhen the FSM is in state s0 and s¼ 1.

So, the equation for flip-flop FFS1 is

s1 � d ¼ s0 � s:

/P, /L

s0

P,
/L
s1

/P, L

s2

s_|

_|

/s_|

Design equations:

s0.d = s2./s + s0./s

s1.d = s0.s

s2.d = s1 + s2.s

Output is P = s1 

L = s2

The state diagram does not need any secondary state 
variables since each state is represented by a D-type 
flip-flop. 

At initialization, the flip-flops representing s1 and s2 are
reset, while that representing state s0 is set.

Figure 5.1 An example of the use of the One Hot technique.
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Note that the ‘leaving condition’ from s1 is a simple clock pulse. There is no input condition

along the transitional line between s1 and s2; therefore, when the FSM reaches state s1, it will

naturally exit state s1 on the next clock pulse, so a ‘hold term’ is not needed.

Now consider the final state s2.

The condition to enter state s2 is s1, since there is no input condition along the transitional line

between states s1 and s2. There will, however, be a holding term between s2 and s0, which is

s2 � s:

While s ¼ 1 the FSM must remain in state s2. So the equation for FFS2 will be

s2 � d ¼ s1þ s2 � s:

Finally, the output signal is

P ¼ s1;

since only in state s1 will the output P be logic 1; L will only be active in state s2:

L ¼ s2:

The circuit for this FSM is illustrated in Figure 5.2. Note in Figure 5.2 the initialization logic is

fitted retrospectively. In a One Hot system, one of the flip-flops, representing the initial state in

the FSM, needs to be set, while all other flip-flops need to be cleared. If flip-flops without preset

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

s

/s

s0

s2s1

L

P

Clock (clk)

Initialize input

s0 flip-flop

s1 flip-flop s2 flip-flop
s0.d s1.d s2.d

Figure 5.2 Circuit for the One Hot version of the single-pulse FSM.
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and clear inputs are used, then a synchronous reset scheme needs to be adopted (as seen in

Chapter 3, Frames 3.16 and 3.19).

Nowconsider the two-waybranchFSMdesign inFigure 5.3. In this example, the equation for

FFS0 follows the rules already explained for the first example. In the equation for FFS1,

however, note that there is a term for entering state s1 via s0 (s0 � st) and a term to enter via s3.

The two-way branch leaving state s1 is via s1 � x (to state s2) and s1 � /x (to state s3), and the
combined terms result in

s1 � d ¼ s0 � stþ s3þ s1 � x � =x;

which reduces to

s1 � d ¼ s0 � stþ s3

because the s1 � x � =x terms would reduce to zero:

s1ð=x � xÞ ¼ 0:

TheFSM is held in s1 by complementing the inputs such that the leaving termbetween s1 and s2

(x) is complemented (/x) and the leaving termbetween s1 and s3 (/x) is also complemented (x) so

as to imply a hold in s1. Of course, this leads to

s1ð=x � xÞ as s1ð1 � 0Þ or s1ð0 � 1Þ resulting in the term s1 being zero:

Looking at the state diagram of Figure 5.3, it can be seen that once the FSM reaches state s1 it

should leave this state either via the transition to state s2orvia the transition to state s3on thenext

clock pulse. There is no reason to hold it in state s1.

/P

s0

P

s1

P

s2

/P

s3

st_| x_|

/x_|_|

sp_|

Design Equations:

s0·d = s2·sp + s0·/st

s1·d = s0·st + s3 +

s2·d = s1·x + s2·/sp

s3 = s1·/x  

P = s1 + s2.

Note that in equation

 s1·d = s0·st + s3 + s1(x·/x)

the term s1·(x ·/x) is zero.

See text for explanation.

Figure 5.3 A second example with two-way branch.
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Therefore, the above interpretation for s1 is correct. Hence, the equation

s1 � d ¼ s0 � stþ s3

is the correct one.

Note: in a state diagramwith a two-way branch transitionwith complementary inputs (in this

case x and /x), the two-way branch term is dropped.

The other equations in Figure 5.3 follow in the usual way.

Now consider the following FSM shown in Figure 5.4. In this example there is again a two-

way branch, but this time the exit from each branch path is not complementary. Notice how the

equation for s1 � d contains a term

s1 � ð=x � =yÞ:

This is the required holding term that will hold the FSM in state s1 until either x becomes

logic 1 or y becomes logic 1, i.e. the FSM will remain in state s1 while both x and y are

logic 0.

Note: when using a two-way branch with different inputs along each transitional line (like x

and y), the two inputs (x and y) must be mutually exclusive.

Continuingwith example of Figure 5.4, the invariant state s3 is entered fromstate s1, but once

it is entered there is no transition from this state. TheFSMwill remain in state s3 until the FSMis

reinitialized to its initial state of s0. For this reason, the s3 term on the right-hand side of the

equation for s3 is needed.

Figure 5.5 shows an example you might like to attempt on your own. Do not look at the

solution below the figure until you have attempted to do it yourself.

/P

s0

/P

s1

P

s2

P

s3

x_|st_|

y_|

/x_|

Design equations:

s0.d = s2./x + s0./st

s1.d = s0.st + s1.(/x . /y)

s2.d = s1.x + s2.x

s3 = s1.y + s3

P = s2 + s3

Figure 5.4 An example with a two-way branch with noncomplementary inputs.
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The One Hot technique is ideal for large state machines to be implemented using FPGA

devices, since anFPGAcanaccommodate a largenumberofflip-flops.Also, thedevelopmentof

the equations is very easy for a design developed at the logic gate level.

The rest of this chapter looks at a number of more complex FSM examplesmaking use of the

One Hot technique. The following examples illustrate how an FSM can be used to implement

typical design problems where perhaps a microcontroller might have been used. Each example

features ideas that you might wish to incorporate into your own designs.

5.2 A DATA ACQUISITION SYSTEM

Usually, amicrocontroller, or digital signal processor (DSP), is used to implement aDAS. In the

caseof themicrocontroller theADCisbuilt into themicrocontroller chip. For applicationsusing

a microcontroller with built-in ADC, the system will usually make use of integer data values

from theADC.ForDASs requiring high-speed data calculations, aDSPmay be used. These can

s0 s1

s2

s3

s4

s6s5

st_|

x_|

p_|/x_|

/p_|

/q_|q_|sp_|

_|

_|

s0 · d = s5 · sp + s0/st 

s1 · d = s0 · st + s3 · /p

s2 · d = s1 · x

s3 · d = s2 

s4 · d = s1 · /x + s3 · p

s5 · d = s4 · q +s6 + s5 · /sp 

s6 · d = s4 · /q

Solution:

Figure 5.5 Example for the reader. Do not look at the solution below until you have attempted to do it

yourself.
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be obtained using either integer arithmetic circuits or a built-in floating-point processor to carry

out the processing with ‘real’ numbers.

OneproblemwithallDASs is that theyhavefiniteprocessing speed limitations, usuallydue to

the processing limitations of the microprocessor used. To some extent this can be overcome by

using parallel processing and hardware arithmetic circuits.

A totally hardware arrangement could be designed around an FSM controlling hardware

adder/subtractor/multiplier/divider subsystems. This could increase the throughput of such

systems. Alternatively, the FSM could be used to ‘gather’ the data and store it for subsequent

processingbyamicroprocessor orDSP in situationswhere ‘real-time’ processing isnot required.

This next example illustrates a much simpler system looked at in Chapter 2 and illustrated in

Figure 5.6. This basic system could use a flash ADC to allow very fast conversion times. The

overall system makes use of high-speed static RAM to store the converted digital values. The

system is designed to interact with another system. This other system starts the process off by

asserting the st input, and the FSM sends a memory full (f) response in due course.

For now, a state diagram can be developed for this basic system as illustrated in Figure 5.7.

This is much along the lines of the one developed in Frames 2.4–2.10. In this state diagram, the

sequence of control is clear. Once the external system sends a request for the system to start

filling the memory with data (st¼ 1), the following occurs:

� The sample-and-hold circuit is placed into hold mode ready for the ADC (s1).

� The flash ADC is placed into conversion mode and the FSMwaits for the end of conversion

eoc signal to go high, signifying that a conversion has taken place (s2).

� In s3, theFSMselects thememorydevice byasserting (low) its chip select inputCS.TheFSM

will move to s4 only when the ADC eoc signal returns to logic 0.

FSM

Address
Counter

Memory

addr data

Sample
Hold

Flash
ADC

f

CC  R                 CS   W                           eoc     SC
S/H

stMF

Memory
Full

Start

Memory Full 
clk

Initialize FSM

init

Cs    w

Vin

Eoc    sc

Figure 5.6 Basic high-speed DAS.
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� In s4, the FSM activates the memory chips write enable signalW (low).

� In s5, the memory write signal is taken high to write the data into the memory device.

� In s6, thechip select is takenhigh todeselect thememory.Thisensures that thememorychip is

deselected before the address is changed.

� In s7, the address counter is pulsed by making CC¼ 1; the address counter is pulsed on the

rising edge of this signal. In s7, a check is made to see whether the last memory location has

been used (f); if not, the FSM moves around the loop comprising s1 to s7 again.

� This will continue until all the available memory has been filled with data, at which point the

FSM will fall into s8 and assert the mf output to the external device.

Note that theMF signal could be connected to the interrupt input of the remote device so that it

could start the process with st¼ 1 and be interrupted when the task is complete.

The One Hot equations now follow:

s0 � d ¼ =st flip-flop s0 will be set during initialization and held until st ¼ 1

s1 � d ¼ s0 � stþ s7 � =f
s2 � d ¼ s1þ s2 � =eoc
s3 � d ¼ s2 � eocþ s3 � eoc
s4 � d ¼ s3

s5 � d ¼ s4

s6 � d ¼ s5

s7 � d ¼ s6

s8 � d ¼ s7 � f þ s8 will hold in this state until reset:

/R
/CC

s0

S/H=1

R,/CC

s1

SC

s2

S/H=0

/SC,/CS

s3

/W

s4

W

s5

CS,

s6
s7

MF

/CC

s8

Wait for

 start input

Place S/H into

hold mode
Start ADC Select memory

 device

st_| _| eoc_|

_|

_|_|f_|

/f_| Enable write line

to access memory

data bus for writing

Write data into

memory device
De-select memoryIncrement address

memory location

and test for

memory full

Memory full

so stop

Wait for next

initialization

Memory not full

so write next

CC

/eoc_|

Figure 5.7 State diagram for the DAS.
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The outputs are

S=H ¼ s1þ s2

SC ¼ s2

CS ¼ =ðs3þ s4þ s5Þ an active-low signal in states s3 to s5

W ¼ =s4 an active-low signal in state s4 only

MF ¼ s8

R ¼ =s0 an active-low signal in state s0 only

CC ¼ s7 pulsing CC high as s7 is entered; CC goes low on leaving state s7:

These signals can be used to construct aVerilogfile and simulated, as illustrated inFigure 5.8.

From Figure 5.8, it can be seen that the FSM loops four times, ending up in s8 at the end of the

third loop. Note the control of thememory chip select andwrite signals and the address counter

pulses. Also, at the end of the simulation the memory full mf signal goes high in state s8. The

reset is applied to return the FSM to s0.

The system developed in Figure 5.6 allows digitized data to be stored into the memory, but

it does not provide any way of getting access to the data once it has been saved. The reader

0ns 200ns 400ns 600ns 800ns

test.st

test.clk

test.rst

test.pst

test.e

test.f

test.s0

test.s1

test.s2

test.s3

test.s4

test.s5

test.s6

test.s7

test.s8

test.SH

test.SC

test.CS

test.W

test.R

test.CC

test.MF

Figure 5.8 Simulation of the data acquisition FSM controller.
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might like to modify the system to allow this to happen, but some thought needs to be given to

what device is to be used to perform this operation.

The next example illustrates how memory can be controlled in this way.

5.3 A SHARED MEMORY SYSTEM

It is often required to be able to access the data stored in memory via some other controlling

device. For example, this could be an external microprocessor to process the stored data in the

memory. The example in Figure 5.9 illustrates how this might be done. In this system the

memory can be accessed by either the FSM or the external system (which could be a micro-

processor or DSP system). The memory is, in effect, ‘shared’. The idea is that during the data-

gathering phase, the FSM has sole access to the memory and deposits digitized samples of data

under its owncontrol.During thedata deliveryphase the external device can access thememory,

but only when there is data to be read.

The external device must wait for the RMA (read memory available) signal going high, for

only when this signal is high will the FSM have disconnected itself from the memory device.

Also, when the external device has completed the read memory transaction, and disconnected

itself from the memory device, it must send an acknowledge signal ack to the FSM so that the

FSMcan revert to its initial state. TheFSM in this system is themaster device. SignalsRMAand

ack form a handshake mechanism.

FSM

Shared
Memory

ADC

S/
H

B
3

B
4

B
1

B
2

MUX

Addr
Counter

mf

RMA

ack

PC     CC           SEL       CS       W       R     SC       eoc 
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init

Clk

cs w  r

Ext. Data Out

EXT.R
EXT.W

EX.CS
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Ext. Data In

Ext mf

Vin

Start system

Initialise system

Memory
Address

Memory
Data

M
_C

S
M

_W
M

_R

Figure 5.9 Block diagram of a shared memory system.
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Note that the FSMuses its SEL signal to control the selection of the tri-state buffers B1 toB4,

so that buffers B1 andB3 are selectedwhenSEL¼ 0.Buffers B2 andB4 are selected bymaking

SEL¼ 1 to allow the external device to control the memory.

The ‘tri-state’ devices are thus connected to the memory device to allow it to be ‘shared’.

� The tri-state buffers B1 to B4 control the connection of the address and data buses.

The two-wayMultiplexerM is used to control thememorydevice from the two sources (FSM

and external device).

� When its control input s0¼ 0, the CS,W, and R control lines from the FSM are connected to

the memory device. Otherwise, the external device has control of these three signals when

s0¼ 1.

The following equations describe the behaviour of the multiplexer:

M CS ¼ CS � =SELþ EXT CS � SEL
M W ¼ W � =SELþ EXT W � SEL
M R ¼ R � =SELþ EXT R � SEL:

Note that the handshake signals RMA and ack are mandatory for this system towork, since the

external device must not have access to the memory unless it receives the RMA¼ 1 from the

FSM. Likewise, only when the external device has disconnected itself from the memory can it

send the ack¼ 1 signal to the FSM.

The state diagram for this system (Figure 5.10) is very similar to that in Figure 5.7, but has

signals to control the memory device connection.

/CC,

/SEL,/PC

s0

S/H=1

CC,/PC

s1

SC

s2

S/H=0

/SC,/CS

s3

/W

s4

W

s5

CS,

s6
s7

RMA,

SEL,/PC

s8

FSM has memory.
 Wait for start input

Place S/H into
hold mode

Start ADC Select memory
 device

st_| _| eoc_|

  /eoc_|

_|

_|_|mf_|

/mf_| Enable write line
to access memory
data bus for writing

Write data into
memory device

Deselect memory
 device

Increment memory
address and

test for

memory full

Memory full
so stop

Wait for next
initialization.

Memory not full
so write next

ack_|

PC

Figure 5.10 State diagram for the shared memory FSM system.

A Shared Memory System 115



Note that in the state diagram inFigure 5.10 it is assumed that theADC is slower than the time

for the FSM to move from state s3 back round to state s2 and in s3 it waits for eoc to return low

before moving to s4.

The equations for this design can be obtained from the state diagram as follows.

D flip-flop d inputs:

s0 � d ¼ s8 � ackþ s0 � =st
s1 � d ¼ s0 � stþ s7 � =mf

s2 � d ¼ s1þ s2 � =eoc
s3 � d ¼ s2 � eocþ s3 � eoc
s4 � d ¼ s3 � =eoc
s5 � d ¼ s4

s6 � d ¼ s5

s7 � d ¼ s6

s8 � d ¼ s7 � mf þ s8 � =ack:

Output equations:

CC ¼ =s0 active-low output

SEL ¼ s8

RMA ¼ s8

S=H ¼ s1þ s2

SC ¼ s2

CS ¼ =ðs3þ s4þ s5Þ active-low output

W ¼ =s4 active-low output

PC ¼ s7 and assumes that the address counter is positive-edge triggered:

PC reverts to its inactive ðPC ¼ 0Þ state on leaving s7:

5.4 FAST WAVEFORM SYNTHESIZER

Anumberofdesign issueswill be covered in this example, including someaspects of interfacing

to a microprocessor or microcontroller to an FSM-based design.

Afrequencysynthesizer is tobedevelopedbased aroundanFSM.The ideahere is tobeable to

transfer a set of data from amicroprocessor/microcontroller via a parallel portal into amemory

device.Once this is done, the FSM is to read consecutivememory locations and output them to a

DAC. A block diagram of the system is illustrated in Figure 5.11.

Note that the waveform data may be any number of data samples in the memory, depending

upon the waveform period and sampling frequency. Therefore, the memory full signal mf is

actually an ‘end of waveform’ signal, generated by comparing the address bus value with an

‘Address Limit Value’ sent by the controlling device.
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Of course, the total number of waveform samplesmust be able to fit into thememory device,

but the end of waveform must be detected so that when the FSM cycles through to memory

location zero thewaveform at theDACoutput looks continuous and starts at the correct point in

the waveform.

In thisdiagram, theparallel ports to/fromamicrocontroller, say, areused toprovidewaveform

data to the memory. st is the start input and rp is an input to define record mode (logic 1) or

playbackmode (logic0).These two inputs couldbe fromthemicrocontroller or simplyprovided

as user-activated switches.

5.4.1 Specification

On power up, the FSM looks for st asserted. Then, if the rp is logic 1, it will assert its DRDY

output high to let the microcontroller know that it is expecting a data byte. The micro-

controller puts a data byte onto the parallel port outputs d0 to d7. The FSM then writes a

data byte to the memory device and then lowers its DRDY signal, to let the microcontroller

know it has dealt with the data byte. On seeing the DRDY signal go low, the microcontroller

lowers its ack signal line to let the FSM know that the transfer is complete. This process

continues until the memory is full. Note that memory full depends upon the number of

waveform samples placed into the memory device. The microcontroller places a limit value

onto the data lines, so that the FSM has a memory limit value to reach. At this point the

memory full signal mf will go to logic 1.

FSM

Memory

Addr
Counter

DAC

244 Latch

244 Latch

Data in

Data out

Vout

d0

d7

ack

Data ready
Start

system

Record/Playback

DRDY   st             rp      CS     WR    RD                mf             CR  PC

clk

FSM initialization

Comparator

Address Limit Value

A           B

init

Figure 5.11 The fast waveform synthesizer block diagram.
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If the input rp is turned to the play position, then the FSM will start to send the data in the

memory repeatedly to the ADC so that thewaveformwill be displayed until such times as the st

input is disasserted.

A state diagramwill be created based upon the specification and then implemented usingOne

Hot equations.

5.4.2 A Possible Solution

This is a relatively complex design making use of a program running on the microcontroller to

control the system via the parallel ports.

The state diagramneeds twomain loop paths: one for recordmode and the other for playback

mode. Bymaking use ofMealy outputs, it is possible to produce a state diagram using 13 states.

This is illustrated in Figure 5.12.

There are, of course other possible solutions, some of which will contain more states

(particularly if the outputs are all Moore). This solution makes use of Mealy outputs so that

themain part of the loop can be used for bothwrite and read operations. TheR andW signals are

active-low signals and are dealt with in the manner discussed in Frame 3.26.

A brief description of the state diagram is now given.

/DRDY
/PC

s8

s0

s7

/DRDY=rp
/PC

s9
s10

/CR

s11s12

CR

s1

DRDY

S2

/CS

s3

/W=rp,

/R=/rp

s4

W,R
s5

CS,

s6

st_| rp_| ack_|

_|

_|_|_|

mf_|/mf_|

/ack_|

/rp.ack_|

_|

rp./ack_|

/rp.st_|

State s0 output initial states are:
/CR, /DRDY, CS, W, R, /PC

Write data to memory path:
s0, s1, s2, s3, s4, s5, s6, s7, s9, s12,
s2..

Read memory path:
Wait in s10 for rp to go low.  Then:

s10, s11, s2, s3, s4, s5, s6, s7, s9, s2.
until mf high again, then return to s8,
s10, s11 path and repeat the
sequence again.

Will stop when st is taken low in s9.

rp_|

DRDY

DRDY

PC

Wait here for play
Mode (rp=0)

Figure 5.12 One Hot State diagram for the waveform synthesizer FSM.
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Onoperationof the start input st the statemachinewill leave state s0 to s1where itwill remove

the address counter reset CR before moving, on the next clock pulse, to s2 to raise its ready flag

DRDY. On receiving the DRDY signal from the FSM, themicrocontroller (via its parallel port)

will enable the tri-state data buffer connecting the parallel port to the memory data bus so that

data can bewritten to the latter – this bymaking rp¼ 1. This will also disable the other tri-state

bufferused for reading thememorydata.Themicrocontrollerwill raise its acksignal toallowthe

FSMtomove to state s3, thememorychip selectwill beactivated (CS¼ 0) toenable thememory

device, and on moving to s4 the memory write W will be lowered, since rp¼ 1 (write mode).

Note that inmemory playmode rp¼ 0 it will be the read signal line that will be lowered in state

s4.Onmoving to s5, theCSandW (orR)will be raised to perform thememorywrite (ormemory

read) of that particular memory location.

The FSM will, on the next clock pulse, move to s6 to deselect the memory chip before

moving on to s7, where it will raise the PC signal to pulse the address counter. A test will

be performed to see whether the memory is full. If the memory is not full, then the

state machine will follow the path s7 to s9, where it will lower the DRDY flag if in record

mode (rp¼ 1) and wait for an ack from the microcontroller (this allows the microcontroller

to prepare the next data byte to be sent to the memory). On reaching state s12 the state

machine will move on to state s2 to repeat the operation for the next memory location. Note,

as usual, PC is lowered on leaving s7.

This will continue until all of the memory is full. When this happens, the transition from

s7 will be to s8, not s9, and the state machine will send its usual DRDY to zero and wait for

acknowledgement from the microcontroller. On receiving the acknowledgement flag ack, it

will wait in s10 for the user to set the rp input to zero (indicating that the system is now in

playback mode).

In playback mode, the state machine will move to state s11 to reset the address counter and

thereby back to s2 to repeat the loop s2, s3, s4, s5, s6, s7, s9, and s2 repeatedly while rp¼ 0 and

st¼ 1. In this loop, the memory is being read, but now, since rp¼ 0, the address counter will

continue to roll over to zero after running through thememoryup to thememory limit value until

the start input st¼ 0.

Note that the FSM waits for ack to be disasserted in states s8 and s9 to complete the

handshakes.

A reset can be added to the system to force it back to state s0 at anypoint in the state sequence.

Development of the One Hot equations from the state diagram can now be undertaken.

5.4.3 Equations for the d Inputs to D Flip-Flops

s0 � d ¼ s0 � =st hold term only

s1 � d ¼ s0 � stþ s1 � =rp
s2 � d ¼ s1 � rpþ s11þ s12 � rpþ s9 � =rp � stþ s2 � =ack
s3 � d ¼ s2 � ack
s4 � d ¼ s3

s5 � d ¼ s4

s6 � d ¼ s5
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s7 � d ¼ s6

s8 � d ¼ s7 � mf þ s8 � ack
s9 � d ¼ s7 � =mf þ s9 � =ðrp � =ackÞ � =ð=rp � stÞ note hold term for two-way branch

s10 � d ¼ s8 � =ackþ s10 � =ð=rp � ackÞ
s11 � d ¼ s10 � =rp � ack
s12 � d ¼ s9 � rp � =ackþ s12 � =ðrpÞ:

The output equations follow.

5.4.4 Output Equations

CR ¼ =ðs0þ s11Þ
DRDY ¼ s2þ s3þ s4þ s5þ s6þ s7þ s10þ s11þ s12 alternatively; DRDY

¼ =ðs8þ s9 � rpÞ as an active-low signal

CS ¼ =ðs3þ s4þ s5Þ
W ¼ =ðs4 � rpÞ
R ¼ =ðs4 � =rpÞ
PC ¼ s7:

These can all be implemented in Verilog HDL directly.

5.5 CONTROLLING THE FINITE-STATE MACHINE
FROM A MICROPROCESSOR/MICROCONTROLLER

In order to develop the program, one needs a programmer’s model to illustrate the connection

interface between the FSM and the microcontroller.

From Figure 5.13 it can see that themicrocontroller needs to use a byte-wide output port to send

waveform data to the memory, and two additional bits to form a handshake between the micro-

controller and the FSM. There is also a need for a byte-wide output port to send the memory limit

value. The main purpose of the microcontroller is to generate the waveform data to be used by the

FSM-based synthesizer. It is beyond the scopeof this book togo intohow thismight bedone, but the

individual digital values could be computedby themicrocontroller to be sent to thememorydevice.

Listing 5.1 illustrates a program fragment for possible execution on themicrocontroller. The

program is written in C, which is very common for microcontroller programming.

//–- includes needed by the program ––––––––––––––––––––––––-
#include <microcontroller.h> // standard C header file for the particular
microcontroller.

//––––-printer port register addresses ––––––––––––––––––––––
#define dataport 0x300 // address for port data outputs (change to suit
microcontroller)
#define ackdryrp 0x301 // address for handshake bits and rp (change to suit
microcontroller)
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#define memlim 0x302 // address for the memory limit portal.
#define MAX 1024 // Limit of memory size – can be

// changed to suit your requirements. Not used in this example.
unsigned char mem_limit_value; // location to save limit value in.
// C Fuction prototypes used by the program.
void get_data(void); // used to get the data from the FSM.
void Send_data_to_FSM(void); // Use to send data to the parallel port.
int i;
unsigned char inbyte, outbyte;
unsigned char array [MAX];
//––main program function––––––––––––––––––––––––––––
int main(void)
{

get_data(); // a C function that deals with the data you want to send.
Send_data_to_FSM(); // see below.
// could do other things here.

return (0); terminate the C program here.
} // end of main program.
// The C functions now follow.
void Send_data_to_FSM(void)
{

mem_limit_value = 255; //get the memory limit value to send.
MemLim = mem_limit_value; // send limit value to its portal.
for(i¼ 0; i < sizeof(array); iþþ)
{

do { // wait for data ready flag to go low from FSM.
inbyte¼ ackdryrp; // input from the ackdry port register.
inbyte &¼ 0x01; //mask all bits except the drdy bit.

} while(inbyte !¼ 0x00); //keep on looping until data ready flag set
from FSM (active-low).
//––––––––––––––––––––––––––––––––––––––––––––––––––––-

outbyte¼ array [i]; //get next data byte to send to FSM from array.
dataport¼ outbyte; // send it to FSM.
ackdryrp |¼ 0x02; //set ack bit to tell FSM
do { // wait for drdy to go high again.

inbyte¼ acktryrp;
inbyte &¼ 0x01;

}while(inbyte !¼ 0x01);
} // end of for loop.

} // end of C function to send data to FSM.
void get_data(void)
{ // just generate data for a ramp waveform. Simple example.

for (i¼ 0; i < mem_limit_value; iþþ)
{

array [i]¼ i;
}

} // end of get_data;

Listing 5.1 Example C code to control the waveform synthesizer.
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Listing 5.1 is very generic and would need to be tailored to a particular microcontroller. It is

made up of a main program function main () which calls two C functions.

In this example, the first of these functions, get_data (), is used to create a simple ramp

waveform by writing bytes to an array with the line

array [i]¼ i;
up to a memory limit value. The for loop simply increments the i value from 0 up to

mem_limit_valandstores it intoconsecutiveelementsof thearray.Note,mem_limit_val
would be the value sent to the ComparatorA inputs in Figure 5.11 to activate the mf signal when

the address inputs from the counter were the same as the ‘Address Limit Value’.

The second C function takes the content of the array and sends it to the FSMmemory, via the

dataport of the microcontroller:

outbyte¼ array [i]; //get next data byte to send to FSM from array.
dataport¼ outbyte; // send it to FSM.
ackdry¼ 0x02; //set ack bit to tell FSM.

To control this operation, and to synchronize the FSM to the microcontroller, the dry and ack
signals are used as handshake signals. Themicrocontroller uses do–while loop constructs to

perform these operations.

7            6          5          4           3            2          1          0

d7        d6        d5         d4         d3         d2         d1         d0

- - - - - rp         ack      DRDY

Output
port

Port
with
input

&
output

bits

To the 244 data latch of frequency synthesizer (see Figure 5.11)

To/from FSM
(see Figure 5.11)

Parallel Port Registers - these could be directly from a microcontroller

Limit
value
output
port

To A side of comparator (see Figure 5.11)

Figure 5.13 Parallel port registers and their bit functions.
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do { // wait for data ready flag to go low from FSM.
inbyte¼ ackdry; // input from the ackdry port register.
inbyte &¼ 0x01; //mask all bits except b1, the dry bit.

}while (inbyte !¼ 0x00); //keep on looping until data ready flag
cleared from FSM.

Thedo–while loop is used to read in the status of the drdy bit(inbyte¼ ackdry). This is
then stripped of all bits except the bit b0 dry with the instruction inbyte &¼ 0x01. This
is compared with 0x00, and if not equal (!¼) causes the do–while loop to repeat until dry

is set to zero,making thewhile(inbyte!¼0x00) false and causing the program to fall out

of thedo–while loop. In this way, the program cannot get past the firstdo–while loop until

dry¼ 0. The second do–while loop looks for drdy to go high before getting the next data

value from the array to send to the FSM.

The programcontinues to repeat the actions again until all the data in the array have been sent

to the FSM memory.

This short description shouldgiveyouan insight intohowthewaveformdata canbe sent to the

FSM. For the generation ofmore complex data, e.g. sinewaves and exponentially decaying sine

waves, a more complex get_data() function would need to be developed.

5.6 A MEMORY-CHIP TESTER

An FSM-based test system can be used to test memory chips prior to fitting them onto a

circuit board. Fitting memory chips direct from the manufacture can be expensive if a faulty

memory device is discovered at the final testing stage of production and the defective

memory has to be removed, particularly if the device is soldered directly onto the printed

circuit board.

Thememory tester could typically be used in the Goods Inward Department of a factory that

was using a large number ofmemory chips. Thiswould alloweachmemory chip to be tested and

could form the basis of a quality control on overall quality of thememory chips received from a

particular manufacturer. The memory tester should be easy to use by an unskilled operator and

function as a ‘go–no-go’ tester.

The basic idea is towrite some data into thememory chip and read the data back to check that

they are the same. In such a test, any location found to be faultywould deem thememory chip to

be faulty and it would, therefore, be rejected.

Figure 5.14 illustrates the blockdiagram for thememory tester. In this version, the data 55hex

(0101 0101 binary) is written into each consecutive memory location, then read back and

compared using the digital bitwise comparator. The bitwise comparison follows the Boolean

equation

Bitn ¼ =ðAn^BnÞ;

where ^ is the exclusive OR operator. This operation is (with the NOToperator /) the exclusive

NOR i.e. exclusiveORnegated. n represents the bit being ex-NORed. The ex-NORoperation is

shown below for completeness.
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The systemcanbe startedby raising input st, the start input. TheFSMwill control thememory

operations and test the fab input to determine whether what was written is the same as what is

read.

A more sophisticated version could be developed in which each memory location is

tested with the data 55 hex, then retested with the data AA hex to check for adjacent stuck at

1 or 0 faults. Other tests, such as checking adjacent memory locations to test for inter-

memory location faults, could also be included; however, for this simple tester the 55 hex

data will suffice.

The output ‘A¼ B’ connected to the fab input of the FSM is the logical product of all 8-bit

comparisons bit0–bit7; so, if all exclusive NOR outputs are at logic 1, then the ‘A¼ B’ output

will be logic 1. This is expressed mathematically as
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Figure 5.14 Block diagram for the memory tester.
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‘A ¼¼ B’ ¼ fab ¼
Yn¼7

n¼0
=ðAn B̂nÞ;

whereAn and Bn are bit n on eachA andB input and� indicates that each /(An ^ Bn) is ANDed

(i.e. product).

The state diagram for thememory tester is illustrated in Figure 5.15. In this state diagram, the

initial states of the outputs have not been shown, but they can, of course, be deduced from the

state diagram, since each state shows the change of outputs. So, for example, RC¼ 0 in s0, then

in s1 it becomes RC¼1, and remains so for all other states in the diagram. Likewise, CS¼ 0 in

s1, so itmust beCS¼ 1 in s0. Followingon, the other initial values in s0 areP¼ 0, ERROR¼ 0,

OK¼ 0,W¼ 1, RD¼ 1. Note that the state diagram has been allocated a set of secondary state

variables ABCD. These are not needed in the One Hot design, but they are used later on when a

comparison with the more conventional method used in Chapter 4 is made.

In states s1, s2, and s3, thedata55hex iswritten into thecurrentmemory locationpointed toby

the address counter. States s4, s5, and s6 are used to read thememory location and in state s6 the

FSM tests fab. If fab¼ 1, then the memory location is OK and the FSM proceeds to pulse the

address counter in s8andchecks to seewhether allmemory locationshavebeen tested in state s9.

If not, the whole process is repeated.
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0100
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Note:  the secondary state variables are not needed 
for the One Hot solution, but are included here for a 
comparison with a conventional design.

Outputs:

OK=s10
ERROR=s11
RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2
RD=/(s5+s6)
P=s8.

ABCD
0001

CS,RD
s7

Figure 5.15 State diagram for the memory tester.
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In the case of a goodmemorychip theFSMwill loop around the states s1 to s9 repeatedlyuntil

the memory full indicator forces the FSM into state s10. The only way out of this state is via a

system reset. This ensures that, after a memory test, the system waits for operator intervention.

At any time amemory location is found to be faulty, the FSMwill drop into s11 and stop. The

only way out of s11 is via a system reset.

The One Hot equations for the memory tester are given in Figure 5.16.

The state diagram of Figure 5.15 has a Moore output P. The rising edge of P will clock the

address counter on entering state s8,P being lowered on leaving s8. Thememory chip enable is

disasserted in s7 prior to this action. The address counter only responds to the rising edge ofP, so

that on the next clock pulse the state of full can be tested in state s9.

5.7 COMPARING ONE HOT WITH THE MORE CONVENTIONAL DESIGN
METHOD OF CHAPTER 4

In Figure 5.15, a set of secondary statevariables has been provided so that this example could be

implemented with four flip-flops. If this was done, the D-type equations would be as shown in

Figure 5.17.

This, of course, uses the same technique used in Chapter 4, not the One Hot method. You

might like to complete the equations and minimize to compare with the One Hot solution

above.

It is useful at this stage to do a comparison between the One Hot method and the method that

uses secondary state variables in the last example.

Outputs:

OK=s10
ERROR=s11
RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2
RD=/(s5+s6)
P=s8.

One Hot Design Equations:

s0·d = s0·/st
s1·d = s0·st + s9·/full
s2·d = s1
s3·d = s2
s4·d = s3
s5·d = s4
s6·d = s5  (no hold term since two-way branch)
s7·d = s6.fab
s8·d = s7
s9·d = s8 (no hold term since two-way branch)
s10·d = s9·full + s10
s11·d = s6·/fab + s11

Figure 5.16 The One Hot equations for the memory tester.
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The One Hot design is simple, uses more flip-flops but has simple combinational logic. The

design using secondary state variables needs to be assigned a unique secondary state coding and

has more complex combinational logic. However, it requires only four flip-flops. The One Hot

arrangementneeds12flip-flopsand15gates,whereas thesecondary state implementationneeds

four flip-flops and 13 gates. A hidden advantage of the One Hot design is that it makes more

efficient use of the space on an FPGA device.

5.8 A DYNAMIC MEMORY ACCESS CONTROLLER

DMAcontrollers are used in somecomputer systems inorder toallowdata tobemoved fromone

part of thememory system to another or frommemory to a peripheral device (such as a printer or

disk drive for example). If these data moves were done by the computing microprocessor, this

would tie themicroprocessor upand slowdown thecomputing system.ThePChas a special chip

called theDMAcontroller, the8257 (now largely integrated into anASICdevice), that performs

these tasks.

This next example gives some idea of how a simple DMA controller could be developed

around an FSM. The design could be integrated into an FPGA.

Outputs:

OK=s10
ERROR=s11
RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2
RD=/(s5+s6)
P=s8.

D Flip Flop Design Equations:

A·d = s0·st + s1 + s4 + s5 + s6·fab+ s7 + s9·/full.

B·d = s3 + s4 + s5 + s6 + s11.

C·d = s1 + s2 + s3 + s4 + s9·full.

D·d = s6·fab + s7 + s8 + s9·full.

Figure 5.17 Memory tester design implemented with four flip-flops.

One Hot Secondary state

Complexity Simple Need to define the state

Number of flip-flops 12 4

Combinational logic Simple Complex
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Figure 5.18 shows a possible arrangement for a DMA controller. The source and destination

addresses need to be supplied by the microprocessor, as well as the number of words to be

transferred (Byte Counter). The size of the data could be bytes (8 bits), words (16 bits) or even

doublewords (32bits), since thedesigncanbe scalable. In thisdesign, it is assumed that theseare

deliveredvia an input port, but registers could be providedwith address decoding for amemory-

mapped DMA controller.

The dashed line marks the boundary of the DMA controller. The Memory Pool/Peripheral

Device is external.

ADMAcontrollermust be able to isolate itself from thememory/peripheral devicewhen not

being used, and this is achieved using tri-state devices.

Essentially, the DMA controller is designed to respond to an input st. At this point it should

accept the source, destination addresses, and the number of words/bytes to be transferred. Then

it should interrupt the microprocessor to let it know it is about to take over the memory/

peripheral. The microprocessor will then isolate itself from these devices and send the

load signal high to let the DMA controller know this has been done, and also provide it with

the source/destination addresses and the byte count. At this point, the DMAcontroller will load

the source, destination counters, and the byte counter.

Note that the registers are clocked synchronously with the system clock (on negative edge of

clk) but enabled via the FSM output ec. The DMA controller now has enough information to

carry out the transaction. This involves:

1. Selecting the source address and reading its content into a buffer.

2. Selecting the destination address and depositing the buffer content into this address.

DMA

Controller
Memory

Pool

and/or

Peripheral

device

Address bus

Data bus

Source

Address

Destination

Address

Byte

Count

st          load     ACK

CE

W

R
init INT

Figure 5.18 Block diagram of a possible DMA controller.
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3. Decrementing the byte counter and advancing the source and destination address counters.

4. Repeating 1 to 3 until all data transactions are completed (indicated by the byte counter

reaching zero).

The DMA controller can now be developed in more detail. Clearly, a parallel-loading up

counter is needed for both the source address and the destination address. Also, a parallel-

loading down counter is required for the byte counter. Appendix B describes how these can be

simply designed in detail.

Since the source and destination counter outputs need to be connected to the address bus, they

should have tri-state buffers to isolate them from the memory/peripheral address bus when the

DMA controller is not in use. The source or the destination address counters are used one at a

time to avoid bus contention. The DMA controller will also need a data register and buffer

connected so that the data read from one memory location can be fed to another memory

location. This data buffer acts as a holding registerwithin theDMAcontroller. The buffer needs

to be isolated from the memory/peripheral data bus when not being used. Finally, all these

internal devices need to be controlled by the FSM.

Figure 5.19 illustrates a possible block diagram for the DMA controller. Figure 5.19 shows a

lot of detail and contains internal signals used by the FSM to control the operation of the DMA

controller.
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Figure 5.19 Detailed block diagram for the DMA controller system.
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TheFSMmust carry out the transactions 1 to 4 detailed above. These, in turn, need to be defined in

terms of the actions required to control the hardware in Figure 5.19. These actions will involve:

1. Waiting for the start signal st.

2. Providing an interrupt to the microprocessor to get it to isolate itself from the memory.

3. Waiting for a load signal from the microcontroller; when obtained, loading the source,

destination, and byte count into the relevant counters.

Then:

4. The source memory needs to be selected and data read from the memory into the data holding

register.

5. The source address needs to be isolated from the memory and the destination memory

selected.

6. The data in the holding register needs to be transferred into the output buffer B3 and stored

into the memory destination address.

After all this:

7. The byte counter needs to be decremented and checked to seewhether all bytes of data have

been transferred.

8. If there aremorebytes to transfer, then theFSMneeds to repeat 1 to7again.This is to continue

until all bytes are transferred, indicated by the byte counter being decremented to zero.

The state diagram for the DMA controller can now be developed. The final form of this state

diagram is illustrated inFigure5.20.Study thisdiagram togetherwith thediagramofFigure5.19

to see how the DMA controller is controlled from the FSM.
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Figure 5.20 The state diagram for the DMA controller FSM.
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A number of points need to be considered:

1. When reading the sourcememory location (states s4 to s7), the chip select and read signalsCE

and R need to be kept active while data is transferred into the holding register (s6 and s7)

before theyaredisasserted (to their high state in states s8ands9 respectively).This is different

to the way in which memory read cycles have been done in other examples.

2. Writing thedata from theoutputbuffer follows themoreusual arrangement,whereby thechip

is selected (s11), thenwrite is selected (s13), andfinallybothCEandWare deselected (s14 for

W, s15 for CE) to write the data into the memory destination location.

3. Note that the source, destination, and byte count registers are enabled via the EC output from

the FSM in state s16, and that the system clock clk clocks the data on the negative clock edge.

The One Hot equations can now be determined.

5.8.1 Flip-Flop Equations

s0 � d ¼ s18 � =stþ s0 � =st s10 � d ¼ s9

s1 � d ¼ s0 � stþ s1 � =load s11 � d ¼ s10

s2 � d ¼ s1 � load s12 � d ¼ s11

s3 � d ¼ s2þ s17 � =done s13 � d ¼ s12

s4 � d ¼ s3 s14 � d ¼ s13

s5 � d ¼ s4 s15 � d ¼ s14

s6 � d ¼ s5 s16 � d ¼ s15

s7 � d ¼ s6 s17 � d ¼ s16

s8 � d ¼ s7 s18 � d ¼ s17 � doneþ s18 � st:
s9 � d ¼ s8

5.8.2 Output Equations

INT ¼ s1

LD ¼ =s2 active-low signal

B1 ¼ s3þ s4þ s5þ s6þ s7þ s8þ s9

B2 ¼ s11þ s12þ s13þ s14

B3 ¼ s12þ s13þ s14

CE ¼ =ðs4þ s5þ s6þ s7þ s8þ s11þ s12þ s13þ s14Þ active-low signal

R ¼ =ðs5þ s6þ s7Þ active-low signal

W ¼ =s13 active-low signal

EC ¼ s16

DPI ¼ s6

M ¼ ðs0þ s1þ s2þ s18Þ; considering the high signal levels

instead of low signal levels

ACK ¼ s18:
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TheFSMblock is simulated inFigure5.21. In this simulation, themain loopcomprisingof states

s3 to s17 is traversed twice. On the second loop, the done input is true (logic 1) and the FSM

moves to s18 before returning back to state s0. This proves the operation of the FSM.

5.9 HOW TO CONTROL THE DYNAMIC MEMORY ACCESS
FROM A MICROPROCESSOR

TheDMAsystemis startedwith the start input,which in thepreviousdesignwouldneed tobevia

an output port from the microprocessor. This is sometimes useful, since it avoids the need for

address decoding logic.

A more appropriate way would be to have this signal via the memory (or I/O map) of the

microprocessor. Normally, this would require using a byte-wide port.

In Figure 5.22, the start signal st is generated by a microprocessor using a spare address

location. The address used here is 380 hex or 11 1000 0000 binary for this purpose. A typical

memory or Input/Output access cycle is illustrated, from which it is clear that when the chip

enable Ce and the IOWare both low (as would be generated by the microprocessor) the output

from the address decoding logic corresponding to the address 380 hexwould go high. The next
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Figure 5.21 Simulation of the DMA FSM block.
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clock pulse from the microprocessor clock (T3 rising edge) would clock the st value into the

D-type flip-flop.

Themicroprocessorwould need to use an address (386 hex in this case) to reset theDflip-flop

at anappropriate time.However, before this, themicroprocessorwouldneed towait for theACK

response from the FSM.

Figure 5.23 illustrates how this could be done, together with the generation of the st

signal. In Figure 5.23, the additional data latch is used to store the state of the FSM output

ACK. The FSM raises the ACK signal line and clocks it into the data latch with the pak

signal (added to the FSM for this purpose). The microprocessor can read the ACK signal by

addressing 381 hex, which takes the tri-state buffer out of its tri-state, thus setting bit d0 of

the data bus to that of the ACK signal stored in the D-type flip-flop during the memory or IO

read cycle of the microprocessor.

TheACKsignalwill be readby themicroprocessor in theT4state on the rising edgeofCEand

IOR signals during the read cycle (see Figure 5.24) into an appropriate internal register within

the microprocessor.

The state diagram fragment shown inFigure 5.25 shows the relevant state sequence needed to

use themicroprocessormemory or IOmapped control. Note that this can be usedwith the other

states of Figure 5.20 in the DMA controller.

Of course, this example is based upon hypothetical microprocessor bus timing, but it does

illustrate a possible method.
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Figure 5.22 Generating a start signal from a microprocessor for the FSM.
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5.10 DETECTING SEQUENTIAL BINARY SEQUENCES
USING A FINITE-STATE MACHINE

A very common requirement in communication and computer network systems is to detect

binary sequences. The following example illustrates the idea and can be scaled up and changed

to detect other sequences.

One common approach is to insert a shift register into the transmission line and use

digital comparators to detect the incoming binary stream after the number of bits corre-

sponding to the binary code have been shifted into the shift register. This, of course,

introduces an n-bit delay. So, to detect a 4-bit code introduces a 4-bit delay. If the code to be

detected is longer (e.g. 8 or 16 bits), or other devices are to be added to the line to detect

other codes, then the delay increases.

An alternative approach is tomonitor the transmission line passively in real time and process

the binary bits in an FSM. This will not introduce any delay.

Consider a system such as the one shown in Figure 5.26. In this system, the FSMmonitors the

input binary sequence continuously looking for the sequence d¼ 1101 (this could be any

sequence in practice, but this one will suffice).

The FSM needs to synchronize to 4-bit data streams; in Figure 5.26, the first data stream is

1011, then the next 1101 (the required sequence), followed by the sequence 0011. The outputM

should go high at the end of the sequence 1101.
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Figure 5.23 The whole arrangement for writing to and reading from the FSM.
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Figure 5.24 The arrangement for reading the ACK signal from the FSM.
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The best way to develop the state diagram for this application is to start with a state diagram

that follows the required sequence; see Figure 5.27, where the required sequence d¼ 1101 is

detected in state s4, where the FSM stops.

However, it is necessary to go through the 4-bit sequence and return to state s0 if the required

sequence isnotdetected.This is shown inFigure5.28,where the state diagram is seen tocater for

all possible combinations.

For example, an input sequence of d¼ 1100 would follow states s0, s1, s2, s3, s0. An input

sequence1111would followstates s0, s1, s2, s7, s0; and so on. In thisway, theFSMkeeps in step

with the incoming binary sequence.

Once the correct sequence is found, the FSM will stop in state s4.

The FSM clock needs to synchronize with the middle of the data bits being monitored; this

could be done using the same technique used in the asynchronous receiver design of Figure 4.20

in Section 4.7.

The design can be implemented using the One Hot method, resulting in the following

equations:

s0 � d ¼ s3 � =d þ s7

s1 � d ¼ s0 � d
s2 � d ¼ s1 � d
s3 � d ¼ s2 � =d

s4 � d ¼ s3 � d þ s4

s5 � d ¼ s0 � =d
s6 � d ¼ s5þ s1 � =d
s7 � d ¼ s6þ s2 � d

d input sequence

M output 
(goes high 
when sequence
 detected)

reset

clk

FSM
101111010011

rst

Figure 5.26 Binary sequence detector.

d_| /d_|d_| d_|
M/M
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State diagram showing detection of 
required sequence

Required sequence 1101
detected in state s4 

Figure 5.27 State diagram segment to detect required sequence.
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and output

M ¼ s4:

This design can be built up in Verilog and simulated as illustrated in Figure 5.29. This

simulation runs through all possible paths of the state diagram in order to test out the FSM

logic.

d_| d_| /d_| d_|

/d_|

/d_| /d_| d_|

_| _|

_|

M/M
s0 s1 s2 s3 s4

s5 s6 s7

Figure 5.28 State diagram completed for all possible input combinations.
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Figure 5.29 Simulation of the sequence detector.
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In the first sequence, the simulation is seen to follow the sequence s0, s5, s6, s7, s0. This is

followedby the sequence s0, s1, s2, s3, s4,withM¼ 1.After this, theFSMis reinitializedback to

s0 for another sequence by lowering rst and pst (asynchronous initialization). Then, the

sequence s0, s1, s2, s7, s0 occurs. This is followed by other sequences to complete the testing

of all paths through the state diagram. Note that during the last sequence, i.e. s0, s5, s6, the

asynchronous initialization forces the FSM back to s0.

The system could be modified so that it continues indefinitely to monitor the incoming

sequence, providing anM¼ 1outputwhenever the correct sequence is detected. This can easily

be done by makingM a Mealy output in state s3, so that

M ¼ s3 � d:
If d is not 1 in state s3, neither isM. Of course, state s4 is no longer needed in this case.

Figure 5.30 shows the final state diagram In Figure 5.30, theM output ismade aMealy output

in s3 so that the FSM can return to s0 after any sequence. In this way the FSM can continue to

monitor incoming sequences forever and remain synchronized to the 4-bit pattern.

In Figure 5.31, the sequence detector can be seen to return to s0 after detecting the 1101

sequence. Note: the outputM is only 1 when d¼ 1.

The same technique could be applied for longer sequences, making use of more states and

more flip-flops.

One limitation of the sequence detector of Figure 5.30 is that it is limited to detecting one

particular binary sequence, in this case 1101. It would bemore useful to have an FSM that could

accept any binary sequence without having to redesign the state diagram.

In Figure 5.30, the FSM looks at the line bits with the same variable d. Instead, the d input

could be compared bit by bit with a number of digital 1-bit comparators (exclusiveNORgates),

each one having a bit of the code to compare the incoming bits with. Figure 5.32 illustrates a

possible arrangement. In this case, a more realistic 8-bit code is to be detected.

Also note that the code to be detected can be stored into a data latch prior to starting the

detectionprocess.This systemcanbeused todetect up to255different codes (assuming thecode

0000 0000 is not used).
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_| _|

_|

M=d/M

s0 s1 s3s2

s5 s7s6

The equation for M is now
M = s3.d

Figure 5.30 Final state diagram for continuous monitoring for the d¼ 1101 sequence.
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Figure 5.31 Final simulation of the sequence detector.
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Figure 5.32 Comparators used to compare each bit with a pre-stored code.

Detecting Sequential Binary Sequences 139



The codeC0 toC7 is loaded into the data latch and is presented as a registered code RC0 toRC7

and connected to one input of the single-bit digital comparators.

The input bits from line d are all connected to the other comparator inputs, so that eight

compared bits d0 to d7 are available to the FSM.

Figure 5.33 shows the full system: an additional input to the FSMen is used to start the system

and an additional output LD is used to latch the code value to be detected.

The state diagram for the FSM is illustrated in Figure 5.34. The state diagram of Figure 5.34

follows the same basic idea developed in the state diagram of Figure 5.30, but for a byte-wide

code. Note that rather than compare each d bit at the line, the FSM now compares each bit after

it has been compared with the desired code with the 1-bit comparators, first bit d0, then d1,

through to bit d7.

Now the FSM is a fixed sequence that can detect any possible 8-bit code. All that needs to be

done is load the required code into the data latch before starting the detector. The system can be

disabled at any time by disasserting the input en. This will cause the system to stop at the end of

the current sequence then return to state s0.

A little thought shows that the same FSM could be used to detect a number of different codes

one after the other by simply changing the codes in sequence.

One aspect of the system not yet discussed is how to synchronize the system to the line bit

stream. One way to do this would be to start the system off with a synchronization bit stream

code, say 10101010xx, prior to starting the code detection process, where x is an additional bit

that could be either 0 or 1. This could be broadcast by the sender.

The additional bits are needed to allow the FSM to load the data latchwith the desired code to

be detected. The sameFSMcould be used for this, since all that needs to be done is to load up the

synchronization code.Once the synchronization byte is detected (viaM) the code to be detected

would be loaded into the data latch and the code detection sequence started.
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Figure 5.33 Full system of the general 8-bit binary code detector.
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The One Hot equations can be obtained directly from the state diagram of Figure 5.34:

s0 � d ¼ s9 � =enþ s0 � =en
s1 � d ¼ s0 � en
s2 � d ¼ s1þ s9 � enþ s16

s3 � d ¼ s2 � d0
s4 � d ¼ s3 � d1
s5 � d ¼ s4 � d2
s6 � d ¼ s5 � d3
s7 � d ¼ s6 � d4
s8 � d ¼ s7 � d5
s9 � d ¼ s8 � d6
s10 � d ¼ s2 � =d0
s11 � d ¼ s3 � =d1þ s10

s12 � d ¼ s4 � =d2þ s11

s13 � d ¼ s5 � =d3þ s12

s14 � d ¼ s6 � =d4þ s13

s15 � d ¼ s7 � =d5þ s14

s16 � d ¼ s15

/M
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this code into the data latch with Ld signal.
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Controlling device can stop the detector at the end of any sequence by 
lowering En to 0 and stopping the FSM in state s0.

Figure 5.34 The state diagram for the FSM-based byte-wide code detector.
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with outputs

M ¼ s9 � d7
LD ¼ s1:

Of course, the code to be detected could be any length, since the state diagram could be

developed for any particular length following the same basic idea.

Thesimulation inFigure5.35shows thesysteminwhich thecode tobe identified is11001011.

This code is first loaded into the latch via the C0 to C7 inputs. The simulation then presents a

number of serial d input sequences, with the last one being the one the system is trying to detect.

TheM output goes high at the end of this sequence.

The complete system, comparator, octal latch and FSM as connected up in Figure 5.33 is

simulated and illustrated in Figure 5.36. Only the system inputs and output signals are visible

here (see block diagram in Figure 5.33), along with the FSM state sequence so that the

state sequence of the state machine in Figure 5.34 can be followed. Note that the sequence

to be detected in this simulation is C[7:0]¼ 11001011. This sequence is detected at the end of

the simulation at around 700 ns into the simulation, and can be clearly seen in the bottom two

signals (d input andM output).
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Figure 5.35 Simulation of the FSM sequence detector using a code 11001011.
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5.11 SUMMARY

This chapter has explored the use of the One Hot technique to implement FSMs. These are

particularly useful for implementation inFPGAdevices andhave the advantage of not requiring

secondary state variables. The hand calculations are much easier to perform and can be

converted into Verilog HDL easily. Also, owing to the large size of FPGAs, large FSM designs

can be implemented without the need to consider secondary state variable assignment.
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Figure 5.36 Simulation of the complete 8-bit sequence detector.
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6
Introduction to Verilog HDL

6.1 A BRIEF BACKGROUND TOHARDWAREDESCRIPTION LANGUAGES

This chapterwill introduce the fundamental aspects ofwhat has become an essential tool for the

modern digital system designer, namely the HDL. There are many different HDLs used for a

variety of purposes. Some are best suited to low-level design, making use of logic gates and

Booleanequations (e.g.ABEL[1]),whileother so-called system-level languagesare intended to

aid the design and verification of entire systems comprising both hardware and software

(examples are SystemC [2] and SystemVerilog [3]).

In addition to the support for digital systems, in which events and values are modelled in

discrete terms, HDLs have evolved to encompass the realm of continuous time or analogue

behaviour. Apart from mentioning these languages in passing, this book will not consider the

details of this category of HDL.

TheHDLdescribed in thisbook is theverypopular, and relativelyeasy-to-learn,VerilogHDL

[4], often referred to as ‘Verilog’ or ‘HDL’ (the names ‘Verilog’ or Verilog HDL’ are used

interchangeably throughout this book). The language has a considerable user base among

the digital design communities within both industry and academia across the globe. Verilog

HDL is unique with regard to the breadth of support it provides for describing and simulating

digital systems. Using built-in models of metal oxide–semiconductor (MOS) transistors, the

language allows digital circuits to be described at the so-called switch level, where individual

switches can exhibit detailed timing and signal strength behaviour. The switch level is very

close, in representative terms, to the actual physical implementation of the digital integrated

circuit, this makes Verilog HDL the first choice of language used to verify designs beyond the

circuit level. At the other extreme, the high-level language constructs contained within the

language facilitate the use of a more abstract and, therefore, powerful representation known as

behavioural or register transfer level (RTL) in which the design is represented by storage

registers and operations involving themovement and processing of information stored in them.

It is perhaps the latter capability that makes Verilog HDL and other similar languages the only

effective way of dealing with the complexities of contemporary digital design.

The Verilog HDL started out as a proprietary tool in the 1980s, but soon gained widespread

popularity as digital integrated circuits and systems became more complex. Consequently, it

was introduced into the public domain and subject to standardization by the IEEE in the mid

1990s. Themajority of the examples used in this bookmake use of the Verilog HDL defined by
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the IEEE Standard 1364-2001 released in 2002. This version of Verilog HDL introducedmany

new powerful features, along with some cosmetic changes, bringing it in line with one of the

other most popular HDLs, namely VHDL (Very High Speed Integrated Circuit Hardware

Description Language) [5].

The two most widely used HDLs, i.e. Verilog HDL and VHDL, despite sharing the same

acronym, differ in terms of syntax and general appearance, the latter being similar to the Ada

programming language [6] and the former having someC-like features. Despite these cosmetic

differences, the twoHDLs share very similar semantics and tend to be used in the samemanner

towards achieving the same eventual goal of designing and implementing a cost-efficient digital

system that meets the specification in terms of performance and economics.

In addition to their use in design simulation and verification, both Verilog and VHDL can be

used as the input language to the automated process of hardware creation known as logic

synthesis [7]. The vast majority of digital circuits implemented in actual hardware have been

synthesized fromadesigndescriptionwritten in one of these languages.Modern logic-synthesis

software tools are highly reliable, producing optimum and efficient logic circuits often imple-

mented in the formof programmable logic. It should be noted that the role of the digital designer

isno less important, however, despite theavailabilityof such tools.Whathashappened is that the

designer is now able towork at a higher level of abstraction,making use of the expressive power

of the HDL to create ever more complex designs, while the detailed issues and processes

surrounding implementation have been largely automated.

The use of design languages is now well established and the modern electronic designer

needs a working knowledge of at least one of the popular HDLs to compete in the employ-

ment market. Migrating designs between one particular HDL and another is a relatively

straightforward task, once the fundamentals have been mastered. It is far more challenging to

learn and master an HDL from scratch for the first time, and apply it to a real-world design

problem, than it is to convert a given design into an alternative language, having already

mastered an HDL.

As mentioned previously, the huge growth in the use of HDLs such as Verilog HDL and

VHDL, along with the constant increase in complexity and integration of hardware and

software, brought about by the advances in microelectronic technology, has resulted in the

development of what are referred to as system-level languages such as SystemC [2] and

SystemVerilog [3].

While SystemC has been developed around the popular Cþþ language and, therefore, lacks

support for low-level digital design, SystemVerilog is a superset ofVerilogHDLand, therefore,

possesses all of the digital hardware modelling capabilities of Verilog in addition to the higher

level data abstraction and software integration needed by today’s system-on-a-chip designers.

By learningVerilogHDL, therefore, the digital designer is setting down the foundations for a

long and prosperous career, with the comfort of knowing that support exists within the design

tools and languages for the ever more complex designs of the future.

To summarize this section, here are some of the key advantages of using an HDL such as

Verilog HDL:

� Technology independence – designs written in an HDL are largely independent of the target

technology and, therefore, future-proof.

� Textual descriptions are concise, unambiguous and self-documenting.

� Standard language promotes design reuse and portability between design tools.
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� Textual descriptions replace or augment schematics.

� Automated design – logic synthesis tools accept designs written using an HDL.

� High-level design – the designer is freed from the tedium of gate-level design to concentrate

on system-level aspects.

6.2 HARDWARE MODELLING WITH VERILOG HDL: THE MODULE

In Verilog HDL, the basic unit of hardware is known as amodule. In common with C-language

functions,modules are free standingand cannot, therefore, contain definitions ofothermodules.

Amodule can be instantiatedwithin anothermodule, however, in a similarmanner towhich aC

function can be called from another C function; this provides the basic mechanism for the

creation of design hierarchy in a Verilog description.

Listing 6.1 shows the basic layout of a module:

module module-name(list-of-ports);
local wire/reg declarations
parallel statements

endmodule

Listing 6.1 Basic layout of a module.

Note that in this and subsequent listings all keywords are shown in bold. The hardware

description is enclosedby thekeywordsmoduleandendmodule, the formerbeing immediately

followed by the name of the module and a list of ports enclosed in parentheses. (Somemodules

do not require ports; therefore, the list-of-ports is empty.)

Note that the semicolon at the end of the first line (themodule header) is always required, but

no semicolon is required after the bracketing keyword endmodule.
Within the module header, the list-of-ports enclosed between the parentheses fully

specifies the size (number of bits) and direction of the ports (input or output, etc.), alongwith the

name of the port.

In this manner, the first line of a module contains all of the details of the module that are

visible from outside, i.e. the module header represents the interface specification or module

prototype.

Immediately below the module header, items that are to be used within the confines of the

module are declared. The second line of Listing 6.1 shows the most common local objects to be
reg and wire; these represent internal storage and/or connections used within the module.

Consistentwithother languages,Verilog requires that all objectsmustbedeclaredbefore theyare

referenced; therefore, this means that they tend to be located at the top of the module body. The

local wire and reg objects represent signals used within the module to link together the logical

elements described by the so-called parallel statements. The term ‘parallel statements’ refers to

themanner inwhich this group of statements executes during a simulation, i.e. concurrently, in a

manner similar to that of real digital hardware. The parallel statements describe the behaviour,

structure and/or data flow of the design encapsulated by the module. They can take a variety of

forms; among these areprimitivegates,module instantiations andcontinuousassignments, all of

which will be described in detail in due course.
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AVerilog module description consists of case-sensitive ASCII text, the file containing the

text of a module with a given module-name is conventionally stored under the filename

‘module-name.v’. An example of a very simple module is shown in Figure 6.1. The listing

in the figure includes line numbers that are for reference purposes only; they must not

appear in the actual source text.

As shown in Figure 6.1, the module describes a two-input exclusive-OR gate named myxor

having single-bit inputs a and b and an output y. The names and direction of the module ports are

specified by the comma-separated list enclosedwithin parentheses on line1. The ports of aVerilog

module have a default width of 1 bit, and in some cases a port may need to be both an input and an

output, i.e. bidirectional. Verilog uses the reserved word inout to specify a bidirectional port.

The functionality of the module given in Figure 6.1 is defined by the so-called continuous

assignment statement on line 2, assigning the output y the expression a ^ b (where ^ is bit-wise

exclusive-OR in Verilog). The keyword assign is used to indicate a continuous assignment.

Such a statement creates a static binding between the expressions on the left- and right-hand

sides of the¼ operator; it is most commonly used to describe combinational logic.

Despite the similarity with an assignment used in the C language, the continuous assignment

on line 2 in Figure 6.1 is a parallel statement; thismeans that it is constantly active and awaiting

eventson either of the input signalsa andb to trigger its execution. Sucheventswoulddependon

the activity of external sources applied to the module inputs.

Specifically, whenever a change in value occurs on either or both of the inputs a and b, the

expression on the right-hand side of the assignment on line 2 is evaluated and the result is

assigned to the target of the continuous assignment on the left-hand side of the ¼ operator

(output y) at the start of the next simulation cycle.

Amodule may contain any number of continuous assignment statements, all of which act in

parallel and, therefore, may be written in any order.

Figure6.2 showsanexampleofamodulecontainingmultiplecontinuousassignments.Sucha

description is sometimes referred to as a dataflow style description. The Verilog source

describes the logic diagram shown below the text in the figure. In this example, each gate is

modelled by a separate continuous assignment on lines 7, 8 and 9. An alternative would have

been to describe the logic using a single statement such as

assign F ¼ �((A & B)|(C & D));

The above assignment illustrates the similarity between Verilog and the C language in terms of

thebit-wise logical operators: inversion(�), logicalAND(&) and logicalOR(|).Also, note

y
a

b

1 module myxor(output y, input a, b); 

2 assign y = a ^ b; 

3 endmodule

Figure 6.1 A simple module.
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the use of parentheses in the above assignment, these force the order of operator evaluation to

reflect the logical structure being described.

Note that the continuous assignment statements on lines 7, 8 and 9 could have been written

in any order without changing the behaviour of the logic, internal single-bit wires (declared
on line6) areused toconnect theoutputsof the twoANDassignments (lines7and8) to the inputs

of the two-input NOR assignment. The order of execution of the continuous assignments

on lines 7, 8 and 9 is determined by events on the primary inputs A, B, C, D and internal wires
W1 and W2.

For example, if input A changed from logic 0 to logic 1, this event on A would cause the

assignment on line 7 to execute. This, in turn,would cause thevalue onwireW1to change from

logic 0 to logic 1, assuming inputBwas already at logic 1. It should be noted that the event onW1

occurs at the same time as the event on inputA, since the continuous assignment does not specify

anypropagation delay.However, the simulator updates signals using amechanism that involves

discrete cycles known as simulation cycles, in which signals are updated as a result of assign-

ment execution.

An infinitesimally small delay, sometimes referred to as delta delay, elapses each time

the simulation cycle advances. So, if the event on input A occurred at a time of 10 ns,

the resulting change in wire W1 would occur at a time of 10 ns þ 1d, where d represents

‘delta’.

Referring back to Figure 6.2, an event on W1 has the effect of triggering the continuous

assignment on line 9, which, depending on the value of W2, may or may not result in a change in

themodule outputF. If a change inFwere to occur, it would be at a time of 10 nsþ 2d, due to the

one-delta introduced by the assignment execution.

A wire is a particular case of the more general category of Verilog objects known as nets, all

of which share the common requirement of having to be driven continuously, either by a

7    assign W1 = A & B;
8    assign W2 = C & D;
9    assign F = ~( W1 | W2); 

10 endmodule

A
B

C
D

F

W1

W2

1 //Note – Comments are written in the same 
2  //style as C++ (block comments use /* */) 
3  //Verilog description of a AND-OR-INVERT gate
4
5    module AOI(input A, B, C, D, output F);

6    wire  W1, W2; 

Figure 6.2 AVerilog AND-OR-INVERT module.
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continuous assignment or by virtue of being connected to the output of a primitive gate or

module instantiation.

Note: the left-hand side, or target, of a continuous assignment statement must be a
wire.

Theports of amodule (A,B,C,D andFon line5of the example shown inFigure6.2) are also
wires by default; as such, they may appear on the left- or right-hand sides of continuous

assignments, depending on whether they are outputs or inputs respectively. Unlike some

HDLs, the Verilog language allows ports that have been defined as outputs to appear on the

right-hand side of an assignment. This flexibility is included to reflect a common situation in

hardware, where a module output signal is internally fed back into an input within the same

module.

Figure 6.2 also shows the format used inVerilog for adding comments to a description. Lines

1, 2 and 3 illustrate the similarity between Verilog comment delimiters and those used by the C

and Cþþ languages. Comments are a useful tool for adding documentation to a design

description.

The next example of a Verilog module illustrates several additional aspects of the language

not yet mentioned.

Figure 6.3 shows a very simple Verilog description of a 4-bit binary adder along with its

corresponding symbolic representation. Themodule header, spanning lines 1, 2, 3 and 4, shows

howmulti-bit ports are defined. In this case, the inputs a and b and the output sum are all 4 bits

wide, being represented as buses on the symbol.

1 module  add4( output  [3:0] sum,  
2    output  c_out,  
3    input  [3:0] a, b,  
4    input  c_in);  

5 assign  #15 {c_out, sum} = a + b + c_in; 

6 endmodule

add4

a

b

c_in

c_out

sum

Figure 6.3 Verilog module and symbol for a 4-bit adder.
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For example, line 3 of the listing given in Figure 6.3 defines two input ports each having 4 bits

ordered 3 down to 0:

input [3:0] a, b,

Ports having the same direction andwidth can be listed together or on separate lines, whichever

is preferred. The expression [3:0] is the bit range of the port; for mathematical purposes, the

left-hand bit (in this case bit 3) is always assumed to be the most significant bit.

Themodule presented in Figure 6.3 is described by a single continuous assignment statement

situated on line 5:

assign #15 {c_out, sum} ¼ a þ b þ c_in;

Theabove assignment gives some indicationof the expressivepower of anHDLsuch asVerilog.

To describe an adder, it is simply a case of adding the three input port values together using the

built-inþ operator whenever any of the inputs change, and continuously assigning the result to

the outputs. If required, the adder could also have been described in terms ofBoolean equations,

logic gates or even individual MOS transistor switches, such is the flexibility of Verilog. There

are a couple of important points concerning the above assignment that areworth highlighting at

this point:

� The expression on the right-hand side of the assignment operator performs an unsigned

addition by default.

� Since a and b are referred towithout specifying a bit range, their entire 4-bit values are added

along with the single-bit carry input c_in.

� The carry inputc_in is automatically added to the least significant bits ofa andb(a[0] andb
[0]).

� The result produced by adding the three inputs is potentially 5 bits in length; therefore, the

target of the continuous assignment is the concatenation of the outputsc_out andsum (using

the { } operator), with c_out occupying the most significant bit position (bit 4).

� The inclusion of #15 after the keyword assign indicates a delay of 15 time-units between

any input change and the resulting change in the outputs. Time delays are described in more

detail in Chapter 7.

In all of the aboveexamples ofVerilogmodules, all theobjects representingdigital signals are

of type wire. This includes both the internal signals and the module ports. This is due to the

simple combinational nature of the examples considered thus far: eachmodule has defined a set

of simple combinatorial relationships between the inputs and outputs; there is no need to store

any values. Unconnected wires are effectively undriven and, therefore, are assigned the high-
impedance value z.

In addition to wires, Verilog provides the reg (short for register) type variable to describe

signals that have the ability to retain, or store, the last value assigned to them.

In common with wires, the reg-type signal defaults to 1 bit, but it can also be defined as
having multiple bits using the same notation as wires, as illustrated by the following

example:

reg [7:0] count; //an 8-bit register variable

The use of the reg object will be considered in detail in Chapter 7.
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6.3 MODULES WITHIN MODULES: CREATING HIERARCHY

An important tool used by software engineers is so-called top-down design. Simply described,

this involves breaking a complex problem into a set of clearly defined sub-problems,whichmay

in turnbe further subdivided into yet simpler problems. In theC/Cþþ languages, andothers, the

basic unit of execution is the function or procedure; these self-contained blocks of code are

intended to perform a relatively simple task. The software engineer will create the functions

required to implement the low-level tasks and make use of them in higher level functions by

means of the function or procedure calling mechanism. In this manner, a complex software

application can be implemented as a hierarchy of functions nested to any required depth. In

digital hardware design, a similar hierarchical approach can be applied to complex design

problems by means of module instantiation.

As stated earlier, modules can instantiate, or create an occurrence of, other user-defined

modules as well as predefined gates and switches. In this manner, Verilog provides support for

the fundamental tools used in the creation of complex digital systems, namely hierarchy,

modularity and regularity [8].

Creating hierarchical designs in Verilog is quite straightforward. Having defined a module

and stored it in a text file, it may be compiled into a library (or, in some tools, a project database)

and referenced in other modules using the following syntax:

module-name instance-name(list-of-connections);

In the above, the module_name is the name of the module as defined by themodule header, the
instance-name is a unique name assigned to this particular instance or occurrence of the

module. The list-of-connections defines the details of how the instanced module’s ports

are connected within the enclosing, or parent, module.

Figure 6.4 shows the block diagram of a digital system described by a Verilog module

named modT. As shown in the figure, the so-called parent module, modT, contains three

modT

modA

modB

modC

w1

w2

in1

in2

out1

out2

5

8

4

U1

U2

U3

X Y

M N

F G

K

E

Figure 6.4 Block diagram of a module containing instances of other modules.
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instances of other previously defined modules having names modA, modB and modC; the

latter are sometimes referred to as child modules. The labels U1–U3 represent the unique

instance name for each instantiation; such labels are mandatory, since any given module

may be instantiated more than once.

The names of the ports of each child module shown in Figure 6.4 are enclosed within the

module’s block; inputs enter on the left or bottom edge and outputs exit on the right or top

edge.

Listing 6.2 shows the equivalent Verilog description of the block diagram of Figure 6.4.

1 module modT(input [4:0] in1,

2 input in2,

3 output [3:0] out1,

4 output out2);

5 wire [7:0] w2;

6 wire w1;

7 modA U1(.X(in1),. Y(w1));

8 modB U2(.F(w1),. E(w2),. K(out1),. G(out2));

9 modC U3(.M(in2),. N(w2));

10 endmodule

Listing 6.2 Verilog description for modT.

As was the case previously, the line numbers along the left-hand column are included for

reference purposes; they do not form part of the module text. Lines 1 to 4 define the module

header for modT: input in1 is a 5-bit port and output out1 is a 4-bit port; all remaining ports

are single bit. Lines 5 and 6 declare two internal wires used to link modules modA and
modC to modB.

The block structure shown in Figure 6.4 is effectively created by the module instantiation

statements on lines 7, 8, and 9. Each line beginswith the name of themodule being instantiated;

this is followed by a space and then the unique instance name (U1, U2, . . .).
In Verilog, there are two alternative ways of specifying module connectivity: the preferred

method, known as explicit association, is used in Listing 6.2.

In this notation the ports of the child module are explicitly associated with particular signals

bymeans of the ‘dot’ (.) notation, whereby the name of the signal being connected to the port is

Modules within Modules: Creating Hierarchy 153



given in parentheses immediately after the selected port name, as shown below:

module-name instance-name(.port-name(net-name),. . .);

Explicit association has two important advantages over the secondmethod that is sometimes

used to define connectivity (discussed below):

� the connections may be listed in any order;

� the presenceof both theport nameand the nameof the signal towhich it is attachedminimizes

the possibility of errors.

The second method of defining module connectivity is known as positional association. In

this notation, each port of the instantiated module is connected to the net occupying the

corresponding position in the port list of the child module. For example, to instantiate module
modA using positional association:

modA U1(in1, w1); //positional association

Clearly, positional association is less robust than explicit association due to the possibility of

listing the connected signals in the wrong order. The Verilog compiler may not always report

errors such as mismatches in the bit width or port direction caused by the wrong ports being

connected to the wrong signals.

Occasionally, it is necessary to leave certain ports of amodule unconnected.This can apply to

both inputs and outputs. Regardless of whether explicit or positional association is used,

unconnected ports are indicated by simply leaving blank the space where the connected signal

name would normally appear. The two lines shown below illustrate the appearance of uncon-

nected ports using the two alternative formats:

//output port ‘K’ is open circuit
modB U2(.F(w1),.E(w2),.K(),.G(out2));

//input port ‘E’ is unconnected
modB U4(w1,, out1, out2);

When an input is left unconnected, the Verilog simulator will force the corresponding port to

take on the high-impedance value z.

As mentioned previously, Verilog uses two types of object to model signals in digital

hardware:

� net or wire –must be continuously driven. The primary use is tomodel connections between

continuous assignments and instantiations.

� reg– retains the last value thatwasassigned to it.Often (butnot exclusively)used to represent
storage elements.

Verilog imposes a set of rules regarding the nature ofmodule ports and the type of object they

can be connected to in a hierarchical design.Within the confines of amodule, ports of direction
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input or inout are implicitly of type net (defaulting to wire). Module output ports can be of

either the net or reg type.

The output andinout ports of amodulemust be connected to nets at the next level up in the

hierarchy. However, an input port may be driven by either a net- or a reg-type signal.
The above rules are summarized in Figure 6.5.

6.4 VERILOG HDL SIMULATION: A COMPLETE EXAMPLE

In this section, a complete example of aVerilog-HDLdesign, including a simulation test-fixture

is presented.One of the key advantages of using anHDL, such asVerilog, is the ability to use the

powerful features of the language to create the simulation environment for the design, aswell as

the design itself. This is the idea behind the so-called test-fixture (sometimes referred to as test-

bench or test-module).

The main purpose of the test-fixture is to verify correct operation of the design; this can

involve simply generating an input stimulus in order that the output responsesmay be observed,

or more sophisticated techniques may be used to detect subtle design errors in more complex

designs.

The principal advantage of the test-fixture results from the fact that it is written in the

same standard language as the design and, therefore, provides the flexibility of simulation

tool independence, being capable of running on any system that supports the IEEE standard

Verilog.

Figure 6.6 shows the Verilog description and symbol for a single-bit binary adder [1].

The module FA uses the dataflow style of description to capture the behaviour of the logic;

continuous assignments on lines 2 and 3 contain Boolean equations for the sum and carry

outputs of the adder respectively. In terms of propagation delays, the addermodule is ideal.

Changes in any of the module inputs A, B and Ci will trigger execution of the two

continuous assignments, causing the S and Cy outputs to be updated after one simulation

cycle (delta).

The full adder module shown in Figure 6.6 could be described in a variety of alternative

ways, ranging from primitive MOS switch circuitry at the lowest level, to high-level

reg or net

module

reg or net

netnet

netnet

inout

output

input

port

Figure 6.5 Illustration of Verilog port connectivity rules.
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behavioural style. In this manner, Verilog supports the idea of top-down design, whereby a

design is initially captured in an abstract manner to enable rapid verification of the design

concept. The design can then be refined by changing its representation into a more detailed

form, becoming closer to the eventual hardware technology being targeted.

Having defined the single-bit addermodule, Figure 6.7 illustrates how four full adders can be

cascaded to form the so-called 4-bit ripple carry adder [1].

Themodule header (lines 1 and 2) for Add4 now defines outputs and inputs having a range of
3:0, i.e. 4 bits. The carry-input to the least significant bit and the carry-output from the most

significant bit are the only single-bit ports.

The 4-bit adder is constructed using four module instantiations of the full adder module,

having instance names fa0–fa3; these are situated on lines 4–11. The full adders are

interconnected by the carry vector Cy (declared on line 3), as shown in the circuit below the

listing, along with the external carry input Cin and the carry output Co, forming the ripple

carry chain.

Notice the use in the listing in Figure 6.7 of explicit association and bit selection in

defining the connectivity of the instantiated full adder modules. For example, individual

bits of the A and B input vectors are connected to the corresponding full adder stage input

ports by including the relevant bit number in square brackets after the name of the port, as

shown below:

.A(Ain[1]) //FA port ‘A’ connects to bit-1 of input vector ‘Ain’

Although slightly longer, this technique is far clearer and leads to fewer errors being incorpo-

rated into the design.

Having constructed the 4-bit adder module, a test-fixture is used to verify the correctness of

the design. Listing 6.3 andFigure 6.8 respectively show theVerilog listing and block diagramof

a suitable test-fixture for the Add4module.

1 module FA(output S, Cy, input A, B, Ci); 

2 assign S = A^B^Ci; 
3 assign Cy = (A&B)|(A&Ci)|(B&Ci); 

4 endmodule

FA

A

B

Ci

Cy

S

Figure 6.6 Verilog module and symbol for a binary full adder.
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1   module Add4(output [3:0] Sum, output Co,  
2 input [3:0] Ain, Bin, input Cin);   

3   wire [2:0] Cy; 

4   FA fa0(.S(Sum[0]), .Cy(Cy[0]), .A(Ain[0]), 
5        .B(Bin[0]), .Ci(Cin)); 
6   FA fa1(.S(Sum[1]), .Cy(Cy[1]), .A(Ain[1]),  
7 .B(Bin[1]), .Ci(Cy[0]));    
8   FA fa2(.S(Sum[2]), .Cy(Cy[2]), .A(Ain[2]), 
9 .B(Bin[2]), .Ci(Cy[1]));    
10  FA fa3(.S(Sum[3]), .Cy(Co),    .A(Ain[3]), 

.B(Bin[3]), .Ci(Cy[2]));     11  

12  endmodule 

FAA
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Cy
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Cy
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B

Ci S

Cy

Cy[0] Cy[1] Cy[2] CoCin

Ain[0]

Bin[0]

Sum[0] Sum[1] Sum[2] Sum[3]

Ain[1]

Bin[1]

Ain[2]

Bin[0]
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Bin[3]
fa0 fa1 fa2 fa3

Figure 6.7 Verilog module and circuit for a 4-bit adder.
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Figure 6.8 Block diagram of 4-bit adder test-module.
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1 ‘timescale 1 ns/ 1 ns

2 module Test_Add4(); //test module - no ports needed

3 //input stimulus
4 reg [3:0] A, B;

5 reg C_in;

6 //wire to hold check sum and error flag
7 wire [4:0] check_sum;

8 wire error;

9 //output responses
10 wire [3:0] S;
11 wire C_out;

12 integer test;

13 initial //only allowed in test module - runs once only
14 begin
15 {A, B, C_in}¼ 9'b000000000;
16 #100; //wait for 100 time units
17 for(test¼ 0; test< 512; test¼ testþ 1)
18 begin //apply all input values
19 {A, B, C_in}¼ test;
20 #100;
21 end
22 $stop; //system command - stops the simulation
23 end

24 //instantiate the module-under-test
25 Add4 mut(.Sum(S),. Co(C_out),. Ain(A),. Bin(B),
26 .Cin(C_in));

27 //add inputs using built-in 'þ' operator
28 assign check_sum¼ Aþ Bþ C_in;
29 //compare with mut output
30 assign error¼ (check_sum !¼ {C_out, S});

31
32 endmodule

Listing 6.3 Verilog test-module for 4-bit adder.

TheblockdiagramofFigure6.8 shows the structureof the test fixture.Theconventional name

given to the module being tested within the test fixture is module-under-test or mut, as shown

above the symbolof theAdd4module inFigure6.8.TheVerilog test-fixturegeneratesa setof test

input stimuli for the adder inputs A, B and Cin bymeans of a behavioural construct known as an
initial sequential block; this is represented by the circle to the left of the adder in Figure 6.8.
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In order to perform a basic check that the 4-bit adder performs the correct operation, the built-in

Verilogþoperator isused toproducea5-bit resultnamedcheck_sum fromthe initialblockoutputs.

The check_sum value is compared with the outputs of the 4-bit adder using the built-in

Verilog not-equal-to operator (!¼). A diagnostic output named error indicates when there is a

mismatch between the outputs of the adder and the result of performing the summation of the

stimulus. In thismanner, the test-fixture provides a simple single-bit indication of thevalidity of

the Add4module outputs.

The test-fixture Verilog description is given in Listing 6.3. This module makes use of several

language constructs that have yet to be described. These new elements will be discussed briefly

here and covered in more detail in Chapters 7 and 8.

The test-fixture module begins on line 1 with a so-called compiler directive. These

special directives serve a similar purpose to the pre-processor directives found in the C/

Cþþ languages; however, rather than beginning with the hash (#) symbol, Verilog uses the

grave accent (�) character to indicate such a directive. The timescale directive on line 1 of

Listing 6.3 defines a time scale and a time precision, the latter appearing after the ‘/’

character. In this example, both the time scale and precision are specified as 1 ns; this means

that any time delay values appearing within the body of the module are interpreted by the

simulator as representing a whole number of nanoseconds. The time precision can be set to

as small a unit as the femtosecond (10�15 s), thus allowing extremely precise timing

simulation to be performed. In this example, there is no need for such precision.

The module header on line 2 indicates that the Test_Add4 module is a test-fixture module

rather than adesignmodulebyvirtueof the fact that there are no inputs andoutputs.Note that the

empty parentheses after the module name are optional and, therefore, can be omitted without

incurring a syntax error; the terminating semicolon is always required, however.

Lines 4 and 5 declare the input stimulus signals that are connected to the inputs of the adder

module. The keyword reg indicates that these signals must retain their value in between being

updated by assignments within the sequential initial block starting on line 13.

The outputs of the module-under-test (lines 25 and 26) and the continuous assignments

on lines 28 and 30 are continuously driven by these statements; therefore, they are declared as
wires on lines 10, 11, 7 and 8 respectively.

The main part of the test-fixture is contained within the sequential initial block covering

lines13 to23 inListing6.3.As statedpreviously, all signals that are assignedvaluesby thisblock

must be declared as type reg, in order that they retain the value last assigned to them during

execution of the block.

The statements enclosed within the initial block execute sequentially and once only. This
means that this type of block is only suitable for use in a test-fixture; it has no direct equivalent in

terms of hardware.

Execution of the initial block starts at line 15, at a simulation time of 0 ns. The inputs are

initialized to logic 0 using the following sequential statement:

{A, B, C_in} ¼ 9'b000000000;

The inputs A, B and C_in are collectively assigned zeros by grouping them together using the

concatenation operator { }.

Line 16 suspends execution of the sequential block for 100 ns; this allows the module-
under-test toproduce a response to the input stimulus. The hash (#) symbol represents a

time delay in this particular context.
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Followingon from the initial timedelay, lines 17 to 21contain afor loop that iterates through
thevalues 0 to 51110 using aninteger variabletest, the latter being declaredon line 12.Note
that integer is a reservedword that declares a signedwhole number (usually 32 bits in length)

that behaves inasimilarmanner toareg, in that it, too, retains its value inbetweenbeingupdated
by assignments within a sequential block.

for(test ¼ 0; test < 512; test ¼ test þ 1)

begin //apply all input values
{A, B, C_in} ¼ test;

#100;

end

The body of the for loop is a block enclosed between the keywords begin and end. The
first statement (line 19) assigns the least significant 9 bits of the integer variable test to the

aggregate of the inputs, this apparent mixing of different types either side of an assignment

is permitted in Verilog.

The second statement within the for loop introduces a 100 ns delay before execution

continues with the next iteration of the loop. In this manner, an exhaustive set of input

combinations are applied to the adder inputs starting at ‘0000000002’ and ending at

‘1111111112’ (51110), each combination being applied for 100 ns.

Thevalueof the loopvariabletest is incrementedat theendof the loopand testedat the start of the

loop; therefore, when it reaches 51210, the condition test < 512 becomes false and the loop

terminates. An important point to note here is the possibility of a for loop being infinite, i.e. never

terminating.Thiswouldoccur if the loopvariabletesthadbeendeclaredasareghavingalengthof9
bits rather than as a 32-bitinteger. Since the range of values usedwithin the loop and the number of

inputs both correspond to a vector of length 9-bits, this may have seemed a logical course of action.

However, a problem occurs when the value of ‘test’ reaches ‘1111111112’.

Incrementing this value by one results in ‘0000000002’, due to theway in which a 9-bit unsigned

binary number overflows. The terminating condition test < 512 can never be satisfied, since the

9-bit test value can never exceed 51110. Therefore, if a 9-bit reg had been used as the loop counter

rather than an integer, the simulator would carry on applying the same sequence indefinitely

while using up increasing amounts disk space to store the results!

One possible solution would be to declare test as a 10-bit reg; the spare bit allows the loop
variable to reach the terminating value of ‘10000000002’.

Having applied an exhaustive set of input values, the simulation is automatically stopped by

means of a very common Verilog system task on line 22, repeated below:

$stop;

System tasks are always preceded by the dollar ($) symbol and perform a wide variety of

useful functions, ranging from performing detailed timing checks ($setup(), $hold(),

etc.) to outputting simulation data to a file ($dumpvars, $dumpfile(‘‘filename’’)). The
$stop systemtask isoftenusedwithina test-fixture toend the simulation run forcibly; examples

showing the use of other system tasks will be covered in Chapters 7 and 8.

The description of the test-fixture shown in Listing 6.3 concludes with the continuous

assignments on lines 28 and 30 and repeated below:

assign check_sum ¼ A þ B þ C_in;
assign error ¼ (check_sum !¼ {C_out, S});
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The above assignments generate a single-bit diagnostic signal named errorwhich goes high if

there is a discrepancy between the actual output of the 4-bit adder module and the theoretical

value predicted by the built-in addition operator. Although this may seem a little unnecessary,

given the simplicity of the design, it hopefully illustrates the potential advantage of using the

expressive power of the Verilog language to aid in the verification of a more complex design.

Simulation of the 4-bit adder module and associated test-fixture requires a Verilog-2001 [9]

compatible simulation tool. There are several excellent Verilog simulators available from a

variety of vendors. Table 6.1 contains details of a few of the most popular tools.

Regardlessofwhichof the simulators inTable6.1 is used, theprocessof simulation startswith

the creation of theVerilog sources. It is normal practice to store each individualmodule’s textual

description in auniqueASCII textfile (usually named ‘module-name.v’).Most simulation tools

include a context-sensitive text editor to aid in the creation of the source files; such an editorwill

include colour-coded keyword highlighting, line numbering and automatic indentation and

formatting of the language statements. All the previously mentioned features help the designer

to understand and maintain complex designs.

Most simulators make use of the concept of a project. This is essentially a repository for

all of the Verilog files used in the design. Once written, the source files are added to the

project prior to the next step, i.e. compilation. The process of compilation is similar in many

ways to that used in other high-level language development systems: the objective is to

23.5µs 24.0µs 24.5µs 25.0µs

Test_Add4.A[3:0]

Test_Add4.B[3:0]

Test_Add4.C_in

Test_Add4.S[3:0]

Test_Add4.C_out

Test_Add4.check_sum[4:0]

Test_Add4.error

Test_Add4.test[31:0]

7

22 3 4 5 6 7 8 9 10 11 12

1010 11 11 12 13 13 14 15 15 0 1 1 2 3 3 4

1010 11 12 13 14 15 16 17 18 19 20

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

Figure 6.9 Partial simulation result for 4-bit adder test-module.

Table 6.1 Details of a few of the most popular Verilog simulator tools.

Name Vendor Web site

Active-HDL1 Aldec http://www.aldec.com/education/students/

Student Edition Incorporated

Modelsim-PE Mentor http://www.model.com/resources/student_edition/download.asp

Student**1 Graphics

Verilogger1 Synapticad http://www.syncad.com/syn_down.htm

Xilinx1 ISE Xilinx http://www.xilinx.com/ise/logic_design_prod/webpack.htm

Simulator*

*The ISESimulator is part of the free ‘WebPACK’programmable logic design suite available fromXilinx1.

**Avendor-specific version ofModelsim1 is also available fromXilinx1 (ModelsimXE1).
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build an executable model suitable for loading into the simulation kernel, once any syntax

errors have been corrected.

AllVerilog simulators provide a graphical output in the formof timingwaveforms. Figure 6.9

shows thepartial result fromrunning the simulationof theTest_Add4 test-fixturemodulegiven

in Listing 6.3.
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7
Elements of Verilog HDL

This chapter introduces the basic lexical elements of the Verilog HDL. In common with other

high-level languages, Verilog defines a set of types, operators and constructs that make up the

vocabulary of the language. Emphasis is placed on those aspects of the language that support the

description of synthesizable combinatorial and sequential logic.

7.1 BUILT-IN PRIMITIVES AND TYPES

7.1.1 Verilog Types

Asmentioned in Chapter 6, Verilogmakes use of two basic types: nets and registers. Generally,

nets are used to establish connectivity and registers are used to store information, although the

latter does not always imply the presence of sequential logic.

Within each category there exist several variants; these are listed in Table 7.1. All of the type

names, listed inTable 7.1, areVerilog reservedwords; themost commonlyused types are shown

in bold.

Along with the basic interconnection net type wire, two additional predefined nets are

provided to model power supply connections: supply0 and supply1.
These special nets possess the so-called ‘supply’ drive strength (the strongest; it cannot be

overridden by another value) and are usedwhenever it is necessary to tie input ports to logic 0 or

logic 1. The following snippet of Verilog shows how to declare and use power supply nets:

module . . .

supply0 gnd;
supply1 vdd;

nand g1(y, a, b, vdd); //tie one input of nand gate high

endmodule

The power supply nets are also useful when using Verilog to describe switch-level MOS

circuits. However, the Verilog switch-level primitives [1] (nmos, pmos, cmos, etc.) are not

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
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generally supported by synthesis tools; therefore, we will not pursue this area any further

here.

Of the remaining types of net shown in the left-hand column of Table 7.1, most are used to

model advanced net types that are not supported by synthesis tools; the one exception is the net

type tri. This net is exactly equivalent to the wire type of net and is included mainly to

improve clarity. Both wire and tri nets can be driven by multiple sources (continuous

assignments, primitives or module instantiations) and can, therefore, be in the high-impedance

state (z) when none of the drivers are forcing a valid logic level. The net type tri can be used

instead of wire to indicate that the net spends a significant amount of the time in the high-

impedance state.

Nets such as wire and tri cannot be assigned an initial value as part of their

declaration; the default value of these nets at the start of a simulation is high impedance

(z).
The handling of multiple drivers and high-impedance states is built in to the Verilog HDL,

unlike some other HDLs, where additional IEEE-defined packages are required to define types

and supporting functions for this purpose.

The right-hand columnofTable 7.1 lists the register types providedbyVerilog; these have the

ability to retain a value in-between being updated by a sequential assignment and, therefore, are

used exclusively inside sequential blocks. The two most commonly used register variables are

reg and integer; the remaining types are generally not supported by synthesis tools and so

will not be discussed further.

There are some important differences between thereg andinteger types that result in the

reg variable being the preferred type in many situations.

Areg can be declared as a 1-bit object (i.e. no size range is specified) or as a vector, as shown

by the following examples:

reg a, b; //single-bit register variables
reg [7:0] busa; //an 8-bit register variable

Table 7.1 Verilog types.

Nets (connections) Registers (storage)

wire
tri
supply0 reg
supply1 integer
wand real
wor time
tri0 realtime
tri1
triand
trireg
trior
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As shown above, a reg can be declared to be of any required size; it is not limited by the word

size of the host processor.

Aninteger, on the other hand, cannot normally be declared to beof a specified size; it takes

on the default size of the host machine, usually 32 or 64 bits.

The other difference between the integer and reg types relates to the way they are

handled in arithmetic expressions. An integer is stored as a two’s complement signed

number and is handled in arithmetic expressions in the same way, i.e. as a signed quantity

(provided that all operands in the expression are also signed). In contrast, a reg variable is by

default an unsigned quantity.

If it is necessary toperformsigned two’s complement arithmetic onregs orwires, then they
can be qualified as being signed when they are declared. This removes the host-dependent

word length limit imposed by the use of the integer type:

reg signed [63:0] sig1; //a 64-bit signed reg
wire signed [15:0] sig2; //a 16-bit signed wire
. . .

The use of the keyword signed to qualify a signal as being both positive and negative also

applies to module port declarations, as shown in the module header below:

module mod1(output reg signed [11:0] dataout,
input signed [7:0] datain,
output signed [31:0] dataout2);

. . .

Finally, both the integer and reg types can be assigned initial values as part of their

declarations, and in the case of the reg this can form part of the module port declaration, as

shown below:

module mod1(output reg clock¼ 0,
input [7:0] datain¼ 80hFF,
output [31:0] dataout2¼ 0);

integer i¼ 3;
. . .

The differences discussed above mean that the reg and integer variables have different

scopes of application inVerilog descriptions. Generally,reg variables are used tomodel actual

hardware registers, such as counters, state registers and data-path registers, whereas integer
variables are used for the computational aspects of a description, such as loop counting. The

example in Listing 7.1 shows the use of the two types of register variable.

The Verilog code shown describes a 16-bit synchronous binary up-counter. The module

makes use of two always sequential blocks – a detailed description of sequential blocks is

given in the Chapter 8.

Thefirst sequential block, spanning lines 5 to 11ofListing 7.1, describes a set offlip flops that

are triggered by the positive edges (logic 0 to logic 1) of the ‘clock’ input.
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The state of the flip flops is collectively stored in the 16-bit reg-type output signal named q,

declared within the module header in line 2. Another 16-bit reg-type signal, named t, is
declared in line 3.This vector is the output of a combinational circuit describedby the sequential

block spanning lines 12 to 20. This illustrates the point that a reg-type signal does not always
represent sequential logic, being necessarywherever a signalmust retain thevalue last assigned

to it by statements within a sequential block. Thealways block starting on line 12 responds to

changes in the outputs of the flip flops q and updates the values of t accordingly. The updated

values of the t vector then determine the next values of theq outputs at the subsequent positive

edge of the ‘clock’ input.

1 module longcnt (input clock, reset, output reg [15:0] q);
2
3 reg [15:0] t; //flip-flop outputs and inputs
4 //sequential logic
5 always @ (posedge clock)
6 begin
7 if (reset)
8 q <¼ 16'b0;
9 else
10 q <¼ q ^ t;
11 end

12 always @(q) //combinational logic
13 begin: t_block
14 integer i; //integer used as loop-counter
15 for (i¼ 0; i< 16; i¼ iþ 1)
16 if (i¼¼ 0)
17 t[i]¼ 1'b1;
18 else
19 t[i]¼ q[i�1] & t[i�1];
20 end
21 endmodule

Listing 7.1 Use of Verilog types reg and integer.

The second sequential block (lines 12–20) is referred to as a named block, due to the presence

of the labelt_block after the colon on line 13.Naming a block in thismanner allows the use of

local declarations of bothregs andintegers for use inside the confines of the block (between
begin and end). In this example, the integer i is used by the for loop spanning lines

15–19, to process each bit of the 16-bit reg t, such that apart from t[0], which is always

assigned a logic 1, the ith bit oft(t[i]) is assigned the logical AND (&) of the (i� 1)th bits of

qandt.Thesequentialalwaysblockstartingon line12describes the iterative logic required to
implement a synchronous binary ascending counter.

166 Elements of Verilog HDL



Figure 7.1 shows the structure of the longcntmodule given in Listing 7.1.

Simulationof a4-bit versionof thebinarycountermodulelongcnt results in thewaveforms

shown in Figure 7.2. The waveforms in Figure 7.2 clearly show the q outputs counting up in

ascending binary, along with the corresponding t vector pulses causing the q output bits to

‘toggle’state at the appropriate times. For example,when theq output is ‘01112’, thet vector is

‘11112’ and so all of the output bits toggle (change state) on the next positive edge of ‘clock’.

7.1.2 Verilog Logic and Numeric Values

Each individual bit of aVerilogHDLregorwirecan takeonanyoneof the fourvalues listed in
Table 7.2. Verilog also provides built-in modelling of signal strength; however, this feature is

generally not applicable to synthesis and, therefore, we will not cover it here.

Of the four values listed in Table 7.2, logic 0 and logic 1 correspond to Boolean false and true

respectively. In fact, any nonzero value is effectively true in Verilog, as it is in the C/Cþþ

longcnt

always block 
(flip-flops)

always block 
(t_block)

clock

reset

q[15:0]

t[15:0]

Figure 7.1 Block diagram of module longcnt.
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test_longcnt.longcnt_ut.t[2]

test_longcnt.longcnt_ut.t[3]

test_longcnt.longcnt_ut.t[3:0]

test_longcnt.count[0]

test_longcnt.count[1]

test_longcnt.count[2]

test_longcnt.count[3]
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Figure 7.2 Simulation results for module longcnt (4-bit version)
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programming languages. Relational operators all result in a 1-bit result indicating whether the

comparison is true (1) or false (0).

Two meta-logical values are also defined. These model unknown states (x) and high

impedance (z); the x is also used to represent ‘don’t care’ conditions in certain circumstances.

At the start of a simulation, at time zero, all regs are initialized to the unknown state x, unless
they have been explicitly given an initial value at the point of declaration. On the other hand,

wires are always initialized to the undriven state z.
Once a simulation has commenced, allregs andwires should normally take onmeaningful

numeric values or high impedance; the presence of x usually indicates a problem with the

behaviour or structure of the design.

Occasionally, the unknown value x is deliberately assigned to a signal as part of the

description of the module. In this case, the x indicates a so-called don’t care condition, which

is used during the logic minimization process underlying logic synthesis.

Verilog provides a set of built-in pre-defined logic gates, these primitive elements respond to

unknown and high-impedance inputs in a sensible manner. Figure 7.3 shows the simulation

results for a very simple two-input AND gate module using the built-in and primitive. The

simulation waveforms show how the output of the module below responds when its inputs are

driven by x and z states.

1 module valuedemo(output y, input a, b);
2 and g1(y, a, b);
3 endmodule

Referring to the waveforms in Figure 7.3, during the period 0–250 ns the and gate output y
respondsasexpected toeachcombinationof inputs aandb.At time250 ns, thea input isdriven to

thez state (indicated by the dotted line) and the gate outputs anx (shaded regions) between 300

and 350 ns, since the logical AND of logic 1 and z is undefined. Similarly, during the interval

400–450 ns, the x on the b input also causes the output y to be an x.

Table 7.2 Four-valued logic.

Logic value Interpretation

0 Logic 0 or false

1 Logic 1 or true

x Unknown (or don’t care)

z High impedance

a

b

y

    0       50    100     150    200     250   300     350    400

time(ns) ->

Figure 7.3 The and gate response to x and z.
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However, during the intervals 350–400 ns and 250–300 ns, one of the inputs is low, thus

causingy to go low.This is due to the fact that anything logicallyANDedwith a logic 0 results in
logic 0.

7.1.3 Specifying Values

There are two types of number used in Verilog HDL: sized and unsized. The format of a sized

number is

<size>'<base><number>.

Both the <size> and <base> fields are optional; if left out, the number is taken to be in

decimal format and the size is implied from the variable towhich the number is being assigned.

The <size> is adecimalnumber specifying the lengthof thenumber in termsofbinarybits;

<base> can be any one of the following:

The actual value of the number is specified using combinations of the digits from the set h0, 1, 2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, Fi. Hexadecimal numbers may use all of these digits; however,

binary, octal anddecimal are restricted to the subsetsh0, 1i, h0–7iand h0–9i respectively.Below,
are some examples of literal values written using the format discussed above:

4'b0101 //4-bit binary number
12'hefd //12-bit hex number
16'd245 //16-bit decimal number
1'b0, 1'b1 //logic-0 and logic-1

Generally, it is not necessary to specify the size of a number being assigned to an integer-
typevariable, since suchobjects are unsized (commonlyoccupying 32bits or 64bits, depending

upon the platform).

The literalsx andz (unknownandhigh impedance)maybeused inbinary-, hexadecimal- and

octal-based literal values.Anxorz sets 4 bits in a hexnumber, 3 bits in anoctal number and1bit

in a binary number.

Furthermore, if the most-significant digit of a value is 0, z or x, then the number is

automatically extended using the same digit so that the upper bits are identical.

Below, are some examples of literal values containing the meta-logical values x and z:

12'h13x //12-bit hex number ‘00010011xxxx’ in binary
8'hx //8-bit hex number ‘xxxxxxxx’ in binary
16'bz //16-bit binary number ‘zzzzzzzzzzzzzzzz’
11'b0 //11-bit binary number ‘00000000000’

binary b or B

hexadecimal h orH

decimal (default) d orD

octal o orO
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As shown above, the single-bit binary states of logic 0 and logic 1 are usually written in the

following manner:

1'b0 //logic-0
1'b1 //logic-1

Of course, the single decimal digits 0 and 1 can also be used in place of the above.Asmentioned

previously, in Verilog, the values 1'b0 and 1'b1 correspond to the Booleanvalues ‘false’ and

‘true’ respectively.

7.1.4 Verilog HDL Primitive Gates

The Verilog HDL provides a comprehensive set of built-in primitive logic and three-state

gates for use in creating gate-level descriptions of digital circuits. These elements are all

synthesizable; however, they are more often used in the output gate-level Verilog net-list

produced by a synthesis tool.

Figures 7.4 and 7.5 show the symbolic representation and Verilog format for each of the

primitives [1].Theuseof theprimitivegates is fairly self-explanatory; thebasic logicgates, such

as AND, OR, etc., all have single-bit outputs but allow any number of inputs (Figure 7.4 shows

two-input gates only). TheBuffer andNOTgates allowmultiple outputs andhave a single input.

The three-state gates all have three terminals: output, input and control. The state of the control

terminal determines whether or not the buffer is outputting a high-impedance state or not.

For all gate primitives, the output port must be connected to a net, usually a wire, but the
inputs may be connected to nets or register-type variables.

Anoptional delaymaybe specified in between thegate primitivenameand the instance label;

these can take the form of simple propagation delays or contain separate values for rise-time,

fall-time and turnoff-time delays [1], as shown by the examples below:

//AND gate with output rise-time of 10 time units
//and fall-time of 20 time units
and #(10, 20) g1 (t3, t1, a);

//three-state buffer with output rise-time of 15 time unit,
//fall-time of 25 time units
//and turn-off delay time of 20 time units
bufif1 #(15, 25, 20) b1 (dout, din, c1);

Figure 7.6 showsa simple exampleof a gate-levelVerilog descriptionmakinguse of thebuilt-

inprimitives;eachprimitivegate instanceoccupiesa single line fromnumbers4 to8 inclusive.A

singlepropagationdelayvalueof10 nsprecedes thegate instancename; thismeans that changes

at the input of a gate are reflected at the output after this delay, regardless ofwhether the output is

rising or falling. The actual units of time to be used during the simulation are defined using the

timescale compiler directive; this immediately precedes the module to which it applies, as

shown in line 1 in Figure 7.6.
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buf b1(out1, in);

xor xo1(out, in1, in2);

and a1(out, in1, in2);
out

in1

in2

Gate Symbol Verilog Instantiation

out
in1

in2
nand na1(out, in1, in2);

or o1(out, in1, in2);
out

in1

in2

nor no1(out, in1, in2);out
in1

in2

out
in1

in2

xnor xno1(out, in1, in2);out
in1

in2

not nt1(out1, in);
out1in

out1in

Figure 7.4 Verilog primitive logic gates.

bufif1 g1(out, in, ctrl);
outin

ctrl

Gate Symbol Verilog Instantiation

ENB

bufif0 g1(out, in, ctrl);
outin

ctrl

ENB

notif1 g1(out, in, ctrl);
outin

ctrl

ENB

notif0 g1(out, in, ctrl);
outin

ctrl

ENB

Figure 7.5 Verilog primitive three-state gates



Gate delays are inertial, meaning that input pulseswhich have a duration of less than or equal

to the gate delay do not produce a response at the output of the gate, i.e. the gate’s inertia is not

overcome by the input change. This behaviour mirrors that of real logic gates.

Gate delays such as those used in Figure 7.6 may be useful in estimating the performance of

logic circuits where the propagation delays are well established, e.g. in the model of a TTL

discrete logic device. However, Verilog HDL descriptions intended to be used as the input to

logic synthesis software tools generally donot contain anypropagationdelayvalues, since these

are ignored by such tools.

7.2 OPERATORS AND EXPRESSIONS

TheVerilogHDLprovidesapowerful set ofoperators for use indigital hardwaremodelling.The

full set ofVerilogoperators is shown inTable 7.3.The table is split into four columns, containing

(from left to right) the category of the operator, the symbol used in the language for the operator,

the description of the operator and the number of operands used by the operator.

Inspection of Table 7.3 reveals the similarity between the Verilog operators and those of

the C/Cþþ languages. There are, however, one or two important differences and enhance-

ments provided by Verilog in comparison with C/Cþþ. The main differences between the

C-based languages and Verilog, in terms of operators, are summarized overleaf:

g1

g2

g5

g3
t1

t2

t3

t4

y

b

a
g4

`timescale  1 ns /1 ns 1 

2 module  x_or_s(output y, input a, b); 

3 wire  t1, t2, t3, t4; 

4 and  #10 g1(t3, t1, a); 
5 and  #10 g2(t4, t2, b); 
6 not  #10 g3(t1, b); 
7 not  #10 g4(t2, a); 
8 or   #10 g5(y, t3, t4); 

9 endmodule 

Figure 7.6 Gate-level logic circuit and Verilog description.
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� Verilogprovides apowerful set ofunary logical operators (so-called reductionoperators) that

operate on all of the bits within a single word.

� Additional ‘case’ equality/inequality operators are provided to handle high-impedance (z)

and unknown (x) values.

� The curly braces ‘{’ and ‘}’ are used in the concatenation and replicationoperators instead of

block delimiters (Verilog uses begin . . . end for this).

The operators listed in Table 7.3 are combined with operands to form an expression that can

appear on the right hand side of a continuous assignment statement orwithin a sequential block.

Table 7.3 Verilog operators.

Operator type Symbol Operation Operands

Arithmetic * Multiply 2

/ Divide 2

þ Add 2

� Subtract 2

% Modulus 2

** Raise to power 2

Logical ! Logical negation 1

&& Logical AND 2

jj Logical OR 2

Relational > Greater than 2

< Less than 2

>¼ Greater than or equal 2

<¼ Less than or equal 2

Equality ¼¼ Equality 2

!¼ Inequality 2

¼¼¼ Case equality 2

!¼¼ Case inequality 2

Bitwise � Bitwise NOT 1

& Bitwise AND 2

j Bitwise OR 2

^ Bitwise exclusive OR 2

^� or�^ Bitwise exclusive NOR 2

Reduction & Reduction AND 1

�& Reduction NAND 1

j Reduction OR 1

�j Reduction NOR 1

^ Reduction EXOR 1

^� or�^ Reduction EXNOR 1

Shift � Shift right 2

� Shift left 2

�> Shift right signed 2

�< Shift left signed 2

Concatenation { } Concatenate Anynumber

Replication { { } } Replicate Anynumber

Conditional ? : Conditional 3
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The operands used to form an expression can be any combination of wires, regs and

integers; but, dependingonwhether the expression is beingusedbya continuous assignment

or a sequential block, the target must be either a wire or a reg respectively.

In the case ofmulti-bit objects (buses), an operand can be thewhole object (referenced by the

name of the object), part-select (a subset of the bits within a multi-bit bus) or individual bit, as

illustrated by the following examples.

Given the following declarations, Figures 7.7–7.10 show a selection of example continuous

assignments and the corresponding logic circuits.

Figure 7.7 illustrates the use of the bitwise exclusive OR operator on two 4-bit operands. As

shown by the logic circuit in Figure 7.7, part-selects [3:0] of the two 8-bit wires, a and b, are
processed bit-by-bit to produce the output c.

Individual bits of awire or reg are accessed bymeans of the bit-select (square brackets [ ])

operator. Figure 7.8 shows the continuous assignment statement and logic for anANDgatewith

an inverted input.

c[3]

c[2]

c[1]

c[0]

a[3]
b[3]

a[2]
b[2]

a[1]

b[1]

a[0]
b[0]

a[3:0]

b[3:0]

c[3:0]

// 4 2-input Exor gates

assign c = a[3:0] ̂ b[3:0]; 

Figure 7.7 Exclusive OR of part-selects.

c[2]
a[6]

d

//2-input And with inverted I/P

assign d = c[2] & ~ a[6];

Figure 7.8 Logical AND of bit-selects.

wire  [7:0] a, b; //8-bit wire   
wire  [3:0] c;  //4-bit wire
wire  d;  //1-bit wire
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The bit-wise reduction operators, shown in Table 7.3, are unique to Verilog HDL. They

provide a convenient method for processing all of the bits within a single multi-bit operand.

Figure 7.9 shows the use of the reduction-NOR operator. This operator collapses all of the bits

within the operand a down to a single bit by ORing them together; the result of the reduction is

then inverted, as shown by the equivalent expression below:

assign d¼�(a[7]ja[6]ja[5]ja[4]ja[3]ja[2]ja[1]ja[0]);

The targetd of the continuous assignment statement in Figure 7.9will be logic 1 if all 8 bits of

a are logic 0, otherwise d is assigned logic 0. All of the reduction operators act on one operand

positioned to the right of the operator. Those that are inverting, such as reductionNOR (�j) and
reductionNAND (�&), combine all of the bits of the operand using bitwiseORor bitwiseAND

prior to inverting the single-bit result. The bitwise reduction operators provide a convenient

meansofperformingmulti-bit logical operationswithout theneed to instantiate aprimitivegate.

Finally, if any bit or bits within the operand are high impedance (z), the result is generated as if
the corresponding bits were unknown (x).

The last example, shown in Figure 7.10, illustrates the use of the conditional operator (? : ) to

describe a set of four 2-to-1 multiplexers, the true expression a[3:0] is assigned to cwhen the

control expression, in this cased, is equal to1'b1.When the single-bit signald is equal to logic
0 (1'b0), the target c is assigned the false expression a[7:4].

Theunsigned shift operators (�,� inTable7.3) shuffle thebitswithin amulti-bitwireorreg
by anumber of bit positions specifiedby the secondoperand.These operators shift logic 0s into the

vacant bit positions; because of this, care must be takenwhen shifting two’s complement (signed)

numbers. If a negative two’s complement number is shifted right using the ‘�’ operator, then the

sign bit is changed from a 1 to a 0, changing the polarity of the number from negative to positive.

Right-shifting of two’s complement numbers can be achieved by means of the ‘shift right

signed’ (�>) operator (provided the wire or reg is declared as signed) or by using the

replication/concatenation operators (see later).

d

a[7]
a[6]

a[5]
a[4]
a[3]
a[2]

a[1]
a[0]

a[7:0]

//8-input Nor gate using reduction NOR 
assign d = ~|a; 

Figure 7.9 Reduction NOR operator.
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The following assignments illustrate the use of the unsigned shift operators:

//declare and initialize X
reg [3:0] X¼ 4'b1100;
Y¼ X� 1; //Result is 4'b0110
Y¼ X� 1; //Result is 4'b1000
Y¼ X� 2; //Result is 4'b0011

Verilog supports the use of arithmetic operations onmulti-bit reg and wire objects as well

asintegers; this is veryusefulwhenusing the language to describehardware suchas counters
(þ,� and %) and digital signal processing systems (* and /).

With the exception of type integer, the arithmetic and comparison operators treat objects

of these types asunsignedbydefault.However, as discussed inSection 7.1,regs andwires (as
well as module ports) can be qualified as being signed. In general, Verilog performs signed

arithmetic only if all of the operands in an expression are signed; if an operand involved in a

particular expression is unsigned, then Verilog provides the system function $signed() to

perform the conversion if required (an additional system function named $unsigned()
performs the reverse conversion).

Listing 7.2 illustrates the use of the multiply, divide and shifting operators on signed and

unsigned values. As always, the presence of line numbers along the left-hand column is for

reference purposes only.

//test module to demonstrate signed/unsigned arithmetic
1 module test_v2001_ops();
2 reg [7:0] a¼ 8'b01101111; //unsigned value (11110)
3 reg signed [3:0] d¼ 4'b0011; //signed value (þ310)
4 reg signed [7:0] b¼ 8'b10010110; //signed value (�10610)

Mux
A

B

sel

Ya[7:0]

a[3:0]

a[7:4]

c[3:0]

d

//8-to-4 multiplexer using conditional operator

assign c = d ? a[3:0] : a[7:4]; 

Figure 7.10 An 8-to-4 multiplexer.
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5 reg signed [15:0] c; //signed value
6 initial
7 begin
8 c¼ a * b; // unsigned value * signed value
9 #100;
10 c¼ $signed (a) * b; // signed value * signed value
11 #100;
12 c¼ b / d; // signed value � signed value
13 #100;
14 b¼ b�> 4; //arithmetic shift right
15 #100;
16 d¼ d� 2; // shift left logically
17 #100;
18 c¼ b * d; // signed value * signed value
19 #100;
20 $stop;
21 end
22 endmodule

Listing 7.2 Signed and unsigned arithmetic.

The table shownbelow theVerilog source listing inListing7.2 shows the results of simulating

the module test_v2001_ops(); the values of a, b, c and d are listed in decimal.

The statements contained within the initial sequential block starting on line 6 execute

from top tobottom in theorder that they arewritten; thefinal$stop statement, at line20, causes

the simulation to terminate. The result of each statement is given along with the corresponding

line number in the table in Listing 7.2.

The statementon line8assigns theproductof anunsignedandasignedvalue toa signedvalue.

The unsigned result of 16 65010 is due to the fact that one of the operands is unsigned and,

therefore, the other operand is also handled as if it were unsigned, i.e. 15010 rather than�10610.

The statementon line10converts theunsignedoperanda to a signedvaluebeforemultiplying

it byanother signedvalue;hence, all of theoperandsare signedand the result, therefore, is signed

(�11 76610).

The statement on line 12 divides a signed value (�10610) by another signed value (þ310),

giving a signed result (�3510). The result is truncated due to integer division.

Time a d b c Line

0 111 3 �106 16 650 8

100 111 3 �106 �11 766 10

200 111 3 �106 �35 12

300 111 3 �7 �35 14

400 111 �4 �7 �35 16

500 111 �4 �7 28 18
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Line14 is a signed right-shift, or arithmetic right-shift (�>operator). In this case, the sign-bit

(most significant bit (MSB)) is replicated four times and occupies the leftmost bits, effectively

dividing the number by 1610 while maintaining the correct sign. In binary, the result is

‘111110012’, which is�710.

A logical shift-left (�) is performed on a signed number on line 16. Logical shifts always

insert zeros in the vacant spaces and so the result is ‘11002’, or�410.

Finally, on line 18, two negative signed numbers are multiplied to produce a positive result.

The use of the keyword signed and the system functions $signed and $unsigned are

only appropriate if the numbers being processed are two’s complement values that represent

bipolar quantities. The emphasis in this book is on the design of FSMs where the signals are

generally either single-bit or multi-bit values used to represent a machine state. For this reason,

the discussion presented above on signed arithmetic will not be developed further.

The presence of the meta-logical values z or x in a reg or wire being used in an arithmetic

expression results in the whole expression being unknown, as illustrated by the following

example:

//assigning values to two 4-bit objects
in1¼ 4'b101x;
in2¼ 4'b0110;
sum¼ in1þ in2; //sum¼ 40bxxxx due to ‘x’ in in1

Figure 7.11 shows a further example of the use of the Verilog bitwise logical operators. The

continuous assignment statement on lines 4 to 7makes use of theAND (&),NOT (�) andOR (j)
operators; note that there is no need to include parentheses around the inverted inputs, since the

NOToperator (�)hasahigherprecedence than theAND(&)operator.However, theparentheses

around theANDed terms are required, since the ‘&’ and ‘j’ operators have the sameprecedence.

Figure 7.12 shows an alternativeway of describing the same logic described by Figure 7.11.

Here, anested conditional operator is used to select one of four inputsi0–i3, under the control
of a 2-bit input s1, s0 and assign it to the output port named out.

There is no limit to the degree of nesting that can be used with the conditional operator, other

than that imposed by the requirement to maintain a certain degree of readability.

The listing inFigure7.13 showsanotheruseof theconditional operator.Here, it is usedon line

3 to describe a so-called ‘three-state buffer’ as an alternative to using eight instantiations of the

built-in primitive bufif1 (see Figure 7.5).

When the enable input is at logic 1, the Dataout port is driven by the value applied to

Datain; on the other hand, when the enable input is at logic 0, the Dataout port is

effectively undriven, being assigned the value ‘zzzzzzzz’.
In addition to ports of direction input and output, Verilog provides for ports that allow

two-way communication by means of the inout keyword. Figure 7.14 illustrates a simple

bidirectional interfacemaking use of an inout port. It is necessary to drive bidirectional ports

to the high-impedance state when they are acting as an input, hence the inclusion of the 8-bit

three-state buffer on line 3. TheVerilog simulatormakes use of a built-in resolutionmechanism

topredict correctly thevalueof awire that is subject tomultiple drivers. In the current example,

the bidirectional portDatabi canbe driven to a logic 0or logic 1byan external signal; hence, it
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mux4_to_1

i0

i1

i2

i3

s0
s1

out

1 //A 4-to-1 mux described using the conditional operator
2 module mux4_to_1(output out,
3 input  i0, i1, i2, i3, s1, s0); 

4 assign out = s1 ? ( s0 ? i3 : i2)  
5 : (s0 ? i1 : i0); 

6 endmodule

Figure 7.12 A 4-to-1 multiplexer described using nested conditional operators.

out

i0

i1

i2

i3

s0

s1

ns0

ns1

ns0
ns1

s0
ns1

ns0
s1

s0
s1

1 //A 4-to-1 multiplexer described using bitwise operators
2 module mux4_to_1(output out,
3    input i0, i1, i2, i3, s1, s0); 

4 assign out = (~s1 & ~s0 & i0)| 
5   (~s1 & s0 & i1)| 
6   (s1 & ~s0 & i2)| 
7   (s1 & s0 & i3); 

8 endmodule

Figure 7.11 A 4-to-1 multiplexer described using bitwise operators.
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has two drivers. The presence of a logic level on the Databi port will override the high-

impedance value being assigned to it by line 3; hence, Datain will take on the value of the

incoming data applied to Databi as a result of the continuous assignment on line 4.

The simple combinational logic examplegiven in Figure 7.15 illustrates the use of the logical

OR operator (jj) and the equality operator (¼¼). The module describes a three-input majority

voter that outputs a logic 1 when two or more of the inputs is at logic 1.

On line 4, the individual input bits are grouped together to form a 3-bit value on wire abc.
The concatenation operator ({ }) is used to join any number of individual 1-bit or multi-bit

Datain Dataout

enable

1 //An 8-bit three-state buffer 
2 module Tribuff8(input [7:0] Datain, input enable,  

output [7:0] Dataout); 

3 assign Dataout = (enable == 1’b1)? Datain : 8’bz;  

4 endmodule

Figure 7.13 An 8-bit three-state buffer.

Databuff Databi

enable

Datain

1 //An 8-bit bi-directional port using a three-state buffer 
2 module Bidir(input [7:0] Databuff,   

    output [7:0] Datain,   
   input enable, inout [7:0] Databi);  

3 assign Databi = (enable == 1’b1)?Databuff : 8’bz; 
4 assign Datain = Databi; 

5 endmodule

Figure 7.14 A bidirectional bus interface.
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wires or regs together into one bus signal. Line 4 illustrates the use of the combined wire
declaration and continuous assignment in a single statement.

The continuous assignment on lines 5 to 8 in Figure 7.15 incorporates a delay, such that any

input change is reflected at the output after a 10 ns delay. This represents one method of

modelling propagation delays in modules that do not instantiate primitive gates.

The expression on the right-hand side of the assignment operator on line 5 makes use of the

logical OR operator (jj) rather than the bitwise OR operator (j). In this example, it makes no

differencewhich operator is used, but occasionally the choice between bitwise and object-wise

is important, since the latter is based on the concept ofBoolean true and false. InVerilog, anybit

pattern other than all zeros is considered to be true; consider the following example:

wire [3:0] a¼ 4'b1010; //true
wire [3:0] b¼ 4'b0101; //true
wire [3:0] c¼ a & b; //bit-wise result is 40b0000 (false)
wire d¼ a && b; //logical result is 10b1 (true)

Verilog-HDL provides a full set of relational operators, such as greater than, less than and

greater than or equal to, as shown in Table 7.3. The following example, given in Figure 7.16,

illustrates the use of these operators in the description of a memory address decoder.

The purpose of the module shown in Figure 7.16 is to activate one of four active-low ‘chip

select’ outputs Csbar[3:0], depending upon what particular range of hexadecimal address

values is present on the 16-bit input address. Such a decoder is often used to implement the

memory map of a microprocessor-based system.

Each of the continuous assignments on lines 4, 6, 8 and 10 responds to changes in the value of

the input Address. For example, Csbar[2] is driven to logic 0 when Address changes to a

hexadecimal value within the range 150016 to 16FF16 inclusive.

maj3

a

b

c

m

1 //A 3-input majority voter with 10 ns delay
2 `timescale 1 ns/ 1ns 
3 module maj3(input a, b, c, output m); 

4 wire [2:0] abc = {a, b, c}; //join inputs together

5 assign  #10 m = (abc == 3'b110)|| 
6 (abc == 3'b101)|| 
7 (abc == 3'b011)|| 
8 (abc == 3'b111);  //  ’on’ terms

9 endmodule

Figure 7.15 A three-input majority voter.
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Another example of the use of the relational operators is shown inFigure 7.17. This shows the

Verilog description of a 4-bit magnitude comparator.

The module given in Figure 7.17 makes use of the relational and equality operators, along

with logical operators, to form the logical expressions contained within the conditional

operators on the right-hand side of the continuous assignments on lines 5 and 7.Note the careful

use of parentheses in the test expression contained within line 7 for example:

((a> b) jj ( (a¼¼ b) && (agtbin¼¼ 1'b1))) ?

The parentheses force the evaluation of the logical AND expression before the logical OR

expression, the result of thewhole expression is logical ‘true’ or ‘false’, i.e.1'b1 or1'b0. The
result of the Boolean condition selects between logic 1 and logic 0 and assigns this value to the

agtbout output. The expression preceding the question mark (?) on lines 7 and 8 could have

been used on its own to produce the correct output on portagtbout; the conditional operator is
used purely to illustrate how a variety of operators can be mixed in one expression.

The expression used on the right-hand side of the continuous assignment on line 9, shown

below, makes use of the bitwise logical operators to illustrate that, in this case, the outcome is

exactly the same as that which would be produced by the logical operators:

altbout¼ (a< b) j ((a¼¼ b) & altbin);

Addr_decAddress

Csbar[0]

Csbar[1]

Csbar[2]

Csbar[3]

1 //16-bit Address Decoder
2 module Addr_dec(input [15:0] Address,  
3     output [3:0]  Csbar); 

4 assign Csbar[0] = ~((Address >= 0) &&  
5     (Address <= 16 ’h03FF)); 
6 assign Csbar[1] = ~((Address >= 16 ’h0800) && 
7     (Address <= 16 ’h12FF)); 
8 assign Csbar[2] = ~((Address >= 16 ’h1500) && 
9     (Address <= 16 ’h16FF)); 
10 assign Csbar[3] = ~((Address >= 16 ’h1700) && 
11     (Address <= 16 ’h18FF)); 

12 endmodule

Figure 7.16 Memory address decoder using the relational operators.

182 Elements of Verilog HDL



The relational and logical operators used in the above examples will always produce a result

of either logic 0 or logic 1 provided the operands being compared do not contain unknown (x) or
high-impedance (z) values in any bit position. In the event that an operand does contain ameta-

logical value, these operatorswill generate an unknown result (x), as illustratedby the examples

below:

reg [3:0] A¼ 4'b1010;
reg [3:0] B¼ 4'b1101;
reg [3:0] C¼ 4'b1xxx;

A <¼ B //Evaluates to logic-1
A> B //Evaluates to logic-0
A && B //Evaluates to logic-1

mag4comp

a

b

aeqout

agtbout

altbout

aeqbin
agtbin

altbin

Expansion
inputs

==

>

<

1   //4-bit magnitude comparator
2   module mag4comp(input [3:0] a, b,  
3    input aeqbin, agtbin, altbin,  
4    output aeqbout, agtbout, altbout);       

5   assign aeqbout = ((a == b) && (aeqbin == 1'b1))?  
6       1'b1 : 1'b0; 

7   assign agtbout = ((a > b) || ((a == b) && 
8     (agtbin == 1'b1))) ? 1'b1 : 1'b0; 

9   assign altbout = (a < b) | ((a == b) & altbin); 

10 endmodule

Figure 7.17 A 4-bit magnitude comparator.
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C ¼¼ B //Evaluates to x
A< C //Evaluates to x
C jj B //Evaluates to x

In certain situations, such as in simulation test-fixtures, it may be necessary to detect when a

module outputs an unknown or high-impedance value; hence, there exists a need to be able to

compare values that contain x and z.
Verilog HDL provides the so-called case-equality operators (‘¼¼¼’ and ‘!¼¼’) for this

purpose. These comparison operators compare xs and zs, as well as 0s and 1s; the result is

always 0 or 1. Consider the following examples:

reg [3:0] K¼ 4'b1xxz;
reg [3:0] M¼ 4'b1xxz;
reg [3:0] N¼ 4'b1xxx;

K ¼¼¼ M //exact match, evaluates to logic-1
K ¼¼¼ N //1-bit mismatch, evaluates to logic-0
M !¼¼ N //Evaluates to logic-1

Each of the three reg signals declared above is initialized to an unknown value; the three

comparisons that follow yield 1s and 0s, since all four possible values (0, 1,x,z) are considered
when performing the case-equality and case-inequality bit-by-bit comparisons.

The last operators in Table 7.3 to consider are the replication and concatenation operators;

bothmake use of the curly-brace symbol ({ }) commonly used to denote abegin. . .end block

in the C-based programming languages.

Theconcatenation ({ })operator is used to append, or join together,multiple operands to form

longer objects.All of the individual operands being combinedmust have a defined size, in terms

of the number of bits. Any combination of whole objects, part-selects or bit-selects may be

concatenated, and the operator may be used on either or both sides of an assignment. The

assignments shown below illustrate the use of the concatenation operator:

// A¼ 1'b1, B¼ 2'b00, C¼ 3'b110
Y¼ {A, B}; //Y is 3'b100
Z¼ {C, B, 4'b0000}; //Z is 9'b110000000
W¼ {A, B[0], C[1]}; //W is 3'b101

The following Verilog statements demonstrate the use of the concatenation operator on the

left-hand side (target) of an assignment. In this case, the ‘carry out’ wire c_out occupies the

MSB of the 5-bit result of adding two 4-bit numbers and a ‘carry input’:

wire [3:0] a, b, sum;
wire c_in, c_out;

//target is 5-bits long [4:0]
{c_out, sum}¼ aþ bþ c_in;
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The replication operator can be used on its own or combinedwith the concatenation operator.

The operator uses a replication constant to specify howmany times to replicate an expression. If

j is the expression being replicated and k is the replication constant, then the format of the

replication operator is as follows:

{k{j}}

The following assignments illustrate the use of the replication operator.

//a¼ 1'b1, b¼ 2'b00, c¼ 2'b10

//Replication only
Y¼ {4{a}} //Y is 4'b1111

//Replication and concatenation
Y¼ {4{a}, 2{b}} //Y is 8'b11110000
Y¼ {3{c}, 2{1'b1}} //Y is 8'b10101011

Onepossibleuseof replication is to extend the sign-bit of a two’s complement signednumber,

as shown below:

//a two's comp value (�5410)
wire [7:0] data¼ 8'b11001010;

//arithmetic right shift by 2 places
//data is 8'b11110010 (�1410)
assign data¼ {3{data[7]}, data[6:2]};

The above operation could have been carried out using the arithmetic shift right operator ‘�>’;

however, the wire declaration for data would have to include the signed qualifier.

7.3 EXAMPLE ILLUSTRATING THE USE OF VERILOG HDL OPERATORS:
HAMMING CODE ENCODER

This section presents a complete example involving the use of some of the Verilog HDL

operators discussed previously. Figure 7.18 shows the block symbol representation andVerilog

HDL description of a Hamming code [2] encoder for 8-bit data. The function of the module

Hamenc8 is togenerate a set ofparity checkbits froman incoming8-bit databyte; the checkbits

are then appended to the data to form a 13-bit Hamming codeword [2]. Such a codeword

provides error-correcting and -detecting capabilities, such that any single-bit error (including

the check bits) can be corrected and any 2-bit error (double error) can be detected.

The details of how the Hamming code achieves the above error-correcting and -detecting

capabilities are left to the interested reader to explore further in Reference [2].
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Lines 2 and 3 of Figure 7.18 define the module header for the Hamming encoder, the output

Parout is a set offiveparity check bits generated by performing the exclusiveORoperation on

subsets of the incoming 8-bit data value appearing on input port Data.
The bits of the input data that are to be exclusive ORed together are defined by a set of masks

declaredas local parameterson lines 5 to8.Thelocalparamkeywordallows thedefinitionof
parameters or constant values that are local to the enclosing module, i.e. they cannot be

overridden by external values. For example, mask MaskP1 defines the subset of data bits

that must be processed to generate Parout[1], as shown below:

Bit position -> 76543210
MaskP1¼ 8'b01011011;

Parout[1]¼ Data[6]^Data[4]^Data[3]^Data[1]^Data[0];

Theabovemodulo-2 summation is achieved inmoduleHamenc8byfirstmaskingout thebits to

be processed using the bitwise AND operation (&), then combining these bit values using the

reductionexclusiveORoperator.Theseoperationsareperformedforeachparitybit aspart of the

continuous assignment on line 9:

^(Data & MaskP1)

Hamenc8Data Parout
8 5

1 //Hamming Encoder for an 8-bit Data word 
2 module Hamenc8(input [7:0] Data,  
3     output [4:0] Parout); 

4 //define masks to select bits to xor for each parity bit 
5 localparam MaskP1 = 8 ’b01011011; 
6 localparam MaskP2 = 8 ’b01101101;   
7 localparam MaskP3 = 8 ’b10001110; 
8 localparam MaskP4 = 8 ’b11110000; 

9 assign Parout[4:1] = {^(Data & MaskP4),  
       ^(Data & MaskP3),  

^(Data & MaskP2),  
^(Data & MaskP1)}; 

10 assign Parout[0] = ^{Parout[4:1], Data}; 

11 endmodule

Figure 7.18 An 8-bit Hamming code encoder.
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The concatenation operator ({ }) is used on the right-hand side of the continuous assignment

on line9 tocombine the fourmost significantparity checkbits inorder toassign themtoParout
[4:1].

The double-error-detecting ability of the Hamming code is provided by the overall parity

check bitParout[0]. This output is generated bymodulo-2 summing (exclusiveOR) all of the

data bits alongwith the aforementioned parity bits, this being achieved on line 10 of Figure 7.18

by a combination of concatenation and reduction, as repeated below:

assign Parout[0]¼ ^{Parout[4:1], Data};

In performing the above operation, certain data bits are eliminated from the result due to

cancellation, this is causedby the fact that the exclusiveORoperation results in logic 0when the

same bit is combined an even number of times. The overall parity bit is therefore given by the

following expression:

Parout[0]¼ Data[7]^Data[5]^Data[4]^Data[2]^Data[1]^Data[0];

Data bits Data[6] and Data[3] are not included in the above equation for the overall parity.

This is reflected in the logic diagramof theHamming encoder, shown in Figure 7.19; this circuit

could represent the output produced by a logic synthesis software tool after processing the

Verilog description of the Hamming encoder shown in Figure 7.18.

Data[7:0]

Parout[4]

Parout[3]

Parout[2]

Parout[1]

Parout[0]

Data[4]
Data[5]
Data[6]
Data[7]

Data[1]
Data[2]
Data[3]
Data[7]

Data[0]
Data[2]
Data[3]
Data[5]
Data[6]

Data[0]
Data[1]
Data[3]
Data[4]
Data[6]

Data[7]
Data[5]
Data[4]
Data[2]
Data[1]
Data[0]

Figure 7.19 Hamming encoder logic diagram.
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7.3.1 Simulating the Hamming Encoder

The operation of the Hamming encoder module shown in Figure 7.18 could be verified by

simulation in an empiricalmanner. Thiswould involve applying a set of random input data bytes

and comparing the resulting parity check bit outputs against the values predicted from the

encoder Boolean equations.

An alternative, and more systematic, approach would be to make use of a Hamming code

decoder to decode the encoder output automatically, thus providing a more robust checking

mechanism (assuming the Hamming decoder is correct of course!).

The use of a Hamming decoder module also allows the investigation of the error-correcting

and -detecting properties of the Hamming code, by virtue of being able to introduce single and

double errors into the Hamming code prior to processing by the decoder.

AVerilog HDL description of an 8-bit Hamming code decoder is given in Listing 7.3.

//Verilog description of a 13-bit Hamming Code Decoder
1 module Hamdec8(input [7:0] Datain,

input [4:0] Parin,
output reg [7:0] Dataout,
output reg [4:0] Parout,
output reg NE, DED, SEC);

//define masks to select bits to xor for each parity
2 localparam MaskP1¼ 8'b01011011;
3 localparam MaskP2¼ 8'b01101101;
4 localparam MaskP4¼ 8'b10001110;
5 localparam MaskP8¼ 8'b11110000;

6 reg [4:1] synd; //error syndrome
7 reg P0; //regenerated overall parity

8 always @(Datain or Parin)
9 begin

//assign default outputs (assumes no errors)
10 NE¼ 1'b1;
11 DED¼ 1'b0;
12 SEC¼ 1'b0;
13 Dataout¼ Datain;
14 Parout¼ Parin;
15 P0¼ ^{Parin, Datain}; //overall parity
16

//generate syndrome bits
17 synd[4]¼ (^(Datain & MaskP8))^Parin[4];
18 synd[3]¼ (^(Datain & MaskP4))^Parin[3];
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19 synd[2]¼ (^(Datain & MaskP2))^Parin[2];
20 synd[1]¼ (^(Datain & MaskP1))^Parin[1];
21 if ((synd ¼¼ 0) && (P0 ¼¼ 1'b0)) //no errors
22 ; //accept default o/p
23 else if (P0 ¼¼ 1'b1) //single error (or odd no!)
24 begin

25 NE¼ 1'b0;
26 SEC¼ 1'b1;

//correct single error
27 case (synd)
28 0: Parout[0]¼�Parin[0];
29 1: Parout[1]¼�Parin[1];
30 2: Parout[2]¼�Parin[2];
31 3: Dataout[0]¼�Datain[0];
32 4: Parout[3]¼�Parin[3];
33 5: Dataout[1]¼�Datain[1];
34 6: Dataout [2]¼�Datain[2];
35 7: Dataout[3]¼�Datain[3];
36 8: Parout[4]¼�Parin[4];
37 9: Dataout[4]¼�Datain[4];
38 10: Dataout[5]¼�Datain[5];
39 11: Dataout[6]¼�Datain[6];
40 12: Dataout[7]¼�Datain[7];
41 default:
42 begin
43 Dataout¼ 8'b00000000;
44 Parout¼ 5'b00000;
45 end
46 endcase
47 end
48 else if ((P0 ¼¼ 0) && (synd !¼ 4'b0000))
49 begin //double error
50 NE¼ 1'b0;
51 DED¼ 1'b1;
52 Dataout¼ 8'b00000000;
53 Parout¼ 5'b00000;
54 end
55 end //always
56
57 endmodule

Listing 7.3 An 8-bit Hamming code decoder.
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The module header on line 1 of Listing 7.3 defines the interface of the decoder, the 13-bit

Hamming code input is made up from Datain and Parin and the corrected outputs are on

portsDataout andParout. Three diagnostic outputs are provided to indicate the status of the
incoming code:

NE: no errors (Datain and Parin are passed through unchanged)

DED: double error detected (Dataout and Parout are set to all zeros)

SEC: single error corrected (a single-bit error has been corrected1).

Note that all of theHammingdecoder outputs are qualified as being of typereg; this is due to
thebehavioural natureof theVerilogdescription, i.e. theoutputs are assignedvalues fromwithin

a sequential always block (starting on line 8).

Lines 2 to 5 define the same set of 8-bit masks as those declared within the encoder module;

they are used in a similar manner within the decoder to generate the 4-bit code named synd,
declared in line 6. This 4-bit code is known as the error syndrome; it is used in combinationwith

the regenerated overall parity bit P0 (line 7) to establish the extent and location of any errors

within the incoming Hamming codeword.

The main part of the Hamming decoder is contained within the always sequential block

starting on line 8 of Listing 7.3. The statements enclosed between the begin and end
keywords, situated on lines 9 and 55 respectively, execute sequentially whenever there is a

change in either (or both) of the Datain and Parin ports. The always block represents a

behavioural description of a combinational logic system that decodes the Hamming codeword.

At the start of the sequential block, the module outputs are all assigned default values

corresponding to the ‘no errors’ condition (lines 10 to 14); this ensures that the logic described

by the block is combinatorial. Following this, on lines 15 to 20 inclusive, the overall parity and

syndrome bits are generated using expressions similar to those employed within the encoder

description.

Starting on line 21, a sequence of conditions involving the overall parity and syndrome bits is

tested, in order to establishwhether or not any errors are presentwithin the incoming codeword.

If the overall parity is zero and the syndrome is all zeros, then the input codeword is free of

errors and the presence of the null statement (;) on line 22 allows the default output values to
persist.

If thefirstconditiontestedbytheif. . .elsestatementisfalse, thenthenextcondition(line23)

is tested to establishwhether a single error has occurred. If the overall parity is a logic 1, then the

decoder assumes that a single error has occurred; the statements between lines 24 and47flag this

fact by first setting the ‘single error’ (SEC) output high before going on to correct the error. The
latter isachievedbytheuseofthecasestatementonlines27to46;thevalueof the4-bitsyndrome

is used to locate and invert the erroneous bit.

Finally, the if. . .else statement tests for the condition of unchanged overall parity

combined with a nonzero syndrome; this indicates a double error. Under these circumstances,

theHamming decoder cannot correct the error and, therefore, it simply asserts the ‘double error

detected’ output and sets the Dataout and Parout port signals to zero.

1An odd number of erroneous bits greater than one would be handled as a single error, usually resulting in an

incorrect output.).
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The Hamming code encoder and decoder are combined in a Verilog test module named

TestHammingCcts, shown in Listing 7.5, and in block diagram form in Figure 7.20.

An additional module, named InjectError, is required to inject errors into the valid

Hamming code produced by the Hamming encoder prior to being decoded by the Hamming

decoder.

The InjectErrormodule is given in Listing 7.4.

//Module to inject errors into Hamming Code
1 module InjectError(input [7:0] Din,

input [4:0] Pin,
output [7:0] Dout,
output [4:0] Pout,
input [12:0] Ein);

2 assign {Dout, Pout}¼ {Din, Pin} ^ Ein;

3 endmodule

Listing 7.4 The 13-bit error injector module.

This uses a single continuous assignment to invert selectively one or more of the 13 bits of the

incoming Hamming codeword by exclusive ORing it with a 13-bit error mask named Ein, in

line 2.

As shown in the block diagram of Figure 7.20 and Listing 7.5, the test module comprises

instantiations of the encoder, decoder and error injector (lines 33 to 46) in addition to two

initial sequential blocks named gen_data and gen_error, these being situated on

lines 13 and 20 respectively of Listing 7.5.

// Verilog test fixture for Hamming Encoder and Decoder
1 `timescale 1ns / 1ns
2 module TestHammingCcts();

//Hamming encoder data input
3 reg [7:0] Data;

//Error mask pattern
4 reg [12:0] Error;

//Hamming encoder output
5 wire [4:0] Par;

//Hamming code with error
6 wire [7:0] EData;
7 wire [4:0] EPar;
// Hamming decoder outputs
8 wire DED;
9 wire NE;
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10 wire SEC;
11 wire [7:0] Dataout;
12 wire [4:0] Parout;

13 initial //generate exhaustive test data
14 begin : gen_data
15 Data¼ 0;
16 repeat (256)
17 #100 Data¼ Dataþ 1;
18 $stop;
19 end

20 initial //generate error patterns
21 begin : gen_error
22 Error¼ 13'b0000000000000;
23 #1600;
24 Error¼ 13'b0000000000001;
25 #100;
26 repeat (100) //rotate single error
27 #100 Error¼ {Error[11:0], Error[12]};
28 Error¼ 130b0000000000011;
29 #100;
30 repeat (100) //rotate double error
31 #100 Error¼ {Error[11:0], Error[12]};
32 end

//instantiate modules

33 Hamenc8 U1 (.Data(Data),
34 .Parout(Par));

35 Hamdec8 U2 (.Datain(EData),
36 .Parin (EPar),
37 .Dataout(Dataout),
38 .DED(DED),
39 .NE(NE),
40 .Parout(Parout),
41 .SEC(SEC));
42 InjectError U3 (.Din(Data),
43 .Ein(Error),
44 .Pin(Par),
45 .Dout(EData),
46 .Pout(EPar));
47 endmodule

Listing 7.5 Hamming encoder/decoder test-fixture module.
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The gen_data initial block uses the repeat loop to generate an exhaustive set of 8-bit

input data values ascending from 010 to 25510 at intervals of 100 ns, stopping the simulation on

line 18 by means of the $stop command. The gen_error block, on lines 20 to 32, starts by

initializing the error mask Error to all zeros and allows it to remain in this state for 1600 ns in

order to verify the ‘no error’ condition.

On line 24 of Listing 7.5, the error mask is set to 13'b0000000000001, thereby

introducing a single-bit error into the least significant bit of the Hamming codeword. After

applying this pattern for 100 ns, a repeat loop (lines 26 and 27) is used to rotate the single-bit

error through all 13 bits of the error mask at intervals of 100 ns for 100 iterations, this sequence

0ns 200ns 400ns 600ns 800ns 1.0µs 1.2µs 1.4µs 1.6µs

TestHammingCcts.Data[7:0]

TestHammingCcts.Par[4:0]

TestHammingCcts.Error[12:0]

TestHammingCcts.EData[7:0]

TestHammingCcts.EPar[4:0]

TestHammingCcts.SEC

TestHammingCcts.NE

TestHammingCcts.DED

TestHammingCcts.Dataout[7:0]

TestHammingCcts.Parout[4:0]

0000 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000 07 0B 0C 0D 0A 06 01 0E 09 05 02 03 04 08 0F

00000000

0000 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000 07 0B 0C 0D 0A 06 01 0E 09 05 02 03 04 08 0F

0000 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000 07 0B 0C 0D 0A 06 01 0E 09 05 02 03 04 08 0F

(a)
4.0µs 4.2µs 4.4µs 4.6µs  4.8µs 5.0µs 5.2µs 5.4µs

TestHammingCcts.Data[7:0]

TestHammingCcts.Par[4:0]

TestHammingCcts.Error[12:0]

TestHammingCcts.EData[7:0]

TestHammingCcts.EPar[4:0]

TestHammingCcts.SEC

TestHammingCcts.NE

TestHammingCcts.DED

TestHammingCcts.Dataout[7:0]

TestHammingCcts.Parout[4:0]

28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

1B 1C 10 17 16 11 1D 1A 06 01 0D 0A 0B 0C 00 07

0400 0800 1000 0001 0002 0004 0008 0010 0020 0040 0080 0100 0200 0400 0800 1000

08 69 AA 2B 2C 2D 2E 2F 31 33 36 3B 24 15 76 B7

1B 1C 10 16 14 15 15 0A 06 01 0D 0A 0B 0C 00 07

28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

1B 1C 10 17 16 11 1D 1A 06 01 0D 0A 0B 0C 00 07

(b)

(c)

18.6us 18.8us 19.0us 19.2us 19.4us 19.6us 19.8us 20.0us

TestHammingCcts.Data[7:0]

TestHammingCcts.Par[4:0]

TestHammingCcts.Error[12:0]

TestHammingCcts.EData[7:0]

TestHammingCcts.EPar[4:0]

TestHammingCcts.SEC

TestHammingCcts.NE

TestHammingCcts.DED

TestHammingCcts.Dataout[7:0]

TestHammingCcts.Parout[4:0]

B9B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8

1616 1A 1D 1C 1B 17 10 0F 08 04 03 02 05 09 0E 01

0018 0030 0060 00C0 0180 0300 0600 0C00 1800 0009 0003 0006 000C 0018 0030 0060

B9B9 BB B8 BA B1 A6 8F A0 01 42 C3 C4 C5 C6 CB

0E0E 0A 1D 1C 1B 17 10 0F 08 05 00 04 09 11 1E 01

0000

00

Figure 7.21 TestHammingCcts simulation results showing: (a) no errors; (b) single-error correc-

tion; (c) double-error detection.
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will demonstrate the Hamming decoder’s ability to correct a single-bit error in any bit position

for a variety of test data values.

Finally,on lines28 to31, theerrormask is reinitialized toavalueof13'b0000000000011.
This has the effect of introducing a double-error into the Hamming codeword. As above, this

pattern is rotated through all 13-bits of the Hamming code 100 times, at intervals of 100 ns, in

order to verify the decoder’s ability to detect double errors for a variety of test data. Simulation

results for the TestHammingCcts test module are shown in Figure 7.21a–c.

Figure 7.21a shows the first 16 test pattern results corresponding to an errormask value of all

zeros (third waveform from the top), i.e. no errors. The top two waveforms are the 8-bit data

(Data) and 5-bit parity (Par) values representing the 13-bit Hamming code output of the

Hamming encoder module; all waveforms are displayed in hexadecimal format.

The outputs of the error injector module (EData and EPar), shown on the fourth and fifth
waveforms, are identical to the top twowaveforms due to the absence of errors. The diagnostic

outputs,SEC,NEandDED, correctly showthe ‘noerrors’ output asserted,while thebottom two

waveforms show the Hamming code being passed through the decoder unchanged.

Figure 7.21b shows a selection of test pattern results corresponding to an errormask contain-

ing a single logic 1 (third waveform from the top), i.e. a single error.

The outputs of the error injector module (EData and EPar), shown on the fourth and fifth
waveforms, differ when compared with the top two waveforms by a single bit (e.g. 2A16, 1016
becomesAA16, 1016 at time 4.2 ms). The diagnostic outputs,SEC,NE andDED, correctly show

the ‘single error corrected’ output asserted, while the bottom two waveforms confirm that the

single error introduced into the originalHamming code (top twowaveforms) has been corrected

after passing through the decoder.

Figure 7.21c shows a selection of test pattern results corresponding to an errormask contain-

ing two logic 1s (third waveform from the top), i.e. a double error.

The outputs of the error injector module (EData and EPar), shown on the fourth and fifth
waveforms, differ when compared with the top two waveforms by 2 bits (e.g. BC16, 1C16

becomes BA16, 1C16 at time 18.8 ms). The diagnostic outputs, SEC, NE and DED, correctly

show the ‘double error detected’ output asserted, while the bottom twowaveforms confirm that

the double error introduced into the original Hamming code (top two waveforms) has been

detected and the output codeword is set to all zeros.

In summary, this section has presented a realistic example of the use of the Verilog HDL

operators and types to describe a Hamming code encoder, decoder and test module. The

behavioural style of description has been used to illustrate the power of the Verilog language

in describing a relatively complex combinatorial logic system in a high-level manner.

Chapter 8 covers those aspects of the Verilog language concerned with the description of

sequential logic systems, in particular the FSM.
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8
Describing Combinational
and Sequential Logic using
Verilog HDL

8.1 THE DATA-FLOW STYLE OF DESCRIPTION:
REVIEW OF THE CONTINUOUS ASSIGNMENT

We have already come across numerous examples in the previous chapters of Verilog designs

written in the so-called data-flow style. This style of description makes use of the parallel

statement known as a continuous assignment. Predominantly used to describe combinational

logic, theflowof execution of continuous assignment statements is dictated by events on signals

(usually wires) appearing within the expressions on the left- and right-hand sides of the

continuous assignments. Such statements are identified by the keywordassign. The keyword
is followed by one or more assignments terminated by a semicolon.

All of the following examples describe combinational logic, this being themost common use

of the continuous assignment statement:

//some continuous assignment statements
assign A ¼ q [0], B ¼ q [1], C ¼ q [2];

assign out ¼ (�s1 & �s0 & i0) j
(�s1 & s0 & i1) j
(s1 & �s0 & i2) j
(s1 & s0 & i3);

assign #15 {c_out, sum} ¼ a þ b þ c_in;

The continuous assignment statement forms a static binding between thewire being assigned

on the left-hand side of the¼ operator and the expression on the right-hand side of the assignment

operator. This means that the assignment is continuously active and ready to respond to any

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
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changes to variables appearing in the right-hand side expression (the inputs). Such changes result

in the evaluation of the expression and updating of the target wire (output). In this manner, a

continuous assignment is almost exclusively used to describe combinatorial logic.

As mentioned previously, a Verilog module may contain any number of continuous assign-

ment statements; they can be inserted anywhere between themodule header and internalwire/
reg declarations and the endmodule keyword.

The expression appearing on the right-hand side of the assignment operator may contain

both reg- and wire-type variables and make use of any of the Verilog operators mentioned in

Chapter 7.

The so-called target of the assignment (left-hand side) must be a wire, since it is continuously
driven. Both single-bit andmulti-bit wiresmay be the targets of continuous assignment statements.

It is possible, although not common practice, to use the continuous assignment statement to

describe sequential logic, in the form of a level-sensitive latch.

The conditional operator (?:) is used on the right-hand side of the assignment on line 2 of the

listing shown in Figure 8.1. When en is true (logic 1) the output q is assigned the value of the

input data continuously.When en goes to logic 0, the outputq is assigned itself, i.e. feedback

maintains the value of q, as shown in the logic diagram below the Verilog listing.

It should be noted that the use of a continuous assignment to create a level-sensitive latch, as

shown in Figure 8.1, is relatively uncommon. Most logic synthesis software tools will issue a

warning message on encountering such a construct.

8.2 THE BEHAVIOURAL STYLE OF DESCRIPTION:
THE SEQUENTIAL BLOCK

The Verilog HDL sequential block defines a region within the hardware description conta-

ining sequential statements; these statements execute in the order they are written, in just the

1 module latch (output q, input data, en); 

2 assign q = en ? data : q; 

3 endmodule

MUX

1

0

q

en

data

Figure 8.1 Describing a level-sensitive latch using a continuous assignment.
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same way as a conventional programming language. In this manner, the sequential block

provides a mechanism for creating hardware descriptions that are behavioural or algorithmic.

Such a style lends itself ideally to the description of synchronous sequential logic, such as

counters and FSMs; however, sequential blocks can also be used to describe combinational

functions.

A discussion of some of the more commonly used Verilog sequential statements will reveal

their similarity to the statementsused in theC language. Inaddition to the two typesof sequential

block described below, Verilog HDL makes use of sequential execution in the so-called task
andfunction elementsof the language.These elements are beyond the scopeof this book; the

interested reader is referred to Reference [1].

Verilog HDL provides the following two types of sequential block:

� The always block. This contains sequential statements that execute repetitively, usually in

response to some sort of trigger mechanism. An always block acts rather like a continuous

loop that never terminates. This type of block can be used to describe any type of digital

hardware.

� The initial block. This contains sequential statements that execute from beginning to

end once only, commencing at the start of a simulation run at time zero. Verilog

initial blocks are used almost exclusively in simulation test fixtures, usually to create

test input stimuli and control the duration of a simulation run. This type of block is not

generally used to describe synthesizable digital hardware, although a simulation model

may contain an initial statement to perform an initialization of memory or to load

delay data.

The two types of sequential block described above are, in fact, parallel statements;

therefore, a module can contain any number of them. The order in which the always and

initial blocks appear within the module does not affect the way in which they execute.

In this sense, a sequential block is similar to a continuous assignment: the latter uses a

single expression to assign a value to a target whenever a signal on the right-hand side

undergoes a change, whereas the former executes a sequence of statements in response to

some sort of triggering event.

Figure 8.2 shows the syntax of the initial sequential block, along with an example

showing how the construct can be used to generate a clock signal.

As can be seen in lines 3 to 8, an initial block contains a sequence of one or more state-

ments enclosed within a begin. . .end block. Occasionally, there is only a single statement

enclosed within the initial block; in this case, it is permissible to omit the begin. . .end
bracketing, as shown in lines 12 and 13. It is recommended, however, that the bracketing is

included, regardless of the number of sequential statements, in order tominimize the possibility

of syntax errors.

Figure 8.2 also includes an exampleinitial block (lines 14 to 21), the purpose of which is

to generate a repetitive clock signal. A local parameter namedPERIOD is defined in line 14; this
sets the time period of the clock waveform to 100 time-units. The execution of the initial
block starts at time zero at line 18, where the CLK signal is initialized to logic 0; note that the

signal CLK must be declared as a reg, since it must be capable of retaining the value last

assigned to it by statements within the sequential block. Also note that the initialization ofCLK
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could have been included as part of its declaration in line 15, as shown below:

15 reg CLK ¼ 1'b0;

Following initialization of CLK to logic 0, the next statements to execute within the

initial block are lines 19 and 20 of the listing in Figure 8.2. These contain an

endless loop statement known as a forever loop, having the general syntax shown

below:

forever
begin

//sequential statement 1

1 //general syntax of the initial sequential block
2 //containing more than one statement
3 initial
4 begin
5   //sequential statement 1 
6   //sequential statement 2 
7   ... 
8 end
9
10 //general syntax of the initial sequential block
11 //containing one statement (no need for begin...end)
12 initial
13   //sequential statement 

14 localparam PERIOD = 100;   //clock period

15 reg CLK;

16 initial
17 begin       
18   CLK = 1'b0;            
19   forever //an endless loop!         
20    #(PERIOD/2) CLK = ~CLK;    
21 end

CLK

00105

0

Figure 8.2 Syntax of the initial block and an example.
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//sequential statement 2
. . .
end

In common with the initial block itself, the forever loop may contain a single

statement or a number of statements that are required to repeat indefinitely; in the latter case,

it must include the begin. . .end bracketing shown above. The example shown in Figure 8.2

contains a single delayed sequential assignment statement in line 20 (the use of the hash symbol

# within a sequential block indicates a time delay). The effect of this statement is to invert the

CLK signal every 50 time-units repetitively; this results in the CLK signal having thewaveform

shown at the bottom of Figure 8.2.

As it stands, the Verilog description contained in lines 14–21 of Figure 8.2 could present

a potential problem to a simulator, in that most such tools have a command to allow the sim-

ulator to effectively run forever (e.g. ‘run –all’ in Modelsim1). The forever loop in lines

19 and 20 would cause a simulator to run indefinitely, or at least until the host computer ran out

of memory to store the huge amount of simulation data generated.

There are two methods by which the above problem can be solved:

1. Include an additional initial block containing a $stop system command.

2. Replace the forever loop with a repeat loop.

The first solution involves adding the following statement:

//n is the no. of clock pulses required
initial #(PERIOD*n) $stop;

The above statement can be inserted anywhere after line 14 within the module containing the

statements shown in Figure 8.2. The execution of the initial block in line 16 commences at the

same time as the statement shown above (0 s); therefore, the delayed $stop command will

execute at an absolute time equal to n*PERIOD seconds. The result is a simulation run lasting

exactly n clock periods. It should be noted that, in order for the above statement to compile

correctly, thevariablenwouldhave to be replacedbyan actual positivenumber orwouldhave to

have been previously declared as a local parameter.

The second solution involves modifying the initial block in lines 16–21 of the listing

given in Figure 8.2 to that shown below:

1 initial
2 begin
3 CLK ¼ 1'b0;
4 repeat (n) //an finite loop
5 begin
6 #(PERIOD/2) CLK ¼ 1'b1;
7 #(PERIOD/2) CLK ¼ 1'b0;
8 end
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9 $stop;
10 end

Therepeat loop is a sequential statement that causes one ormore statements to be repeated

a fixed number of times. In the above case, the variable n defines the number of whole clock

periods required during the simulation run. In this example, the loop body contains two delayed

assignments to the reg named CLK; consequently, the begin. . .end bracketing is required.

Each repetition of therepeat loop lasts for 100 time-units, i.e. one clock period.Once all of

the clock pulses have been applied, the repeat loop terminates and the simulation is stopped

by the system command in line 9 above.

An important point to note regarding the repeat and forever loops is that neither can be

synthesized into a hardware circuit; consequently, these statements are exclusively used in

Verilog test-fixtures or within simulation models.

Listing 8.1a–e shows the various formats of the Verilog HDL sequential block known as the

always block. The most general form is shown in Listing 8.1a: the keyword always is

followed by the so-called event expression; this determines when the sequential statements in

the block (between begin and end) execute. The @(event expression) is required for

both combinational and sequential logic descriptions.

In common with the initial block, the begin. . .end block delimiters can be omitted if

there is only one sequential statement subject to thealways@ condition. An example of this is

shown in Listing 8.1e.

(a)
1 always @(event_expression)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(b)
1 always @(input1 or input2 or input3. . .)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(c)
1 always @(input1, input2, input3. . .)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(d)
1 always @( * )
2 begin
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3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(e)
1 always @(a)
2 y ¼ a * a;

Listing 8.1 Alternative formats for the always sequential block: (a) General form of the always

sequential block; (b) always sequential block with or-separated list; (c) always sequential block

with comma-separated list; (d) always sequential block with wildcard event expression; (e) always
sequential block containing a single sequential statement.

Unlike the initial block, the sequential statements enclosed within an always block

execute repetitively, in response to the event expression. After each execution of the sequ-

ential statements, the always block usually suspends at the beginning of the block of state-

ments, ready to execute the first statement in the sequence. When the event expression next

becomes true, the sequential statements are then executed again. The exact nature of the event

expression determines the nature of the logic being described; as a general guideline, any of the

forms shown in Listing 8.1 can be used to describe combinational logic. However, the format

shown in Listing 8.1b ismost commonly used to describe sequential logic, with somemodifica-

tion (see later).

Also in commonwith theinitial block, signals that are assigned fromwithin analways
blockmust be reg-type objects, since theymust be capable of retaining the last value assigned

to them during suspension of execution.

It should be noted that the always block could be used in place of an initial
block, where the latter contains a forever loop statement. For example, the following

always block could be used within a test module to generate the clock waveform

shown in Figure 8.2:

1 localparam PERIOD ¼ 100; //clock period

2 reg CLK ¼ 1'b0;

3 always
4 begin
5 #(PERIOD/2) CLK ¼ 1'b1;
6 #(PERIOD/2) CLK ¼ 1'b0;
7 end

Thealways sequential block, shown in lines 3 to 7 above, does not require an event expression

since the body of the block contains sequential statements that cause execution to be suspended

for a fixed period of time.

This example highlights an important aspect of thealways sequential block: itmust contain

either at least one sequential statement that causes suspension of execution or the keyword
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always must be followed by an event expression (the presence of both is ambiguous and,

therefore, is not allowed).

The absence of any mechanism to suspend execution in an always block will cause a

simulation tool to issue an error message to the effect that the description contains a zero-delay

infinite loop, and the result is that the simulatorwill ‘hang’, beingunable toproceedbeyond time

zero.

In summary, the use of an always block in a test module, as shown above, is not

recommended owing to the need to distinguish clearly between modules that are

intended for synthesis and implementation and those that are used during simulation

only.

8.3 ASSIGNMENTS WITHIN SEQUENTIAL BLOCKS:
BLOCKING AND NONBLOCKING

An always sequential block will execute whenever a signal change results in the event

expression becoming true. In between executions, the block is in a state of suspension;

therefore, any signal objects being assigned to within the block must be capable of

remembering the value that was last assigned to them. In other words, signal objects that

are assigned values within sequential blocks are not continuously driven. This leads to the

previously stated fact that only reg-type objects are allowed on the left-hand side of a

sequential assignment statement.

The above restriction regarding objects that can be assigned a value fromwithin a sequential

block does not apply to those that appear in the event expression, however. A sequential block

canbe triggered intoactionbychanges inbothregs and/orwires; thismeans thatmodule input

ports, as well as gate outputs and continuous assignments, can cause the execution of a

sequential block and, therefore, behavioural and data-flow elements can bemixed freely within

a hardware description.

8.3.1 Sequential Statements

Table 8.1 contains a list of the most commonly used sequential statements that may

appear within the confines of a sequential block (initial or always); some

are very similar to those used in the C language, while others are unique to the Verilog

HDL.

A detailed description of the semantics of each sequential statement is not included in

this section; instead, each statement will be explained in the context of the examples

that follow. It should also be noted that Table 8.1 is not exhaustive; there are several

less commonly used constructs, such as parallel blocks (fork. . .join) and

procedural continuous assignments, that the interested reader can explore further in

Reference [1].

With reference to Table 8.1, items enclosed within square brackets ( [ ]) are optional, curly
braces ( { }) enclose repeatable items, and all bold keywords must be lower case.
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Table 8.1 The most commonly used Verilog HDL sequential statements.

Sequential statement Description

¼ Blocking sequential assignment

<¼ Nonblocking sequential assignment

; Null statement. Also required at the end of each

statement

begin
{seq_statements}

end

Block or compound statement. Always required if

there is more than one sequential statement

if (expr)
seq_statement

[else
seq_statement ]

Conditional statement, expression (expr) must

be in parentheses. The else part is optional and

the statement may be nested. Multiple statements

require begin. . .end bracketing

case (expr)
{ {value,} : seq_statement }
[default : seq_statement ]

endcase

Multi-way decision, the expression (expr) must be

in parentheses. Multiple values are allowed in each

limb, but no overlapping values are allowed between

limbs. Default limb is required if previous values

do not cover all possiblevalues of expression.Multiple

statements require begin. . .end bracketing

forever
seq_statement

Unconditional loop. Multiple statements require

begin. . .end bracketing

repeat (expr)
seq_statement

Fixed repetition of seq_statement a number of

times equal to expr. Multiple statements require

begin. . .end bracketing

while (expr)
seq_statement

Entry test loop (same as C) repeats as long as expr is

nonzero. Multiple statements require begin. . .end
bracketing

for (exp1; exp2; exp3)
seq_statement

Universal loop construct (same as C). Multiple

statements require begin. . .end bracketing

#(time_value) seq_statement Suspends a block for time_value time-units

@(event_expr) seq_statement Suspends a block until event_expr triggers
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The continuous assignment parallel statement makes use of the ¼ assignment operator

exclusively. As shown in Table 8.1, sequential assignments canmake use of two different types

of assignment:

� blocking assignment – uses the¼ operator;

� nonblocking assignment – uses the<¼ operator.

Thedifference between the above assignments is quite subtle and can result in simulation and/or

synthesis problems if not fully understood.

The blocking assignment is the most commonly used type of sequential assignment when

describing combinational logic. As the name suggests, the target of the assignment is updated

before thenext sequential statement in the sequential block is executed, inmuch the samewayas

in a conventional programming language. In other words, a blocking assignment ‘blocks’ the

execution of the subsequent statements until it has completed. Another aspect of blocking

sequential assignments is that they effectively overwrite each otherwhen assignments aremade

to the samesignal.Anexampleof this is seen in theHammingcodedecoderexampleat theendof

Chapter 7 (see Listing 7.3), where the decoder outputs are initialized to a set of default values

prior to being conditionally updated by subsequent statements.

On encountering a nonblocking assignment, the simulator schedules the assignment to take

place at the beginning of the next simulation cycle, this normally occurs at the end of the

sequential block (or at the point when the sequential block is next suspended). In this manner,

subsequent statements are not blocked by the assignment, and all assignments are scheduled to

take place at the same point in time.

Nonblocking assignments can be used to assign several reg-type objects synch-

ronously, under control of a common clock. This is illustrated by the example shown in

Figure 8.3.

The three nonblocking assignments on lines 17, 18 and 19 of the listing shown in

Figure 8.3 are all scheduled to occur at the positive edge of the signal named ‘CLK’.

This is achieved by means of the event expression on line 15 making use the event qualifier

posedge (derived from positive-edge), i.e. the execution of the always sequential block

is triggered by the logic 0 to logic 1 transition of the signal named CLK. This particular form
of triggering is commonly used to describe synchronous sequential logic and will be

discussed in detail later in this chapter.

The nonblocking nature of the assignments enclosed within the sequential block means

that the value being assigned to R2 at the first positive edge of the clock, for example, is the

current value ofR1, i.e. ‘unknown’ (1'bx). The same is true for the value being assigned toR3
at the second positive edge ofCLK; that is, the current value ofR2,which is also1'bx. Hence,
the initial unknown states of R1, R2 and R3 are successively changed to logic 0 after three

clock pulses; in this manner, the nonblocking assignments describe what is, in effect, a 3-bit

shift register, as shown in Figure 8.4.

Figure 8.5 shows an almost identical listing to Figure 8.3, apart from the three assig-

nments in lines 17, 18 and 19, which in this case are of the blocking variety. The initial value

of regsR1,R2andR3 is unknownasbefore, and theregR0 is initializedat timezero to logic0.

The effect of the blocking assignments is apparent in the resulting simulation result shown in

Figure 8.5: all three signals change to logic 0 at the first positive edge of the CLK. This is due to
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R0 R3

R2R1

CLK

D Q

CLK

D Q

CLK

D Q

Figure 8.4 Nonblocking assignment equivalent circuit.

`timescale 1 ns/ 1 ns 1 
2 module non_blocking_assignmnts(); 

3 reg R1, R2, R3, R0, CLK; 

4 initial 
5 begin 

R0 = 1'b0;   6 
CLK = 1'b0;   7 

8   repeat(3)
9   begin 
10    #50 CLK = 1'b1; 
11    #50 CLK = 1'b0; 
12 end 
13   $stop; 
14 end

15 always @(posedge CLK)
16 begin //a sequence of non-blocking assignments
17   R1 <= R0; 
18   R2 <= R1; 
19   R3 <= R2; 
20 end

21 endmodule

0ns 50ns 100ns 150ns 200ns 250ns

non_blocking_assignmnts.CLK

non_blocking_assignmnts.R0

non_blocking_assignmnts.R1

non_blocking_assignmnts.R2

non_blocking_assignmnts.R3

Figure 8.3 Illustration of nonblocking assignments.
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the fact that the blocking assignment updates the signal being assigned prior to the next

statement in the sequential block. The result is that the three assignments become what is, in

effect, one assignment of the value of R0 to R3. The equivalent circuit of the always block

listed in Figure 8.5 is shown in Figure 8.6.

The choice of whether to use blocking or nonblocking assignments within a sequential block

depends on the nature of the digital logic being described. Generally, it is recommended that

nonblocking assignments are used when describing synchronous sequential logic, whereas

blocking assignments are used for combinational logic.

`timescale 1 ns/ 1 ns 1 

2 module  blocking_assignmnts(); 

3 reg  R1, R2, R3, R0, CLK; 

4 initial 
5 begin 

R0 = 1'b0; 6 

CLK = 1'b0; 7 

8 repeat (3)

9 begin 
10   #50 CLK = 1'b1; 

11   #50 CLK = 1'b0; 

12 end 
13   $stop; 

14 end

15 always @( posedge CLK )

16 begin //a sequence of blocking assignments
17   R1 = R0; 

18   R2 = R1; 

19   R3 = R2; 

20 end

21 endmodule

0ns 50ns 100ns 150ns 200ns 250ns

blocking_assignmnts.CLK

blocking_assignmnts.R0

blocking_assignmnts.R3

blocking_assignmnts.R2

blocking_assignmnts.R1

Figure 8.5 Illustration of blocking assignments.
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Sequential blocks intended for use within test modules are usually of the initial type;

therefore, blocking assignments are the most appropriate choice.

A related point regarding the above guidelines is that blocking and nonblocking assignments

should not be mixed within a sequential block.

8.4 DESCRIBING COMBINATIONAL LOGIC USING A SEQUENTIAL
BLOCK

The rich variety of sequential statements that can be included within a sequential block means

that the construct can be used to describevirtually any type of digital logic. Figure 8.7 shows the

Verilog HDL description of a multiplexer making use of an always sequential block.

The module header in line 1 declares the output port out as a reg, since it appears on the
left-hand side of an assignment within the sequential block. This example illustrates that

despite the keyword reg being short for register, it is often necessary to make use of the reg
object when describing purely combinational logic.

1 module mux(output reg out, input a, b, sel); 

2 always @(a or b or sel) 
3 begin
4   if (sel) 
5    out = a; 
6   else
7    out = b; 
8 end
9 endmodule

mux
out

a

b

sel

Figure 8.7 A two-input multiplexer described using an always block.

CLK

R0 R3

CLK

D Q

Figure 8.6 Blocking assignment equivalent circuit.
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The event expression in line 2 of the listing in Figure 8.7 includes all of the inputs to the block

in parentheses and separated by the keywordor. This format follows the original Verilog-1995

style; themore recent versions of the language allow either a comma-separated list or the use of

thewildcard ‘ *’ to mean any reg or wire referenced on the right-hand side of an assignment

within the sequential block.

Regardless of the event expression format used, the meaning is the same, in that any input

change will trigger execution of the statements within the block.

The sequential assignments in lines 5 and 7 are of the nonblocking variety, as recommended

previously. The value assigned toout is either thea input or theb input, depending on the state

of the select input sel.
Oneparticular aspect of usinganalways sequential block todescribe combinational logic is

the possibility of creating an incomplete assignment. This occurs when, for example, an

if. . .else statement omits a final else part, resulting in the reg target signal retaining the

value that was last assigned to it.

In terms of hardware synthesis, such an incomplete assignment will result in a latch being

created. Occasionally, this may have been the exact intention of the designer; however, it is a

more common situation that the designer has inadvertently omitted a final else or forgotten to

assign a default value to the output. In either case, most logic synthesis software tools will issue

warning messages if they encounter such a situation.

The following guidelines should be observed when describing purely combinational logic

using an always sequential block:

Include all of the inputs to the combinatorial function in the event expression using one of the

formats shown in Listing 8.1b–d.

To avoid the creation of unwanted latches, ensure either of the following is applicable:

– assign a default value to all outputs at the top of the always block, prior to any

sequential statement such as if, case, etc.;
– in the absence of default assignments, ensure that all possible combinations of input

conditions result in a value being assigned to the outputs.

The example in Figure 8.8 illustrates the points discussed above regarding incomplete

assignments.

The designer of the module latch_implied listed in Figure 8.8 has used an always
block to describe the behaviour of a selector circuit. The 2-bit input sel [1:0] selects one of

three inputs a, b or c and feeds it through to the output y.
The assumption has beenmade thatywill be driven to logic 0 ifsel is equal to2'b11. This

is, of course, incorrect: the omission of a final else clause results in y retaining its current

value (since it is a reg), hence the presence of the feedback connection between the y output

and the lower input of the left-handmultiplexer of the circuit shown in Figure 8.8. The synthesis

tool has correctly inferred a latch from the semantics of the if. . .else statement and the

reg object.

There are two alternativeways in which the listing in Figure 8.8 may be modified in order to

remove the presence of the inferred latch in the synthesized circuit. These are shown in

Figure 8.9a and b, with the corresponding latch-free circuit shown in Figure 8.9c.
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The listing shown inFigure 8.9a adds afinalelsepart in lines 12 and 13; this has the effect of
always guaranteeing the output y is assigned a value under all input conditions. Figure 8.9b

achieves the same result by assigning a default value of logic 0 to output y in line 6.

Of the alternative strategies for latch removal exemplified above, the use of default assign-

ments at the beginning of the sequential block is the more straightforward of the two to apply;

therefore, this is the recommended approach to eliminating this particular problem.

The following examples further illustrate how the Verilog HDL can be used to describe a

combinational logic function using an always sequential block. The first example, shown in

Figure 8.10, describes a three-input to eight-output decoder (similar to theTTLdevice knownas

the 74LS138).

MUX
y

0

1

a

MUX

0

1

b

MUX

0

1

c

sel[1], sel[0]sel[1]

sel[0]

sel[1]

sel[0]

1  module latch_implied(input a, b, c, 
2           input [1:0] sel, 
3          output reg y);
4  always @(*)//wildcard triggering
5  begin
6   if (sel == 2'b00) 
7    y = a; 
8   else if (sel == 2'b01) 
9    y = b; 
10   else if (sel == 2'b10) 

y = c; 11
12 end
13 endmodule

Figure 8.8 Example showing latch inference.
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The functionof thettl138module is todecode a3-bit input hA,B,Ci, andassert oneof eight
active-low outputs. The decoding is enabled by the three G inputs hG1, G2A, G2Bi, which must

be set to the value h1, 0, 0i. If the enable inputs are not equal to h1, 0, 0i, then all of the Youtputs
are set high.

Thisbehaviour is describedusinganalways sequential block that responds tochangesonall
inputs, starting in line3of the listing shown inFigure8.10.TheYoutputs are set to adefault value
of all ones in line 5 and this is followed by an if statement that conditionally asserts one of the

1   module data_selector(input a, b, c, 
2 input  [1:0] sel, 

3 output reg  y); 

4 always @(a, b, c, sel) //same as ‘*’ 
5 begin
6 if (sel == 2'b00) 
7 y = a; 

8 else if (sel == 2'b01) 
9 y = b; 

10   else if (sel == 2'b10) 
y = c; 11  

12   else //final else removes latch  
y = 1'b0; 13  

14 end
15 endmodule 

(a)

1   module data_selector(input a, b, c, 
2           input [1:0] sel, 
3           output reg y); 

4   always @(a or b or c or sel) 
5   begin 
6    y = 1'b0; //default assignment 
7    if (sel == 2'b00) 
8     y = a; 
9    else if (sel == 2'b01) 
10      y = b; 
11     else if (sel == 2'b10) 
12      y = c; 
13    end 
14  
15    endmodule 

(b)

Figure 8.9 Removal of unwanted latching feedback: (a) removal of latch using final

else part; (b) removal of latch using assignment of default output value; (c) synthesized circuit for (a)

and (b).
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Y outputs to logic 0, depending on the decimal equivalent (0–7) of hA, B, Ci, in lines 6 and 7

respectively.

Simulation of the ttl138 module is achieved using the Verilog test-fixture shown in

Figure 8.11. The test-fixture module shown in Figure 8.11 makes use of a so-called named

sequential block starting in line 6. The name of the block,gen_tests, is an optional label that

MUX
y

0

1

a

MUX

0

1

b

MUX

0

1

c

sel[1], sel[0]sel[1]

sel[0]

sel[1]

sel[0]

0

(c)

Figure 8.9 (Continued).

1 module ttl138(input A, B, C, G1, G2A, G2B,  
2     output reg [7:0] Y); 

3 always @(A, B, C, G1, G2A, G2B) 
4 begin 
5   Y = 8'hFF;  //set default output
6   if (G1 & ~G2A & ~G2B) 
7    Y[{A, B, C}] = 1'b0; 
8 end 

9 endmodule

A
B
C

G1
G2A
G2B

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

Figure 8.10 Three-to-eight decoder Verilog description and symbol.
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must be placed after a colon following the keyword begin. Naming a sequential block in this

manner (both always and initial blocks may be named) allows items, such as regs and
integers, to be declared and made use of within the confines of the block. These locally

declared objects may only be referenced from outside the block in which they are declared by

preceding the object name with the block name; for example, the integer t in the listing of

Figure 8.11 could be referenced outside of the initial block as follows:

gen_tests.t

The use of locally declared objects, as described above, allows the creation of a more

structured description. However, it should be noted that, at the time of writing, not all logic

synthesis tools recognize this aspect of the Verilog language.

The integer t is used within the initial block to control the iteration of the for loop

situated between lines 9 and 12 inclusive.The purpose of the loop is to apply an exhaustive set of

input states to the hA, B, Ci inputs of the decoder. The syntax and semantics of the Verilog for
loop is very similar to that of its C-language equivalent, as shown below:

for (initialization; condition; increment) begin
sequential statements

end

The above is equivalent to the following:

initialization;
while (condition) begin
sequential statements
. . .

increment;
end

In line 10 it can be seen how Verilog allows the 32-bit integer to be assigned directly to 3-bit

concatenation of the input signals without the need for conversion.

The timing simulation results are also included in Figure 8.11; these clearly show the

decoding of the 3-bit input into a one-out-of-eight output during the first 800 ns. During the

last 200 ns of the simulation, the enable inputs are set to 3'b000 and then 3'b011 in order to

show all of the Youtputs going to logic 1 as a result of the decoder being disabled.
Finally, it should be noted that thevery simple description of the decoder given in Figure 8.10

isnot intended tobeanaccuratemodelof the actualTTLdevice; rather, it is a simplebehavioural

model intended for fast simulation and synthesis.

A second example is shown in Figure 8.12. This shows the Verilog source description

and symbolic representation of a majority voter capable of accepting an n-bit input word.

The functionof thismodule is to drivea single-bit output namedmaj to either a logic 1or logic 0
corresponding to the majority value of the input bits. Clearly, such a module requires an odd

number of input bits greater than or equal to 3 in order to produce a meaningful output.

The module header (lines 2 and 3 of the listing in Figure 8.12) includes a parameter
named n to set the number of input bits, having a default value of 5. The use of a parameter
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3 reg   A, B, C, G1, G2A, G2B;  
4 wire   [7:0] Y; 

5 initial   
6 begin   : gen_tests 
7 integer     t; 
8 {G1, G2A, G2B} = 3'b100;    
9 for     (t = 0; t <= 7; t = t + 1) begin

{A, B, C} = t;    10  
#100;    11  

12  end   
  13  //disable the decoder

{G1, G2A, G2B} = 3'b000;   14  
#100;   15  
{G1, G2A, G2B} = 3'b011;   16  
#100;   17  
$stop;   18  

19  end

ttl138 uut(.A(A),  20  
.B(B),     21  
.C(C),     22  
.G1(G1),     23  
.G2A(G2A),     24  
.G2B(G2B),     25  
.Y(Y));    26  

27    endmodule

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

test_ttl138.gen_tests.t[31:0]

test_ttl138.Y[0]

test_ttl138.Y[1]

test_ttl138.Y[2]

test_ttl138.Y[3]

test_ttl138.Y[4]

test_ttl138.Y[5]

test_ttl138.Y[6]

test_ttl138.Y[7]

test_ttl138.Y[7:0]

test_ttl138.uut.A

test_ttl138.uut.B

test_ttl138.uut.C

test_ttl138.uut.G1

test_ttl138.uut.G2A

test_ttl138.uut.G2B

00 1 2 3 4 5 6 7 8

FE FD FB F7 EF DF BF 7F FF

1 `timescale 1 ns/ 1 ns   
2 module   test_ttl138; 

Figure 8.11 Test fixture and simulation results for the three-to-eight decoder module.
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makes the majority voter module potentially more useful due to it being scalable, i.e. the user

simply sets the parameter to the desired value as part of the module instantiation.

Two register-type objects, in the form of integers are declared in line 4. The first,

num_ones, is used to keep track of the number of logic 1s contained in the input A, and the

second, named bit, is used as a loop counter within the for loop situated in lines 10–15. A

single-bit reg named is_x is declared in line 5 to act as a flag to record the presence of any

unknown or high-impedance input bits.

Thebehaviourof themajority voter is describedusing analways sequential block commen-

cing in line 6 of the listing show in Figure 8.12. The block is triggered by changes in the input

wordA, and starts by initializingis_x andnum_ones to their default values of zero. Thefor
loop then scans through each bit of the inputword, first checking for the presence of an unknown

or high-impedance state and then incrementingnum_ones each time a logic 1 is detected.Note

the use of the case-equality operator (¼¼¼) in line 11 to compare each input bit of A explicitly

with the meta-logical values 1'bx and 1'bz:

(A [bit] ¼¼¼ 1'bx)||(A [bit] ¼¼¼ 1'bz)

1    // n-bit majority voter, (n must be odd and >= 3)
2   module majn #(parameter n = 5) 
3        (input [n-1:0] A, output maj); 

4   integer num_ones, bit; 

5   reg is_x; 

6   always @(A) 
7   begin 
8    is_x = 1'b0; 
9    num_ones = 0; 
10    for (bit = 0; bit < n; bit = bit + 1) begin
11     if ((A[bit] === 1'bx)||(A[bit] === 1'bz)) 
12      is_x = 1'b1; 
13     else if (A[bit] == 1'b1) 
14      num_ones = num_ones + 1; 
15    end 
16  end

17  assign maj = (is_x == 1'b1)? 1'bx :  
18        (n - num_ones) < num_ones;  

19  endmodule

majn

A[n-1:0] maj

Figure 8.12 Verilog description and symbol for an n-bit majority voter.

On completion of thefor loop in line 15, the sequential block suspends until subsequent events

on the input A.
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The outputmaj is continuously assigned a value based on the outcome of thealways block.
The expression in lines 17 and 18 assigns 1'bx to the output subject to the conditional

expressionbeing true, thereby indicating the presence of an unknownor high impedance among

the input bits. In the absence of any unknown input bits, the output is determined by comparing

the number of logic 1s within A (num_ones) with the total number of bits in A (n):

(n - num_ones) < num_ones

It is left to the reader toverify that the aboveexpression is true (false), i.e. yieldsa logic1 (logic0)

if num_ones is greater (less) than the number of logic 0s in the n-bit input A.
The simulation of a 7-bit majority votermodule is carried out using the test module shown in

Figure 8.13. This testmodule instantiates a 7-bit (n¼ 7)majority voter in line 5. Theinitial
block starting in line 6 sets the input to all zeros in line 8 and then applies an exhaustive set of

input values by means of a repeat loop in lines 9–12 inclusive. The expression 1 << 7, used
to set the number of times to execute the repeat loop, effectively raises the number 2 to the

power 7, by shifting a single logic 1 to the left seven times. This represents an alternative to

using the ‘raise-to-the-power’ operator ‘**’, which is not supported by all simulation and

synthesis tools.

After applying all known values to the A input of the majority voter module, the test module

thenapplies twovaluescontaining themeta-logical states (lines14–17) inorder toverify that the

module correctly detects an unknown input.

Figure 8.13 also shows a sample of the simulation results produced by running the test

module. Inspection of the results reveals that themodule correctly outputs a logic 1when four or

more, i.e. the majority of the inputs, are at logic 1. The behaviour of the internal objects

num_ones and is_x can also be seen to be correct.

8.5 DESCRIBING SEQUENTIAL LOGIC USING A SEQUENTIAL BLOCK

With the exception of the simple level-sensitive latch given in Figure 8.1, Verilog HDL

descriptionsof sequential logic are exclusivelyconstructedusing thealways sequential block.
The reserved words posedge (positive edge) and negedge (negative edge) are used within

the event expression to define the sensitivity of the sequential block to changes in the clocking

signal. Figure 8.14 shows the general forms of the always block that are applicable to purely

synchronous sequential logic, i.e. logic systems where all signal changes occur either on the

rising (a) or falling (b) edges of the global clock signal.

The use of both posedge and negedge triggering is permitted within the same event

expression at the beginning of an always block; however, this does not usually imply dual-

edge clocking. The use of both of the aforementioned event qualifiers is used to describe

synchronous sequential logic that includes anasynchronous initializationmechanism, aswill be

seen later in this section.

Figure 8.15 shows the symbol and Verilog description of what is perhaps the simplest of all

synchronous sequential logic devices: the positive-edge-triggered D-type flip flop.

The module header, in line 1 of the listing in Figure 8.15, declares the output Q to be a reg-
type signal, owing to the fact that itmust retain a value in between active clock edges. The use of

the keyword reg is not only compulsory, but also highly appropriate in this case, since Q
represents the state of a single-bit register.

Describing Sequential Logic using a Sequential Block 217



1 `timescale 1 ns/ 1 ns 
2 module test_majn; 

3 reg [6:0] Ain; 
4 wire M; 

5 majn #(.n(7)) maj7(.A(Ain), .maj(M)); 

6 initial
7 begin
8 Ain = 0; 
9 repeat (1 << 7) begin

#100; 10  
Ain = Ain + 1; 11  

12  end
#100; 13  
Ain = 7'b1001x01; 14  
#100; 15  
Ain = 7'b000zz11; 16  
#100; 17  
$stop; 18  

19 end
20 endmodule

2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0ms

test_majn.maj7.A[0]

test_majn.maj7.A[1]

test_majn.maj7.A[2]

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

test_majn.maj7.is_x

test_majn.maj7.num_ones[31:0] 33 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 2 3 3 4 3 4

10.5ms 11.0ms 11.5ms 12.0ms 12.5ms 13.0ms

test_majn.maj7.A[0]

test_majn.maj7.A[1]

test_majn.maj7.A[2]

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

test_majn.maj7.is_x

test_majn.maj7.num_ones[31:0] 55 3 4 4 5 4 5 5 6 3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7 0 3

Figure 8.13 Test fixture and simulation results for the n-bit majority voter.
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The always sequential block in lines 2 and 3 contains a single sequential statement (hence

the absence of the begin. . .end bracketing) that performs a nonblocking assignment of the

input value D to the stored output Q on each and every positive edge of the input named CLK. In
this manner, the listing given in Figure 8.15 describes an ideal functional model of a flip flop:

unlike a real device, it does not exhibit propagationdelays, nor are there anydata set-up andhold

times that must be observed. To include such detailed timing aspects would result in a far more

complicated model, and this is not required for the purposes of logic synthesis.

As mentioned previously, it is conventional to use the nonblocking assignment operator

when describing sequential logic. However, it is worth noting that the above flip-flop description

would perform identically if the assignment in line 3was of the blocking variety. This is due to the

fact that there is only one signal being assigned a value from within the always block.

1 always @(posedge clock)
2 begin
3   //sequential statement 1
4   //sequential statement 2
5   … 
6 end

clock

1 always @(negedge clock)
2 begin
3   //sequential statement 1
4   //sequential statement 2
5   … 
6 end

clock

(a)

(b)

Figure 8.14 General forms of the always block when describing synchronous sequential logic:

(a) positive-edge-triggered sequential logic; (b) negative-edge-triggered sequential logic.

1 module dff(output reg Q, input D, CLK); 

2 always @(posedge CLK) 
3   Q <= D; 

4 endmodule

CLK

D Q

Figure 8.15 A positive-edge-triggered D-type flip-flop.
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Figure 8.16 shows a Verilog test-module and corresponding simulation waveform results

for theD-type flip flop. This test module makes use of two initial sequential blocks to produce

theD andCLK inputs of the flipflop.Line 8 illustrates the use of the@(event_expression)
statement within a test module; in this case, the repeat loop waits for three conse-

cutive negative-edge transitions to occur on the CLK before setting the data input D to a logic 1.

Inspection of the timingwaveformsbelow the listing inFigure 8.16 shows that theQoutput of
the flip flop remains in an unknown state (shaded) until the first 0-to-1 transition of the clock; in

other words, the flip-flop is initialized synchronously. In addition, the change in the data inputD
appears to occur at the second falling-edge of the clock, despite the fact that the repeat loop

specifies three iterations; this apparent discrepancy isdue to thechange from theinitial state
of CLK, i.e. 1'bx, to 1'b0 at time zero, being equivalent to a negative edge at the very start of

1 `timescale 1 ns/ 1 ns 
2 module test_dff(); 

3 reg CLK, D; 

4 wire Q; 

5 initial 
6 begin
7   D = 1'b0; 
8   repeat (3) @(negedge CLK); 
9   D = 1'b1;  
10 end

11 initial 
12 begin
13   CLK = 1'b0; 
14   #100; 
15   repeat(4) begin
16    #50 CLK = 1'b1; 
17    #50 CLK = 1'b0; 
18   end 
19   $stop; 
20 end

21 dff dut(.Q(Q), .D(D), .CLK(CLK));  

22 endmodule 

0ns 100ns 200ns 300ns 400ns

test_dff.dut.CLK

test_dff.dut.D

test_dff.dut.Q

Figure 8.16 D-type flip-flop test module and waveforms.
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the simulation run. Finally, it can be seen that the Q output of the flip-flop changes state

coincident with the rising edge of the clock, in response to the change from logic 0 to logic 1

on the data input at the preceding clock falling edge.

The following examples illustrate how the always sequential block is used to describe a

number of common sequential logic building blocks.

Figure 8.17 shows the symbol and Verilog description for a 4-bit binary counter having an

active-high asynchronous reset input. The input named reset takes priority over the synchro-

nous clock input and, when asserted, forces the counter output to zero immediately. This

aspect of the behaviour is achieved bymeans of the reference to posedge reset in the event

expression in line 4 along with the use of the if. . .else statement in lines 6–9 of the listing in

Figure 8.17.

The presence of the event qualifier posedge before the input reset might imply that

the module has two clocking mechanisms. However, when this is combined with the test for

reset¼¼1'b1 in line6, theoverall effect is tomakereset act as anasynchronous input that
overrides the clock.

When the reset input is at logic 0, a rising edge on the clock input triggers the always
block to execute, resulting in the count being incremented by the sequential assignment

statement located within the else part of the if statement (see line 9).

Consistent with previous sequential logicmodules, the 4-bit counter makes use of nonblock-

ing assignments directly to the 4-bit output signal, this having been declared within the module

header as being of typereg, in line 3. Note that Verilog allows an output port such ascount to

appear oneither side of the assignment operator, allowing thevalue to be eitherwritten to or read

from. This is evident in line 9 of the listing in Figure 8.17, where the current value of count is

incremented and the result assigned back to count.
Figure8.18 showsa testmoduleand thecorrespondingsimulation results for the4-bit counter.

The waveforms clearly show the count incrementing on each positive edge of the clock input,

until the asynchronous reset input RST is asserted during the middle of the count ¼ 8 state,

immediately forcing the count back to zero.

1 // A 4-bit UP Counter with asynchronous reset 
2 module cntr4(input clock, reset,  
3       output reg [3:0] count); 

4 always @(posedge reset or posedge clock) 
5 begin
6   if (reset == 1'b1)
7    count <= 4'b0000; 
8   else  //synchronous part
9    count <= count + 1; 
10 end

11 endmodule

cntr4
reset

count [0..3]
clock

Figure 8.17 Verilog description of a 4-bit counter.
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1 `timescale 1 ns/ 1 ns 
2   module test_cntr4(); 

3   reg CLK, RST; 
4   wire [3:0] Q; 

5   initial 
6   begin 
7 RST = 1'b1; 
8 repeat (3) @(negedge CLK); 
9 RST = 1'b0; 
10  repeat (8) @(negedge CLK); 

RST = 1'b1; 11    
@(12    negedge CLK); 
RST = 1'b0; 13    

14  end

15  initial
16  begin

CLK = 1'b0; 17    
#100; 18    

19  repeat(30) begin
#50 CLK = 1'b1; 20    
#50 CLK = 1'b0; 21    

22  end 
$stop; 23    

24  end

25  cntr4 dut(.clock(CLK), .reset(RST), .count(Q)); 

26    endmodule

0ns 500ns 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

test_cntr4_ar.dut.clock

test_cntr4_ar.dut.reset

test_cntr4_ar.dut.count[0]

test_cntr4_ar.dut.count[1]

test_cntr4_ar.dut.count[2]

test_cntr4_ar.dut.count[3]

test_cntr4_ar.dut.count[3:0] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2

900ns 1.0ms 1.1ms 1.2ms 1.3ms

test_cntr4_ar.dut.clock

test_cntr4_ar.dut.reset

test_cntr4_ar.dut.count[0]

test_cntr4_ar.dut.count[1]

test_cntr4_ar.dut.count[2]

test_cntr4_ar.dut.count[3]

test_cntr4_ar.dut.count[3:0] 5 6 7 8 0 1

Figure 8.18 Verilog test-module and simulation results for the 4-bit counter.
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As expected, the 4-bit count value automatically wraps around to zero on the next positive

edge of the clock when the count of all-ones (4'b1111) is reached.
The next example of a common sequential logic module is given in Figure 8.19, showing the

Verilog description and symbol for a 4-bit shift register. The module header declares an active-

low asynchronous clear input named clrbar and a synchronous control input named shift,
the latter enables the contents of the shift register (4-bit output reg q) to shift left on the active
clock edge.

The sequential always block is triggered by the following event expression in line 5 of the

listing shown in Figure 8.19:

always @(negedge clrbar or posedge clock)

The presence of the qualifier negedge indicates that it is the logic 1 to logic 0 transition

(negative edge) of the input clrbar that triggers execution of the sequential block. This, in

conjunction with the test for clrbar being equal to logic 0, at the start of the if. . .else
statement in line 7, implements the asynchronous active-low initialization.

In line 9, the inputshift is comparedwith logic 1 at each positive edge of the clock input. If

this is true, then the following statement updates the output q:

q <¼ {q [2:0], serial};

The above sequential assignment shuffles the least significant three bits of q into the three most

significant bit positions while simultaneously clocking the serial data input (serial) into the
least significant bit position. In other words, a single-bit, left-shift operation is performed for

each clock cycle that shift is asserted.

The corresponding test module for the shift register is provided in Figure 8.20. The module

test_shift4 is very similar to the testmodule shown inFigure8.18 for the4-bit counter.Two

1 //A 4-bit shift register with  
2 //asynch active-low reset and shift enable 
3 module shift4(input clock, clrbar, shift, serial,  
4        output reg [3:0] q); 

5 always @(negedge clrbar or posedge clock) 
6 begin
7   if (clrbar == 1'b0) 
8    q <= 4'b0; 
9   else if (shift == 1'b1)  //synchronous part
10    q <= {q[2:0], serial};   
11 end

12 endmodule 

shift4

shift
q[0..3]

clock

clrbar

serial

Figure 8.19 Verilog description of a 4-bit shift register.

Describing Sequential Logic using a Sequential Block 223



CLRB = 1'b1; 17  
18  repeat (6) begin

@(19  negedge CLK); 
SER = ~SER; 20  

21  end 
22  end

23  initial
24  begin

CLK = 1'b0; 25  
#100; 26  

27  repeat(30) begin
#50 CLK = 1'b1; 28  
#50 CLK = 1'b0; 29  

30  end 
$stop; 31  

32  end

shift4 dut(.clock(CLK), .clrbar(CLRB),  33  
.shift(SFT), .serial(SER), .q(Q)); 34  

35    endmodule

0ns 500ns 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

test_shif t4_ar.dut.clock

test_shif t4_ar.dut.clrbar

test_shif t4_ar.dut.shif t

test_shif t4_ar.dut.serial

test_shif t4_ar.dut.q[0]

test_shif t4_ar.dut.q[1]

test_shif t4_ar.dut.q[2]

test_shif t4_ar.dut.q[3]

test_shif t4_ar.dut.q[3:0] 0 1 3 7 F 0 1 2 5 A 5 A 5 B 7 F

1 `timescale 1 ns/ 1 ns
2 module test_shift4(); 

3 reg CLK, CLRB, SFT, SER; 

4 wire [3:0] Q; 

5 initial 
6 begin 
7 CLRB = 1'b0; 
8 SFT = 1'b0; 
9 SER = 1'b1; 
10  repeat (2) @(negedge CLK); 

CLRB = 1'b1; 11  
12  repeat (3) @(negedge CLK); 

SFT = 1'b1; 13  
14  repeat (6) @(negedge CLK); 

CLRB = 1'b0; 15  
@(16  negedge CLK); 

Figure 8.20 Verilog test-module and simulation results for the 4-bit shift register.
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initial sequential blocks are used, one to provide an input stimulus and the other a set of

clock pulses; the resulting simulation waveforms are also shown in Figure 8.20.

The previous two examples have shown how a sequential logic module can be described

having either a single active-high or active-low asynchronous reset. The following example

shows how both asynchronous reset and set inputs can be accommodated, if required.

Figure 8.21 shows the Verilog module and symbol for a D-type flip-flop having true and

complementary outputs along with both a set input and a reset input for asynchronous

initialization to either logic 1or logic 0 respectively.Note that, in general, although this example

makes use of only active-high control inputs, any combination of active-high and active-low

control can be described by use of the posedge and negedge event qualifiers.

Lines 4 and 5 of the listing given in Figure 8.21 or together three inputs to form the

event expression, one of which (clk) is the synchronous clock. This event expression,

combined with the nested if. . .else. . .if. . .else statement, implements the hierarch-

ical reset and set operations in conjunction with synchronous clocking. Notice the use of the

begin. . .end bracketing to enclose the two assignments that make up each part of the

if. . .else statement.

1 //D-Type FF with asynch. Set and Reset
2  module dff_asr(output reg q, qb,  
3         input d, clk, set, reset); 

4  always @(posedge clk or posedge set 
5       or posedge reset)
6  begin
7   if (reset) begin //reset has highest priority 
8    q <= 0; 
9    qb <= 1; 
10     end else if (set) begin //set has second highest 
11      q <= 1; 
12      qb <= 0; 
13     end else begin //clock when set and reset are low
14      q <= d; 
15      qb <= ~d; 
16     end
17    end 
18    endmodule

clk

d q

qb

se
t

re
se

t

Figure 8.21 D-type flip-flop with asynchronous set and reset.
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In certain situations it may be necessary, or indeed desirable, to perform all initialization

synchronously. In this case, all assignments to thereg-typeoutputs of a sequential logicmodule

are synchronized to the positive or negative edges of the master clock input.

The example shown in Figure 8.22 illustrates how the above can be implemented. The figure

shows a Verilog module and symbol for a fully synchronous 8-bit data register. The event

expression in line 5 of the listing shown in Figure 8.22 refers only to the positive edge of theClk
input. Therefore, all assignments to Dataout are subject to this condition, including the reset

operation that occurs when Rst is at logic 1.

The last example in this section is a Verilog design that makes use of various aspects from

previous examples, such as scalability, synchronous clocking and behavioural modelling.

Figure 8.23 shows the listing and symbolic representation for a so-called universal register/

counter capable of performing a number of useful operations, in addition to having scalable

input and output data ports. The latter is achieved by means of a parameter named size
declared in the module header.

The module unireg, as well as being a parallel data register, is capable of performing the

function of an up/down counter as well as providing left and right shifting. The number of bits

thatmakeup the register is definedby aparameter in line 2of the listing, and, as shown, it is set to

a default value of 8.

1  //An 8-bit register with synchronous reset 
2  module REG8SR(output reg [7:0] Dataout, 
3      input [7:0] Datain, 
4      input Rst, Clk); 

5  always @(posedge Clk) //triggers on ‘Clk’ only
6  begin 
7   if (Rst) 
8    Dataout <= 0; 
9   else 
10      Dataout <= Datain; 
11    end 
12    endmodule

REG8SR

Datain[0..7] Dataout[0..7]

Rst

Clk

Figure 8.22 Example of a module using synchronous reset.
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8 always @(posedge clock) //synchronous counter
9 begin 
10 case (mode) 
11  0 : dataout <= 0;        //clear
12  1 : dataout <= datain;   //parallel load
13  2 : dataout <= dataout + 1;   //increment
14  3 : dataout <= dataout - 1;  //decrement
15  4 : begin //shift left using  ‘<<’ operator 
16   dataout <= dataout << 1; 
17   dataout[0] <= serinl; 
18  end 
19    //shift right using concatenation 
20  5 : dataout <= {serinr, dataout[size-1:1]}; 
21 default : dataout <= dataout;  //refresh 
22 endcase
23 end 

24 //continuous assignment to detect zero 
25 assign termcnt = (mode == 3) ? ~|dataout :  
26        ((mode == 2) ? &dataout : 0);  

27 endmodule

unireg

dataout[0..size]

clock

serinl

serinr

mode[0..2]

datain[0..size]

termcnt

1 //Scalable Universal Register/Counter  
2 module unireg #(parameter size = 8)  
3       (input clock, serinl, serinr,  
4     input [2:0] mode, 
5     input [size-1:0] datain,  
6     output reg [size-1:0] dataout,  
7     output termcnt); 

Figure 8.23 A universal counter/register module.
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Thedataoutport of theuniregmodule constitutes the register itself; this is declared in line

6of themoduleheader. Eachoperation that the register performs is synchronizedwith the positive

edges of theclock input; the natureof the operation is determined bya3-bit control input named

mode declared in line 4. The function selection nature of the mode input is implemented using a

case. . .endcase statement between lines 10 and 22; each possible value ofmode corresponds

to one of the unique branches situated in lines 11–21. There are a total of seven operatingmodes,

the last (mode¼ 6 or 7) being covered by the final default branch in line 21.

Serial data inputs are provided for left and right shifting, via input ports serinl and

serinr respectively. With reference to the listing in Figure 8.23, lines 15–18 correspond

to the shift left operation (mode ¼ 4), where the register bits are shifted to the left by one

position and the serial data present on input port serinl is loaded into bit 0 of the register.

This synchronous data movement is achieved through the use of two nonblocking assign-

ments in lines 16 and 17.

Amodevalue of 5 corresponds to a right shift. This corresponds to line 20of the listing,where

the concatenation operator is used to move the most significant size-1 bits into the least

significantsize-1bit positions. The leftmost bit (MSB) of the register is loadedwith the serial

data applied to the serinr input port.

Operatingmodes 0 to 3 are self-explanatory; these correspond to the sequential assignments

situated in lines 11–14 of the listing in Figure 8.23.

The remainingmode of operation is covered by thedefault branch of thecase statement;

this is the refresh mode, corresponding to a mode value of 6 or 7. The default sequential

assignment simply assigns the registerwith the current value ofdataout, i.e. itself. This could
have been achieved in an alternative manner, as shown below:

default: ; // refresh using null statement

The null statement (;) is a ‘do nothing’ statement; in the above context it indicates that the

dataout register is to retain its current value by virtue of not being updated. The choice of

whether to use this method of retaining or refreshing the value stored in a reg-type signal, as
opposed to the method shown in line 21, is a matter of personal preference.

The last output port of theuniregmodule is awire-type signal namedtermcnt, which is
a shortened form of ‘terminal count’. The purpose of this output is to indicate when the register

has reached themaximum orminimum valuewhen operating in count-up or count-downmode

respectively.

Theflexiblenatureof thedataout register lengthmakes it difficult to compare itwith afixed

maximumvalue such as8'hFF; this problem is overcomeby the use of the conditional operator

and the bitwise reduction operators, as shown in the continuous assignment in lines 25 and 26 of

the listing of Figure 8.23, and repeated below:

assign termcnt¼ (mode¼¼ 3) ?�|dataout:((mode¼¼ 2) ? &dataout: 0);

The above expression detectswhen the operatingmode is either ‘count-up’ (2) or ‘count-down’

(3) and respectively assigns the reduction AND or the reduction NOR of dataout to the

termcnt port. It is straightforward to appreciate that the expression will result in a logic 1 if

mode is equal to 2 (3) and all of the register bits are logic 1 (logic 0), otherwise the above

expression will be a logic 0.
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Figure 8.24 includes a listing of a test module named Test_unireg, the purpose of which
is to allow simulation of the universal register/counter described above. The module contains

a declaration of a local parameter (test_size) in line 3 that is effectively a constant value for
use within the enclosing module. In this case, the local parameter test_size is assigned the

value 4.This corresponds to the number of bits contained in the parallel data inputreg, and data
output wire, connected to the register (see lines 7 and 9), as well as being used to override the
value of the parameter that sets the width of the instantiated universal register/counter

(size). This latter use of a local parameter, to determine the value of a parameter used in a

scalable module, is implemented in line 12 of the test module shown in Figure 8.24.

The test module shown in Figure 8.24 includes two initial sequential blocks, the first of

which generates a repetitive clock signal in lines 20–25 inclusive. The second initial block,

spanning lines 26–49, generates a sequence of stimulus signals to exercise the various operating

modesof theuniversal register/counter.Theresultsof running thesimulationare shownbelowthe

listing in Figure 8.24.

After clearing the register to zero by forcing the mode input to zero, the register is

then set to counting-up mode (2) for 30 clock cycles. Inspection of the simulation

waveforms clearly shows the data output bits counting up in binary, during which the

terminal count (termcnt) output goes high coincident with a data output value of all

ones.

The test module then sets the mode control to count-down mode (3) for a further 30 clock

cycles. The data output bits follow a descending sequence and, as expected, the terminal

count output is asserted when the state of all zeros is reached. The other operating modes of

the universal register/counter are activated by subsequent statements in the initial block,

shifting left (mode ¼ 4) and shifting right (mode ¼ 5), parallel load (mode ¼ 1) and
refresh (mode ¼ 7) between lines 38 and 47; the simulation is stopped by the system

command in line 48.

8.6 DESCRIBING MEMORIES

This section presents some very simple modules that can be used as rudimentary

simulation models of RAM and ROM. These modules lack the timing accuracy and

sophistication of the Verilog simulation models that are occasionally provided by

commercial memory-device manufacturers. However, they can nevertheless be used

effectively whenever a fast, functional model is required as part of a larger system

simulation.

The Verilog descriptions discussed in this section serve to further reinforce some of the

aspects that have already been covered, such as scalability and the use of parameters, as well as

behavioural modelling with sequential blocks. In addition to these important elements of

Verilog, the memory models presented here make use of other features not yet covered in

previous chapters; these are as follows:

� arrays – the principle mechanism used to model a memory;

� bidirectional ports – the ability to use a single port as an input or output;

� memory initialization – loading a memory array with values from a file.
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2 module Test_unireg(); 

3 localparam test_size = 4; //size of the unireg 

4 //inputs 
5 reg clock, serinl, serinr; 
6 reg [2:0] mode; 
7 reg [test_size-1:0] datain; 

8 //outputs 
9 wire [test_size-1:0] dataout; 
10 wire termcnt; 

11 //instantiate the unireg module, 4-bits in size 
unireg #(.size(test_size))          12  

mut(.clock(clock),  13  
.serinl(serinl),  14  
.serinr(serinr),  15  
.mode(mode), 16  
.datain(datain),  17  
.dataout(dataout),  18  
.termcnt(termcnt)); 19  

20 initial //generate a 100 ns clock 
21 begin

clock = 0; 22  
23 forever 

#50 clock = ~clock; 24  
25 end

26 initial //apply test inputs 
27 begin

serinl = 0; 28  
serinr = 1; 29  
mode = 0; 30  
datain = 'h9; 31  
#200 mode = 2; 32  

33 repeat (30)  //wait for 30 clock edges
@(34  posedge clock); 

mode = 3; 35  
36 repeat (30)  

1 `timescale 1 ns/1 ns

Figure 8.24 Test module and simulation results for universal register/counter.

230 Describing Combinational and Sequential Logic using Verilog HDL



TheVerilog language does not support the creation of a new and distinct composite type such

as an array or record; instead, an array of regs can be declared using the following syntax (an
array of wires can be declared in a similar manner):

//An array of m, n-bit regs
reg [n-1:0] mem [0:m-1];

47    #1000; 
48    $stop; 
49 end
50 endmodule 

0ms 1ms 2ms 3ms 4ms

Test_unireg.mut.clock

Test_unireg.mut.mode[2:0]

Test_unireg.mut.datain[3:0]

Test_unireg.mut.serinl

Test_unireg.mut.serinr

Test_unireg .mut.termcnt

Test_unireg.mut.dataout[0]

Test_unireg.mut.dataout[1]

Test_unireg.mut.dataout[2]

Test_unireg.mut.dataout[3]

Test_unireg.mut.dataout [3:0]

00 2 3

0 1 2 4 7 9 2 5 7 8 9 7 6 4 3 1

6ms 7ms 8ms 9ms

Test_unireg.mut.clock

Test_unireg.mut.mode[2:0]

Test_unireg.mut.datain[3:0]

Test_unireg.mut.serinl

Test_unireg.mut.serinr

Test_unireg .mut.termcnt

Test_unireg.mut.dataout[0]

Test_unireg.mut.dataout[1]

Test_unireg.mut.dataout[2]

Test_unireg.mut.dataout[3]

Test_unireg.mut.dataout [3:0]

4 5 1 2 7

7 6 5 4 3 2 1 0 8 F 9 F 0 1

3

37     @(posedge clock); 
38    mode = 4; 
39   repeat (8) 
40     @(posedge clock); 
41    mode = 5; 
42   repeat (8) 
43     @(posedge clock); 
44    mode = 1; 
45    #400 mode = 2; 
46    #800 mode = 7; 

Figure 8.24 (Continued ).
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The above line declares an array having m elements, each one comprising an n-bit reg. In
this manner, the object named mem can be viewed as a two-dimensional array of bits, i.e.

a memory.

The capabilities of the Verilog language in terms of array handling were considerably

enhanced with the release of the Verilog-2001 standard, with multidimensional arrays and

the ability to reference an individual bit directly being two of the key improvements. The

aforementioned new features provided by the update are not required by the simple memory

models presented here, however; for further information, see Reference [2].

The other feature commonly made use of in memory models is bidirectional data commu-

nication. Most RAMs make use of a bidirectional three-state data bus to allow both read and

write accesses using a single set of buswires. TheVerilog language provides for this bymeans of

theinoutportmode, alongwith thebuilt-in simulation support for the high-impedance state in

conjunctionwith the resolutionofmultiple signal drivers. It shouldbenoted that theinoutport
is modelled as a wire having one or more drivers. During a read operation, for example, the

inout port is driven by the value being accessed from thememory array; otherwise it is driven

to the high-impedance state.During awrite operation to aRAM, the port is drivenby an external

source which, combined with the high-impedance value being driven onto the data bus by the

memory module itself, automatically resolves to a value to be written into the memory array.

Figure 8.25 shows the symbol andVerilog description of a simple and flexible RAMmodule.

The model is general purpose insofar as it provides scalable address and data buses, allowing

different-sized memories to be instantiated.

Line4of the listingof themodulenamedramdeclares theparametersAwidthandDwidth.
Thesedefine thewidthof theaddressanddataports subsequentlydeclared in lines6and7of
themodule header. Three active-low control signals are declared in line 5, having the following

functionality:

� web – write-enable, writes data into the memory array when low;

� ceb – chip-enable, enables the memory for reading or writing;

� oeb – output-enable, drives the data from the memory array onto the data port during a read

operation.

The length of thememory array is equal to the number 2 raised to the power of the number of

address input bits, i.e. 2Awidth. The local parameter declared on line 8 computes this value by

means of the shift-left operator (since, as mentioned previously, not all simulators support the

‘**’ operator).
The localparam Length is then used in the declaration of the memory array in line 9 of

the listing in Figure 8.25.

Lines 11 and 12 describe the logic for a memory read operation using a continuous assign-

ment, as repeated below:

assign data ¼ (�ceb & �oeb & web) ?
mem [address]: 'bz;

The above statement is executed whenever a change occurs in any of the signals on the right-

hand side of the assignment operator (¼); this includes all of thememory control inputs, as well

as the address value.
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The inclusion of the condition that ‘write-enable’ must be a logic 1 during a read limits the

possibility of a so-called bus contention, the result of trying to perform a read and a write

simultaneously.

The memory word being read is accessed using the familiar array indexing notation ([])
found in the C language and alsowhen accessing individual bits or bit ranges of amulti-bitreg
or wire.

It shouldbepointedout that theVerilog-1995 languagedoesnot allowpart- orbit-selects tobe

used in conjunctionwith anarrayaccess, this beingoneof the enhancements introducedwith the

update resulting in Verilog-2001. This limitation does not affect the simple memory models

discussed here, since all accesses to memory arrays are to whole words only.

The use of a continuous assignment in lines 11 and12of the listing inFigure 8.25 is consistent

with the definition of the data port as mode inout, effectively making it behave as a wire.
The continuous assignment will drive the bidirectional data ports of the memory module with

the high-impedance state if the condition preceding the ‘?’ is false.

1   //A generic static random access memory  
2   //Awidth is no. of address lines 
3   //Dwidth is no. of data lines 

4 module ram #(parameter Awidth = 8, Dwidth = 8) 
5     (input web, oeb, ceb,   
6      inout [Dwidth-1:0] data,   
7     input [Awidth-1:0] address); 

8 localparam Length = (1 << Awidth);  

9 reg [Dwidth-1:0] mem[0:Length-1]; //memory array

10 //memory read 
11 assign data = (~ceb & ~oeb & web) ?  
12 mem[address] : 'bz; 

13 //memory write 
14 always @(posedge web) //occurs on 0-1 transition on web
15   if ((ceb == 1'b0) && (oeb == 1'b1))  

mem[address] = data;  16     

17 endmodule 

ram
web

ceb

oeb

address[Awidth:0]

data[Dwidth:0]

(2Awidth x Dwidth)

Figure 8.25 Verilog description and symbol for a simple RAM.
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The memory write operation is implemented by the sequential always block in lines

14–16 of the listing in Figure 8.25. The incoming data value is latched into the memory

array at the rising edge of the active-low ‘write-enable’ control input, providing the

memory is enabled and not attempting to perform a read. In this case, the bidirectional

data ports of the memory are being used as input wires; the Verilog simulator automati-

cally resolves the value on the data port from the combination of the high-impedance state

being assigned by the continuous assignment in lines 11 and 12 and the value being driven

onto the port from the external source.

Figure 8.26 shows the Verilog source description of a test module for the ram model of

Figure 8.25.An important aspect of the testmoduletest_ram is the requirement todeclare the

local signal tobeconnected to thebidirectional data port of theram as awire rather than areg,
as would normally be the case if it were purely an input.

Thewirenameddata, declared and continuously assigned in lines 9 and10,must bedriven

to the high-impedance state when the memory is being operated in read mode.

In order to achieve the above, the test module makes use of a single-bit reg, named

tri_cntr (short for tri-state control), to control when the data to be written, data_reg, is
driven onto the bus wire data. During write operations, tri_cntr is set high to enable the

data_reg values to be written to the memory array, whereas during read operations

tri_cntr is forced to logic 0 with the corresponding effect of making the data bus wire

high impedance.

A16-byteRAMis instantiated in the testmodule in lines35–38,byoverriding theaddress and

data width parameters with the numbers 4 and 8 respectively. The initial sequential block,

starting at line 11, performs a sequence of 10writes to the address locations 0 to 9; the data being

written is an alternating sequence containing the hexadecimal values 8' h55 and 8'hAA. At
the end of this sequence of writes the address is reset back to zero and the data bus wire is

driven to the high impedance state by setting tri_cntr to logic 0 in line 26. The second

repeat loop situated between lines 27and32 thenperforms10 readoperations fromaddresses

0 to 9, as above.

Figure 8.27 shows a block diagram to illustrate the structure of the test module described in

Figure 8.26.

Simulationof the test-module results in thewaveforms shownbelow the listing inFigure8.26.

As shown, the write operations occur as a result of the webar pulses being applied during the

middleof eachvalid address anddatavalue interval.The resulting storedvalues are then readout

by disabling the datareg source by lowering tri_cntr, and then applying a sequence of

oebar pulses while incrementing the address.

A ROM can be used wherever there is a need to store and retrieve fixed data during a

simulation. For example, a set of test patterns could be stored in a ROM and subsequently

used as test data (both stimulus and responses) for amodule under test during the execution of a

test module.

An embedded microcontroller may make use of an external ROM to store the fixedmachine

code program it will fetch and execute as part of a system-level simulation.

A simple Verilogmodel of a ROM, alongwith the corresponding symbolic representation, is

given in Figure 8.28. In commonwith the RAM described above, the memory is designed to be

scalable, having parameters to define thewidth of both the address bus and the data bus declared

as part of the module header.

234 Describing Combinational and Sequential Logic using Verilog HDL



1 //test module for a 16-byte RAM

2 `timescale 1 ns/ 1 ns   
3 module   test_ram; 

4 reg   webar, oebar, csbar; 
5 reg   [7:0] datareg; 
6 reg   tri_cntr;  //data hi-z control
7 reg   [3:0] address; 
8 //three-state buffer for data input/output
9 wire   [7:0] data = (tri_cntr == 1'b1)?  
10       datareg : 8'bz; 
11 initial
12 begin : test 

tri_cntr = 1'b1;   13  //make data available
webar = 1'b1; oebar = 1'b1;    14  
csbar = 1'b1; datareg = 8'b01010101;   15  
address = 4'd0;   16  
#10 csbar = 1'b0;   17  

18 repeat   (10) //perform 10 writes
19 begin   

#10 webar = 1'b0;    20  
#10 webar = 1'b1;    21  
#10 address = address + 1;    22  
datareg = ~datareg;    23  

24   end   
address = 4'd0;   25  
tri_cntr = 1'b0;  //make data high impedance  26  

27 repeat   (10)  //perform 10 reads
28 begin   

#10 oebar = 1'b0;    29  
#10 oebar = 1'b1;    30  

 #10 address = address + 1;    31  
32  end   
33 $stop;
34 end

ram #(.Awidth(4), .Dwidth(8)) 35  
ram_ut(.web(webar),     36  

.oeb(oebar), .ceb(csbar),      37 

.data(data), .address(address));     38  
39 endmodule

Figure 8.26 Test module and simulation results for the simple RAM.
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As in the case of the RAM module of Figure 8.25, the module rom in Figure 8.28 uses a

localparam to calculate the length of the memory using the number of address bits at line 6,

and then goes on to declare the actual memory array at line 7. The behaviour of the model is

encapsulated in a single continuous assignment in line 8 of the listing in Figure 8.28; this

statement assigns the contents of the memory array mem, indexed at location address, to the
dataoutputport, providing that theoutputenablecontrol inputoeb is asserted.Note that, in the
case of theROM, thedata output port is ofmodeoutput rather thaninout, since data are only
ever read from themodule.With theoutput enable control input at logic1, thedataoutput is set to

the high-impedance state.

The actual contents of the ROM array mem are not specified anywhere in the Verilog

description shown in Figure 8.28. For this type of ROM description, the stored data are defined

externally, in an ASCII text file, and loaded into the memory array at the beginning of the

0ns 50ns 100ns 150ns 200ns 250ns 300ns

testram.ram_ut.address [3:0]

testram.datareg[7:0]

testram.tri_cntr

testram.csbar

testram.webar

testram.oebar

testram.ram_ut.data[7:0]

00 1 2 3 4 5 6 7 8 9

5555 AA 55 AA 55 AA 55 AA 55 AA

5555 AA 55 AA 55 AA 55 AA 55 AA

300ns 350ns 400ns 450ns 500ns 550ns 600ns

testram.ram_ut.address [3:0]

testram.datareg[7:0]

testram.tri_cntr

testram.csbar

testram.webar

testram.oebar

testram.ram_ut.data[7:0]

9 0 1 2 3 4 5 6 7 8 9

AA 55

AA ZZ 55 ZZ AA ZZ 55 ZZ AA ZZ 55 ZZ AA ZZ 55 ZZ AA ZZ 55 ZZ AA

Figure 8.26 (Continued ).

data[7:0]

ram
web

ceb

oeb

address[0..3]

data[0..7]

test
webar

oebar

cebar

tri_cntr

address[0..3]

datareg[0..7]

initial block

ram_ut

three-state buffer

reg

reg

reg

reg

reg

reg

wire

Figure 8.27 Block diagram of the module test_ram.
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simulation. This method of initializing a ROM can also be used for a RAM, if required. It also

provides a convenientway of loading a large amount of data into amemory fromafilegenerated

by a third-party tool, such as an assembler.

There are two ‘system commands’ that are available for loading a memory array from a text

file:

� $readmemb(‘‘filename’’, array_name);
� $readmemh(‘‘filename’’, array_name);

The difference between the two functions lies in the format used to represent the stored data

within the text file; the first function requires the data to be entered into the text file in binary,

whereas the second makes use of a text file containing hexadecimal values.

Listing 8.2 shows the contents of an example text file containing binary data values for

loading into amemory array. The first line specifies the numeric address, in hexadecimal format,

of the starting location. This is usually equal to zero. Subsequent use of the @hex_address
delimiter allows the memory to be initialized in discrete sections with different blocks of data.

@0
1010 0000 1111 1011 0010 1001 0110 1110
0111 1101 1011 1111 0000 0001 0010 0101

1 //a scalable read only memory module
2 module rom #(parameter Awidth = 8, Dwidth = 8)   
3     (input oeb,   
4     output [Dwidth-1:0] data,   
5     input [Awidth-1:0] address); 

6 localparam Length = (1 << Awidth);  

7 reg [Dwidth-1:0] mem[0:Length-1]; //memory array

8 assign data = (oeb == 1'b0) ? mem[address] : 'bz; 

9 endmodule

rom

oeb

address[Awidth:0]

data[Dwidth:0]

(2Awidth x Dwidth)

Figure 8.28 Verilog description of a ROM.
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1010 0000 1111 1011 0010 1001 0110 1110
0111 1101 1011 1111 0000 0001 0010 0101

Listing 8.2 Contents of the file rom_data.txt.

The actual data values are listed in the order theywill be stored inmemory separated bywhite

space, such as one or more space characters or the new-line character. If the number of values

1 `timescale 1 ns/ 1 ns 
2 module Test_rom(); 

3 wire [3:0] Data; 

4 reg [4:0] Address; 

5 reg oebar; 

6 initial //initialise rom with data from file
7 $readmemb("rom_data.txt", dut.mem); 

8 rom  #(.Awidth(5), .Dwidth(4))   
9 dut(.oeb(oebar),   

.data(Data),   10  

.address(Address)); 11  

12 initial
13 begin

Address = 0; 14  
15 repeat (32) //read entire rom contents
16 begin 

oebar = 1'b1; 17  
#25 oebar = 1'b0; 18  
#50 oebar = 1'b1; 19  
#25; 20  
Address = Address + 1; 21  

22 end 
$stop; 23  

24 end
25 endmodule

0ns 200ns 400ns 600ns 800ns 1.0µs 1.2µs

Test_rom.dut.address[4:0]

Test_rom.dut.oeb

Test_rom.dut.data[3:0]

0000 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D

ZZ A Z 0 Z F Z B Z 2 Z 9 Z 6 Z E Z 7 Z D Z B Z F Z 0 Z 1 Z

Figure 8.29 Verilog test-module for the ROM.
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contained within the text file is less than the size of the memory array, then the remaining

memory array locations are undefined.

The text file namefield‘‘filename’’ is a valid path name to the text file containing the data.

The exact format usedhere dependson the operating systemof the computer used to perform the

Verilog simulation, but generally the name of the text file is all that is required if the file is in the

same location (folder or directory) as the Verilog source files that make use of it.

The call to the system commands $readmemb() and $readmemh()may be made from

within theactualmemorymodule itself, inwhich case thearray_namefield refers to thename

of the memory array defined within the enclosing module, e.g. mem in the listing shown in

Figure 8.28.

In the present example, the initialization of the ROM memory array is performed within

the test-module Test_rom, shown in Figure 8.29. Here, an initial block in lines 6 and 7,

containing a single statement, loads the binary data shown inListing 8.2 into thememory array:

$readmemb(''rom_data.txt'', dut.mem);

As shown above, the reference to mem must be preceded by the instance name of the rom
being instantiated in lines 8–11 of the listing shown in Figure 8.29. The default values of the

address and data widths of the ROM are overridden such that a ‘32 � 4’ (32 words, 4-bits per

word) memory is instantiated; this corresponds to the memory array values defined by the

rom_data.txt file shown in Listing 8.2.

The remainder of the test module shown in Figure 8.29 corresponds to an initial block

between lines 12 and 24 that reads each stored value out from the memory array, from location

0 to31.The resulting simulationwaveforms shownbelow the listing inFigure8.29 illustrate this

process; careful inspection of the data values output during the periodswhenoebar is asserted

reveals that they are identical to those stored in the text file rom_data.txt.
The last example in this section on Verilog memories shows an alternative approach to

describing aROM.Listing 8.3 shows the source description of amodule namedrom_case. As
the name suggests, this variation of a ROM makes use of the Verilog case. . .endcase
sequential statement.

1 //read only memory using a case statement
2 module rom_case #(parameter Awidth ¼ 8, Dwidth ¼ 8)
3 (input oeb,
4 output [Dwidth-1:0] data,
5 input [Awidth-1:0] address);

6 reg [Dwidth-1:0] data_i;

7 always @(address)
8 begin
9 case (address) //define rom contents
10 0: data_i ¼ 'h88;
11 1: data_i ¼ 'h55;
12 2: data_i ¼ 'haa;
13 3: data_i ¼ 'h55;
14 4: data_i ¼ 'hcc;
15 5: data_i ¼ 'hee;
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16 6: data_i ¼ 'hff;
17 7: data_i ¼ 'hbb;
18 8: data_i ¼ 'hdd;
19 9: data_i ¼ 'h11;
20 10: data_i ¼ 'h22;
21 11: data_i ¼ 'h33;
22 12: data_i ¼ 'h44;
23 13: data_i ¼ 'h55;
24 14: data_i ¼ 'h66;
25 15: data_i ¼ 'h77;
26 default: data_i ¼ 'h0; //use `‘x' or ‘0'
27 endcase
28 end
29 //three-state buffer
30 assign data ¼ (oeb ¼¼ 1'b0) ? data_i: 'bz;

31 endmodule

Listing 8.3 Verilog description for the ROM using a case statement.

The module header is identical to that of the module shown in Figure 8.28; this is

followed by the declaration of a reg named data_i having Dwidth bits. This object acts

as a signal to hold the output of the case statement, prior to being fed through the ‘three-

state buffer’ at line 30.

Thealways block in line 7 responds to events on the input address only; the enclosedcase
statement then effectivelymaps each address value to the appropriate data value. In thismanner,

the ‘contents’ of the memory are explicitly defined within the module itself, rather than being

contained in an external file. Thismay restrict this approach to thedescription of relatively small

memories, due to having to specify each value explicitly within the module text.

Where the number of data values is less than the capacity of the memory (2Awidth), the

default branch in line 26must be included to cover the unused memory locations. A default

valueofx rather than zerowill result in a smaller logic circuit if theROMis tobe implemented in

the formof a combinational logic circuit, since anx is interpreted as a ‘don’t care’ condition bya
logic synthesis software tool.

8.7 DESCRIBING FINITE-STATE MACHINES

This section describes how the Verilog HDL can be used to create concise behavioural-style

descriptions of FSMs. The underlying building block of many digital systems, the FSM is a

vitally important part of the digital system designer’s toolbox. The behavioural statements

provided by Verilog facilitate the quick and straightforward creation of synchronous FSM

simulationmodels, once the state diagram has been drawn. This, when combinedwith thewide

availability of powerful logic synthesis software tools, makes the realization of state machines

extremely efficient and rapid.

Figure 8.30 shows the block diagram structure of a general synchronous FSM. As shown in

Figure 8.30, the FSM comprises two major blocks connected in a feedback configuration: the
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STATE REGISTER and the OUTPUT/NEXT-STATE LOGIC. There are several possible

variations on the basic structure; however, the state register generally consists of a collection

of n flip-flops (where 2n must be greater than or equal to the number of FSM states), and the

OUTPUT/NEXT-STATE LOGIC block contains the combinational logic that predicts the next

state and the output values.

The general block diagram shown in Figure 8.30 represents the so-called Mealy FSM,

where the k output bits depend both on the n state bits and the m input bits. Initialization of

the FSM may be provided through the use of an asynchronous Reset input that forces all

of the state flip-flops into a known state (usually zero). One possible disadvantage of the

Mealy FSM architecture is the fact that the Output can change asynchronously, in

response to asynchronous changes in the Input. This can be removed by making the

outputs depend only on the Present-State signal, i.e. the output of the state register.

This modified structure is better known as the Moore FSM. This section will present

guidelines and examples on how to construct Verilog behavioural descriptions of both

Mealy and Moore FSMs.

The starting point in the design of any FSM is the state diagram. This graphical

representation provides a crucially important visual description of the machine’s beha-

viour, allowing the designer to determine the number of states required and establish the

logical transitions between them. Once the number of states has been determined, the next

step is to assign a unique binary code to each state; this is known as the state assignment.

In Verilog, the state assignment can be defined in a number of different ways, using:

� local parameters;

� parameters declared as part of the module header;

� the `define compiler directive.

The first of these is perhaps the most obvious choice, since the state values are likely to

be a set of fixed codes referenced from within the module describing the FSM. The

following line of Verilog illustrates how a set of state values is defined for an FSM having

four states:

localparam s0 ¼ 2'b00,
s1 ¼ 2'b01,

Present-State[n-1:0]

Next-State[n-1:0]

Output[k-1:0]

Clock

STATE REGISTER

D[n-1:0]

Clock

OUTPUT/NEXT-STATE LOGIC

IP[m-1:0]

PS[n-1:0]

OP[k-1:0]

NS[n-1:0]Q[n-1:0]

Reset

Reset

Input[m-1:0]

Figure 8.30 General FSM block diagram.
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s2 ¼ 2'b10,
s3 ¼ 2'b11;

From the point of the above declaration, the symbolic namess0. . .s3 can be used instead of the

binary codes, making the description more readable.

Defining the state values as a set of in-line parameters within the module header provides the

additional flexibility of being able to reassign them when the FSM module is instantiated, as

shown below:

//module header with in-line parameters
module fsm #(parameter s0 ¼ 0,

s1 ¼ 1,
s2 ¼ 2,
s3 ¼ 3)

(input clk, . . ., output. . .);

//overriding default parameter values

fsm #(.s0(2),
.s1(0),
.s2(3),
.s3(1))

F1(.clk(CLK), . . .);

The third approach makes use of the `define compiler directive in a similar manner to the

way in which #define is used in the C/Cþþ languages to perform text substitution. The

compiler directives come before the module header, as shown by the following example:

`define WAIT 4'b001
`define IDLE 4'b011
`define ACK1 4'b101
`define ACK2 4'b110

module fsm(. . .);

Within the body of the fsm module above, reference is made to the defined state values as

follows:

//identifier must be prefixed by grave-accent character
Present-State <¼ `IDLE;

The STATE REGISTER block shown in Figure 8.30 is described by an always sequential

block; therefore, the output signal it assigns tomust be declared as areg-type object, as shown

below:

reg [n-1:0] Present-State; //number of states must be <¼ 2n
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The typical format of the state register sequential block is shown in Listing 8.4.

1 always @(posedge Clock or posedge Reset)
2 begin
3 if (Reset ¼¼ 1'b1)
4 Present-State <¼ s0;
5 else
6 Present-State <¼ Next-State;
7 end

Listing 8.4 General format of state register always block.

As described in previous sections, the sequential block shown in Listing 8.4 describes

synchronous sequential logic with active-high asynchronous initialization (active-low asyn-

chronous initialization is equally possible).

On each 0-to-1 transition of the Clock signal, the Present-State is updated by the

incoming Next-State value in line 6, the latter being produced by the OUTPUT/

NEXT-STATE LOGIC block. Now the Present-State signal is an input to the

OUTPUT/NEXT-STATE LOGIC block; therefore, it responds to this input change, com-

bined with the current values of the inputs, by updating the Next-State output value. The

feedback signal Next-State is now ready for the next positive edge of the clock to occur,

thereby updating the Present-State in a cyclic manner.

It is good practice to split theOUTPUT/NEXT-STATELOGICblock into two separate parts,

one for the outputs and another for the next state. This results in amore readable and, therefore,

maintainable description. Listing 8.5 shows the outlineVerilog source description for the ‘next-

state’ part of this block.

1 always @(Present-State, Input1, Input2, Input3. . .)
2 begin
3 //consider each possible state
4 case (Present-State)
5 s0: if (Input1 ¼¼ 1'b0)
6 Next-State <¼ s1;
7 else
8 Next-State <¼ s0;
9 s1: . . .;
10 s2: . . .;
11 default: Next-State <¼ s0;
12 endcase
13 end

Listing 8.5 General format of next-state always block.

As shown in Listing 8.5, the next-state always block describes combinational logic; there-

fore, the guidelines discussed in Section 8.2 must be observed in order to ensure that Next-
State is assigned a value under all possible conditions. (This is achieved in Listing 8.5 by

means of the default branch in line 11.)

The always sequential block must be sensitive to changes in both the Present-State
signal and all of the FSM inputs, as shown in line 1. The case. . .endcase statement, situated
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between lines 4 and 12 inclusive, considers each possible state and assigns the resulting

Next-State depending on the input conditions. In this manner, the next-state part of the

block describes the flow around the state machine’s state diagram in terms of behavioural

statements. The fact that theNext-State signal is assigned values by analways sequential

block means that it must be declared in a similar manner to the Present-State signal, as

follows:

reg [n-1:0] Next-State; //output of combinational behaviour

Thedefault branch (line 11) of thecase statement is required to define the behaviour of the

FSMfor anyunused states; these states result from the fact that the number ofused statesmaybe

less than the number of possible states. If the FSMfinds itself in an unused state, then the safest

approach is to move it directly and unconditionally to the reset state, otherwise the designer

may take the slightly more risky approach of treating all unused states as don’t care states, in

which case the default branch would be

default: Next-State <¼ 'bx;

The part of the OUTPUT/NEXT-STATE LOGIC block shown in Figure 8.30 that drives the

FSM outputs may be described using either an additional always block or by means of

continuous assignments. The choice between these approaches depends upon the complex-

ity of the output logic. For Moore-type FSMs, the outputs depend only on the present state;

therefore, the expressive capabilities of the continuous assignment are usually adequate.

The potentially more complicated output logic of a Mealy FSM may require the use of a

sequential block, in which case it is important to remember to qualify the outputs as being

of type reg.
The following extract illustrates the use of the continuous assignment to describe the output

logic of a simple Mealy FSM:

assign Output1 ¼ ((Present-State ¼¼ s0)
&& (Input1 ¼¼ 1'b0)) ||
((Present-State ¼¼ s2)
&& (Input2 ¼¼ 1'b1));

Here, the outputOutput1 depends directly on both the present state and the inputs. Avariation

on the use of separate sequential blocks, for the state-register and next-state feedback logic, is to

combine these ina singlealwaysblock.This approachhas theadvantageofmaking theVerilog

description more concise and involves combining the sequential logic behaviour shown in

Listing8.4with the combinational logic behaviour shown inListing8.5, as shown inListing8.6.

1 . . .
2 reg [n-1:0] state; //single state register
3 . . .
4 always @(posedge clock or posedge reset)
5 begin
6 if (reset ¼¼ 1)
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7 state <¼ State0;
8 else
9 case (state)
10 State1: if (Input1 ¼¼ 0)
11 state <¼ State2;
12 else
13 state_reg <¼ read1one;
14 State2: if (Input2 ¼¼ 1)
15 state <¼ State3;
16 else
17 state <¼ State2;
18 . . .
19 default: state <¼ 3'bxxx
20 endcase
21 end

Listing 8.6 General format of combined state-register and next-state logic always block.

Another consequence of using a combined sequential block for the state register and next-

state logic is the removal of the need for two separatereg-type signals forpresent state and next
state.As shown inListing8.6, only a single declaredregnamedstate is required in line 2; the
behavioural description both assigns to (lines 7, 11, 15....) and reads from (line 9) this combined

signal. The combined sequential block is triggered by positive edges on either the clock or reset

input (assuming asynchronous active-high initialization is being employed). After testing for

the reset condition in line6, thebehaviour ismuch the sameas that of thenext-state logicgiven in

Listing 8.5, making use of the case. . .endcase statement to consider each state and input

condition to implement the sequential behaviour described by the state diagram.

In effect, the statements between lines 9 and 20 of the source listing shown in Listing 8.6

describe a self-contained synchronous feedback logic system where the signal state is the

output of a set of D-type flip-flops and the inputs of the flip-flops are described by the

combination of the case and if. . .else statements.

The following example FSM designs serve to illustrate the points discussed above further.

The first example is concernedwith the description of an FSM to control the timers used by two

people playing a game of timed chess, and the second looks at a simple combination lock with

automatic locking mechanism.

8.7.1 Example 1: Chess Clock Controller Finite-State Machine

Figure 8.31 shows the block diagram of a system used by two chess players to record the

amount of time taken to make their respective moves. The players, referred to as Player-A and

Player-B, each have their own timer (TIMER-A and TIMER-B), the purpose of which is to

record the total amount of time taken in hours, minutes and seconds for their moves since the

commencement of the game.

The exact details of the timer internal operation are beyond the scope of this discussion, since

weareprimarilyconcernedwith thedescriptionof theFSMthat controls them.The timercontrol

inputs, en and rst, shown in Figure 8.31, operate as follows:

� rst – when logic 1, resets the time to zero hours, zero minutes and zero seconds.
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� en – when logic 1, enables the time to increment from the current time value. When en is

logic 0, the current elapsed time is held constant.

At the start of a new game, the Reset input is asserted to initialize the system and clear both

timers to zero time. This is achieved bymeans of theClr output of the Chess Clock FSMbeing

drivenhigh, thereby asserting the reset (rst) input of both timers. Each chess player has a push-

button, which when pressed applies a logic 1 to their respective inputs, Pa and Pb, of the Chess
Clock FSM.After resetting the timers, the player who is not making the first move presses their

push-button in order to enable the other player’s timer to commence timing.

For example, if Player-A is to make the first move, then Player-B starts the game by pressing

their push-button. This has the effect of activating the Ta output of the Chess Clock FSMblock

shown in Figure 8.31, in order to enable TIMER-A to record the time taken byPlayer-A tomake

Timer

en rs
t

TIMER-A

Timer

en rs
t

TIMER-B

Chess Clock FSM

T
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lr
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b
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R
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C
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Reset

CLOCK

Player-A's Button Player-B's Button

Figure 8.31 Block diagram of chess clock system.
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the first move. Once Player-A completes the first move, Player-A’s button is pressed in order to

stop their own timer and start Player-B’s timer (Ta is negated and Tb is asserted).

For the purposes of this simulation, it is assumed that the Pa and Pb inputs are asserted

momentarily for at least one clock cycle, and the potential problems resulting from switch

bounce and metastability [3] may be neglected.

In the unlikely event that both players press their buttons simultaneously, the Chess Clock

FSM is designed to disable both timers by negating Ta and Tb.
This will hold each player’s elapsed time until play recommences in the manner described

above, i.e. Player-A (Player-B) presses their push-button to re-enable TIMER-B (TIMER-A).

The state diagram for the Chess Clock FSM is shown in Figure 8.32. As shown, the FSM

makes use of four states having the names shown in the upper half of the state circles. The states

of theFSMoutputsTa,Tb andClr are listed in the lower half of every state circle; those outputs
preceded by ‘/’ are forced to logic 0, whereas those without ‘/’ are forced to logic 1. The

presenceof theoutput stateswithineachof thestate circles indicates that theChessClockFSMis

of the Moore variety.

The values of the inputs,Pa andPb, are shown alongside each corresponding state transition
path (arrow) using a format similar to that used to show the state of the outputs. The movement

from one state to another occurs on the rising edge of the Clock input. Where the number of

transitions shown originating from a given state is less than the total number possible, the

remaining input conditions result in a so-called sling, i.e. the next state is the same as the current

state.

For example, the state named RunA in Figure 8.32 has two transitions shown on the diagram

corresponding to the input conditions hPa, Pbi ¼ h1, 0i and h1, 1i. The remaining input

conditions, hPa, Pbi ¼ h0, 0i and h0, 1i, cause the state machine to remain in the current state;

Stop
/Ta, /Tb, Clr

Wait
/Ta,/Tb,/Clr

RunA
Ta, /Tb, /Clr

RunB
/Ta, Tb, /Clr

Reset

bP ,aP/bP/ ,aP

Pa, /Pb

/Pa, Pb

Pa, Pb

Pa, Pb
Pa, Pb

/Pa, Pb
Pa, /Pb

Figure 8.32 State diagram for chess clock controller FSM.
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hence, there exists a sling in state RunA corresponding to the condition that the Pa input is at

logic 0 and the Pb input can be either logic 0 or logic 1, the latter indicating the presence of a

don’t care condition for input Pb.
The asynchronous, active-high Reset input forces the FSM directly into the state named

Stop, irrespective of any other condition.
The FSM depicted visually by the state diagram shown in Figure 8.32, is described in a

behavioural style by the Verilog HDL listing given in Listing 8.7.

1 module chessclkfsm(input reset, Pa, Pb, clock,
2 output Ta, Tb, Clr);

3 //ascending state assignment
4 localparam RunA ¼ 0, RunB ¼ 1, Stop ¼ 2, Wait ¼ 3;

5 reg [1:0] state;

6 //combined state register and next state sequential block
7 always @(posedge clock or posedge reset)
8 begin
9 if (reset)
10 state <¼ Stop;
11 else
12 case (state)
13 RunA:
14 casex ({Pa, Pb})
15 2'b0x: state <¼ RunA;
16 2'b10: state <¼ RunB;
17 2'b11: state <¼ Wait;
18 endcase
19 RunB:
20 casex ({Pa, Pb})
21 2'bx0: state <¼ RunB;
22 2'b01: state <¼ RunA;
23 2'b11: state <¼ Wait;
24 endcase
25 Stop:
26 case ({Pa, Pb})
27 2'b00: state <¼ Stop;
28 2'b01: state <¼ RunA;
29 2'b10: state <¼ RunB;
30 2'b11: state <¼ Wait;
31 endcase
32 Wait:
33 if (Pa ¼¼ Pb)
34 state <¼ Wait;
35 else if (Pa ¼¼ 1'b1)
36 state <¼ RunB;
37 else
38 state <¼ RunA;
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39 endcase
40 end

41 //Moore output assignments depend only on state
42 assign Ta ¼ state ¼¼ RunA;
43 assign Tb ¼ state ¼¼ RunB;
44 assign Clr ¼ state ¼¼ Stop;

45 endmodule

Listing 8.7 Verilog description of the Chess Clock FSM.

The module chessclkfsmmakes use of a local parameter to define the state values. Each

statenameshown in the state diagramofFigure8.32 is assignedavalue in line4.This is followed

by the declaration of a 2-bit reg to hold the state of the FSM; this description makes use of the

single always block approach outlined in Listing 8.6.

The sequential always block spanning lines 7–40 of the listing shown in Listing 8.7

describes the state register and next-state logic. The presence of a don’t-care condition in one

of the state transitions for states RunA and RunB suggests the use of a special variation of the

case statement known as casex.
Theuseofcasex insteadofcase in lines14and20allows theexplicit useof the ‘don’t-care’

value (x) within the literals specified in lines 15 and 21. In effect, thismeans that one ormore of

the inputs can be either logic 0 or logic 1, e.g. lines 14 and 15 are equivalent to the following:

14 case ({Pa,Pb})
15 2'b00, 2'b01: state <¼ RunA;
16 . . .

The case statement considers each possible value of state; in this example there is no

requirement for a default branch, since the number of states is equal to a power of 2.

State Stop has four unique next states, hence the need for a nested case. . .endcase
statement with four branches, or limbs, situated in lines 27–30 inclusive. The case
statement gives equal priority to each of the individual limbs or branches enclosed within

the bounds of case. . .endcase; hence, the matching expressions must be nonoverlapping

or mutually exclusive. As seen previously, multiple values may be specified on a single

branch, so long as none of these values appears within any other of the branches within the

statement.

The next-state behaviour of the Wait state is described using a nested if. . .else
statement in order to illustrate the flexibility of the Verilog language. It is straightforward to

appreciate that the semantics of the statement in lines 33–38 inclusive of the source

description in Listing 8.7 are equivalent to the state transitions shown on the state diagram

of Figure 8.32, bearing in mind that there is a sling condition corresponding to input values

hPa, Pbi ¼ h0, 0i and h1, 1i.
It should be noted that, despite the priority implied by the nestedif. . .else. . .if statement

semantics, the circuitry resulting from synthesis of this description will not include any

prioritized logic. This is due to the fact that the conditions specified in each part of the

if. . .else statement are mutually exclusive.
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TheoutputsTa,Tb andClr, of theChessClockFSM,are of theMoorevariety, i.e. dependent

on the state of themachine only. These are generated bymeans of the continuous assignments in

lines 42–44 of the source description shown in Listing 8.7. Each output is generated by

continuously comparing the value of the state-register state with the local parameter value

corresponding to the state in which the output is asserted.

In this simple example, each output is asserted in only one state; therefore, the logic of the

outputs amounts to little more than a single AND gate.

The output logic can be further simplified by encoding the states of the FSMwith values that

match the outputs. In the present example, the output values are unique for each state, so this

would involve simplydefining the statevalues tobe the sameas theoutput values, i.e. replace the

local parameter declarations with those shown in lines 4–7 of Listing 8.8.

3 //state assignment matches outputs Ta, Tb, Clr
4 localparam RunA ¼ 3'b100,
5 RunB ¼ 3'b010,
6 Stop ¼ 3'b001,
7 Wait ¼ 3'b000;

8 reg [2:0] state; //no. of state bits ¼ no. of outputs

. . .
39 default: state <¼ 3'bx;
40 endcase

. . .
41 //outputs are equal to state bits
42 assign Ta ¼ state [2];
43 assign Tb ¼ state [1];
44 assign Clr ¼ state [0];

Listing 8.8 Alternative state assignment to match outputs.

The output continuous assignments, situated in lines 42–44 of the listing given in Listing 8.7,

wouldbe replacedby thecorresponding lines shown inListing8.8.As shown, eachoutput isnow

mapped directly to the corresponding bit of the state register.

Another consequence of modifying the state assignments, as described above, is the

need to change the number of state bits to match the number of outputs. The replacement

state-register declaration, in line 8 of Listing 8.8 now declares a register having 3-bits;

therefore, the next-state behaviour must be modified by the addition of a default
branch in line 39, so that the additional (23 � 4 ¼ 4) unused states are covered by the

case statement.

Simulation of the Chess Clock FSM module chessclkfsm is achieved by means of

the simple test module shown in Figure 8.33. The resulting timing waveforms are also

shown in Figure 8.33, where the relationship between the inputs, state and outputs can be

seen to follow that defined by the state diagram. Most Verilog simulation tools provide a

facility whereby the values of the state waveform can be displayed in terms of the state

names used on the state diagram, as is the case here. This is a significant visual aid

when attempting to analyse, understand and verify the behaviour of an FSM using

simulation.
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1 `timescale 1 ms / 1 ms
2 module Test_chessclkfsm();

3 reg RES, A, B, CLK;
4 wire Ta, Tb, Clrt;

5 //generate a 10 Hz clock
6 initial
7 begin
8 CLK ¼ 1'b0;
9 forever
10 #50 CLK ¼ �CLK;
11 end

12 //generate inputs
13 initial
14 begin
15 RES ¼ 1'b1; A ¼ 1'b0; B 1'b0;
16 #200 RES ¼ 1'b0;
17 #200;
18 A ¼ 1'b1;
19 #550 A ¼ 1'b0;
20 #350 B ¼ 1'b1;
21 #750 B ¼ 1'b0;
22 #400;
23 A ¼ 1'b1; B ¼ b1;
24 #350;
25 A ¼ 1'b0; B ¼ 1'b0;
26 #450;
27 A ¼ 1'b1;
28 #800;
29 $stop;
30 end

31 //instantiate the FSM
32 chessclkfsm mut (.reset (RES),
33 .Pa (A), . Pb(B), . clock (CLK),
34 .Ta (Ta), .Tb (Tb), .Clr (Clrt));
35 endmodule

Figure 8.33 Test module and simulation waveforms for chess clock FSM.
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8.7.2 Example 2: Combination Lock Finite-State Machine with Automatic
Lock Feature

The second example of anFSM-based design is a rathermore complex system thatmakes use of

several modules, both combinational and sequential. This example also serves to illustrate the

interactionof anFSMwithother synchronous sequentialmodules, all described inabehavioural

style and clocked by a common clock signal.

Figure 8.34 shows the block diagram of a so-called ‘digital combination lock’ system. At the

heart of the system there is anFSM, labelledCONTROLLER in thefigure, the functionofwhich

is to detect when a user has entered the correct four-digit secret code via the Key Pad Switches,

shown at the left-hand side of Figure 8.34.

The user sees a keypad with eight active-low push-button switches (SW[0]. . .SW[7]). The

first four (SW[0. . .3]) are hardwired into the system via a four-to-one multiplexer; these

represent the code switches. It is up to the user to connect the multiplexer inputs to the keypad

switches corresponding to the secret code; in this manner, the secret access code is hardwired

into the system.

The eight-inputANDgate, connected to all of the switches in Figure 8.34, provides an output

named allsw that goes to logic 0 if any switch is pressed. The output of the four-to-one

multiplexer, named mux_out, will go to logic 0 if the switch being pressed corresponds to the
multiplexer select address input sel[0..1]. In this manner, the multiplexer is able to select

each switch in the code in sequence; the outputmux_outwill go low only if the correct switch

has been pressed.

The input push-button switches are asynchronous inputs by nature, whereas the combination

lock system operates entirely synchronously. It is impossible to predict for how long any push-

button will be pressed; therefore, the duration of the logic 0 pulses coming into the system on

signals mux_out and allsw is entirely unpredictable. If the aforementioned signals were fed

directly into the FSM, then a single key depression lasting 0.5 s, for example, would be

interpreted as a sequence of approximately n inputs, where

n = 0.5/clock_period.

The above problem is overcome by means of the simple ‘edge detector’ circuit shown in

Figure 8.35. The system makes use of two of these circuits, labelled DET1 and DET2 in

Figure 8.34. As shown in Figure 8.35, the circuit is essentially a synchronous 2-bit shift

0s 1s 2s 3s 4s 

Test_chessclkfsm.RES

Test_chessclkfsm.CLK

Test_chessclkfsm.A

Test_chessclkfsm.B

Test_chessclkfsm.Ta

Test_chessclkfsm.Tb

Test_chessclkfsm.Clrt

Test_chessclkfsm.mut.state[1:0] Stop RunB RunA Wait RunB

Figure 8.33 (Continued).
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register with the output of the first flip-flop ANDed with the inverse of the output of the

second flip-flop.

This simple circuit performs both synchronization and edge detection, in that it produces a

single clock-cycle-length logic 1 pulse at the output named detected, near to the point when
the input,edge_in, undergoes a logic 1 to logic 0 transition, regardless of how longedge_in
remains at logic 0.

Neglecting the usual problems of metastability [3], which result whenever there is a need to

interface between asynchronous and synchronous domains, the logic circuit of Figure 8.35

provides an effective means of interfacing the push-button switches to the FSM.

The outputs, codesw and anysw, of the two edge detectors feed directly into the FSM

LOCKFSM.The fact that the edgedetectors and theFSMare clockedby the samesignal ensures

synchronization between the two separate modules such that if a key is pressed, and it is the

correct key(i.e. the four-to-onemultiplexer is selecting thekey), thelockfsm receivesa logic1
pulse on both codesw and anysw during the same clock cycle. The arrival of the two pulses

indicates the correct key was pressed and the FSM then advances to the next state.

TheVerilogdescriptionsof theD-typeflip-flopand theedgedetectorare shown inListings8.9

and 8.10 respectively.

1 module dff(output reg q, input d, clk);

2 always @(posedge clk) q <¼ d;

3 endmodule

Listing 8.9 Verilog source description of D-type flip-flop.

1 module edgedet(input edge_in,
2 output detected,
3 input clock);

4 wire q0, q1;

5 dff dff0(.q(q0), .d(edge_in), .clk(clock));
6 dff dff1(.q(q1), .d(q0), .clk(clock));

7 assign detected ¼ q0 & �q1;

8 endmodule

Listing 8.10 Verilog source description of edge detector.

nq1

q0edge_in

clock

detected

CLK

D Q

!Q CLK

D Q

!Q

Figure 8.35 Logic diagram of edge detector edgedet.
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The block diagram of Figure 8.34 includes a timer module (TIMER) labelled T1. This

module interfaces with the FSM via signals entimer (enable timer) and timeout (timer

timed out) and is clocked by the same master clock as the FSM and edge detectors, ensuring

synchronization.

The function of the timer is to provide an automatic locking mechanism, returning the

system to the locked state after a delay of 30 s subsequent to the system entering the

unlocked state.

The master clock signal is intended to have a frequency of 10 Hz, so the timer imple-

ments the required delay by counting to 30010, as shown in the Verilog source description

shown in Listing 8.11.

1 module Timer(input Clock, Start, output Timeout);
2 //time delay value in clk pulses
3 localparam NUMCLKS ¼ 300;

4 reg [8:0] q;
5 always @(posedge Clock)
6 begin
7 if (!Start||(q ¼¼ NUMCLKS))
8 q <¼ 9'b0;
9 else
10 q <¼ q þ 1;
11 end
12 //decode counter output
13 assign Timeout ¼ (q ¼¼ NUMCLKS);

14 endmodule

Listing 8.11 Verilog source description of automatic lock timer.

TheTimermodule behaviour is entirely synchronous:with the input namedStart at logic

0, the timer is disabled and the count q held at zero.

The FSM starts the timer when it enters the unlocked state by asserting entimer
(connected to timer input Start), this allows the count q to increment on each

clock edge until it reaches the terminal value NUMCLKS (30010), at which point the

Timeout output of the timer goes high for one clock cycle and the count returns to

zero.

The FSM responds to the logic 1 on its timeout input by returning to state s0, where the

locked output returns high. By returning to state s0, the FSM also negates the entimer
output, thereby disabling the timer until the next time it is required.

The remaining module, as yet not discussed, in the block diagram of Figure 8.34, is the

seven-segment decoder named SEGDISP. This module is purely combinational and drives

an active-low seven-segment display unit that displays the state of the system, based on the

values of the alarm and locked outputs of the FSM: ‘L’ for locked, ‘U’ for unlocked

and ‘A’ for alarm. The Verilog behavioural description of the module is given in List-

ing 8.12.
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1 module segdisp(input locked,alarm,
2 output SA,SB,SC,SD,SE,SF,SG);

3 reg [6:0] seg;

4 always @(locked or alarm)
5 begin
6 if (alarm ¼¼ 0)
7 seg ¼ 7'b0001000; //display ‘A’
8 else if (locked ¼¼ 0)
9 seg ¼ 7'b1000001; //display ‘U’
10 else
11 seg ¼ 7'b1110001; //display ‘L’
12 end

13 assign {SA, SB, SC, SD, SE, SF, SG} ¼ seg;

14 endmodule

Listing 8.12 Verilog source description of seven-segment display decoder.

Figure 8.36 shows the state diagram for thelockfsmmodule at the heart of the combination

lock system.

The FSM is initialized by asserting the asynchronous reset input, this forces it into state s0,

where the locked and alarm outputs are both at logic 1, indicating the system is locked and

not in a state of alarm (alarm is active-low). The 2-bitselsw output of the lockfsm is set to

zero, thereby selecting the first input push-button in the sequence via the four-to-one multi-

plexer. The timer is disabled on account of entimer being at logic 0.

What happens next depends onwhich of the eight push-button switches is pressed. If the first

switch in the code sequence is pressed (SW[0]), then the input signals codesw and anysw go

high simultaneously, causing the FSM tomove into state s1,where it remains until a subsequent

key is pressed.

In state s1 the selsw output of the FSM is set to 1, thereby selecting the second input of the

multiplexer, this being connected to the second switch in the code sequence, SW[1]. Pressing

SW[1] in state s1 asserts both codesw and anysw again, advancing the FSM into state s2.

On entering state s2, the FSM changes selsw to 2, thereby selecting the third input of the

multiplexer, this being connected to the third switch in the code sequence, SW[2].

In a similar manner to that described above, pressing switches SW[2] followed by SW[3]

causes thelockfsm to enter theunlock state, having pressed all four keys (SW[0]. . .SW[3])

in thecorrect order.Thelockedoutputgoes to logic0and the seven-segmentdisplay shows the

letter ‘U’.

As shown in Figure 8.36, the entimer output of the FSM is now asserted, thereby enabling

the timer. The lockfsm will remain in the unlock state for as long as the timeout input

remains at logic 0 (assuming the asynchronous reset input is not asserted).

As discussed above, this corresponds to a duration equal to 30010 clock periods or 30 s,

whereupon the FSM will return to state s0 and reassert the locked output.

In any of the lockfsm states (s0, s1, s2 and s3), pressing the incorrect key pad switch will

result in a pulse arriving from anysw, via the eight-input AND gate, but there will be no such
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pulse on codesw, due to the fact that the currently selected multiplexer input will not be

asserted low.

The statediagramofFigure8.36 shows that, under these circumstances, theFSMwillmove to

statewrong, indicating that the incorrect keywaspressed. In this particular state, the active-low
alarm output is asserted and the display unit outputs the code for the letter ‘A’.

The absence of any transitions leaving state wrong indicates the presence of an

unconditional state transition leading from the wrong state back to itself (a ‘sling’), i.e.

the only way to exit the alarm state is to force an asynchronous reset. Needless to say, the

clear input would, therefore, have to be located in a secure environment, enabling only a

qualified operator to reset the alarm.

The Verilog behavioural description of the lockfsmmodule is shown in Listing 8.13.

1 module lockfsm(input clock, reset,

s0

s1

s2

s3

unlockwrong

reset

codesw, 
anysw

codesw,
anysw

codesw, 
anysw

codesw,
anysw

timeout/codesw, 
anysw

/codesw, 
anysw

/codesw, 
anysw

/codesw, 
anysw

locked,
alarm,

/entimer,
selsw = 0

locked,
alarm,

/entimer,
selsw = 1

locked,
alarm,

/entimer,
selsw = 2

locked,
alarm,

/entimer,
selsw = 3

/locked,
alarm,

entimer,
selsw = 0

locked,
/alarm,

/entimer,
selsw = 0

Figure 8.36 Combination lock FSM (lockfsm) state diagram.
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2 codesw, anysw,
3 output reg [1:0] selsw,
4 output locked, alarm, entimer,
5 input timeout);

6 localparam s0¼3'b000, s1¼3'b001, s2¼3'b010,
7 s3¼3'b011,
8 wrong¼3'b100, unlock¼3'b101;

9 reg [2:0] lockstate;

10 always @(posedge clock or posedge reset)
11 begin
12 if (reset ¼¼ 1'b1)
13 lockstate <¼ s0;
14 else
15 case (lockstate)
16 s0 : if (anysw & codesw)
17 lockstate <¼ s1;
18 else if (anysw)
19 lockstate <¼ wrong;
20 else
21 lockstate <¼ s0;
22 s1 : if (anysw & codesw)
23 lockstate <¼ s2;
24 else if (anysw)
25 lockstate <¼ wrong;
26 else
27 lockstate <¼ s1;
28 s2: if (anysw & codesw)
29 lockstate <¼ s3;
30 else if (anysw)
31 lockstate <¼ wrong;
32 else
33 lockstate <¼ s2;
34 s3: if (anysw & codesw)
35 lockstate <¼ unlock;
36 else if (anysw)
37 lockstate <¼ wrong;
38 else
39 lockstate <¼ s3;
40 wrong: lockstate <¼ wrong;
41 unlock: if (timeout)
42 lockstate <¼ s0;
43 else
44 lockstate <¼ unlock;
45 default: lockstate <¼ 3'bx;
46 endcase
47 end

48 always @(lockstate)
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49 begin
50 case(lockstate)
51 s0: selsw ¼ 0;
52 s1: selsw ¼ 1;
53 s2: selsw ¼ 2;
54 s3: selsw ¼ 3;
55 wrong: selsw ¼ 0;
56 unlock: selsw ¼ 0;
57 default: selsw ¼ 2'bx;
58 endcase
59 end

60 assign locked ¼ (lockstate ¼¼ unlock) ? 0: 1;
61 assign alarm ¼ (lockstate ¼¼ wrong) ? 0: 1;

62 assign entimer ¼ (lockstate ¼¼ unlock) ? 1: 0;

63 endmodule

Listing 8.13 Verilog source description of combination lock FSM.

In common with the previous example, this FSM is of the Moore type; therefore, the

always sequential block starting at line 10 describes the state register and next-state

behaviour only.

The output logic is captured by the combinational always block situated in lines 48–59

inclusive, and the continuous assignments on lines 60–62. The 3-bit state registerlockstate
is declared in line 9 and the six used states are assigned ascending numbers by means of a local

parameter starting in line 6.

The two unused states are exploited as don’t-care states bymeans of the default branches

in lines 45 and 57 of the source shown in Listing 8.13.

All of the used states, with the exception of state wrong, make use of the if. . .else
statement to describe the state transition logic defined by the state diagram of Figure 8.36. For

example, the next-state behaviour for state s1 is repeated below:

s1 : if (anysw & codesw)
lockstate <¼ s2;

else if (anysw)
lockstate <¼ wrong;

else
lockstate <¼ s1;

Thefirst condition tobe tested is the expressionanysw&codesw; thiswill be true (logic1) if
bothanysw andcodesw are at logic 1. If this is the case, then the state of the FSM ismoved to

s2. If the first condition is false, then this leaves the possibility of either input being high or both

inputs being low.The structure of the logicmeans thatcodesw cannot be high ifanysw is low,

so it is only necessary to test the state ofanysw to seewhether an incorrect keywas pressed and,

hence, move to the alarm state.
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If nokeysarepressed, then theFSMstate remains the same, i.e. in this case s1.This is achieved

by means of the final, and optional, else part of the above statement.

The complete combination lock system block diagram, shown in Figure 8.34, is described by

the Verilog source given in Listing 8.14.

1 module comblock(input clock, clear,
2 input [7:0] switches,
3 output alarm, locked,
4 output SA, SB, SC, SD, SE, SF, SG);

5 wire mux_out, anysw, codesw,
6 allsw, entimer, timeout;

7 wire [1:0] selsw;

8 //4-to-1 multiplexor
9 assign mux_out ¼ selsw ¼¼ 0 ? switches [0]:
10 (selsw ¼¼ 1 ? switches [1]:
11 (selsw ¼¼ 2 ? switches [2]:
12 (selsw ¼¼ 3 ? switches [3]: 1'b0)));

13 //AND gate for all switches
14 assign allsw ¼ &switches;

15 edgedet det1(.edge_in(mux_out),
16 .detected(codesw),
17 .clock(clock));

18 edgedet det2(.edge_in(allsw),
19 .detected(anysw),
20 .clock(clock));

21 Timer t1(.Clock(clock),
22 .Start(entimer),
23 .Timeout(timeout));

24 lockfsm controller(.clock(clock),
25 .reset(clear),
26 .codesw(codesw),
27 .anysw(anysw),
28 .selsw(selsw),
29 .locked(locked),
30 .alarm(alarm),
31 .entimer(entimer),
32 .timeout(timeout));

33 segdisp sg1(.locked(locked),
34 .alarm(alarm),
35 .SA(SA),
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36 .SB(SB),
37 .SC(SC),
38 .SD(SD),
39 .SE(SE),
40 .SF(SF),
41 .SG(SG));
42 endmodule

Listing 8.14 Verilog source description of complete combination lock system.

Thecomblockmodule comprises instantiations of themodules discussed previously, along

with two continuous assignments, situated in lines 9 and 14, to implement the four-to-one

multiplexer and the eight-input AND gate respectively.

Simulation of the combination lock system is achieved with the use of a Verilog test module

named test_comblock, shown in Listing 8.15.

1 `timescale 1 ms / 1 ms
2 module test_comblock();

3 // Inputs
4 reg clock;
5 reg clear;
6 reg [7:0] switches;

7 // Outputs
8 wire alarm;
9 wire locked;
10 wire SA, SB, SC, SD, SE, SF, SG;

11 // Instantiate the combination lock
12 comblock UUT(
13 .clock(clock),
14 .clear(clear),
15 .switches(switches),
16 .alarm(alarm),
17 .locked(locked),
18 .SA(SA), .SB(SB),.SC(SC),
19 .SD(SD),.SE(SE),.SF(SF),. SG(SG)
20 );

21 initial
22 begin
23 clock ¼ 1'b0;
24 forever
25 #50 clock ¼ �clock;
26 end

27 initial
28 begin
29 clear ¼ 1'b1;
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30 switches ¼ 8'b11111111;

31 repeat(3) @(negedge clock);
32 clear ¼ 1'b0;

33 repeat(3) @(negedge clock);
34 switches [0] ¼ 1'b0;

35 repeat(2) @(negedge clock);
36 switches [0] ¼ 1'b1;

37 repeat(3) @(negedge clock);
38 switches [1] ¼ 1'b0;

39 repeat(2) @(negedge clock);
40 switches [1] ¼ 1'b1;

41 repeat(3) @(negedge clock);
42 switches[2] ¼ 1'b0;

43 repeat(2) @(negedge clock);
44 switches [2] ¼ 1'b1;

45 repeat(3) @(negedge clock);
46 switches [3] ¼ 1'b0;

47 repeat(2) @(negedge clock);
48 switches [3] ¼ 1'b1;

49 repeat(400) @(negedge clock); //wait for timeout

50 clear ¼ 1'b1;

51 repeat(4) @(negedge clock);
52 clear ¼ 1'b0;
53 repeat(3) @(negedge clock);
54 switches [0] ¼ 1'b0;

55 repeat(2) @(negedge clock);
56 switches [0] ¼ 1'b1;

57 repeat(3) @(negedge clock);
58 switches [5] ¼ 1'b0;

59 repeat(2) @(negedge clock);
60 switches [5] ¼ 1'b1;

61 repeat(3) @(negedge clock);
62 switches [2] ¼ 1'b0;

63 repeat(2) @(negedge clock);
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64 switches [2] ¼ 1'b1;

65 repeat(3) @(negedge clock);
66 switches [3] ¼ 1'b0;

67 repeat(2) @(negedge clock);
68 switches [3] ¼ 1'b1;

69 repeat(4) @(negedge clock);
70 clear ¼ 1'b1;

71 repeat(4) @(negedge clock);

72 $stop;
73 end

74 endmodule

Listing 8.15 Verilog source description of combination lock system test module.

The test-module generates a 10 Hz clock using an initial sequential block starting at

line 21.

0ms 500ms 1.0s 1.5s 2.0s 2.5s 3.0s 3.5s

test_comblock.clear

(a)

test_comblock.clock

test_comblock.alarm

test_comblock.locked

test_comblock.switches[0]

test_comblock.switches[1]

test_comblock.switches[2]

test_comblock.switches[3]

test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]

test_comblock.switches[7:0]

test_comblock.UUT.allsw

test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out

test_comblock.UUT.selsw[1:0]

test_comblock.UUT.entimer

test_comblock.UUT.timeout

lockstate[2:0]

test_comblock.UUT.t1.q[8:0]

FF FE FF FD FF FB FF F7

00 1 2 3

s0 s1 s2 s3 unlock

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.37 Combination lock simulation showing: (a) application of correct switch sequence; (b)

automatic locking feature; (c) incorrect key input sequence.

Describing Finite-State Machines 263
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test_comblock.clock
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test_comblock.clock
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test_comblock.locked
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test_comblock.switches[7:0]

test_comblock.UUT.allsw
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test_comblock.UUT.mux_out
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0

FF

(c)

Figure 8.37 (Continued).

264 Describing Combinational and Sequential Logic using Verilog HDL



Asecondinitial block, starting at line 27, exercises the combination lock by applying the

correct sequence of switch inputs in order to reach theunlock state. This is followed by a 40 s

delay, implemented using a repeat loop, to allow observation of the automatic lock feature.

Finally, after resetting the system, an incorrect sequence of switches is applied in order to verify

the operation of the alarm state.

Figure 8.37a–c shows a selection of simulationwaveforms obtained as a result of running the

test-module simulation.
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9
Asynchronous Finite-State
Machines

9.1 INTRODUCTION

Most FSM systems are synchronous; that is, theymake use of a clock tomove from one state to

the next. Using a clock to control the synchronous movement between one state and the next

allows the FSM logic time to settle before the next transition and, hence, overcomes some logic

delayproblems thatmayarise.For this reason, synchronous systemsare, by far, themostpopular

in digital electronics; andmostHDLsused to define themare optimized for synchronous system

design.

However, there is another kind of FSM, one that does not use a clock to instigate a

transition between states. This is knows as the asynchronous FSM. In an asynchronous

FSM, the transition between states is controlled by the event inputs, so that the FSM does

not need to wait for a clock signal input. For this reason, asynchronous FSM are sometimes

called ‘event-driven’ FSMs.

A typical event FSM is shown in Figure 9.1. In this FSM, the transition from state s0 to s1will

take place when input s is logic 1 AND input c is logic 0. On reaching state s1, the FSM will

remain in this state until the input cgoes to logic 1, atwhich point itwillmove to state s2.Here, it

will remainuntil inputcgoes to logic0 tomove to state s3, before returning to state s0when input

s goes to logic 0.

In this example, the FSM will only change state when there is a change of input variable;

hence, the event nature of the system.

Sometimes, it is desired to change statewhen there is no input signal change (as has been seen

in clocked driven systems).

In Figure 9.2, the transition between s3 and s0 does not have an input term along the

transitional line. This implies thatwhen the FSM reaches state s3 (when input x became logic 1)

the FSMwillmove to s0. The time taken for the FSM tomove to s0,when it reaches state s3,will

be determined by the propagation delay of the event logic used in the system. Thiswill be as fast

as the logic technology used to implement the design.

An important featurewith event-driven FSM systems is that when the FSM is in a stable state

(perhaps waiting for an input event to move to the next state) the power drain is very low in

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



CMOS circuits, since there is no repetitive clock to consume power. This allows asynchronous

(event) systems tobe lowpower,while also beingvery fast. This latter point is due to the fact that

the event FSMwillmove to the next state as soon as the relevant event input changes, and is only

limited by the propagation delay for its event-driven logic.

s

c

P

L

Event
FSM

Block diagram of an event 
FSM showing inputs s and 
c, and outputs P and L.

AB
00

AB
10

AB
11

AB
01

s./c

c

/c

/s

/P,/L

s0

/P,/L

s1

P, /L

s2

/P, L

s3

The state diagram of the 
FSM.  Note that there is no 

clock input.

Figure 9.1 Example of an asynchronous FSM.
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11
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m

/m

x

/P,/L

s0

/P,/L

s1

P, /L

s2

/P, L

s3

Figure 9.2 Transition without an input event.
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9.2 DEVELOPMENT OF EVENT-DRIVEN LOGIC

From the previous section it is clear that an event state diagram can be developed in much the

same way as a clocked driven state diagram. However, whilst with a clocked FSM, the

implementation (synthesis) will make use of some type of flip-flop (D type, T type, or JK

type), the event-driven systemneeds tomakeuse ofmemory elements that donot require a clock

input. This implies that perhaps SR latches are required. But in practice these latches may, in

some cases, needmultiple set (s) andmultiple reset (r) inputs.What follows is the development

of a set of equations that can be used to implement a general ‘event-driven’ cell for each

particular application.

Consider Figure 9.3. This shows the block diagram for the proposed event cell. This cell has a

‘turn-on set’ input to set the cell output to logic 1, a ‘turn-off set’ to turn the cell output to logic 0,

and a hold term input, derived from the cell output to hold the cell either in its set, or rest state.

Inorder todevelop the logic equations for the eventcell a tableof required states for each input

condition is required.This is shown inTable9.1. In this table, the ‘turn-on set’ input is denotedas

s, the ‘turn-off set’ is denotedas r, the current stateof the cell output isQn, and thenext state of the

cell output isQnþ1. The two inputs s and r, together with the current output state, are shown as a

binary sequence. This defines all possible states for the cell.What is now required is to fill in the

required state condition for each Qnþ1 state.

� In row 1, s¼ r¼ 0, and the cell is currently reset. Since our event cell is to remain inwhatever

state it happens to be in, when s¼ r¼ 0, then Qnþ1 ¼ Qn ¼ 0.

� In row2, s¼ r¼0,but the cell is currently set.Therefore,Qnþ1 ¼ 1, since thecellmust remain

in the set state.

� In row3, s¼ 0but r¼ 1, implying a reset condition for the event cell. Since the cell in this row

is currently reset, then Qnþ1 ¼ 0 as well.

� In row 4, s ¼ 0, r ¼ 1 as before, but the cell is currently set, so the required action is that

Qnþ1 ¼ 0 to reset the cell.

Event
cell

Turn-on
set

Turn-off
set

Hold term

Output of cell

Basic Event (Asynchronous) Cell

There can be a number of individual turn-on 

inputs and a number of individual turn-off 

inputs to the cell

Figure 9.3 The event cell.
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� Moving to row 5, s¼ 1 and r¼ 0. The cell is currently reset; thus, Qnþ1 ¼ 1 to set the cell.

� In row6, s¼ 1 and r¼ 0 as before, and the cell is currently set; therefore,Qnþ1 ¼ 1 to hold the

cell in its set state.

� In rows 7 and 8, both s¼ 1 and r¼ 1. This is not a very practical condition for the cell, since it

implies that the cell inputs are ambiguous (i.e. set the cell and reset the cell at the same time!).

Clearly, this is impossible. Here, our own common sense will prevail, and both rows 7 and 8

are defined as ‘not allowed’ states. What is meant here is that it is rather hoped that the input

conditions defined by rows 7 and 8 ‘won’t’ happen. This is usually referred to as ‘don’t care’

states. It is important that the ‘don’t care’ does not happen, and this will be assumed in the

design of asynchronous systems that use the corresponding equations being developed here.

The input conditions s¼ 1 and r¼ 1 will not be allowed to occur. This is not too difficult to

ensure, so one marks out the row 7 and 8 Qnþ1 outputs with x.

Table 9.2 illustrates the completed table.

Now, an equation for Qnþ1 can be developed from this table in terms of s, r, and Qn:

Qnþ1 ¼ =s=rQn þ s=r=Qn þ s=rQn þ srQn þ sr=Qn

¼ =s=rQn þ s=r þ sr

¼ =s=rQn þ s:

Table 9.1 State table for the event cell.a

Row s r Qn Qnþ1 event

1 0 0 0 No change

2 0 0 1 No change

3 0 1 0 Reinforced turn off

4 0 1 1 Turn off

5 1 0 0 Turn on

6 1 0 1 Reinforced turn on

7 1 1 0 Not allowed

8 1 1 1 Not allowed

aQn is the present state;Qnþ1 is the next state ofQ. Each row corresponds to a possible

particular condition or state of the event cell. This can be used to determine the

‘characteristic equation’ for the event cell.

Table 9.2 Completed state table for the event cell.

s r Qn Qnþ1

0 0 0 0 No change

0 0 1 1 No change

0 1 0 0 Reinforced reset

0 1 1 0 Turn off (reset)

1 0 0 1 Turn on (set)

1 0 1 1 Reinforced set

1 1 0 x Don’t care

1 1 1 x Don’t care
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Applying the auxiliary rule and rearranging results in the following sequential equation:

Qnþ1 ¼ sþ Qn=r:

The sequential equationproducedhere represents the ‘characteristic equation’ for the eventcell.

Notice that in line 3 the ‘don’t care’ terms s=r þ sr have been reduced to the term s.

The sequential equation can be stated as:

The newoutput state for the event cell is equal to the condition of the set input s or the current

state of the cell Qn and the inverse of the reset input r.

This can be easily proved, as shown below, by defining initial states for s, r, and Qn using the

sequential equation to predict the newoutputQnþ1. Note that, in these equations, the r term is /r,

so r¼ 0 means /r¼ 1, and r¼ 1 means /r¼ 0.

Let s ¼ 1; r ¼ 0; Qn ¼ 0: Then Qnþ1 ¼ 1þ 0 � 1
¼ 1; i:e: cell sets ðoutput changes from 0 to 1Þ:

Let s ¼ 0; r ¼ 0; Qn ¼ 1: Then Qnþ1 ¼ 0þ 1 � 1 ¼ 1;

cell remains set ðoutput remains at logic 1Þ:
Let s ¼ 0; r ¼ 1; Qn ¼ 1: Then Qnþ1 ¼ 0þ 1 � 0 ¼ 0;

cell is reset ðoutput changes from 1 to 0Þ:
Let s ¼ 0; r ¼ 0; Qn ¼ 0: Then Qnþ1 ¼ 0þ 0 � 1 ¼ 0;

cell remains reset ðoutput remains at logic 0Þ:
As it stands, the sequential equation is rather limited because it caters for only a single input s

term and a single input r term. In real event-driven systems there may be a requirement for

multiple set and multiple reset terms so that the cell can be set and reset under different

conditions. But these will be OR terms, since the state diagram is sequential and can only

dealwith one set andone reset condition at a time. So the sequential equation can bemodifiedby

introducing the possibility of multiple set inputs as:

Sum of set inputs
X

s ¼ s1 þ s2 þ � � � þ sn; where sn is the final set input term:

Sum of reset inputs
X

r ¼ r1 þ r2 þ � � � þ rn; where rn is the final rest input term:

Thus, the sequential equation becomes:

Qnþ1 ¼
X

sQ þ Qn �
X

=rQ: ð9:1Þ

This is thefinal formof the sequential equationused todefine the event cell. It is referred to as the

NAND sequential equation [1].

Note that there is a corresponding equation called the NOR sequential equation that is

defined as

Qnþ1 ¼ ð
X

sQ þ QnÞ �
X

=rQ: ð9:2Þ

Equations 9.1 and 9.2 are reproduced from Page 19 in Chapter 1 ‘Basic Concepts in Logic Design’, from ‘Problems

and Solutions in Logic Design’ by Zissos, D. by permission of Oxford University Press.
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But it is not usedmuch these days. Youmay like to try to see how this NOR sequential equation is

obtained from the sequential equation. (Hint: AND ðP rQ þP
=rQÞwith the

P
sQ and expand.)

Equation (9.1) can be described for an event cell A as

A ¼
X

ðturn-on sets of AÞ � Aþ
X

=ðturn-off sets of AÞ

and Equation (9.2) as

A ¼ ð
X

ðturn-on set of AÞ þ AÞ �
X

=ðturn-off sets of AÞ:

Both theseequationswereused in thebookProblemsandSolutions inLogicDesignbyD.Zissos

[1] (chapter 1: ‘Basic concepts in logic design’) and are repeated here by permission of Oxford

University Press.

Thenext stage is to showhow the sequential equation canbeused to synthesize an eventFSM.

Thiswill be followedby an example of how to design an event-drivenFSMfroma specification.

Returning to the sequential equation, Equation (9.1), a circuit can be produced. This is shown

in Figure 9.4.

Qnþ1 ¼ sþ Qn � =r:

This is the equation defining the circuit of Figure 9.4. This can be converted intoNAND formby

applying De Morgan’s rule to obtain:

Qnþ1 ¼ =ð=s � =ðQn � =rÞÞ: ð9:3Þ

This iswhere the ‘NAND’sequential equationnamecomes from.The event cell circuit is shown

in Figure 9.5.

Either type can be used in practice, although with PLD and FPGA devices the AND/OR

arrangement fits best.

9.3 USING THE SEQUENTIAL EQUATION TO SYNTHESIZE AN EVENT
FINITE-STATE MACHINE

The event state diagram shown in Figure 9.6 will be used to synthesize an event system. The

design process for event state diagramswill be dealt with later. The system is essentially able to

determine a 0 to 1 transition on the c input.

Single turn-on input

Single turn- 
off input

Qn+1

Qn

s

r

/r

Figure 9.4 Basic event cell.
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In this system there are three inputs: st, c, and sp. There is a single output P that is logic 1 in

state s3. Note that there are two event cells in this state diagram: event cell A and event cell B.

These form the secondary state variables.

When the operator asserts input st, the systemmoves from state s0 to s1, where itwaits for the

input c (the incomingpulse) to become logic0 (if c is logic 0 in state s0, then theFSMwill simply

move through s1 to s2).When the FSM reaches s2 the systemwaits forc going high. In thisway,

/P

s0

/P

s1

/P

s2

P

s3

st

/c

c

sp

AB

00

AB

10

AB

11

AB

01

The State Diagram

Event

System

st

c

sp

P Block Diagram of the 

System

Figure 9.6 The basic event-driven system.

Set

input s

Reset

input r

Hold term

Qn+1

Qn

/Qn+1

/r

Figure 9.5 Event cell circuit.
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theevent-drivensystem isable tocatch thepositive-going transitionon inputc.ThePoutputwill

remain high until the sp input is asserted. In this way, the P output acts as a memory of the

transition event on c.

When the operator asserts input sp, the FSM will move back to state s0.

This systemcanbe left unattended, since itwill indicate the c0 to1 transition, and asserting sp

will allow the operator to return the system to its initial state again. Note that the system can be

reset to s0 via its reset input as well (not shown).

First, the turn-on set of conditions to set the A event cell must be determined.

The
P

sA is foundby looking for the statewhereAngoes from0to1.This is state s0, forAn ¼ 0

in state s0, andAn ¼ 1 in state s1. There is an input along the transitional line between s0 and s1,

so this input st is included in the turn on set for An. Therefore:

X
sA ¼ s0 � stþ s1 � st: ð9:4Þ

Thereasonwhys1 � st isneeded isbecause the input stmust still be logic1 (active)when theFSM

reaches state s1 to ensure that it will remain in this state.

Now:

X
sA ¼ =An � =Bn � stþ An � =Bn � st ¼ ð=An � =Bn þ An � =BnÞ � st ¼ =Bn � st

due to the application of the logical adjacency rule.Note: this has effectively led to the removal

of the An term in the equation for the turn-on set for event cell An.

Now, looking for the turn-off condition, this occurs in state s2whenAn is changing from1 to0.

Therefore:

X
rA ¼ s2 � cþ s3 � c; ð9:5Þ

since thec inputmustbeheld true in state s3 toensure that the eventcell hold reset. In termsof the

state variables:

X
rA ¼ AnBn � cþ =An � Bn � c ¼ ðAn � Bn þ =An � BnÞ � c ¼ Bn � c:

TheAn term is removed by the logical adjacency rule to leave theBn and c terms. This results in

the turn-off term

X
rA ¼ Bn � c:

The complete sequential equation can now be written thus:

Anþ1 ¼
X

sA þ An �
X

=rA

Anþ1 ¼ =Bn � stþ An � =ðBn � cÞ:

This represents the required behaviour for the event cell A. It is the sequential equation for the

event cell A originally called the NAND sequential equation by Professor D. Zissos in his book

Problems and Solutions in Logic Design [1].
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The sequential equation for the event cell B can be obtained in the same way:

Bnþ1 ¼
X

sB þ Bn �
X

=rB:

The turn-on set for B is

X
sB ¼ s1 � =cþ s2 � =c ¼ An=Bn � =cþ An � Bn � =c ¼ An � =c: ð9:6Þ

Note here that the application of the logical adjacency rule has removed theBn term in the same

way that the An term in the turn on set equation for Awas dropped.

The turn-off set for B is

X
=rB ¼=ðs3 � spþ s0 � spÞ¼=ð=An � Bn � spþ =An � =Bn � spÞ ¼ =ð=An � spÞ: ð9:7Þ

Likewise, theBn term is droppedusing the logical adjacency rule. Sonow the logic to specify the

behaviour of the event cells is complete.

The complete sequential equation for cell B is thus

Bnþ1 ¼
X

sB þ Bn �
X

=rB: ¼ An � =cþ Bn � =ð=An � spÞ:

The two sequential equations

Anþ1 ¼
X

sA þ An �
X

=rA ¼ =Bn � stþ An � =ðBn � cÞ
Bnþ1 ¼

X
sB þ Bn �

X
=rB: ¼ An � =cþ Bn � =ð=An � spÞ

represent the behavioural logic for the two event cells.

The final equation is the output equation for the signal P. This, like clock-driven systems, is

based on the state, in this case state s3:

P ¼ s3 ¼ =An � Bn:

Note that in the
P

sA set the /An state variable has disappeared and in the
P

/rA set theAn terms

have disappeared.

Likewise, the /Bn and Bn terms have disappeared from the respective
P

sB and
P

/rB sets.

9.3.1 Short-cut Rule

This is always going to be the case since the logical adjacency rulewill always be applied to the

state variable for the cell.

Thus, it is possible to apply a short-cut where in the event cellX the turn-on set
P

sxwill have

the /x term removed, and in the turn-off set
P

/rx the x term will be removed as a result of

applying the logical adjacency rule in Equations (9.4)–(9.7).
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This allows the equations to be written thus:

X
sA ¼ s0 � st ¼ =An � =Bn � st ¼ =Bn � st;

i.e. drop the /A state variable in the 0 to 1 term. This means you do not need to write down the

second term s1 � st in Equation (9.4).
X

rA ¼ s2 � c ¼ AnBn � c ¼ Bn � c;

i.e. drop the A state variable in the 1 to 0 term. This means you do not need to write down the

second term s3 � c in Equation (9.5).
X

sB ¼ s1 � =c ¼ An=Bn � =c ¼ An � =c;

i.e. drop the =B state variable in the 0 to 1 term. The s2 � c term is not required in Equation (9.6).

X
=rB ¼ =s3 � sp ¼ =ð=An:Bn � spÞ ¼ =ð=An � spÞ;

i.e. drop theB statevariable in the1 to0 termandyoudonot need towrite down the terms0 � sp in
Equation (9.7).

Thisprovidesa rapidway toobtain the sequential equationsdirect fromthestatediagram.The

easiest way to remember this rule is to simply ‘drop’ the state variable term in the equation for

that state variable. Therefore, in the equation for A, drop the /A state variable in the
P

sA 0 to 1

transition term. In the equation forB, drop theA state variable in the
P

rA 1 to 0 transition term.

From now on, the short-cut rule will be applied.

Having established the equations, they can now be implemented using a PLD or FPGA.

9.4 IMPLEMENTING THE DESIGN USING SUM OF PRODUCT AS USED
IN A PROGRAMMABLE LOGIC DEVICE

To do this the NAND part of the equations might want to be replaced to turn them into sum of

product terms:

Anþ1 ¼
X

sA þ An �
X

=rA ¼ =Bn � stþ An=ðBn � cÞ
Bnþ1 ¼

X
sB þ Bn �

X
=rB ¼ An � =cþ Bn � =ð=An � spÞ:

In the equation for Anþ1, for example, the term =ðBn � cÞ can be converted using De Morgan’s

rule. The De Morgan rule used here is

=ðX � YÞ ¼¼ =X þ =Y

to produce

=ðBn � cÞ ¼¼ =Bn þ =c:
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This results in

Anþ1 ¼
X

sA þ An �
X

=rA ¼ =Bn � stþ An � ð=Bn þ =cÞ:
¼ =Bn � stþ An � =Bn þ An � =c:

And for the term /(/An � sp), using De Morgan’s rule results in An þ =sp. The final equation is

Bnþ1 ¼
X

sB þ Bn �
X

=rB ¼ An � =cþ Bn � =ð=An � spÞ ¼ An � =cþ Bn � ðAn þ =spÞ

and

Bnþ1 ¼ An � =cþ AnBn þ =sp � Bn:

Using these two sequential equations, the final event cell circuits can be synthesized.

9.4.1 Dropping the Present State n and Next State n þ 1 Notation

Up to now the sequential equations used have been of the form:

Anþ1 ¼
X

sA þ An �
X

=rA;

where Anþ1 is the next state of the event cell. However, it could be written as

A ¼
X

sA þ A �
X

=rA;

where A on the left is taken to be the next state and A on the right the present state of the event

cell. This is, in effect, a recursive equation.

This notation will be used from now on. This can be clearly seen in Figure 9.7, where the

outputsA andB are fed back to inputs. Figure 9.7 illustrates the final circuit for the system. This

could be synthesized using a PLD device such as the 22V10.

9.5 DEVELOPMENT OF AN EVENT VERSION OF THE SINGLE-PULSE
GENERATOR WITH MEMORY FINITE-STATE MACHINE

The clock-driven single-pulse generator circuit that was developed in Chapter 1 when dealing

with synchronous (clock-driven) systemswill nowbe revisited.This time itwill be developedas

an event-driven system.

In the clockedversion, usewasmadeof a systemclock to control the timingof the single pulse

producedwhen the input pwas asserted. However, in an event version, there is no system clock,

so an input (named the c input) will be used for that purpose (it can also be used to set the pulse

duration). The event-driven systemwill make use of this input as an event input that happens to

be changing state at a regular interval, but it will be seen by the event system as ‘an event’ input.

Figure 9.8 illustrates the final system. Looking at the state diagram, it can be seen that the

systemstartswhen input s is asserted, but theFSMwill notmove fromstate s0until both s is logic
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/P,/L

s0

/P,/L

s1

P,L

s2

/P,L

s3

s./c

c

/c

/s

AB
00

AB
10

AB
11

AB
01

Event
System

s

c

P

L

A = ∑s
A
 + A· /∑r

A

B = ∑s
B
 + B· /∑r

B

Equations:

A = /B.s./c + A./(B./c) 
   = /B.s./c + A./B + A.c

B = A.c + B./(/A./s)
   = A.c + A.B + B.s
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Figure 9.8 Event-driven single-pulse system with memory showing block diagram, state diagram and

equations.
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1 and the c input is at logic 0. The reason for this is that the transition of c from0 to 1 is to be used

to assert the outputs P and L to logic 1 (beginning of the output pulse).

Therefore,when theFSMmoves fromstate s0 to s1 itwaits in s1 for the c input to go to logic 1,

thenmoves to state s2whereP andL aremade logic 1. Thiswill happen on the 0 to 1 transition of

the c input. The FSMwill remain in state s2 until the c input again drops to logic 0, and the FSM

willmove to state s3where theoutputPwill resume its logic 0 statewhile the outputL remains at

logic 1.

At this point, the FSMwill remain in state s3 until the input s reverts back to logic 0, ready for

the next single-pulse generation. Thiswill also cancel the outputL. In this design, the outputL is

beingusedasapulse indicator, since thepulseduration isdependantupon thewidthof thecpulse

and may not be seen by the user.

In this system, the actual width of theP output pulse can be controlled by the logic 1 period of

the c input.

Turning to the equations, the two-event cell equations can be obtained in the sameway as in

the previous example, by first obtaining the turn-on set and then the turn-off set for each

equation, then inserting them into the sequential equations. However, a little thought shows

that each sequential equation can bewritten down directly using the short-cut method, more or

less as has been done in Figure 9.8:

A ¼
X

sA þ A �
X

=rA ¼ s0 � s=cþ A � =ðs2 � =cÞ ¼ =B � s � =cþ A � =ðB � =cÞ
B ¼

X
sB þ B �

X
=rB: ¼ s1 � cþ B � =ðs3 � =sÞ ¼ A � cþ B � =ð=A � =sÞ

with outputs
P ¼ s2 ¼ A � B

and

L ¼ s2þ s3 ¼ A � Bþ =A � B ¼ B:

The two-event cell equations can nowbe converted so that they can be implementedwith sumof

product logic (typically found in PLD devices):

A ¼ =Bs=cþ A � =Bþ A � c
B ¼ Acþ B � Aþ B � s
P ¼ A � B
L ¼ B:

Thecircuit is illustrated inFigure9.9.Notice theReset line (thick line) to initialize theeventcells

to zero. This is essential in order to ensure that the system is reset to state s0. In operation, this

Reset linewill be at logic1.During reset itwill be at logic0, thus clearingbotheventcells to zero.

Clearly, the reset line is ANDed with the turn-on/turn-off logic of the event cells:

A ¼ ð=Bs=cþ A=Bþ AcÞ � Reset
B ¼ ðAcþ ABþ B � sÞ � Reset:
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For clarity, theReset input linewill be left out of the event cell equations, but remember to add

it in when implementing each design, otherwise the circuit will not simulate, since it will not be

able to initialize. At this stage the reader might like to revisit Figure 9.7 and add a reset

connection to allow this circuit to reset to state s0.

9.6 ANOTHER EVENT FINITE-STATE MACHINE DESIGN
FROM SPECIFICATION THROUGH TO SIMULATION

In this next example, an event FSMwill be developed from its written specification through to a

VerilogHDLdescriptionof theFSM(asdescribed inChapter 6).This is then simulatedusing the

Syncad
TM

simulator system.

The ideahere is to illustrate howacompletedesigncanbe implemented.Later, theVerilogfile

could be used to program a PLD device and, hence, realize the design in physical hardware.

9.6.1 Important Note!

Since the Verilog behavioural level is not optimized for an event-driven system, as yet, the

Verilog description is at the Boolean equation level. This is fine for our purposes, since it will

provide a one-to-one correspondencewith the systemequations. It is also possible to implement

A event cell
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P Output
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c
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Figure 9.9 Circuit for the event-driven FSM system.
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the event-driven system using the gate level direct. The Boolean equation level, however, is

useful for quick simulation and verification. On the other hand, simulating in terms of the logic

gates allows thedesigner toexperimentwithdifferentgatedelayvalues toensure that thecircuits

will not maloperate due to violation of the 33.3% gate tolerance rule (see Section 9.12.3 and

Reference [1] for details).

9.6.2 A Motor Controller with Fault Current Monitoring

This is an event-based FSM used to control a motor. An external device (possibly based on a

Hall-effect transducer) is used tomonitor themotor current. This will be set so that normal start

current is allowed, but if themotor current exceeds some defined limit a fault signal will be sent

to the FSM to switch off the motor and light up a fault LED indicator. The details of the Hall-

effect fault circuitry and the power circuit to switch the motor on and off are excluded from the

diagram of Figure 9.10a.

Figure9.10b shows the state diagramfor theFSMcontroller.Themotor canbe switchedonby

asserting input st, and off by disasserting input st. If a fault is encountered by the FaultDetection

Unit its output signalmswill go high thus causing theFSMtomove into state s2where themotor

will be switched off and the Fault indicator L turned on (an active-low signal). The system will

remain in s2 until the start input st is disasserted to move the FSM into state s3 turning off the

Fault indicator LED L. The FSM can return to its initial state s0 on reaching state s3 if input t is

logic 0.

LN
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Detection

Unit

FSMst
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(a) Block Diagram

(b) State Diagram
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Figure 9.10 The block diagram and state diagram for the motor controller.
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Thesystemcanbe tested in theabsenceofa fault bypressing the test input t.Note that t¼1will

hold the FSM in state s3. The equations for the event cells can now be developed:

A ¼
X

sA þ A �
X

=rA

¼ s0 � stþ A � =ðs1 � =stþ s2 � =stÞ
¼ =B � stþ A � =ð=B � =stþ B � =stÞ
¼ =B � stþ A � ==st
¼ =B � stþ A � st

B ¼
X

sB þ B �
X

=rB

¼ s1 � ðmsþ tÞ þ B � =ðs3 � =tÞ
¼ A �msþ A � t þ B � =ð=A � =tÞ
¼ A �msþ A � t þ A � Bþ B � t

M ¼ s1 ¼ A � =B and L ¼ =s2 ¼ =ðA � BÞ ¼ =Aþ =B:

The schematic diagramof the design is illustrated inFigure 9.11.This has the test input included

so that the system can be tested in the absence of a fault input.

A

/A

B

/B

L Output

Motor
 Output 

M

/B

st

ms

A
t

A

Reset

Figure 9.11 Schematic circuit diagram for the FSM controller.
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Although it is not necessary to drawa circuit diagram, it is useful to see the circuit of the FSM.

Note that the essential interface buffering between the low-voltage FSM circuit and the high-

voltage motor circuit is not shown.

This design can be developed as a Verilog module and this is illustrated in Listing 9.1.

///////////////////////////////////////
module fsm(rst,st,ms,t,M,L,A,B);

output M,L,A,B;
input rst,st,sp,ms,t;

assign
A ¼ (�B&st | A&st)&rst,
B ¼ (A&ms | A&t | A&B | B.t)&rst,
M ¼ A&�B,
L ¼ �A | �B;

endmodule
////////////////////////////////////////

Listing 9.1 FSMmodule.

Note that the module inputs and outputs are defined outside of the parentheses, as was usual in

older style Verilog modules. This is still supported in later versions of the Verolog compiler

tools. Chapter 6 shows the more recent way to define the inputs and outputs.

In the Verilog file, the event equations have been implemented using an assign with blocking

statements. The equations also cater for the test t input to test the system in the absence of a fault.

The Verilog code in Listing 9.2 is a test bench that is used to test the design. A test bench

provides an instance of the FSM, along with a set of test signals to be used in the simulation in

order to verify the design.

module test;
reg st,ms,t,rst;

fsm uut(rst,st,ms,t,M,L,A,B);

initial
begin
$dumpfile("motflt.vcd"); // to get a printout of waveforms.
$dumpvars;
rst¼0;
st¼0;

ms¼0;
t¼0;

// Note it is important to ensure signals change in
// proper sequence. Also to ensure ms and sp are
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// mutually exclusive.
//–––––––––––––––– remove reset

#20 rst¼1;
//–––––––––––––––– move to s1

#20 st¼1;
//–––––––––––––––– stay in s1
//–––––––––––––––– move to s0

#20 st¼0;
//–––––––––––––––– move to s1 again

#20 st¼1;
//–––––––––––––––– move to s2

#20 ms¼1;
//––––––––––––––––

#30 ms¼0;
//–––––––––––––––– move to s3

#20 st¼0;
//–––––––––––––––– move back to s0

#20 st¼0;
//–––––––––––––––– move to s1

#20 st¼1;
//–––––––––––––––– stay in s1
//–––––––––––––––– move to s2

#20 t¼1;
//–––––––––––––––– move to s3

#20 st¼0;
//–––––––––––––––– move to s0
//–––––––––––––––– end of tests.

$stop(60); // stop the simulation.
end

endmodule

Listing 9.2 Test-bench module.

The FSMmodule is very simple and, apart from the input and output defines, consists of only

an assign block. The event cells are defined individually within this block, together with the

output equations.

The test bench module is also seen to be quite simple. One point to note is that the signals

must change one at a time, and with a time delay. This is mandatory, since the event cells can

respond to potential static 1 or 0 hazards (glitches). This will be a necessary requirement with

all event-driven designs.

Finally, Figure 9.12 illustrates the timing waveforms from the simulation.

Comparing thiswith the test benchmodule sequence, it can be seen that the state diagramhas

been traversed twice: once with a fault signal and next with a test signal.
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Note that, in thecaseofa fault, the transition froms2 tos3 tos0 isveryfast and thes3state isnot

apparent in the simulation. In the case of the test, the FSM stops in state s3 until the t input is

returned to its low state. In this way, the operator can test the complete state sequence

(particularly if the state variables are available as LED indicator outputs).

9.7 THE HOVER MOWER FINITE-STATE MACHINE

Ahover-type lawnmower usually uses amechanical interlock to prevent themotor fromstarting

unless the user presses a button before operating the on/off lever. By replacing the mechanical

mechanism with an electronic equivalent, the safety mechanism can be made easier to manu-

facture.

9.7.1 The Specification and a Possible Solution

Ahover lawnmower has a safety button sf thatmust be pressed before operating the start lever st.

When the safety button is pressed, an LED indicator P is lit; when the start lever st is operated

after this, themotorwill turnon.Themotor canbe stoppedby releasing the start lever.The safety

button sf must be pressed before the motor can be restarted with the start lever.

Ablockdiagramwithasuitable statediagramfor the systemare illustrated inFigure9.13aand

b. The specification is a typical one thatmight be given as a specification for a product. Looking

at the original state diagram 1 in Figure 9.13b (with four states), it can be seen that a number of

safety features have been added. This was done during the development of the state diagram as

the true nature of the control sequence was revealed.

0ns 50ns 100ns 150ns 200ns 250ns

test.st

test.ms

test.t

test.rst

test.M

test.L

test.A

test.B

Figure 9.12 Verilog simulation of the design.
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The state diagram controls the sequence of the controller by ensuring that only if the safety

button is pressed before the start lever is operatedwill themotor operate. ThePLEDwill remain

on in s1 if the start button is released. If the safety button is released in either states s1 or s2 the

FSM will move back to state s0.

Note that the FSM will return to s1 when the start lever st is released or the safety button is

released. This ensures that the operator’s hands are onboth the safety buttonand the start lever in

order to start themotor.Theoperatormust see theLEDP turnonbefore the start levercanbeused

to turn on the motor. Finally, note that the unused state s3 has been returned to s0. This ensures

that the system will fall into s0 should a glitch cause it to get into this unused state.

Returning to Figure 9.13, state diagram 2 (with only two states) is an alternative solution,

where combinational logic is used on the inputs (along the transitional lines between s0 and s1).

The logic equations can be deduced in the usual way:

A ¼
X

sA þ A � =
X

rA

¼ s0 � st � sf þ A � =ðs1 � ð=stþ =sfÞÞ
¼ st � sf þ A � =ð=stþ =sfÞ
¼ st � sf þ A � ==ðst � sfÞ
¼ st � sf þ A � st � sf

P ¼ s0 � sf ¼ sf:

Mower
Event

Controller

sf

st

P LED indicator

M Motor output

/P, /M

s0

P, /M

s1

P, M

s2

/P, /M

s3

AB
00

AB
10

AB
11

AB
01

/sf

sf

/st + /sf

st.sf

(b)

(a)

P=sf
, /M
s0

P, M

s1

sf.st

/sf + /st

A
0

A
1State Diagram 1

State Diagram 2

Figure 9.13 (a) Block diagram of themower FSM controller. (b) Two possible state-diagram solutions.
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This latter equation can be seen by noting that theP indicator can be on in s0 (Mealy output) and

also in s1 as a result of getting into s1 via inputs sf � st.
M ¼ s1 ¼ A:

This leads tomore simplified logic requiring only three logic gates: twoANDgates and oneOR

gate. Buffers would, of course, be required for outputs P andM.

Figure 9.14 illustrates the circuit for the mower FSM of state diagram 2 in Figure 9.13.

Additional buffers have been added to provide appropriate power levels. In particular, themotor

outputMwould need to be connected to a relay (static or electromechanical) to isolate the FSM

from the mains electrical supply.

The FSMof state diagram2 is implemented inVerilog using a gate-levelmodule. This allows

individual gates to be given propagation delay values. This is shown in Listing 9.3.

module mowerfsm(st,sf,P,M,A,rst);

input st,sf,rst;
output P,M,A;
wire na,nb,w1,w2;

or #5 g1(A,w1,w2);
and #5 g2(w1,sf,st,rst);
and #5 g3(w2,A,st,sf,rst);
//–––––––––––––––
buf #5 g4(M,A);
//–––––––––––––––
not #5 g5(na,A);
buf #5 g6(P,sf);
//–––––––––––––––

endmodule

Listing 9.3 Mower FSMmodule.

sf

st

Reset

P output

M outputA

w1

w2

/A

Buffer

Buffer

Inverter

g1

g2

g3

g4

g5

g6

Figure 9.14 Schematic circuit diagram of the mower FSM.
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The test bench module is illustrated in Listing 9.4.

module test;
reg rst, st, sf;
mowerfsm uut(st,sf,P,M,A,rst);

initial
begin

$dumpfile("mower.vcd");
$dumpvars;
rst¼0;
st¼0;
sf¼0;
#20 rst¼1;
#20 sf¼1;
#20
#20 st¼1;
#20
#20 st¼0;
#20
#20 st¼1;
#20
#20 sf¼0;
#20
#20 st¼1;
#20
#20 st¼0;
#10 $finish;

end

endmodule

Listing 9.4 Test-bench module.

Figure 9.15 illustrates the simulation of state diagram 2 in Figure 9.13. This follows the test-

bench sequence of Listing 9.4.

The simulation starts by activating the sf input. The P indicator turns on. This is followed

by the st input going high, which starts the mower motor. The start input is released and

the motor stops. It can be started again with the start input because the sf input is still

activated. The sf input is then deactivated (with the start input st still asserted) and the motor

turns off.
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Returning to the problem again, and after a little thought, the control of the mower can be

reduced to a combinational one requiring

M ¼ sf � st
P ¼ sf:

This final solution is now obvious when seen, and perhaps you saw this at the beginning of this

example. This is effectively back to a mechanical switch design!

The original solution based on state diagram 1 in Figure 9.13 is correct but requires three

states and two event cells. The second attempt provides an equally working solution with

fewer states using state diagram 2 in Figure 9.13. Finally, the combinational solution

provides the simplest solution. It pays to look at the problems carefully to see whether

they can be simplified. The sequential nature of the specification can easily lead to this kind

of overdesign from the designer.

9.8 AN EXAMPLE WITH A TRANSITION WITHOUT ANY INPUT

Nowconsider the next example in Figure 9.16; in this example, the transition between s3 and s0

does not have any input.

0ns 50ns 100ns 150ns 200ns 250ns

test.rst

test.st

test.sf

test.P

test.M

test.A

Figure 9.15 Mower FSM simulation.
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Here are the equations for this example:

A ¼
X

sA þ A �
X

=rA

¼ s0 � mþ A � =ðs2 � pÞ
¼ =B � mþ A � =ðB � pÞ
¼ =B � mþ A=Bþ A=p:

The equation for B will be obtained by not using the short-cut rule:

B ¼
X

sB þ B �
X

=rB

¼ s1 � =mþ s2=mþ B � =ðs3þ s0Þ
¼ A � =B � =mþ A � B � =mþ B � =ð=A � Bþ =A � =BÞ
¼ A � =mþ B � =ð=AÞ
¼ A � =mþ B � A:

In theequation forB, the
P

=rA term is (by the short-cutmethod)==s3which is==Abecause there
is no input term along the transitional line.

This example does not have anyoutput (something thatmost FSMswould have), but it is only

an academic example.

Remember: add the reset input before trying to simulate the design.

s0 s1

s2s3

m

/m

p

AB

00

AB

10

AB
11

AB
01

Figure 9.16 State diagram with no input along a transition.
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9.9 UNUSUAL EXAMPLE: RESPONDING TO A MICROPROCESSOR-
ADDRESSED LOCATION

Now here is an unusual example. Suppose one has an FSM-based event controller chip (PLD/

FPGA) that is required to synchronize with a microprocessor. A possible solution follows.

In the system shown in Figure 9.17, an address 380h is produced by the address decoding

logic. Thismight be implemented on the PLD/FPGA chip. The output of this is the signal 380h,

which is to be used to operate the FSM.

The FSMwill respond to this signal when c is low bymoving to its state s1, where it will wait

for c to go high.

At this point the FSMwillmove to s2 to assert theACKsignal to signal to themicrocontroller

that it has seen the 380h signal. The FSMwill return to its initial statewhen the signal c goes low

again via state s2 and s3. The signal c is derived from the system clock.

Note that this signal is used by the event FSM to control the return to initial state and thus

provide a clearly definedACKpulsewidth. If thiswere not done, thewidth ofACKsignalwould

be dictated by the propagation time of the event logic only.

The state diagram is shown in Figure 9.18. Here, one can see the turn-on and turn-off terms,

derived from the address decoder and c clock signals. This example shows how a simple event-

driven FSM can be used to provide a control action without having to add a lot of logic to the

system.

In a microprocessor system, the address decoding logic might well be already available; in a

microcontroller systemtheFPGAcouldprovide thedecoding logic aswell as theFSM,although

it is using up a lot of I/O pins. The ACK signal, as implied in Figure 9.17, could be used to

cause an interrupt in the microprocessor system, thus avoiding the need to provide an input

port bit.

Microprocessor

Address
Decoding

Logic FSM

A0

a9

Addr.

380h

ACK

c

Clock
As an event input

How address 380 hex is formed:

                          a9 a8   a7 a6 a5 a4    a3 a2 a1 a0
                           1   1     1   0  0   0       0   0   0   0
                             3               8                     0

int

Figure 9.17 Block diagram of the basic address-activated system.
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This system will work correctly if the clock signal c connection between the micro-

processor and the FSM is short to avoid lead delays. It is also assumed that the clock period

is much greater than the largest propagation delay in the FSM, so as to allow the FSM time

to settle.

The equations are

A ¼
X

sA þ A �
X

=rA

¼ s0 � 380h � =cþ A � =ðs2 � =cÞ
¼ =B � 380h � =cþ A � =ðB � =cÞ

B ¼
X

sB þ B �
X

=rB

¼ s1 � cþ B � =s3
¼ A � cþ B � ==A
¼ A � cþ B � A

ACK ¼ s2

¼ A � B:

/ACK

s0

/ACK

s1

380h· /c

AB
00

AB
10

ACK

s2

/ACK

s3

c

/c

AB
11

AB
01

Figure 9.18 State diagram and equations for address-activated FSM.
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9.10 AN EXAMPLE THAT USES A MEALY OUTPUT

Sometimes it is useful to have an output that is a function of one or more inputs, but only in

particular states. You might remember that during the programmed learning sections a Mealy

FSM was defined as one in which some of the outside world inputs were fed into the outside

world decoder. This next example illustrates this.

9.10.1 Tank Water Level Control System with Solutions

In the example shown in Figure 9.19, a pump is used to fill the tank (bymaking P1¼ 1 and P2¼
0). The idea is to fill the tank so that the liquid level is between the level sensors Sh and Sl.

When this is the case, the outlet flow from the tank is balanced by the inlet flow to the tank via the

pump.

If the liquid level falls below level sensor Sl (l1 asserted), the pump is to be switched to high-

speedmodewhere P1¼ 0 and P2¼ 1. This is important to avoid air locks in the outlet part of the

system.

Should the liquid level rise to level Sh (l2 asserted), the pump is to switch off.

This systemwill work continuously tomaintain the liquid level. It can, of course, be switched

on, or off via the relevant switches st and sp,which could be replacedwith a single on/off switch

if desired.

Table 9.3 shows the relationship between the level sensor inputs l1 and l2, and the outputs to

the pumpP1 and P2 can be constructed as illustrated below.Note that the last row of Table 9.3 is

Tank
Outlet

Inlet

Pump

Sh

Sl

Level 2

Level 1

FSM
st

sp

P1   P2   l2   l1

Water Flow Control System

Sh is High Level Sensor

Sl is Low Level Sensor

Figure 9.19 Block diagram of the FSM-based Mealy pump control system.
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dictated by the practical arrangement of the system.Clearly, thewater level cannot be at the high

setting in the tank and there be no water at the lower setting.

From this information, a state diagram can be developed that will meet the required

specification. Figure 9.20 illustrates the state diagram. In this design, the system resets in to

its idle state and waits for a start signal. Once obtained, the system moves into s1, the dormant

state. It will stay in this state while the water level is above the level 1 sensor. The level sensors

will now dictatewhen the systemwill move to s3. This will only occur if sensor l1 is zero, so the

P2 input can start the pump in high mode to pump water above the lower level sensor. Once in

state s3 the FSMwill move between s3 and s2 tomaintain thewater level between the two level

sensors.

Note that the systemcanbestoppedat anytimeand theFSMwill fall back to state s0.Note also

that the P2 outputwill be disabled in state s3 if stop is activated, thus preventing the pump speed

changing on a transition from s2 to s3 to s1 to s0. Thewater level would then fall to empty once

the system was turned off. If the tank is empty when the system is turned on, then the FSMwill

move from s0 to s1, then straight to s3 to fill the tank to a level between l1 and l2.

Table 9.3 Relationship between level sensor inputs and outputs to the pump.

l1 l2 P1 P2 Comment

1 1 0 0 Pump off, as water is in danger of overflowing tank

1 0 1 0 Pump at normal speed; water between sensors

0 0 0 1 Pump at high speed; water below sensors.

0 1 0 0 Impossible situation; pump off

P1=0
P2=0

s0

P1=0
P2=0

s1

P1=/l2
P2=0

s2

P1=0
P2=/sp

s3

st

1l/ps

sp+l2

/l1 + sp

l1

AB
00

AB
10

AB
01

AB
11

Idle State
Dormant

State

Pump
Hi-Speed

State

Pump
Lo-Speed

State

Note: If Stop switch is pressed the P2 
output will not be active in state s3.

Figure 9.20 First attempt at a solution: four-state FSM with Mealy output.
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This solution can now be developed into a practical system by assigning a set of secondary

state variables. In this example, possible assignments could be

s0 ¼ =A=B s1 ¼ A=B s2 ¼ =AB s3 ¼ AB

or perhaps

s0 ¼ =A=B s1 ¼ =AB s2 ¼ A=B s3 ¼ AB:

Looking at this solution, one may wonder if it could be made simpler. In fact, looking at the

table of sensor inputs and pump outputs, there is a combinational equation that can be formed

using the level sensor inputs l1 and l2, and the two pump outputs P1 and P2. This is because the

physical liquidmovement formsanatural sequence for theproblem.Lookback toTable9.3with

the impossible situation of l1 not active but l2 active, in which the pump should be held off. The

equations for P1 and P2 are

P1 ¼ l1 � =l2
P2 ¼ =l1 � =l2:

However, these on their own are not enough, since there is the start and stop switch inputs to

consider. Assuming that these two switches are push buttons, an eventmemory cell is needed to

allow the system to occupy the two states.

Thefinal system is illustrated inFigure 9.21.Here, the system is only able to operatewhen it is

in state s1. In state s0 it is disabled.

The two equations for P1 and P2 are only truewhen the FSM is in state s1. Therefore, the two

equations are written in the form

P1 ¼ s1 � =l2 � l1
P2 ¼ s1 � =l2 � =l1:

P1=0

P2=0

s0

P1=/l2· l1

P2=/l2· /l1

s1

st

sp

A
0

A
1

Note both P1 and P2 are Mealy outputs in state s1

Figure 9.21 Final solution: two-state FSM with Mealy outputs.
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To obtain the event cell (there is only one in this state diagram)

A ¼
X

sA þ A �
X

=rA:

Therefore:

A ¼ s0 � stþ A � =ðs1 � spÞ:

Replacing s0 and s1 with the secondary state variables gives

A ¼ =A � stþ A � =ðA � spÞ

The /A in /A � st and the A in A � sp need to be dropped (short-cut method), leaving

A ¼ stþ A � =sp:

This is because when the /A term in =A � st is dropped the result is effectively 1 � st, since
=A � 1 ¼ =A.

In a similarway,A � sp is 1 � A � spwhich is 1 � sp¼ sp.Therefore, thefinal set of equations for

this example is

A ¼ stþ A � =sp
P1 ¼ A � l1 � =l2
P2 ¼ A � =l1 � =l2:

Finally, before leaving this example, it is possible to reduce this particular problem to a

combinational logic circuit that does not require an event cell. This is possible owing to the

physical nature of the problem.Thewater in the tank creates a sequential operation for thewater

level sensors.

P1 ¼ l1 � =l2 � st � =sp
P2 ¼ =l1 � =l2 � st � =sp:

This is only possible if the design uses switches that remain open or closedwhen released. If the

system uses push switches that releasewhen one leaves go of them, then the event cell is needed

to remember the switch action.

9.11 AN EXAMPLE USING A RELAY CIRCUIT

The event sequential equations can be used to implement a design using relay logic. This might

seem to be an outdated way to implement an FSM, but, in some cases, old-style electromecha-

nical relaysmight be amore preferred solution.Alternatively, semiconductor static relays could

beused inplaceofelectromechanical relays.Bothcouldbedesigned tooperate athighvoltageor

high current levels.
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In this next example, the design will be implement using logic gates and then relay logic.

Consider the following specification,which is very similar to themotor controller problemof

Section 9.6.

A motor can be started by pressing the start button st, provided the stop button sp is not

pressed. It can be stopped by pressing the stop button provided the start button is not

pressed. If the stop button is pressed while the start button is still pressed, then the motor

is to stop and an indicating LED turned on. The system can only leave this state and

return to its initial state via a manual reset-key-activated switch. The reset key switch can

also be used to deactivate the system regardless of the state of the start and stop

buttons.

The state diagram in Figure 9.22 is developed to implement the specification. In this state

diagram, the motor can be started by pressing the start button st thus moving the FSM to

state s1, but only if sp ¼ 0. The motor can be stopped by pressing the stop button to move

the FSM back to state s0, provided st ¼ 0. Pressing the stop button while the start button is

still pressed will cause the FSM to move to s2, which is an invariant state (from which the

FSM cannot leave without a system reset). The idea is to allow the reset input to move the

FSM back to state s0.

From this, a set of equations can be derived, resulting in

A ¼ =Bst � =spþ ABþ A=spþ A � st
B ¼ A � st � spþ B � =0:

/M, /L

s0

M, /L

s1

/M, L

s2

st·/sp

sp·/st

st.sp

AB

00

AB

10

AB

11

Figure 9.22 Motor controller state diagram.
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Note, there is no turn-off term in theB equation, so thenegated term is=0,whichof course is 1.
The outputs are:

M ¼ s1 ¼ A=B

L ¼ s2 ¼ AB:

These equations are in a suitable form for implementing the design using either a PLDor relays.

A circuit schematic is drawn in Figure 9.23. This circuit uses AND/OR/NOT logic, so is

suitable tobe implemented using aPLDdevice.Note that anANDgate is needed in the feedback

loop for event cell B so that the reset can be used to reset the cell back to its zero state.

However, a little thought will reveal that such a circuit needs a 5 V power supply, and this

would need to be obtained from the mains supply via a transformer and rectifier circuit. The

transformer could be replacedwith amains resistor dropper and single diode and capacitor, but

this still requires these overheads.

An alternative design could be based upon electromechanical or static relays. These have the

advantage that they can be used with a very rough power supply direct from the mains (using

relays that canbeoperatedatmainsvoltageof course).The relay circuit isobtaineddirectly from

the sequential equations.

The circuit in Figure 9.24 is the final result. In this diagram, the relay contacts are shownwith

the relays not operated. This circuit will use a simple half-wave rectifier in series with a suitable

capacitor to obtain a rough DC voltage for the relays A and B. The resistor across the capacitor

provides a discharge path when the supply is disconnected (by a reset for example).

/Bst

B

sp /Sp

Reset

A

B

st

sp

A

B

A

M
output

L
output

/B

B

Event Cell A

Event Cell B

Figure 9.23 Logic circuit for the motor controller FSM.
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ThecirclesAandBrepresent the relayoperatingcoils (or control input to static relays).The

diodes across each coil are needed to provide a path for relay current when the contacts open;

otherwise, the largeEMFacross the coils could damage the switch and relay contacts. These are

usually referred to as ‘catching diodes’.

Note: the reset switch is in series with the supply. This can reset both relays and turn off both

the motor and indicator LED.

Before moving on to look at more asynchronous (event-driven) examples, one needs to

consider the effects of race hazards in event-driven types of FSM.

9.12 RACE CONDITIONS IN AN EVENT FINITE-STATE MACHINE

In this section someof theproblems that canoccur in asynchronous (event)FSMsystemswill be

discussed, with suggestions on how they can be eliminated.

In an event FSM there are three types of potential race condition:

� race between primary inputs;

� race between secondary state variables (the event cells themselves);

� race between primary and secondary variables.

/B st /sp

Relay A
A B

/sp

st

A st sp
Relay B

B

To Motor Contactor

L indicator

Live 240 V 
a.c.

Neutral

A /B

B

R=33K for 
10 mA LED

Capacitor

Reset

Figure 9.24 Relay logic for the motor controller FSM.
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This is particularly important, since one needs to be aware of potential problems that can occur in

event-driven systems in order to avoid making design errors. These are used with permission

fromOxford University Press from their publication Problems and Solutions in Logic Design [1].

9.12.1 Race between Primary Inputs

This is when two signals both happening at the same time on the same transition of a three-way

branch state are expected to cause the FSM to move to one particular state. Clearly, one cannot

guarantee that two (or more) input signals will change at the same time, since there are always

delays in the paths from two or more signals.

Note: to avoid this type of condition, do not try to look formore than one input changing at the

same time.

In the example of Figure 9.18 there are two signals 380h � /c along a transitional line, but in
this case the FSMwas looking for the condition 380h AND /c, and in the next state c was to be

seen to go high before a state change (it must have been low to get to this state). So, this is a

very different situation, where the inputs have a dictated sequence and cannot cause confusion

if they happen at the same time.

9.12.2 Race between Secondary State Variables

This is when the designer has not followed a unit distance coding for the secondary state

sequence (A,B, event cells for example). The use of a none unit distance coding can result in the

FSM falling into a state different to the one intended as a result of unequal propagation delays

between event cells.

Consider the earlier state diagram of Figure 9.18 with the following secondary state

assignment:

s0 ¼ =A=B; s1 ¼ AB; s2 ¼ A=B; s3 ¼ =AB:

If, in state s0, the 380h input is 1 and c is 0, with A changing to 1 before B, then the resulting

transitionmightbes0 to s2, and in s2, sincec is still logic0, a further transition to s3.Since there is

no input along the transitional line between s3 and s0, the FSMwouldmove back to s0!This sort

of behaviour is unpredictable, since if it was B that changed first in state s0 then the transitional

path could be s0 to s3, back to s0.

Remember, in an asynchronous (event-driven) FSM there is no synchronizing clock to

introduce a delay to allow signals to settle.

Solution: always use a unit distance code for asynchronous (event) FSM systems.

9.12.3 Race between Primary and Secondary Variables

Thefinal race condition to look at is also themost complex. There aremore details to be found in

Reference [1].

Essentially, as the heading suggests, this is a race between the primary (outside world)

inputs to the FSM and its event cell operation (secondary state variables). This is caused if

300 Asynchronous Finite-State Machines



the propagation delay through to the primary input path to set the cell is greater than the

secondary delay path (cell output to cell input to cause the cell to set or clear). It can result in the

cell maloperating.

To prevent this kind of race from occurring, ensure that the primary delay Tp is less than the

secondary delay Ts at all times, i.e.

Tp < Ts:

More specifically:

Tpmax < Tsmin:

This leads to the identity defined in Reference [1], repeated here by permission of Oxford

University Press:

Tpmax=Tsmin < 1;

whereTpmax is themaximumpossiblepropagationdelay for aprimary inputpathandTsmin is the

minimum possible delay for a secondary delay path (total gate delays betweenA andB outputs,

for example).

The event cell structure used in the asynchronous designs in this book (and, indeed, in the

Zissos book [1]) meet these requirements if the gate tolerances are within 33.3% of each other.

This is not difficult to achieve in modern integrated circuits, particularly PLD and FPGA

devices.

There is also a somewhat dated paper on gate tolerances in Reference [2] that is worth

studying.

9.13 WAIT-STATE GENERATOR FOR A MICROPROCESSOR SYSTEM

Somemicroprocessor systems have a feature that allows the processor to introduce ‘wait states’

into a particular memory cycle.

Figure9.25 shows thebasic inputoroutput (I/O) cycle timing (simplified for this example,but

accurate in its sequence to produce a working design). In this example, it is assumed that each

memory or I/O cycle consists of four T states created by the system clock c. T1 is address setup

time,T2 readorwrite setup time,T3await state toallowthedatabus time tosettle, andT4used to

read or write data. In this figure, the event FSM controller monitors the chip enable signal ce,

which will go lowwhen a slow I/O device is selected by themicroprocessor software. This will

occur in the T1 timing slot for the particular I/O cycle. There are four T slots per I/O access.

During theT2periodof the clock, either the input/outputwritewor the input/output read r signal

lines will be taken low by the microprocessor.

During theT2period, anoutput signal from theFSM(IORDY),which is a special input signal

to the microprocessor, can be taken low, and if the microprocessor detects this during the T2

period it will insert an additional T period Tw between T3 and T4.

This extra period is known as a wait state (Tw) and it effectively increases the T3 period used

to allow slow devices time to settle before the T4 period that is used to perform the data

Wait-State Generator for a Microprocessor System 301



transfer. In this way, a slow I/O device can have its chip enable ce signal monitored by the FSM

controller and used to generate a wait state. To be sure, the particular microprocessor will need

to be consulted to find out how to activate a wait state, but this is usually available in the data

sheets for the microprocessor.

The purpose of the event FSM controller is to identify when to send the IORDY signal line low,

andwhentoreturn ithighagain.Ineffect theeventFSMisbeingusedtodetect thepointin thetiming

diagram of Figure 9.25 at which to generate the IORDY signal to be sent to themicroprocessor.

Using the timing diagram as a guide, the required state diagram can be developed as seen in

Figure 9.26. As can be seen from Figure 9.26, the state diagram follows the sequence by

detectingceandeitherwor rgoing low in state s0 to turnon the IORDY(active-low) signal inT2.

Then, it detectswhen the clock cgoes low in state s1 in order to identifywhen it goeshigh in state

s2 (to identify entry into T3 state). The FSMmust then determine when the clock signal c goes

low again, indicating the point at which IORDY must go high again.

Note that fast memory cycles will not activate the wait-state generator because those chip

select signals will not be connected into the wait-state event FSM controller.

Finally, Figure 9.27 illustrates the sequential equations and output equation for the system. This

example has illustrated how an event-driven FSM can be used to track points in a sequential

sequence of signals. This example could easily be adapted for a particular microprocessor.

However, one must determine the correct sequence from the microprocessor data sheet, since

differentmicroprocessors use their own signals and sequences to control access to slowermemory.

 T1           T2            T3            Tw          T4            T1   

c

ce

w or r

IORDY

I/O Cycle

Address
Decoding

Logic

Event
FSM
Wait
State

Controller

ce

c
w
r

Address

The Event FSM controller must
generate the iordy signal and input
it to the microprocessor at the right
point in its I/O cycle.

Timing waveforms showing how the iordy signal is generated from the ce and iow signals and the FSM

IORDY

The microprocessor supplies the
address of the slow memory

Figure 9.25 Showing the block diagram and memory/IO cycle timing.
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 T1           T2            T3            Tw          T4            T1   
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Figure 9.26 The state diagram and how it was derived from the timing waveform.
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Event Cell Equations:

A = ∑s
A
 + A · / ∑r

A

A = /B·/ce·(/r + /w) + A·/B + A·/C

B = ∑s
B
 + B· / ∑r

B

B = A·/C + B·/(/A·/C)

B = A·/C + A·B + B·C

Output:

IORDY = s0 = /A·/B

Figure 9.27 The sequential equations for the memory/IO FSM controller.
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9.14 DEVELOPMENT OF AN ASYNCHRONOUS FINITE-STATE MACHINE
FOR A CLOTHES SPINNER SYSTEM

Figure 9.28 illustrates the system. There is a spinmotor to spin the clothes drumat high speed so

as to remove excess water from the clothes by centrifugal force. The water released from the

clothes into the drum is removed by the pump.There is awater level sensor to detectwhether the

water level is too high before turning on the spin motor to avoid excess load on the latter.

The user loadswet clothes into the clothes drum and presses the start button st. This starts the

pumpon release of the start button.When thewater level is below thewater level sensor, the spin

motor is started and a timer (not shown here) is started.

In due course, the timer times out and the system stops both the spin motor and the pump. A

done indicator is illuminated to indicate to the user that the spin cycle is complete. The usermust

press the stop button sp before another spin cycle can commence. This system does not have a

sensor to test that the door is closed.Youmight like to add this to the system andmodify the state

diagram to include this feature.

Asuitable state diagram is illustrated inFigure9.29. In this state diagram, onpressing the start

button a test is made to determine whether the water level is above or below the sensor on the

drum. If above the sensor, the FSM moves to s2 via s1 and starts the pump.

Note, the pump can only start if the start button has been released. Once the water level has

dropped below the sensor, the FSM moves to s3 to turn on the spin motor, as well as start the

timer.At timeout, theFSMmoves to s4 to turnoffboth spinmotorandpumpaswell as turnon the

done indicatorD.Note that theFSMcannot leave s4via any transition. In fact, the stop input acts

as a reset input and can stop the system in any state.

Event FSM

Drum

Clothes Drum

Spin
Motor

Pump

Water outlet

Water
Level

Sensor

Water level

        v                            M               P

st                                  sp  

TS
tmo

Time
Delay

Module

D Done

Figure 9.28 Basic system showing a clothes spin system with FSM.

304 Asynchronous Finite-State Machines



If, on starting the system, thewater level in thedrumisbelow thewater level sensor, theFSMwill

move froms0 to s1, to s5, then directly to s3. State s5 is needed to allowaunit distance code to be

used for the state machine; s5 is in fact a dummy state.

Note that there is no input along the transitional line connecting s5 to s3. This implies that

when the FSMmoves into s5, it will immediatelymove on to state s3, the delay being that of the

propagation delay of the logic used to implement the event cells B then C.

The equations for the design are

S0

/P, /M,
/TS, /D

s1 s2

P=/st

s5

P=/st,
TS

s3
P=/st,
M, TS

s4
/P, /M,
/TS, D

vts

/v

/v

tmo

ABC
000

ABC
100

ABC
101

ABC
110

ABC
111

ABC
011

Wait for
start signal

Decide on
water level

water level
below sensor,

turn on pump then
so move to
s3 to start 
spin motor

Water level
above sensor

so turn on pump

Spin motor
and pump on

till timeout Timeout so turn
off pump and spin motor

and turn on done indicator

Note: s5 needed
to keep to unit
distance code.

Figure 9.29 State diagram of a possible solution for clothes spinning system.

A ¼
X

sA þ A � =
X

rA

¼ =B � =C � stþ A � =ðB � C � tmoÞ
¼ =B � =C � stþ A � =Bþ A � =C þ A � =tmo

B ¼
X

sB þ B � =
X

rB

¼ A � =C � =vþ A � C � =vþ B

¼ A � =vþ B

C ¼
X

sc þ C � =
X

rc

¼ A � =B � vþ A � Bþ C

¼ A � vþ A � Bþ C:
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The outputs are

P ¼ s2 � =stþ s3 � =stþ s5 � =st
¼ A � C � =stþ A � B � =st

M ¼ s3 ¼ A � B � C TS ¼ s5þ s3 ¼ A � B D ¼ s4 ¼ =A � B � C:

Thestop input spwill be logicallyANDed toeachequationA,B, andC to allow theFSMtoreturn

to ABC¼ 000 when sp is made logic 0.

The Verilog module follows in Listing 9.5. In this module, the equation level is seen

commented out and replaced with a gate-level description.

///////////////////////////////////////////////////
// Spin motor and pump Asyhchronous FSM //

///////////////////////////////////////////////////
module smpfsm(st,sp,v,tmo,P,M,TS,D,A,B,C);

input st,sp,v,tmo;
output P,M,TS,D,A,B,C;

wire w1,w2,w3,w4,w5,w6,w7,w8,w9;
// equation level description. Used in Figure 9.31.
//assign

//A ¼ (�B&�C&st | A&�B | A&�C | A&�tmo)&sp,
//B ¼ (A&�v | B)&sp,
//C ¼ (A&v | A&B | C)&sp,

// alternative gate level description Used in Figure 9.32.
// each gate has been given a delay of 5 time units.

or #5 g1(A,w1,w2,w3,w4);
and #5 g2(w1,�B,�C,st,sp);
and #5 g3(w2,�B,A,sp);
and #5 g4(w3,�c,A,sp);
and #5 g5(w4,�tmo,A,sp);
//–––––––––––––––––––
or #5 g6(B,w5,w8);
and #5 g7(w5,A,�v,sp);
and #5 g11(w8,B,sp);
//–––––––––––––––––––
or #5 g8(C,w6,w7,w9);
and #5 g9(w6,A,v,sp);
and #5 g10(w7,A,B,sp);
and #5 g12(w9,C,sp);
//–––––––––––––––––––––
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P ¼ A&C&�st | A&B&�st,
M ¼ A&B&C,
TS ¼ A&B,
D ¼ �A&B&C;

endmodule
////////////////////////////////////////////////

Listing 9.5 Verilog module for clothes spin FSM.

The test bench module is illustrated in Listing 9.6.

`timescale 1ns / 10ps
module test;

reg st,sp,tmo,v;

smpfsm uut(st,sp,v,tmo,P,M,TS,D,A,B,C);
initial

begin
sp¼0;
st¼0;
v¼0;
tmo¼0;
///////
#10 sp¼1; // remove reset.
#10
#10 v¼1; // water in drum.
#10
#10 st¼1; //start system
#10 //should move to s1 then s2.
#10 st¼0;
#10 // starts pump to empty drum.
#10 // wait for drum empty.
#10 v¼0; // signal that drum empty.
#10 // should move to s3 and turn on spin motor
#10
#10 //waiting for timer to stop spn motor.
#10 tmo¼1; // signal to stop spin motor.
#10 // should have moved to s4.
#10 tmo¼0;
#20 st¼0; //return start to off state.
#10 sp¼0; //stop system and return to s0.
#20
#20 sp¼1; // release reset buton.
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#10 st¼1; //start system with empty drum.
#20
#20 st¼0;
#20 // should move to s1 then s5 then s3.
#10 tmo¼1; // time out. should move to s3.
#20 //waiting for user to press stop.

#10 $stop;
end

endmodule

Listing 9.6 Verilog test-bench module.

Finally, the simulation is shown in Figure 9.30 using the equation-level description. In the

simulation, the event cellsA,B, andC appear to be changing state at the same time in some parts

of the simulation, but in fact the transitions are so fast that the actual transitions cannot be seen.

However, caremust be taken to ensure that propagation timing satisfies the33.3%rulediscussed

in Section 9.12.3.

In Figure 9.31, the simulation using the gate-level description is seen. Here, each gate has

been given a delay value of 5 time-units so that the state transitions can be clearly seen. In

0ns 100ns 200ns 300ns

test.st

test.sp

test.tmo

test.v

test.P

test.M

test.TS

test.D

test.A

test.B

test.C

Figure 9.30 Simulation of a clothes spinner system using equation-level description.
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Figure 9.31, the delays between the gates allow the state transitions to be seen clearly. For

example, the transitions between s1 (ABC ¼ 100) and s2 (ABC ¼ 101), and the transitions

between s1 (ABC¼ 100) to s5 (ABC¼ 110), then on to s3 (ABC¼ 111). The dashed lines help

to identify these transition points.

9.15 CAUTION WHEN USING TWO-WAY BRANCHES

In the state diagram of Figure 9.10 there is a two-way branch in state s1with /st along one

transitional line andmsþ t along the other. These inputs must bemutually exclusive, otherwise

the FSM could maloperate. If this cannot be guaranteed, then the design will need to be

changed so that the state diagram can only change from one state to the next on a single input

change.

Figure 9.32 illustrates a possible alternative design (without the test input t). In this arrange-

ment, the FSM can move from s1 to s2 if either the start input st is returned to logic 0 and/or if

the fault input ms becomes logic 1. On reaching s2 from a fault, the motor is turned off and the

fault indicator L turned on (active-low). If the st input is now returned to logic 0, then the fault

indicator can be turned off but the FSM can only return to s0 if the fault input ms returns to its

logic 0 level.

0ns 100ns 200ns 300ns

test.st

test.sp

test.tmo

test.v

test.P

test.M

test.TS

test.D

test.A

test.B

test.C

Figure 9.31 Gate-level simulation of a clothes spin system.
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The equations for A and B are

A ¼
X

sA þ A �
X

=rA

¼ s0 � stþ A � =ðs2 � =stÞ
¼ =B � stþ A � =ðB � =stÞ
¼ =B � stþ A=Bþ A � st

B ¼
X

sB þ B �
X

=rB

¼ s1 � ðmsþ =stÞ þ B � =ðs3 � =msÞ
¼ A �msþ A � =stþ ABþ B �ms:

The output equations are the same as those for Figure 9.10.

Other examples using two-way branches in this chapter are as follows.

InSection9.10.1,Figure9.20, thereare twopossible two-waybranches: one in state s1and the

other in state s3. Ineach case there aredifferent inputs alongeach transitionpath that could result

inmaloperation; therefore, this design could fail. However, the alternative design in Figure 9.21

overcomes this problem.

In Section 9.11, Figure 9.22, there is a two-way branch in state s1. If input sp is logic 1 in state

s1, then theFSMcanmove to either s0 if st¼0, or to s2 if st¼1. If, however, inputs st and spwere

LN
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Unit

FSMst

ms M

L

(a) Block Diagram

(b) State Diagram
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ms+/st

/st

AB
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AB
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Modified state diagram to 

eliminate the two-way 
branch and potential for 

circuit maloperation.

Figure 9.32 Modified state diagram for the motor controller of Section 9.6.2.
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to change at the same time from logic 0 to logic 1 in state s0, then it is possible that the sequence

shown below could occur:

or

The latter example appears to work correctly.

In general, however, changes in two or more input signals can result in circuit maloperation

due to propagation delays between input signal changes producing static or dynamic hazards.

The best way to handle this situation is to allow only one input to affect the FSM. Figure 9.33

shows how this could be done.

st sp

0 0 in s0

1 0 st reaches logic 1 before sp; move s0 to s1

1 1 move to s2

st sp

0 0 in state s0

0 1 sp reaches logic 1 before st; stay in s0 while signals still changing

1 1 stay in state s0

/M, /L

s0

M, L

s1

M, L

s2

/M, /L

s3

st

/st

sp

/sp

AB
00

AB
10

AB
11

AB
01

Only one input signal change allowed before a state transition

Figure 9.33 Modification to the state diagram of Figure 9.22 to avoid maloperation.
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This, of course is not what the original specification for this FSMwas designed to do. In fact

the idea of trying to produce an event FSM to meet the specification in Figure 9.22 is not very

practical.

Designing anasynchronousFSMtoworkcorrectlyundermultiple changing inputs is not easy

and is beyond the scope of this book. Reference [3] is a good source that covers in detail and in a

formal manner how to develop complex asynchronous FSMs using both Huffman and Muller

circuits. Inparticular, theCgate isused todecouple the set termsand reset terms.This can reduce

the potential for static and dynamic hazards when two or more inputs are changing.

9.16 SUMMARY

This chapter has introduced the idea of asynchronous (event-driven) FSMs and how to design

them for implementation in devices such as PLD and FPGSs, as well as relay circuits. Also, the

simplest method to simulate the designs has been considered, using the Verilog HDL at the

equation and basic gate levels. This allows designs to be implemented directly at either

the equation or logic gate level, and avoids the problems that most HDL systems can introduce

at the behavioural levelwhen implementing event-driven controllers. A number of simple FSM

designs have been considered, showing how the event FSM can be used. In addition, the

potential race problems associated with event-driven FSMs have been discussed, with ways

to avoid these conditions from happening.
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10
Introduction to Petri Nets

10.1 INTRODUCTION TO SIMPLE PETRI NETS

The Petri net is a state diagram that can be used to describe the behaviour of both sequential and

parallel systems. It was initially conceived by Karl Petri in the 1960s and has had a good

following of academics ever since. There is a website devoted to all things Petri at http://www.

informatik.unihamburg.de/TGI/PetriNets/.

Petri nets are often used as a tool to study the behaviour of parallel and concurrent systems (not

necessarily electrical). They have also been used to study parallel and concurrent programming

methods. In recent years, researchers have shown [1] how the Petri net can be used to develop and

synthesize electronic FSM systems, in a similar way to how synchronous and asynchronous

systems can bedeveloped and synthesized.Themain reason for employingPetri nets is the ability

to create parallel systems.The followingmethodmakes use ofmaterialwith permission from [1].

Figure 10.1 illustrates a two-state diagramand itsPetri net equivalent. In aPetri net, the ‘state’

is represented by a ‘placeholder’ and the ‘transitional lines’ between states are represented by

‘arcs’ that connect the placeholder (P1 andP2) to transitionpoints (T1 andT2). The inputs along

the transitional lines of a state diagram are placed against the transition points along the

connecting arcs that link one placeholder to another in a Petri net.

The Petri net uses a memory element to represent each placeholder (rather like in a One Hot

state diagram – as illustrated in Figure 10.1). However, in Petri nets used to represent parallel

systems, there canbemore thanoneactiveplaceholder (whereas ina statediagramonlyone state

can be active at any one time). For this reason, a Petri net needs someway to show which of its

placeholders are active. This is done by using a ‘token’ to represent an active placeholder and by

placing a ‘dot’ in the placeholder that is active.

In Figure 10.1, placeholder P1 is active, since it has a token, and placeholder P2 is not active

and, hence, does not have a token.

A brief explanation of the behaviour of the Petri net in Figure 10.1 follows.

Initially, a token is in placeholder P1 (via initialization logic to be explained later).When the

input x becomes active (x ¼ 1) the transitionT1will fire, and the tokenwillmove (following the

All Petri Net Equation generations are reproduced from ‘VHDL generation from hierarchical Petri net specifications

of parallel controllers’ by JM Fernandes, M Adamski and A J Proenca, (IEE Proceedings- Computers and Digital

Techniques, Vol.144, No.2 March 2007) with permission from IET.

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



arcpath) toplaceholderP2,where itwill remain (becauseT2 is not able tofire sincex is still 1), as

illustrated in Figure 10.2.

It should be noted that transition T1 will only firewhen x ¼ 1 and a clock pulse occurs. Note

also that outputs P ¼ 0 and Q ¼ 1 in P2, so outputs are following a Moore-type model. When

x ¼ 0 and the next clock pulse occurs, the token will pass back to P1, as shown in Figure 10.1.

The syntheses for this Petri net are based upon the equations shown in Figure 10.1. There are

three basic equation types:

� placeholder equations;

� transient equations;

� output equations.

The placeholder equations follow the same format as the sequential equations for an event-

driven state machine. This is best described in terms of the Petri net in Figure 10.1, shown in

Equation (10.1). The Petri-net equations define the input to aD-type flip-flop, hence the ‘P � d’
on the left-hand side.

P1 � d ¼ T2þ P1 � =T1: ð10:1Þ
This is interpreted as: for P1 to get a token, T2 must have fired; or, to hold on to the token, a

token must be in P1 and T1 must not have fired.

For P2:

P2 � d ¼ T1þ P2 � =T2: ð10:2Þ

State diagram using One 
Hot method

Petri-Net

P,/Q

s0

/P, Q

s1

P1 P2

T1

T2

x

/x

Q,P/Q/,P

s0.d = s1./x + s0./x

s1.d = s0.x + s1.x

P = s0

Q = s1

P1.d = T2 + P1./T1

P2.d = T1 + P2./T2

T1 = P1.x./P2

T2 = P2./x./P1

P = P1

Q = P2
More Complex Logic

x_|

/x_|

Figure 10.1 Comparison between a state diagram and Petri net with respective equations.
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Thefirst termT1on the right-hand side ofEquation (10.1) for P1 is, in effect, a turn-on condition

for the placeholder P1. The product term P1 � T1 is a hold term for the placeholder.

The transition equations are made up of the conditions necessary for the transition to fire. In

the Petri net of Figure 10.1 it can be seen that T1will only fire if P1 has the token andP2 does not

have the token and the input x ¼ 1,. Hence:

T1 ¼ P1 � x � =P2: ð10:3Þ

In the same way:

T2 ¼ P2 � =x � =P1: ð10:4Þ

There is more to these rules when describing more complex Petri nets, which will be explained

later.

Since the placeholder equations of Equations (10.1) and (10.2) are equal to P1 � d and P2 � d
respectively, they define the D inputs to D-type flip-flops. This is illustrated in Figure 10.3.

In future examples, the distinction between the left-hand side of a placeholder equationPn � d
will not be made and will take on the appearance of a recursive equation, as in

P1 ¼ T2þ P1 � =T1
P2 ¼ T1þ P2 � =T2:

This implies that the left-hand side is the input to the flip-flop. Reference [1] uses this approach.

Figure 10.3 illustrates the cycle of design from Petri net to equations, and finally synthesized

circuit. It implies that once a Petri net has been developed, the synthesization is a systematic

application of the rules.

Of course, a PLD device or FPGA could be used and the equations used directly, or the Petri

net could be written at the behavioural level in VeriLog HDL.

2P1P

T1

T2

x

/x

P, /Q /P, Q

Figure 10.2 Token moved to P2 after T1 fired (x ¼ 1).
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In the circuit schematic ofFigure 10.3, note the initialization arrangement. This is the same as

that used in theOneHot design of statemachines. Also note the topological arrangement for the

gate logic. Theflip-flopoutput P1 is connectedback into the turn offandgate logic; and likewise

for the P2 flip-flop. This provides the hold term required to keep the placeholder active.

From this diagram, and the foregoing description of the equations, it can be seen that the flip-

flops provide memory for the placeholder element and that a set flip-flop is equivalent to a

placeholder with a token and a reset flip-flop is equivalent to a placeholder without a token.

The topological structure of the Petri net can be seen in Figure 10.4:

Pn ¼ Tinþ Pn � =Tout: ð10:5Þ

Tin is the turn-on input, and the feedback from output Pn to the input of the ANDgate forms the

hold term. The term Tin in Equation (10.5) is of the form:

Tin ¼ input placeholder AND input enable AND NOT output placeholder:

Tout is the turn-off term,which isnegated inEquation (10.5).WhenToutbecomesassertedhigh,

the /Tout input will go low so as to open the feedback hold term to allow theD flip-flop to reset

(Tin will not be active at this point).

P1 P2

T1

T2

x

/x

/Y Y

Equations:

P1.d = T2 + P1./T1

P2.d = T1 + P2./T2

T1 = P1.x./P2

T2 = P2./x./P1

Y = P2

Q

QSET

CLR

D

Q

QSET

CLR

D

/T1

T2

/T2

T1

/T1

P1

P2

/P2

x /x

clk

initialise

/T2

P2

/P1 /P2/P1

d.2Pd.1P

Petri-Net

Circuit

Note first flip-flop P1 is set 
during inititalization since it 

has the token.

Y

Figure 10.3 Full cycle of design from Petri net to circuit.
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Aclose lookatFigure10.4 shows that thegate logicof theANDandORgates themselveswith

the feedback loopwould formanasynchronous eventcell if theDflip-flopwere removed.This is

illustrated inFigure 10.5. It canbe seen that thePetri net canbe synthesized as either a clockedor

unclocked (event-driven) system.

Note that if an unclocked (event-driven) system is to be designed, then the gate propagation

delayswouldneed tobeconsidered.This is similar to theeffects onasynchronous (event-driven)

FSMs discussed in Chapter 9.

Q

QSET

CLR

D
Pn

Pn

Clk

Tin

/Tout

Tin

Pin

Tout

Pout

Turn on

hold

Turn off

Figure 10.4 Basic topological structure of the Petri net.

Pn

Pn

Tin

/Tout

Pn = Tin + Pn./Tout   

Tin

Pin

Tout

Pout

The Tin term equation is of the form:

Tin = input placeholder AND input enable AND NOT output placeholder

Turn on term

Turn off term

Hold

Figure 10.5 Asynchronous (event-driven) Petri net structure.
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In Petri nets:

� synchronous designs are clock driven with the D flip-flop elements;

� asynchronous designs are event driven with the D flip-flop elements removed.

There is much research work being carried out on asynchronous Petri nets at a number of

universities. Youmight wish to do aweb search using the keywords ‘Petri nets’ and ‘C gate’ to

obtain further information.

The remainder of this chapter will deal with synchronous clock-driven systems.

To consolidate the ideas discussed so far, a sequential Petri-net controller example will be

considered.

10.2 SIMPLE SEQUENTIAL EXAMPLE USING A PETRI NET

Asequential Petri-net controller example is illustrated in Figure 10.6. In this example, a pumpP

canbe turnedonbyasserting st high tofireT1.After sensorvbecomeshigh,T2will fire to turnon

the motor. Pressing the stop button sp will cause T3 to fire and return the system to placeholder

P1, where both motor and pump are turned off.

The equations for this design are shownbelow, but youmightwant to cover themup and try to

produce them. The equations are illustrated in Figure 10.7, which shows the circuit diagram of

the system; initializationcircuitry is also shown,withflipflopP1beingsetwhileflipflopsP2and

P3 are cleared.

To make this system event driven, the D flip-flops can be removed and the feedback loops

completed from theORgate outputs to the two input ANDgates so as to form the event cells for

P1, P2, and P3.

Sequential Petri-net pump – spin motor problem

P1 T1 P2 T2 P3 T3

st v sp./st/P,/M P,/M P,M

Produce the Petri-net equations for this controller.

T1 = 
T2=
T3 = 

P1 = 
P2 = 
P3 =

Figure 10.6 Another sequential Petri net design.
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10.3 PARALLEL PETRI NETS

Up to this point, only sequential Petri nets have been considered. However, the main point of

using the Petri net is to allowparallel systems to be developed. Therefore, parallel Petri netswill

now be discussed.

A parallel Petri netwill have parallel paths containing sequences. Figure 10.8 illustrates such

aPetri net. In thisPetri net thereare threeparallel pathsbetween theT2andT5 transitions.P1and

P2 form a sequential path. At T2, they ‘fork’ into three parallel paths. At T5 these parallel paths

‘join’ to form a sequential path again.

When the token reachesP2and the syn1 input becomesactive (high), the tokenwill transfer to

P3, P4, and P5, as illustrated in Figure 10.9. The system will now have three event cells (andD

flip-flops) set at the same time.

Suppose inputpbecomes active (high) but input q is not yet active (high). The resultwill be as

shown in Figure 10.10. If, at this point, syn2 were to go active (high), then transition T5 would

not fire because the token has not yet reached P7.

A requirement for a Petri net is that all the placeholdersmerging into a transition (P6, P4, and

P7 into T5) must have a token before the transition can fire.

Eventually, when input q ¼ 1, T4 will fire and the token in P5 will move to P7.

InFigure10.11, all placeholdersmerging intoT5have tokens; so,whenever syn2¼ 1,T5will

fire and the tokens will ‘join’ and P1 will obtain the token again.

Equations for the design:

T1 = P1.st./P2                    P1 = T3 + P1./T1
T2 = P2.v./P3                     P2 = T1 + P2./T2
T3 = P3.sp./st./P1.             P3 = T2 + P3./T3

P = P2  + P3

M =  P3

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

P1 P2 P3

/T1

T3

/T3

T1

/T1

T2

/T2

initialize

Clk

/P1
/st

spP3

P1

st

/P2 P2

v

/P3

/T2 /T3

Figure 10.7 Circuit diagram of the Petri net design.
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P1 P2

P3

P4

P5

P6

P7

T1

T2 T3

T4

T5

/X1
/X2
/X3

st X1
X2
X3

/X1 X1

X2

/X3 X3

p

q 2nys1nys

st

syn1

syn2
p
q

Clk

X1

X2

X3

Figure 10.8 Petri net with parallel paths.

P2P1

P3

P4

P5

P6

P7

T1

T2 T3

T4

T5

/X1
/X2
/X3

st X1
X2
X3

/X1 X1

X2

X3/X3

p

q syn2syn1

st

syn1

syn2
p
q

Clk

X1

X2

X3

Figure 10.9 Tokens moved into three parallel paths (fork).
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The above discussion has described a mechanism in which sequential flow can become

parallel flow and merge back into sequential flow again. Most parallel systems behave in this

manner, and thePetri net canbeused tomodel suchbehaviour. This has been oneof the principle

uses for Petri nets in the past.

In the example illustrated in Figures 10.8–10.11, the transitions T2 and T5 act as synchroniz-

ing points; syn1 (controlling the firing of T2) is used to synchronize the point of ‘fork’, and syn2

(controlling the firing of T5) is used to synchronize the point of ‘join’. So, in a hardware system,

the two signals syn1 and syn2 act as synchronizing points.

However, the Petri net is self-regulating, since all placeholders converging onto a transition

must have tokens before the transition can fire.

The equations will now be developed for this example.

First the placeholder terms:

P1 ¼ T5þ P1 � =T1
P2 ¼ T1þ P2 � =T2
P3 ¼ T2þ P3 � =T3
P4 ¼ T2þ P4=T5

P5 ¼ T2þ P5 � =T4
P6 ¼ T3þ P6 � =T5
P7 ¼ T4þ P7 � =T5:

P1 P2

P3

P4

P5

P6

P7

T1

T2 T3

T4

T5

/X1
/X2
/X3

st X1
X2
X3

/X1 X1

X2

/X3 X3

p

q 2nys1nys

st

syn1

syn2
p
q

Clk

X1

X2

X3

Figure 10.10 Input p ¼ 1, q ¼ 0 with P5, P6, and P4 active, but not P7.
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Now the transition terms:

T1 ¼ P1 � st � =P2
T2 ¼ P2 � syn1 � =P3 � =P4 � =P5:

Note here that for T2 to fire there must be a token in placeholder P2, signal syn1must be active,

but none of the P3, P4, or P5 placeholders must be active.

T3 ¼ P3 � p � =P6
T4 ¼ P5 � q � =P7
T5 ¼ P6 � P4 � P7 � syn2 � =P1:

Here, all parallel pathplaceholdersmergingontoT5musthavea token.Theequations forT2and

T5 need to be noted.

Finally, the outputs can be written as

X1 ¼ P2þ P6

X2 ¼ P2þ P4

X3 ¼ P2þ P7:

P1 P2

P3

P4

P5

P6

P7

T1

T2 T3

T4

T5

/X1
/X2
/X3

st X1
X2
X3

/X1 X1

X2

/X3 X3

p

q 2nys1nys

st

syn1

syn2
p
q

Clk

X1

X2

X3

Figure 10.11 T5 can fire whenever input syn2 becomes active (high).
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10.3.1 Another Example of a Parallel Petri Net

Figure 10.12 illustrates another Petri net example. You might like to try to write down the

equations for this one and check the solution with the equations below. The results should be as

follows.

The placeholder terms are

P1 ¼ T1þ P1 � =T2
P2 ¼ T2þ P2 � =T3
P3 ¼ T3þ P3 � =T4
P4 ¼ T4þ P4 � =T1
P5 ¼ T1þ P5 � =T5
P6 ¼ T5þ P6 � =T6
P7 ¼ T6þ P7 � =T7
P8 ¼ T7þ P8 � =T4:

The transitional terms are

T1 ¼ P4 � st � =P1 � =P5
T2 ¼ P1 � s1 � =P2
T3 ¼ P2 � =P3 there is no input against the transitionT3

T4 ¼ P3 � P8 � =st � =P4
T5 ¼ P5 � s2 � =P6

P1 P2 P3

P4

P5 P6 P7

T1

T2 T3

T4

T5 T6

st

s1

s2

/st

X  /X X

Y

P8T7

/Y

X and Y are outputs

Figure 10.12 Another parallel Petri net example.
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T6 ¼ P6 � =P7
T7 ¼ P7 � =P8:

The outputs are

X ¼ P1þ P3þ P4

Y ¼ P5þ P6:

10.4 SYNCHRONIZING FLOW IN A PARALLEL PETRI NET

In the example in Section 10.3, use was made of synchronizing inputs syn1 and syn2 to

synchronize the flow from sequential to parallel, and from parallel to sequential. Sometimes,

however, there is aneed to synchronizebetween twoseparatePetri nets.Consider the example in

Figure 10.13.

This clearly cannot be done without having some shared communication. It is a classical

problem in parallel programming systems. However, in a parallel programming system, a share

variablemight be considered appropriate. This is dangerous, since this variable could bewritten

to by either of the two parallel entities.

P1

T1

P2

T2

P3

T3

P4

T4

P5

T5

P6

T6

How to synchronize?

Synchronising two independent Petri-Nets

Figure 10.13 Synchronizing two independent Petri nets?
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10.4.1 Enabling and Disabling Arcs

In the Petri net there is a way to overcome this problem, using either

� an enabling arc, or

� a disabling arc.

Consider, first, the action of an enabling arc. As can be seen from Figure 10.14, the process

madeup fromP1 toP3 and the processmadeup fromP4 to P6 are totally independent.However,

the dashed line from P2 to T5 indicates that there must be a token in P2 in order to enable T5.

However, T5 must also have a token in P5 and its go signal must be active (high). So, the

condition for T5 to fire will be

T5 ¼ P2 � P5 � go � =P6 transition equation with enabling arc:

This arrangement ensures that both Petri nets are at a particular state in their sequence (P2 and

P5) before T5 can fire.

P1

T1

P2

T2

P3

T3

P4

T4

P5

T5

P6

T6

T5 can only fire when 
P2 has a token AND 
when P5 has a token 
and its input go high.

Use of an enabling arc

go

Figure 10.14 The enabling arc.
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Now consider the disabling arc in the example of Figure 10.15. In this example, the Petri net

comprising P1 to P3 can stop the process in the other Petri net P4 to P6 if a token is in P2. This

would be represented by the equation

T5 ¼ =P2 � go � P5 � =P6:

Here, there must not be a token in P2, even if P5 has a token and input signal go ¼ 1.

Now an example follows showing how these two ideas could be used in practice.

10.5 SYNCHRONIZATION OF TWO PETRI NETS USING ENABLING
AND DISABLING ARCS

In the example of Figure 10.16, the sequence of flow is forced to follow a set sequence:

1. It is assumed that in this system the token will always arrive at P5 first, perhaps because of

external circumstances.

2. The token in P5 cannot move on to P6 until the arrival of a token in P2.

3. The token cannotmove on fromP2 toP3becauseT2 is disabled by the disabling arc fromP5.

4. As soon as the input signal go ¼ 1, the token in P5 can move to P6.

5. This removes the disablement of T2 and the token in P2 can move on to P3.

P1

T1

P2

T2

P3

T3

P4

T4

P5

T5

P6

T6

T5 can only fire when 
P2 does NOT have a 
token AND when P5 
has a token and its 
input go is high.

Use of a disabling arc

go

Figure 10.15 Disabling arc to avoid progression at a certain point in the Petri net.
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This example illustrates the idea of how the enabling and disabling arcs can be used to

check flow.

10.6 CONTROL OF A SHARED RESOURCE

Now consider the more practical example shown in Figure 10.17, which illustrates a system

in which two computers, computer A and computer B, share a common resource (e.g. a

printer) via a shared data bus. They are separated from the shared resource via tri-state

buffers that are controlled by signals EA and EB via a Petri-net controller. Inputs to the

Peri-net controller are ra and rb, which are sent by the respective computers. Computer A is

to have priority over computer B.

There are a number of ways in which this problem could be resolved, but the most elegant is

that shown in Figure 10.18. In this solution, two independent Petri nets have been used: one for

processing the ra signal from computer A and the other from computer B.

If computerA accesses its ra signal before computerB accesses its rb signal, then the token in

P1willmove toP2 and the disabling arcwill disableT3 so that the arrival of a signal on rbwill be

blocked.

In due course, computerAwill lower its ra signal and the tokenwillmove back to P1. If rb did

arriveduring the time that computerAhadaccess to the shared resource, then the token inP3will

not move to P4 because T3 is disabled.

P1

T1

P2

T2

P3

T3

P4

T4

P5

T5

P6

T6

T5 can only fire when 
P2 has the token and 
T5 input is 1. 

 T2 cannot fire if P5 
has a token.

Synchronizing using enabling and disabling arcs

go

Figure 10.16 Provision of priority to a particular sequencing of two independent Petri nets.
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Note that if computerAwants toaccess the shared resourceagainwhile computerBhasaccess

to it, raising its ra signal will cause the token in P4 to move back to P3 and the token in P1 will

move to P2 as well. So, computer A has a priority over computer B.

Of course, if during the time that computer B has access to the shared resource there is no

access by computer A, then, when computer B has finished its access, lowering of rb will cause

the token to move back to P3.

Petri
Net

Controller

ra

rb

EA

EB

Tri
State
Buffer

Tri
State
Buffer

Shared
Resource

Computer
A

Computer
B

Figure 10.17 Shared resource controller.

P2P1

P4P3

T1

T2

T3

T4

ra

/ra

rb

/rb+ra

EA/EA

EB/EB

Disabling
arc

P1 = T2 + P1./T1
P2 = T1 + P2./T2

T1 = P1.ra./P2
T2 = P2./ra./P1

P3 = T4 + P3./T3
P4 = T3 + P4./T4

T3 = P3.rb./P2./P4
T4 = P4.(/rb+ra)./P3

EA = P2
EB = P4

Figure 10.18 A solution to the shared resources problem.
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The equations for the Petri-net controller are given in Figure 10.18. In particular, note the

equation for T3 with its disabling placeholder /P2 term. T3 can only fire if there is a token in P3

and rb is active high and there is not a token in P4 or P2.

At the start of the simulation (see Figure 10.19), P1 and P3 are active due to the initialization

with rst and pst inputs (see Verilog HDL code in shared resource folder of Chapter 10 on the

CDROM). Each input ra then rb is asserted in turn to simulate requests for access to the shared

resource.At the seventh clock pulse the rb input has become active; then ra is active at the eighth

clock pulse (priority request fromcomputerA). This results in computerA gaining access to the

shared resource fromcomputerB.ComputerAthencompletes its transactionand, since rb is still

active, computerB regains access to the shared resource. In due course, rb returns to its low state

and the Petri net returns the token in P4 to P3 to relinquish computer B access to the shared

resource.

10.7 A SERIAL RECEIVER OF BINARY DATA

In Section 4.7, an asynchronous binary data receiver was developed using a state diagram

implemented withD-type flip-flops, together with a shift register, a divide-by-11 counter and a

data latch developed using the techniques in Appendix B.

0ns 100ns 200ns 300ns

test.rst

test.pst

test.clk

test.ra

test.rb

test.EA

test.EB

test.P1

test.P2

test.P3

test.P4

test.T1

test.T2

test.T3

test.T4

Figure 10.19 Simulation of the shared resource Petri net.
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In this section, a similar design is describedmaking use of a Petri-net controller. The design is

described in detail, so it can be studied without reference to the one in Chapter 4.

An asynchronous serial receiver is to be developed using a Petri net to allow binary data to be

received and converted into parallel data. The Petri net is a goodway of implementing the serial

receiver, since use can be made of the enabling arc and the design can be implemented using a

single interconnected Petri net diagram.

As a reminder of the arrangement used in Chapter 4, the protocol and sample points are

illustrated in Figure 10.20. The asynchronous serial protocol is to be one start bit (active low),

followed by eight data bits, and two stop bits (11 bits in total). The incoming data need to be

shifted into a shift register, and it is important to ensure that this is donewhen the incoming data

have had time to settle. This can be achieved by using a clock that runs faster than the shift

register clock so that thepoint in time that the shift register data is clocked into the shift register is

around the middle of the available bit time interval.

In Figure 10.20, the bit time interval is around four clock periods, and at the second clock

pulse into the data cell the data at the shift register input are to be clocked into the shift

register (indicated by the arrowed clock pulse points). Thus, the shift register clock will be

four times slower than the main state machine clock clk. This will be increased in this Petri

net version.

Figure 10.21 illustrates a possible Petri-net-based block diagram for the system. In this

system, a Petri-net controller is used to control the operation of the system,which consists of an

11-stage shift register with parallel outputs to a data latch. Note that the data into the data latch

include only the data bits d0 to d7 (Q0 to Q7), not the protocol bits st, sp1, and sp2. The Divide-

by-11 Counter (which could be either an asynchronous binary counter or a synchronous binary

Clk

st d0 d1 d2 d3 d4 d5 d6 d7 sp1 sp2

The Petri net controls the operation of the sample data 
pulse clock RXCK that clocks the shift register (arrowed 
every fourth pulse).

This ensures that the data are sampled near the middle of 
the data bit area of the packet.  Note that the 1-to-0 
transition of the start bit st is used to synchronize the 
receiver to the beginning of the data packet. 

Serial Signal Protocol example

st start bit and sp1, and sp2 stop bits are the protocol bits
d0 to d7 are the data bits (payload).

Figure 10.20 Arrangement of the data packet and protocol.
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counter along the lines of those developed in Appendix B) is used to count the number of input

data bits received and produces an output rxf indicating to the Petri net that the shift register is

full. The shift register is clocked with the RXCK signal derived from the clk signal within the

Petri-net controller.

Should an error occur indicated by the ed signal, the error (ERR) output will be asserted high

and the system will wait for a reinitialization from some external device ready for the next

attempt at receiving a serial data packet. The control herewould bevia the external device using

the serial receive system. The overall system is very similar to the one developed in Chapter 4.

The system is started by the start bit going low, as seen by the serial data in line. Figure 10.22

shows the Petri net diagram developed for the system. This consists of two Petri net diagrams

connected by enabling arcs. The first one, comprising P1 to P5, is used to generate the shift

register clock rxck.The second, andmain,Petri netdiagramcontrols theoperationof the system.

Both Petri nets are driven from the same clock clk.

Note theuseof three enablingarcs.Thefirst one, fromPM2, is used todisable thefirstPetri net

via its T1firing transition until themain Petri net receives a start st data bit. The second enabling

arc, fromP5, is used to prevent themain Petri net frommoving on to PM3 until the first Petri net

has generated a shift-register clock pulse RXCK. Note, also, that an enabling arc is used to
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Figure 10.21 Block diagram for the asynchronous serial receiver system.
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prevent T5 fromfiring until themain Petri netmoves to PM3; otherwise, there is a potential race

condition between T5 and TM2.

Thus, the first Petri net can generate shift-register clock pulses at the correct time in the data

packet. Note that there are five clock pulses between each RXCK in this realization, rather than

the four as suggested in Figure 10.20. Thus, the system clock needs to be five times the required

baud rate.

In the main Petri net, the placeholder PM3 and its two transitions TM3 and TM7 test for the

shift-register full signal rxf. If low (shift register not full), then the main Petri net loops back

to PM2.

Note that while rxf ¼ 0, PM5will not generate the PD signal (Mealy output). Also, TM5 can

fire on rxf ¼ 0. In due course a full data packet of 11 bitswill be received.At this point, themain

Petri netwillmove on to PM4 to check the ed signal. This signal should be high if st, sp1 and sp2

are received correctly. This being the case, themain Petri net willmove on to PM5,where it will

issue a PD signal (since rxf ¼ 1 now) to latch the received data into the data latch ready to be

collected by the outside world.

The main Petri net will wait for an ack signal (since rxf ¼ 1 now) from the outside world

(indicating that the data have been read) before returning the token to the PM1 placeholder and

resetting the shift register and 11-bit counter.

In this Petri net, use has been made of enabling arcs to synchronize the two Petri nets, and a

Mealy output for signal PD allows a common loop to be used under different conditions.

P1
T1

P2
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P3
T3

P4
T4

PM6
TM6

PM4
PM3PM2PM1

TM1 TM2 TM3

TM4TM5
PM5

/RXCK
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fxrts/

/ed

ed
PD = rxf

/rxf

Petri net diagram for the receive serial data controller

Both Petri nets
 driven by 
same clk.

/rxfTM7

ERR

T5

P5

rxf.ack

TM8

Figure 10.22 Petri net diagram for the asynchronous serial system.
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10.7.1 Equations for the First Petri Net

P1 ¼ T5þ P1 � =T1 T1 ¼ P1 � PM2 � =P2
P2 ¼ T1þ P2 � =T2 T2 ¼ P2 � =P3
P3 ¼ T2þ P3 � =T3 T3 ¼ P3 � =P4
P4 ¼ T3þ P4 � =T4 T4 ¼ P4 � =P5
P5 ¼ T4þ P5 � =T5 T5 ¼ P5 � PM3=P1:

10.7.2 Output

RXCK ¼ P4:

10.7.3 Equations for the Main Petri Net

PM1 ¼ TM8þ PM1 � =TM1 TM1 ¼ PM1 � =st � =PM2

PM2 ¼ TM5þ TM1þ PM2 � =TM2 TM2 ¼ PM2 � P5 � =PM3

PM3 ¼ TM2þ PM3 � =TM3 � =TM7 TM3 ¼ PM3 � rxf � =PM4

PM4 ¼ TM3þ PM4 � =TM4 � =TM6 TM4 ¼ PM4 � ed � =PM5

PM5 ¼ TM4þ TM7þ PM5 � =TM5 � =TM8 TM5 ¼ PM5 � =rxf � =PM2

PM6 ¼ TM6þ PM6 TM6 ¼ PM4 � =ed � =PM6

TM7 ¼ PM3 � =rxf � =PM5

TM8 ¼ PM5 � rxf � ack � =PM1:

10.7.4 Outputs

CDC ¼ =PM1 active low

PD ¼ PM5 � rxf Mealy active high

ERR ¼ PM6 active high:

The simulationof thePetri net for the receiver is illustrated inFigure 10.23. In this simulation,

a test-bench module has been developed so that all paths through the Petri net can be checked.

This has requiredmanipulation of the rxf, ack, and ed signals that would normally be controlled

by the external controller. A study of the waveforms in Figure 10.23 shows the test paths.

Essentially, the simulation shows how the enabling arcs control the sequence of both the shift

clock generation produced by P1 to P5, and the main Petri net PM1 to PM6.

Further study of the waveforms reveals the sequence between RXCK pulses, as shown in

Figure 10.24. This indicates that, during the serial data receiving phase, a shift register pulse

occurs every seven FSM clock pulses. Therefore, for a baud rate of 1� 106 bits per second, an

FSM clock of 7 MHz would be required.
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The action of the enabling arcs can be clearly seen in Figure 10.23. The simulation ends with

an error signal forcing the Petri net into PM6.

The complete Verilog HDL listing can be found on the CDROM in the Chapter 10 folder.

Todevelop the entire system, the shift register, divide-by-11 counter, the logicANDgate, and

data latch also need to be defined and connected together.

10.7.5 The Shift Register

This is an 11-bit device. See Figure B.12a and b in Appendix B for details.

10.7.6 Equations for the Shift Register

For a general shift register of m stages (number of D-type flip-flops)

Q0 � d ¼ din the data in

Qn � d ¼ Qn�1
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Figure 10.23 Simulation of the Petri net.
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for all remaining flip flops where n ¼ 1to n ¼ m� 1, wherem is the number of flip-flops in the

shift register.

From this, the equations for the 11-stage shift register are

Q0 � d ¼ rx

Qn � d ¼ Qn�1 for n ¼ 1to m� 1 with m ¼ 11:

There is no need to gate the shift-register clock rxck, since it is controlled by the Petri-net

controller.

10.7.7 The Divide-by-11 Counter

This can be either a common asynchronous binary counter (ripple through) or a synchronous

type. See Appendix B, Section B.9.2 and Figure B.13a and b, for details.

10.7.8 The Data Latch

This is a standard design parallel data latch with eightD-type flip flops each having a data input

and data output and all clocked by the pulse data latch signal PD.

Parity detection logic could be added and would follow along the same lines as that used in

Chapter 4.

PM1  PM2                       PM3     PM5     PM2                              PM3..
P1     P2      P3      P4      P5        P1        P2        P3        P4         P5..

RXCK

Seven FSM clock cycles

There are seven FSM clock pulses for every rxclk

Therefore the baud rate = FSM clock frequency / 7

In PM2 T1 is enabled and the P1 to P4 cycle can commence.
At P5, TM2 is enabled and the main Petri net can move PM3, then 
PM5 (rxf = 0) then back to PM2.

The RXCK is produced in P4.

This sequence can continue until rxf goes high (indicating the whole 
data packet has been received) and the loop is broken.  The Petri net 
will then cycle to PM4 and if ed = 1 (no error) the data will be loaded 
into the data latch (pd =1) ready for the user to access.

See Figure 10.23 for details

Figure 10.24 Details of Petri net sequence during data receive phase.
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10.8 SUMMARY

The use of Petri nets can provide ameans bywhich parallel control can be realized in hardware.

This chapter has explored this area and shown how such systems could be developed and

implemented using anHDL.The use of enabling/disabling arcs can help to synchronize parallel

Petri net activities.
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Appendix B: Counting and
Shifting Circuit Techniques

This appendix contains a number of techniques to help in the development of synchronous

binary counters and shift registers. These are used in some of the designs covered in chapters

throughout the book.

B.1 BASIC UP AND DOWN SYNCHRONOUS BINARY COUNTER
DEVELOPMENT

Thedevelopmentof synchronouspurebinaryup/downcounters canbemechanized toproduce a

general n-stage pure binary counter. This can then be implemented directly using PLDs/

complex PLDs (CPLDs)/FPGA devices. To illustrate how this is achieved, a four-stage

down-counter is described below.

Table B.1 shows a down-counter with Q0 the least significant bit. This counter is to be

designed as a synchronous counter so all flip-flopswill be clocked by the same clock edge.Also,

the flip-flops will be T flip-flops. Most CPLDs and FPGAs can support the T flip-flop, either

directly or by using D-type flip-flops with an exclusive OR input.

The equation for the T input of each flip flop can be obtained by inspection of Table B.1 and

entering a product term for every 0-to-1 and 1-to-0 transition required by each flip flop. For

example, from Table B.1 the equation for flip flop q0 � t will be
q0 � t ¼ s15þ s14þ s13þ s12þ s11þ s10þ s9þ s8þ s7þ s6þ s5þ s4þ s3

þ s2þ s1þ s0 ¼ 1:

Each state where the T flip-flop is to change state (0 to 1 or 1 to 0) is entered into the equation.

This can then bewritten in terms of theQ0Q1Q2Q3outputs, or simply entered into aKaraugh

mapas illustrated inFigureB.1.The statemapofFigureB.1can thenbeused tohelp tominimize

the flip-flop equations.

Since all cellswill be filledwith ones for the q0 � t equation (every cell whose term appears in

the q0 � t equation), then the T input for flip-flop Q0 will be logic 1.
The equation for flip flop q1 � t will be

q1 � t ¼ s14þ s12þ s10þ s8þ s6þ s4þ s2þ s0

¼ =Q0

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
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Table B.1 A down-counter.

Q0 Q1 Q2 Q3 State

1 1 1 1 s15

0 1 1 1 s14

1 0 1 1 s13

0 0 1 1 s12

1 1 0 1 s11

0 1 0 1 s10

1 0 0 1 s9

0 0 0 1 s8

1 1 1 0 s7

0 1 1 0 s6

1 0 1 0 s5

0 0 1 0 s4

1 1 0 0 s3

0 1 0 0 s2

1 0 0 0 s1

0 0 0 0 s0

Q0Q1

Q2Q3
00                 01                11                10

00

01

11

10

s2s0 s1s3

s8 s10 s11 s9

s12 s14 s13 s15

s4 s5s7s6

Karnaugh state map showing all states 

Figure B.1 State map for the counter.
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from the statemap.An inspection of the statemap of FigureB.1 shows that q1 � tmustminimise

to /q0, since cells s14, s12, s10, s8, s6, s4, s2, and s0 all contain a 1. Following on in this manner,

q2 � t and q3 � t can be obtained thus:
q2 � t ¼ s12þ s8þ s4þ s0

¼ =Q0 � =Q1
q3 � t ¼ s8þ s0

¼ =Q0 � =Q1 � =Q2:
The patterns of equations follow in a general manner and can be expressed in the form

qx � t ¼ =Qðx� 1Þ � =Qðx� 2Þ � =Qðx� 3Þ � . . . � =Qðx� xÞ: ðB:1Þ

Equation (B.1) describes the p terms for a down-counter implemented with T flip-flops. These

equations can be directly entered into a Verilog HDL file for each flip-flop.

An up-counter can be realized by replacing all the /q terms in Equation (B.1) with q terms as

shown in Equations (B.2) and (B.3):

qx � t ¼ Qðx� 1Þ � Qðx� 2Þ � Qðx� 3Þ � . . . � Qðx� xÞ: ðB:2Þ
Or, in general:

qn � t ¼
Yp¼n

p¼1

Qðn� pÞ ðB:3aÞ

with

q0 � t ¼ 1: ðB:3bÞ

For each flip-flop where � is the product (i.e. AND) of each output term. Note that TFF Q0

has its T input at logic 1. This is not covered in Equation (B.3a).

These equations can be obtained directly from aKarnaugh state map similar to that shown in

Figure B.1, but counting in the opposite direction.

B.2 EXAMPLE FOR A 4-BIT SYNCHRONOUS UP-COUNTER
USING T-TYPE FLIP-FLOPS

The following example, illustrated inFigureB.2, is a design for a 4-bit up-counting synchronous

counter using the techniques described above.

The equations for each T flip flop are

q0 � t ¼ 1

q1 � t ¼ Q0

q2 � t ¼ Q0 � Q1
q3 � t ¼ Q0 � Q1 � Q2:
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This counter can be defined in Verilog HDL as illustrated below in the Verilog source file of

Listing B.1.

// Four bit counter design.
// Define the TFF.
module T_FF (q,t,clk,rst);
output q;
input t,clk,rst;
reg q; //q output must be registered - remember?
always @ (posedge clk or negedge rst)
if (rst ¼¼ 0)
q <¼1'b0;

else
q <¼t^q; // TFF is made up with EX-OR gate.

endmodule

// Now define the counter.
module counter(Q0,Q1,Q2,Q3,clk,rst);

input clk, rst; //clk and rst are inputs.
output Q0,Q1,Q2,Q3; // all q/s outputs.

4-bit synchronous binary counter
Clk

reset rst  Q0          Q1            Q2          Q3

Q

Q
SET

CLR

DT

Clk

D = Q ^ T ^ is Exclusive OR

Each flip-flop in
the counter is

connected up as 
a T-type flip-flop.

Figure B.2 Block diagram of the 4-bit synchronous binary counter.
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wire t0,t1,t2,t3; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T_FF ff0(Q0,t0,clk,rst);
T_FF ff1(Q1,t1,clk,rst);
T_FF ff2(Q2,t2,clk,rst);
T_FF ff3(Q3,t3,clk,rst);
// now define the logic connected to each t input.
// we use an assign for this.
assign

t0¼1'b1, // this is just following the technique
t1¼Q0, // for binary counter design.
t2¼Q0&Q1, // will generate AND gates..
t3¼Q0&Q1&Q2;
endmodule // end of the module counter.

// Test Bench design to test the circuit under simulation.
module test;
reg clk, rst; // has two inputs which must be registers.
//wire no wires in this part of the design
// since counter is not connected to anything.
counter count(Q0,Q1,Q2,Q3,clk,rst);
initial
begin
$dumpfile(‘‘counter4.vcd’’); // file waveforms..
$dumpvars; //dump all values to the file.

rst¼0; // initialise circuit with rst cleared.
clk¼0; //set clk to normally low.
#10 rst¼1; // after 10 time units raise rst to remove reset.
repeat(17)
#10 clk ¼ �clk; //change clk 17 times every 10 time units.
#20 $finish; //Finish the simulation after 20 time units.

end // end of test block.
endmodule // end of test module.

Listing B.1 The Verilog HDL file for the counter, with test bench.

The complete Verilog HDL source file with test-bench module for the counter is shown in

listing B.1. This contains the T-type flip-flop definition (defined using the behaviouralmethod).

This is followed by the counter definition, which makes use of four instances of the T flip-

flops and also uses an assign block to define the logic connections between the flip-flop

outputs and the T inputs of each flip-flop. Note: old-style input and output is used outside of

the module header.

Followingon from this is the test-benchmodule.This contains an instanceof the4-bit counter

followed by the stimulus to test the counter. Note that there are two $ commands to save the

timing diagramofFigureB.3 so it canbe saved to aWorddocument (for printout)The command
$dumpfile(‘‘counter.vcd’’); names the file to be created with the information. The com-

mand $dumpvars; simply dumps all variables to the file.
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The file is saved as a ‘metafile’ and is illustrated in Figure B.3. Thewaveforms of Figure B.3

clearly show the binary counter sequence.

B.3 PARALLEL-LOADING COUNTERS: USING T FLIP-FLOPS

For a parallel loading counter implemented with cheaper PLDs, a synchronous parallel input

maybe required if there isnot anasynchronouspreset andclear input to theflip-flops.This canbe

done by using additional product terms in the qx � t equations.
A general bit slice form with the additional inputs is shown in Equation (B.4) for a TFFx:

qx:t ¼ ptermx � =loadþ px � =Qx � loadþ =px � Qx � load: ðB:4Þ

The load input is used to load the parallel data synchronously into the flip-flop. In this case, the

load input is active high.

In Equation (B.4), the product term ptermx � /load is the normal product term needed for the

counter and is truewhile the load input is not active. The termpx � /Qx � load is the parallel input
term to set the flip-flop, and the term /px � Qx � load is the term to clear the flip-flop.

0ns 100ns 200ns 300ns 400ns

test.clk

test.rst

test.Q0

test.Q1

test.Q2

test.Q3

Figure B.3 Simulated 4-bit binary counter.
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Figure B.4 shows a general structure of a single flip-flop. All other flip-flops follow the same

general structure. It is assumed here that the active state for the load input is high. Therefore,

during counting mode, load would be low (logic 0).

Equations (B.1), (B.2) and (B.4) may be used to produce parallel-loading up/down-counters

for many applications, including the address counters for FSMs that control memory.

Thus, it is possible to create not only sequential control of the access of memory, but also

random control by way of the parallel inputs.

B.4 USING D FLIP-FLOPS TO BUILD PARALLEL-LOADING COUNTERS
WITH CHEAP PROGRAMMABLE LOGIC DEVICES

TheDflip-flop can be used in place of theTflip-flop to implement parallel-loading synchronous

counters that do not have preset or clear inputs. There are lots of cheaper PLDs that use onlyD

flip-flops and do not have asynchronous preset and clear, so the idea seems attractive.

Consider the circuit of Figure B.5. The bit slice equation for this general model is

qx � d ¼ px � =lþ pterm � l; ðB:5Þ

where l is the parallel loading input and /l the inverted parallel loading input. This defines the

general form for the equations for each flip-flop in the counter chain.

Q

QSET

CLR

D

ptermx

load

px
/Qx

/Qx

Qx

Qx

T = pterm./load + px . /Qx . load + /px .Qx . load

T

pterm . /Qx . /load

px . /Qx . load

/px . Qx . load

Figure B.4 General structure of a single-flip flop for counting and parallel loading.
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The individual product term pterm here will depend upon the sequence table. There is

no simple way to do this; therefore, the method is not as easy to implement as that using T

flip-flops.

As an example, consider a simple three-stage synchronous binary up-counter.

B.5 SIMPLE BINARY UP-COUNTER: WITH PARALLEL INPUTS

To illustrate the form in which a physical circuit will take a simple three-stage parallel-loading

pure binary counter is illustrated in Figure B.6.

Looking at Figure B.6, the state sequence illustrates the binary sequence. The state map is

used to help simplify the pterms (shown here in their simplified form) and, finally, the full

equations for the D inputs of each flip-flop.

Note that, compared with the method for designing synchronous parallel-loading up/down-

counters using T flip-flops, this arrangement requires the development of each flip-flop pterm.

In general, there is no systematicway todo this other than toworkout the logic for eachflip-flop.

However, one advantage of using D flip-flops is that the count sequence is not restricted to

pure binary count sequences (i.e. one could developunit distance code sequences, for example).

Of course, the counter could be developed from the Verilog HDL behavioural description

direct, and this would be the more usual way of doing it. The above method, however, gives an

insight into the Boolean equations involved in such counters.

Q

QSET

CLR

D

px

pterm

l

/l

Qx

/Qx

Clk

Qx . d = px . /l + pterm . l

px . /t

pterm . l

+ 5 V

+ 5 V

10K

10K

Parallel loading input

Figure B.5 General bit slice model for of a parallel-loading synchronous counter.
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B.6 CLOCK CIRCUIT TO DRIVE THE COUNTER (AND FINITE-STATE
MACHINES)

There aremany circuit arrangements for crystal oscillators, but the one shown in Figure B.7 is a

common one that is often used. It is included for completeness.

Thecircuit inFigureB.7providesovertone suppressionvia the twocapacitorsC1andC2with

values to keep the capacitive reactance small, as indicated in Figure B.7.

B.7 COUNTER DESIGN USING DON’T CARE STATES

In somedesigns, use canbemadeof states that donot appear in the count sequence.This can lead

to a reduction in the number of gates used in the logic of the counter.

Consider the twisted ring counter, so called because it has eachflip-flop connected in the form

of a ring, but with a twist in the connection between the last flip-flop and the first. Figure B.8

illustrates the state sequence and a design method using a state map to highlight the don’t care

states.

Q0 Q1 Q2 State
0 0 0 s0
1 0 0 s1
0 1 0 s2
1 1 0 s3
0 0 1 s4
1 0 1 s5
0 1 1 s6
1 1 1 s7

00        01         11         10

0

1

Q0 Q1
Q2

s0         s2         s3        s1

s4         s6         s7        s5  

q0 . d = /Q0

q1 . d = Q0 . /Q1 + /Q0 . Q1

q2 . d = Q2 . /Q1 + Q2 . /Q0 + /Q2 . Q1 . Q0 

q0 . d = p0 . /l + (/Q0) . l 

q1 . d + p1 . /l + (Q0 . /Q1 + /Q0 . Q1) .l

q2 . d + p2 · /l + (Q2 . /Q1 + Q2 . /Q0 + /Q2 . Q1 . Q0) . l

State sequence

State map

pterms

   Full equations with 
  parallel loading 

 inputs

Figure B.6 Illustrating the form of the equations for the three-stage pure binary synchronous counter

with parallel inputs.
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Xc1 @ F0 should tend towards 0

Xc2 @ F0 proportional to 510 ohms

10K

Figure B.7 Typical crystal oscillator circuit.

Q0 Q1 Q2 Q3 State
0 0 0 0 s0
1 0 0 0 s1
1 1 0 0 s3
1 1 1 0 s7
1 1 1 1 s15
0 1 1 1 s14
0 0 1 1 s12
0 0 0 1 s8

00       01         11         10

00

01

11

10

Q0 Q1
Q2 Q3

s0         X          s3        s1

s8         X           X         X

s12     s14         s15      X

X         X           s7         X      

Q0 . d =  s0 + s1 + s3 + s7 + (don’t care terms) = /Q3

Q1 . d  = s1 + s3 + s7 + s15 + (don’t care terms) = Q0

Q2 . d  + s3 + s7 + s15 + s14 + (don’t care terms) = Q1

Q3 . d   + s7 + s15 + s14 + s12 + (don’t care terms) = Q2

State sequence

State map with don’t care 
terms (X) included.

Figure B.8 Twisted ring counter design making use of don’t care terms.



The state sequence table in FigureB.8 shows the required sequence for the counter. From this

it is apparent that states s2, s4, s5, s6, s9, s10, s11 and s13are not part of the sequence, so these are

made don’t care terms (marked as X) in the state map.

From the state sequence table, and state map of Figure B.8, the equations for each flip-flopD

input (Qx � d) can be obtained, looking for 0-to-1 and 1-to-1 transitions in each column of the

sequence table. Thedon’t care terms are then added to the endof each equation. Finally, the state

map is used to obtain the minimized equations.

For example, in equationQ0 � d, states s0, s1, s3 and s7 are combinedwith don’t care terms s2,

s4, s5 and s6 to obtain /Q3 (as highlighted by the dotted lines in FigureB.8). The other equations

are dealt with in a similar manner.

B.8 SHIFT REGISTERS

A special form of synchronous counter is the shift register. Quite often, a parallel-loading shift

register is required (see examples in Chapter 4). The bit slice form for each stage of the parallel-

loading shift register is obtained from Equations (B.6a) and (B.6b):

Q0 � d ¼ din � ldþ p0 � =ld ðB:6aÞ
Qx � d ¼ Qðx� 1Þ � ldþ px � =ld; ðB:6bÞ

where in this case the active state for the load input ld is low and din is data input.

Note that if serial input is to be zero, make din¼ 0. The shift register design is using D flip-

flops.

These equations could be used to create a four bit parallel loading counter thus:

Q0 � d ¼ din � ldþ p0 � =ld ðB:7Þ
Q1 � d ¼ Q0 � ldþ p1 � =ld ðB:8Þ
Q2 � d ¼ Q1 � ldþ p2 � =ld ðB:9Þ
Q3 � d ¼ Q2 � ldþ p3 � =ld ðB:10Þ
Sft clk ¼ clk � ld ðB:11Þ

In Equation (B.7), the first term is the serial data input. In Equations (B.8)–(B.10), the first term

denotes that the output of each flip-flop will connect into the input of the next (i.e. a standard

shift-register connection). In addition, Equation (B.11) defines the shift clock. This is disabled

during parallel loads.

Figure B.9 shows the four-state shift register developed from the Equations (B.7)–(B.11).

Note that, in practice, the equations would be converted into Verilog HDL code direct for

synthesization. The equations converted into Verilog HDL are:

Q0d ¼ din&ld | po&�ld;
Q1d ¼ Q0&ld | p1&�ld;
Q2d ¼ Q1&ld | p2&�ld;
Q3d ¼ Q2&ld | p3&�ld;
Sft_clk ¼ clk&ld;
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The above shift register, once converted into Verilog HDL code, can then be simulated for

correct operation. Figure B.10 shows such a simulation. The Verilog coding is available in the

Appendix B folder on the CDROM.

In Chapter 4, the asynchronous serial receiver systemmade use of a shift register to store the

incoming binary data and present them to a data latch. In addition, a divide-by-11 counter was

used to keep track of the number of binary bits received and alert the FSM when a complete

packet was received (receive shift-register full).

The details and Verilog code for the two modules are now described.

B.9 ASYNCHRONOUS RECEIVER DETAILS OF CHAPTER 4

FigureB.11 (which isFigure4.21 repeatedhere for convenience) illustrates thedifferentmodule

blocks needed to make up the complete receiver. Each module in this diagram and its Verilog

modules will be described below.

The associated test-bench modules and complete code for the asynchronous receiver are

available on the CDROMdisk that is supplied with this book. The FSM is described in detail in

Section 4.7, with the state diagram Figure 4.22.
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Figure B.9 Four-stage shift register developed from Equations (B.7)–(B.11).
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test.Q0
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test.Q2

test.Q3

Figure B.10 Simulation of a four-stage shift register with din¼ 0.
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Figure B.11 Asynchronous receiver block diagram from Chapter 4.



B.9.1 The 11-Bit Shift Registers for the Asynchronous Receiver Module

This is an 11-bit shift registerwith a start bit, eight data bits (d0 to d7), and two stop bits (sp1 and

sp2).

The incoming data (din) connect to the sp2 flip-flop and are shifted into the sp1 flip-flop. The

last flip-flop in the shift register is the start-bit flip-flop, since this is the first data bit into the shift

register. This is illustrated in Figure B.12a.
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Figure B.12 (a) The shift-registers circuit. (b) Simulation of the shift-register module.
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The Verilog HDL code for the shift register is shown in Listing B.2.

// Define DFF
module D_FF(q,d,clk,rst);
output q;
input d,clk,rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst¼¼0)

q<¼1'b0;
else

q<¼d;
endmodule

Listing B.2 Verilog module for the shift register.

Listing B.3 gives the module used to build the shift register.

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// define shift register
// The shift register clock is rxclk which
// is controlled by the fsm.
// The protocol bits (st, sp1, and sp2) are
// shifted into their own FF's.
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

module shifter(rst,clk,din,QST,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,QSP1,QSP2);
input clk,rst,din;
output QST,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,QSP1,QSP2;
wire dst,d0, d1, d2, d3, d4, d5, d6, d7, dsp1, dsp2 ;

D_FF_qstd(QST,dst,clk,rst);
D_FF q0d(Q0,d0,clk,rst);
D_FF q1d(Q1,d1,clk,rst);
D_FF q2d(Q2,d2,clk,rst);
D_FF q3d(Q3,d3,clk,rst);
D_FF q4d(Q4,d4,clk,rst);
D_FF q5d(Q5,d5,clk,rst);
D_FF q6d(Q6,d6,clk,rst);
D_FF q7d(Q7,d7,clk,rst);
D_FF qsp1d(QSP1,dsp1,clk,rst);
D_FF qsp2d(QSP2,dsp2,clk,rst);
assign
// note the way that the flip flops have been connected up.
dst¼ Q0,
d0 ¼ Q1,
d1 ¼ Q2,
d2 ¼ Q3,
d3 ¼ Q4,
d4 ¼ Q5,
d5 ¼ Q6,
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d6 ¼ Q7,
d7 ¼ QSP1,
dsp1 ¼ QSP2,
dsp2 ¼ din;

endmodule

Listing B.3 Test-bench module for the shift register.

A simulation of the shift register, illustrated in Figure B.12b, indicates that it is working

correctly.

A study of the din waveform and the output from the shift register at around the 300 ns

point shows that the shift register has received the incoming data, together with the protocol

bits.

B.9.2 Divide-by-11 Counter

The counter uses a synchronous pure binary up-counting sequence that counts up to 11 (1101

binary) and then stops. Its output is theRXFsignal. This goeshighwhen theeleventhclockpulse

is received.

Figure B.13a illustrates the divide-by-11 counter. This is made up of four T-type flip-

flops (shown here as D types with exclusive OR gate feedback in the circuit diagram). The
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Figure B.13 (a) Schematic circuit diagram of the divide-by-11 counter with inhibit control. (b) The

divide-by-11 counter simulation.
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four-input NAND gate provides a stop control to inhibit the counter when the count value

reaches 11 (Q3Q2Q1Q0 ¼ 1011). The reset input rst is used to reset the counter back to

zero.

The Verilog code for this module is illustrated in Listing B.4 (all variables in lower case).

// define TFF
// Needed for the divide by 11 asynchronous counter.
module T_FF (q,t,clk,rst);
output q;
input t,clk,rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst ¼¼ 0)

q<¼1'b0;
else

q<¼t^q;
endmodule

// Now define the counter.
module divideby11(Q0,Q1,Q2,Q3,clk,rst,RXF);

Divide by 11 counter showing details of counter outputs

Divide by 11 counter showing only the terminal inputs and outputs

 to the asynchronous receiver

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.rst

test.clk

test.RXF

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.rst

test.clk

test.Q0

test.Q1

test.Q2

test.Q3

test.RXF

(b)

Figure B.13 (Continued)
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input clk, rst; //clk and rst are inputs.
output RXF,Q0,Q1,Q2,Q3; // all q/s outputs.
wire t0,t1,t2,t3,stop; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T_FF ff0(Q0,t0,clk,rst);
T_FF ff1(Q1,t1,clk,rst);
T_FF ff2(Q2,t2,clk,rst);
T_FF ff3(Q3,t3,clk,rst);

// now define the logic connected to each t input.
// use an assign for this.
assign
t0¼1'b1&stop, // this is just following the technique
t1¼Q0&stop, // for binary counter design.
t2¼Q0&Q1&stop, // will generate AND gates..
t3¼Q0&Q1&Q2&stop,
stop ¼ �(Q0&Q1&�Q2&Q3), // to detect 11the clock pulse.
RXF ¼ �stop;
endmodule // end of the module counter.

Listing B.4 Verilog module for the divide-by-11 counter.

Note that the simulation stopsat theeleventhclockpulsedue to theNANDgate.This isused to

raise the RXF signal via an inverter operation. The RXF (receive register full flag) is used to

inform the FSM that the receiver shift register is full. It is cleared by the FSM after transferring

the shift register data bits to the octal data latch.

The simulation of this module is illustrated in Figure B.13b.

B.9.3 Complete Simulation of the Asynchronous Receiver Module
of Chapter 4

The complete asynchronous receiver with FSM defined in Section 4.7 can now be simulated.

The complete Verilog code is contained on the CDROM.

The simulation of the asynchronous receiver is shown in Figure B.14. Here, the only signals

visible are those of the complete block, although the secondary statevariables are also displayed

to showtheFSMstate sequence.The simulation starts byassertingenhigh, then theFSMsection

(signals not seen here) controls the operation of the shift register, divide-by-11 counter, and

output data latch.

The data are presented to the user when signal DRY goes high and acknowledged by the user

bringing signal ack high. TheFSM, in response, lowersDRY(andPD), and the user (optionally)

lowers ack to acknowledge the end of the transaction. Prior to loading receiveddata into the data

latch its contents are unknown (or the last received).
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B.10 SUMMARY

This appendix has introduced simple ways to develop synchronous up and down pure binary

counters, with or without parallel-loading inputs that can be used in a PLD or FPGA device. It

has also described how parallel-loading shift registers can be developed and used.

These techniquesmaybeused todevelopVerilogHDLmodules foruse in someof thedesigns

covered in this book.Bit slice equations havebeen developed to allowcounters and shift register

circuits to be constructed directly in equation form in Verilog HDL.

Finally, some of these ideas have been used in the development of an asynchronous serial

receiver, complete with their Verilog modules.
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Figure B.14 The complete asynchronous receiver simulation.
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Appendix B: Counting and
Shifting Circuit Techniques

This appendix contains a number of techniques to help in the development of synchronous

binary counters and shift registers. These are used in some of the designs covered in chapters

throughout the book.

B.1 BASIC UP AND DOWN SYNCHRONOUS BINARY COUNTER
DEVELOPMENT

Thedevelopmentof synchronouspurebinaryup/downcounters canbemechanized toproduce a

general n-stage pure binary counter. This can then be implemented directly using PLDs/

complex PLDs (CPLDs)/FPGA devices. To illustrate how this is achieved, a four-stage

down-counter is described below.

Table B.1 shows a down-counter with Q0 the least significant bit. This counter is to be

designed as a synchronous counter so all flip-flopswill be clocked by the same clock edge.Also,

the flip-flops will be T flip-flops. Most CPLDs and FPGAs can support the T flip-flop, either

directly or by using D-type flip-flops with an exclusive OR input.

The equation for the T input of each flip flop can be obtained by inspection of Table B.1 and

entering a product term for every 0-to-1 and 1-to-0 transition required by each flip flop. For

example, from Table B.1 the equation for flip flop q0 � t will be
q0 � t ¼ s15þ s14þ s13þ s12þ s11þ s10þ s9þ s8þ s7þ s6þ s5þ s4þ s3

þ s2þ s1þ s0 ¼ 1:

Each state where the T flip-flop is to change state (0 to 1 or 1 to 0) is entered into the equation.

This can then bewritten in terms of theQ0Q1Q2Q3outputs, or simply entered into aKaraugh

mapas illustrated inFigureB.1.The statemapofFigureB.1can thenbeused tohelp tominimize

the flip-flop equations.

Since all cellswill be filledwith ones for the q0 � t equation (every cell whose term appears in

the q0 � t equation), then the T input for flip-flop Q0 will be logic 1.
The equation for flip flop q1 � t will be

q1 � t ¼ s14þ s12þ s10þ s8þ s6þ s4þ s2þ s0

¼ =Q0

FSM-based Digital Design using Verilog HDL   Peter Minns and Ian Elliott
# 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06070-4



Table B.1 A down-counter.

Q0 Q1 Q2 Q3 State

1 1 1 1 s15

0 1 1 1 s14

1 0 1 1 s13

0 0 1 1 s12

1 1 0 1 s11

0 1 0 1 s10

1 0 0 1 s9

0 0 0 1 s8

1 1 1 0 s7

0 1 1 0 s6

1 0 1 0 s5

0 0 1 0 s4

1 1 0 0 s3

0 1 0 0 s2

1 0 0 0 s1

0 0 0 0 s0

Q0Q1

Q2Q3
00                 01                11                10

00

01

11

10

s2s0 s1s3

s8 s10 s11 s9

s12 s14 s13 s15

s4 s5s7s6

Karnaugh state map showing all states 

Figure B.1 State map for the counter.
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from the statemap.An inspection of the statemap of FigureB.1 shows that q1 � tmustminimise

to /q0, since cells s14, s12, s10, s8, s6, s4, s2, and s0 all contain a 1. Following on in this manner,

q2 � t and q3 � t can be obtained thus:
q2 � t ¼ s12þ s8þ s4þ s0

¼ =Q0 � =Q1
q3 � t ¼ s8þ s0

¼ =Q0 � =Q1 � =Q2:
The patterns of equations follow in a general manner and can be expressed in the form

qx � t ¼ =Qðx� 1Þ � =Qðx� 2Þ � =Qðx� 3Þ � . . . � =Qðx� xÞ: ðB:1Þ

Equation (B.1) describes the p terms for a down-counter implemented with T flip-flops. These

equations can be directly entered into a Verilog HDL file for each flip-flop.

An up-counter can be realized by replacing all the /q terms in Equation (B.1) with q terms as

shown in Equations (B.2) and (B.3):

qx � t ¼ Qðx� 1Þ � Qðx� 2Þ � Qðx� 3Þ � . . . � Qðx� xÞ: ðB:2Þ
Or, in general:

qn � t ¼
Yp¼n

p¼1

Qðn� pÞ ðB:3aÞ

with

q0 � t ¼ 1: ðB:3bÞ

For each flip-flop where � is the product (i.e. AND) of each output term. Note that TFF Q0

has its T input at logic 1. This is not covered in Equation (B.3a).

These equations can be obtained directly from aKarnaugh state map similar to that shown in

Figure B.1, but counting in the opposite direction.

B.2 EXAMPLE FOR A 4-BIT SYNCHRONOUS UP-COUNTER
USING T-TYPE FLIP-FLOPS

The following example, illustrated inFigureB.2, is a design for a 4-bit up-counting synchronous

counter using the techniques described above.

The equations for each T flip flop are

q0 � t ¼ 1

q1 � t ¼ Q0

q2 � t ¼ Q0 � Q1
q3 � t ¼ Q0 � Q1 � Q2:
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This counter can be defined in Verilog HDL as illustrated below in the Verilog source file of

Listing B.1.

// Four bit counter design.
// Define the TFF.
module T_FF (q,t,clk,rst);
output q;
input t,clk,rst;
reg q; //q output must be registered - remember?
always @ (posedge clk or negedge rst)
if (rst ¼¼ 0)
q <¼1'b0;

else
q <¼t^q; // TFF is made up with EX-OR gate.

endmodule

// Now define the counter.
module counter(Q0,Q1,Q2,Q3,clk,rst);

input clk, rst; //clk and rst are inputs.
output Q0,Q1,Q2,Q3; // all q/s outputs.

4-bit synchronous binary counter
Clk

reset rst  Q0          Q1            Q2          Q3

Q

Q
SET

CLR

DT

Clk

D = Q ^ T ^ is Exclusive OR

Each flip-flop in
the counter is

connected up as 
a T-type flip-flop.

Figure B.2 Block diagram of the 4-bit synchronous binary counter.
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wire t0,t1,t2,t3; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T_FF ff0(Q0,t0,clk,rst);
T_FF ff1(Q1,t1,clk,rst);
T_FF ff2(Q2,t2,clk,rst);
T_FF ff3(Q3,t3,clk,rst);
// now define the logic connected to each t input.
// we use an assign for this.
assign

t0¼1'b1, // this is just following the technique
t1¼Q0, // for binary counter design.
t2¼Q0&Q1, // will generate AND gates..
t3¼Q0&Q1&Q2;
endmodule // end of the module counter.

// Test Bench design to test the circuit under simulation.
module test;
reg clk, rst; // has two inputs which must be registers.
//wire no wires in this part of the design
// since counter is not connected to anything.
counter count(Q0,Q1,Q2,Q3,clk,rst);
initial
begin
$dumpfile(‘‘counter4.vcd’’); // file waveforms..
$dumpvars; //dump all values to the file.

rst¼0; // initialise circuit with rst cleared.
clk¼0; //set clk to normally low.
#10 rst¼1; // after 10 time units raise rst to remove reset.
repeat(17)
#10 clk ¼ �clk; //change clk 17 times every 10 time units.
#20 $finish; //Finish the simulation after 20 time units.

end // end of test block.
endmodule // end of test module.

Listing B.1 The Verilog HDL file for the counter, with test bench.

The complete Verilog HDL source file with test-bench module for the counter is shown in

listing B.1. This contains the T-type flip-flop definition (defined using the behaviouralmethod).

This is followed by the counter definition, which makes use of four instances of the T flip-

flops and also uses an assign block to define the logic connections between the flip-flop

outputs and the T inputs of each flip-flop. Note: old-style input and output is used outside of

the module header.

Followingon from this is the test-benchmodule.This contains an instanceof the4-bit counter

followed by the stimulus to test the counter. Note that there are two $ commands to save the

timing diagramofFigureB.3 so it canbe saved to aWorddocument (for printout)The command
$dumpfile(‘‘counter.vcd’’); names the file to be created with the information. The com-

mand $dumpvars; simply dumps all variables to the file.
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The file is saved as a ‘metafile’ and is illustrated in Figure B.3. Thewaveforms of Figure B.3

clearly show the binary counter sequence.

B.3 PARALLEL-LOADING COUNTERS: USING T FLIP-FLOPS

For a parallel loading counter implemented with cheaper PLDs, a synchronous parallel input

maybe required if there isnot anasynchronouspreset andclear input to theflip-flops.This canbe

done by using additional product terms in the qx � t equations.
A general bit slice form with the additional inputs is shown in Equation (B.4) for a TFFx:

qx:t ¼ ptermx � =loadþ px � =Qx � loadþ =px � Qx � load: ðB:4Þ

The load input is used to load the parallel data synchronously into the flip-flop. In this case, the

load input is active high.

In Equation (B.4), the product term ptermx � /load is the normal product term needed for the

counter and is truewhile the load input is not active. The termpx � /Qx � load is the parallel input
term to set the flip-flop, and the term /px � Qx � load is the term to clear the flip-flop.

0ns 100ns 200ns 300ns 400ns

test.clk

test.rst

test.Q0

test.Q1

test.Q2

test.Q3

Figure B.3 Simulated 4-bit binary counter.
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Figure B.4 shows a general structure of a single flip-flop. All other flip-flops follow the same

general structure. It is assumed here that the active state for the load input is high. Therefore,

during counting mode, load would be low (logic 0).

Equations (B.1), (B.2) and (B.4) may be used to produce parallel-loading up/down-counters

for many applications, including the address counters for FSMs that control memory.

Thus, it is possible to create not only sequential control of the access of memory, but also

random control by way of the parallel inputs.

B.4 USING D FLIP-FLOPS TO BUILD PARALLEL-LOADING COUNTERS
WITH CHEAP PROGRAMMABLE LOGIC DEVICES

TheDflip-flop can be used in place of theTflip-flop to implement parallel-loading synchronous

counters that do not have preset or clear inputs. There are lots of cheaper PLDs that use onlyD

flip-flops and do not have asynchronous preset and clear, so the idea seems attractive.

Consider the circuit of Figure B.5. The bit slice equation for this general model is

qx � d ¼ px � =lþ pterm � l; ðB:5Þ

where l is the parallel loading input and /l the inverted parallel loading input. This defines the

general form for the equations for each flip-flop in the counter chain.

Q

QSET

CLR

D

ptermx

load

px
/Qx

/Qx

Qx

Qx

T = pterm./load + px . /Qx . load + /px .Qx . load

T

pterm . /Qx . /load

px . /Qx . load

/px . Qx . load

Figure B.4 General structure of a single-flip flop for counting and parallel loading.
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The individual product term pterm here will depend upon the sequence table. There is

no simple way to do this; therefore, the method is not as easy to implement as that using T

flip-flops.

As an example, consider a simple three-stage synchronous binary up-counter.

B.5 SIMPLE BINARY UP-COUNTER: WITH PARALLEL INPUTS

To illustrate the form in which a physical circuit will take a simple three-stage parallel-loading

pure binary counter is illustrated in Figure B.6.

Looking at Figure B.6, the state sequence illustrates the binary sequence. The state map is

used to help simplify the pterms (shown here in their simplified form) and, finally, the full

equations for the D inputs of each flip-flop.

Note that, compared with the method for designing synchronous parallel-loading up/down-

counters using T flip-flops, this arrangement requires the development of each flip-flop pterm.

In general, there is no systematicway todo this other than toworkout the logic for eachflip-flop.

However, one advantage of using D flip-flops is that the count sequence is not restricted to

pure binary count sequences (i.e. one could developunit distance code sequences, for example).

Of course, the counter could be developed from the Verilog HDL behavioural description

direct, and this would be the more usual way of doing it. The above method, however, gives an

insight into the Boolean equations involved in such counters.

Q

QSET

CLR

D

px

pterm

l

/l

Qx

/Qx

Clk

Qx . d = px . /l + pterm . l

px . /t

pterm . l

+ 5 V

+ 5 V

10K

10K

Parallel loading input

Figure B.5 General bit slice model for of a parallel-loading synchronous counter.
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B.6 CLOCK CIRCUIT TO DRIVE THE COUNTER (AND FINITE-STATE
MACHINES)

There aremany circuit arrangements for crystal oscillators, but the one shown in Figure B.7 is a

common one that is often used. It is included for completeness.

Thecircuit inFigureB.7providesovertone suppressionvia the twocapacitorsC1andC2with

values to keep the capacitive reactance small, as indicated in Figure B.7.

B.7 COUNTER DESIGN USING DON’T CARE STATES

In somedesigns, use canbemadeof states that donot appear in the count sequence.This can lead

to a reduction in the number of gates used in the logic of the counter.

Consider the twisted ring counter, so called because it has eachflip-flop connected in the form

of a ring, but with a twist in the connection between the last flip-flop and the first. Figure B.8

illustrates the state sequence and a design method using a state map to highlight the don’t care

states.

Q0 Q1 Q2 State
0 0 0 s0
1 0 0 s1
0 1 0 s2
1 1 0 s3
0 0 1 s4
1 0 1 s5
0 1 1 s6
1 1 1 s7

00        01         11         10

0

1

Q0 Q1
Q2

s0         s2         s3        s1

s4         s6         s7        s5  

q0 . d = /Q0

q1 . d = Q0 . /Q1 + /Q0 . Q1

q2 . d = Q2 . /Q1 + Q2 . /Q0 + /Q2 . Q1 . Q0 

q0 . d = p0 . /l + (/Q0) . l 

q1 . d + p1 . /l + (Q0 . /Q1 + /Q0 . Q1) .l

q2 . d + p2 · /l + (Q2 . /Q1 + Q2 . /Q0 + /Q2 . Q1 . Q0) . l

State sequence

State map

pterms

   Full equations with 
  parallel loading 

 inputs

Figure B.6 Illustrating the form of the equations for the three-stage pure binary synchronous counter

with parallel inputs.
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Q

Q
SET

CLR

D

+ 5 V

+ 5 V

10K

510

C2

C1

510

Crystal
F0

F0

Xc1 @ F0 should tend towards 0

Xc2 @ F0 proportional to 510 ohms

10K

Figure B.7 Typical crystal oscillator circuit.

Q0 Q1 Q2 Q3 State
0 0 0 0 s0
1 0 0 0 s1
1 1 0 0 s3
1 1 1 0 s7
1 1 1 1 s15
0 1 1 1 s14
0 0 1 1 s12
0 0 0 1 s8

00       01         11         10

00

01

11

10

Q0 Q1
Q2 Q3

s0         X          s3        s1

s8         X           X         X

s12     s14         s15      X

X         X           s7         X      

Q0 . d =  s0 + s1 + s3 + s7 + (don’t care terms) = /Q3

Q1 . d  = s1 + s3 + s7 + s15 + (don’t care terms) = Q0

Q2 . d  + s3 + s7 + s15 + s14 + (don’t care terms) = Q1

Q3 . d   + s7 + s15 + s14 + s12 + (don’t care terms) = Q2

State sequence

State map with don’t care 
terms (X) included.

Figure B.8 Twisted ring counter design making use of don’t care terms.



The state sequence table in FigureB.8 shows the required sequence for the counter. From this

it is apparent that states s2, s4, s5, s6, s9, s10, s11 and s13are not part of the sequence, so these are

made don’t care terms (marked as X) in the state map.

From the state sequence table, and state map of Figure B.8, the equations for each flip-flopD

input (Qx � d) can be obtained, looking for 0-to-1 and 1-to-1 transitions in each column of the

sequence table. Thedon’t care terms are then added to the endof each equation. Finally, the state

map is used to obtain the minimized equations.

For example, in equationQ0 � d, states s0, s1, s3 and s7 are combinedwith don’t care terms s2,

s4, s5 and s6 to obtain /Q3 (as highlighted by the dotted lines in FigureB.8). The other equations

are dealt with in a similar manner.

B.8 SHIFT REGISTERS

A special form of synchronous counter is the shift register. Quite often, a parallel-loading shift

register is required (see examples in Chapter 4). The bit slice form for each stage of the parallel-

loading shift register is obtained from Equations (B.6a) and (B.6b):

Q0 � d ¼ din � ldþ p0 � =ld ðB:6aÞ
Qx � d ¼ Qðx� 1Þ � ldþ px � =ld; ðB:6bÞ

where in this case the active state for the load input ld is low and din is data input.

Note that if serial input is to be zero, make din¼ 0. The shift register design is using D flip-

flops.

These equations could be used to create a four bit parallel loading counter thus:

Q0 � d ¼ din � ldþ p0 � =ld ðB:7Þ
Q1 � d ¼ Q0 � ldþ p1 � =ld ðB:8Þ
Q2 � d ¼ Q1 � ldþ p2 � =ld ðB:9Þ
Q3 � d ¼ Q2 � ldþ p3 � =ld ðB:10Þ
Sft clk ¼ clk � ld ðB:11Þ

In Equation (B.7), the first term is the serial data input. In Equations (B.8)–(B.10), the first term

denotes that the output of each flip-flop will connect into the input of the next (i.e. a standard

shift-register connection). In addition, Equation (B.11) defines the shift clock. This is disabled

during parallel loads.

Figure B.9 shows the four-state shift register developed from the Equations (B.7)–(B.11).

Note that, in practice, the equations would be converted into Verilog HDL code direct for

synthesization. The equations converted into Verilog HDL are:

Q0d ¼ din&ld | po&�ld;
Q1d ¼ Q0&ld | p1&�ld;
Q2d ¼ Q1&ld | p2&�ld;
Q3d ¼ Q2&ld | p3&�ld;
Sft_clk ¼ clk&ld;
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The above shift register, once converted into Verilog HDL code, can then be simulated for

correct operation. Figure B.10 shows such a simulation. The Verilog coding is available in the

Appendix B folder on the CDROM.

In Chapter 4, the asynchronous serial receiver systemmade use of a shift register to store the

incoming binary data and present them to a data latch. In addition, a divide-by-11 counter was

used to keep track of the number of binary bits received and alert the FSM when a complete

packet was received (receive shift-register full).

The details and Verilog code for the two modules are now described.

B.9 ASYNCHRONOUS RECEIVER DETAILS OF CHAPTER 4

FigureB.11 (which isFigure4.21 repeatedhere for convenience) illustrates thedifferentmodule

blocks needed to make up the complete receiver. Each module in this diagram and its Verilog

modules will be described below.

The associated test-bench modules and complete code for the asynchronous receiver are

available on the CDROMdisk that is supplied with this book. The FSM is described in detail in

Section 4.7, with the state diagram Figure 4.22.
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Q  SET

CLR

D

Clk

lD
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p0 p3p2p1

/Ld

Sht_clk

Four bit parallel loading shift register

Figure B.9 Four-stage shift register developed from Equations (B.7)–(B.11).
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test.clk

test.rst

test.p0

test.p1
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test.ld
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test.Q0

test.Q1

test.Q2

test.Q3

Figure B.10 Simulation of a four-stage shift register with din¼ 0.
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Figure B.11 Asynchronous receiver block diagram from Chapter 4.



B.9.1 The 11-Bit Shift Registers for the Asynchronous Receiver Module

This is an 11-bit shift registerwith a start bit, eight data bits (d0 to d7), and two stop bits (sp1 and

sp2).

The incoming data (din) connect to the sp2 flip-flop and are shifted into the sp1 flip-flop. The

last flip-flop in the shift register is the start-bit flip-flop, since this is the first data bit into the shift

register. This is illustrated in Figure B.12a.
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Figure B.12 (a) The shift-registers circuit. (b) Simulation of the shift-register module.
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The Verilog HDL code for the shift register is shown in Listing B.2.

// Define DFF
module D_FF(q,d,clk,rst);
output q;
input d,clk,rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst¼¼0)

q<¼1'b0;
else

q<¼d;
endmodule

Listing B.2 Verilog module for the shift register.

Listing B.3 gives the module used to build the shift register.

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// define shift register
// The shift register clock is rxclk which
// is controlled by the fsm.
// The protocol bits (st, sp1, and sp2) are
// shifted into their own FF's.
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

module shifter(rst,clk,din,QST,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,QSP1,QSP2);
input clk,rst,din;
output QST,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,QSP1,QSP2;
wire dst,d0, d1, d2, d3, d4, d5, d6, d7, dsp1, dsp2 ;

D_FF_qstd(QST,dst,clk,rst);
D_FF q0d(Q0,d0,clk,rst);
D_FF q1d(Q1,d1,clk,rst);
D_FF q2d(Q2,d2,clk,rst);
D_FF q3d(Q3,d3,clk,rst);
D_FF q4d(Q4,d4,clk,rst);
D_FF q5d(Q5,d5,clk,rst);
D_FF q6d(Q6,d6,clk,rst);
D_FF q7d(Q7,d7,clk,rst);
D_FF qsp1d(QSP1,dsp1,clk,rst);
D_FF qsp2d(QSP2,dsp2,clk,rst);
assign
// note the way that the flip flops have been connected up.
dst¼ Q0,
d0 ¼ Q1,
d1 ¼ Q2,
d2 ¼ Q3,
d3 ¼ Q4,
d4 ¼ Q5,
d5 ¼ Q6,
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d6 ¼ Q7,
d7 ¼ QSP1,
dsp1 ¼ QSP2,
dsp2 ¼ din;

endmodule

Listing B.3 Test-bench module for the shift register.

A simulation of the shift register, illustrated in Figure B.12b, indicates that it is working

correctly.

A study of the din waveform and the output from the shift register at around the 300 ns

point shows that the shift register has received the incoming data, together with the protocol

bits.

B.9.2 Divide-by-11 Counter

The counter uses a synchronous pure binary up-counting sequence that counts up to 11 (1101

binary) and then stops. Its output is theRXFsignal. This goeshighwhen theeleventhclockpulse

is received.

Figure B.13a illustrates the divide-by-11 counter. This is made up of four T-type flip-

flops (shown here as D types with exclusive OR gate feedback in the circuit diagram). The
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Figure B.13 (a) Schematic circuit diagram of the divide-by-11 counter with inhibit control. (b) The

divide-by-11 counter simulation.
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four-input NAND gate provides a stop control to inhibit the counter when the count value

reaches 11 (Q3Q2Q1Q0 ¼ 1011). The reset input rst is used to reset the counter back to

zero.

The Verilog code for this module is illustrated in Listing B.4 (all variables in lower case).

// define TFF
// Needed for the divide by 11 asynchronous counter.
module T_FF (q,t,clk,rst);
output q;
input t,clk,rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst ¼¼ 0)

q<¼1'b0;
else

q<¼t^q;
endmodule

// Now define the counter.
module divideby11(Q0,Q1,Q2,Q3,clk,rst,RXF);

Divide by 11 counter showing details of counter outputs

Divide by 11 counter showing only the terminal inputs and outputs

 to the asynchronous receiver

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.rst

test.clk

test.RXF
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test.clk

test.Q0

test.Q1

test.Q2

test.Q3

test.RXF

(b)

Figure B.13 (Continued)
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input clk, rst; //clk and rst are inputs.
output RXF,Q0,Q1,Q2,Q3; // all q/s outputs.
wire t0,t1,t2,t3,stop; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T_FF ff0(Q0,t0,clk,rst);
T_FF ff1(Q1,t1,clk,rst);
T_FF ff2(Q2,t2,clk,rst);
T_FF ff3(Q3,t3,clk,rst);

// now define the logic connected to each t input.
// use an assign for this.
assign
t0¼1'b1&stop, // this is just following the technique
t1¼Q0&stop, // for binary counter design.
t2¼Q0&Q1&stop, // will generate AND gates..
t3¼Q0&Q1&Q2&stop,
stop ¼ �(Q0&Q1&�Q2&Q3), // to detect 11the clock pulse.
RXF ¼ �stop;
endmodule // end of the module counter.

Listing B.4 Verilog module for the divide-by-11 counter.

Note that the simulation stopsat theeleventhclockpulsedue to theNANDgate.This isused to

raise the RXF signal via an inverter operation. The RXF (receive register full flag) is used to

inform the FSM that the receiver shift register is full. It is cleared by the FSM after transferring

the shift register data bits to the octal data latch.

The simulation of this module is illustrated in Figure B.13b.

B.9.3 Complete Simulation of the Asynchronous Receiver Module
of Chapter 4

The complete asynchronous receiver with FSM defined in Section 4.7 can now be simulated.

The complete Verilog code is contained on the CDROM.

The simulation of the asynchronous receiver is shown in Figure B.14. Here, the only signals

visible are those of the complete block, although the secondary statevariables are also displayed

to showtheFSMstate sequence.The simulation starts byassertingenhigh, then theFSMsection

(signals not seen here) controls the operation of the shift register, divide-by-11 counter, and

output data latch.

The data are presented to the user when signal DRY goes high and acknowledged by the user

bringing signal ack high. TheFSM, in response, lowersDRY(andPD), and the user (optionally)

lowers ack to acknowledge the end of the transaction. Prior to loading receiveddata into the data

latch its contents are unknown (or the last received).
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B.10 SUMMARY

This appendix has introduced simple ways to develop synchronous up and down pure binary

counters, with or without parallel-loading inputs that can be used in a PLD or FPGA device. It

has also described how parallel-loading shift registers can be developed and used.

These techniquesmaybeused todevelopVerilogHDLmodules foruse in someof thedesigns

covered in this book.Bit slice equations havebeen developed to allowcounters and shift register

circuits to be constructed directly in equation form in Verilog HDL.

Finally, some of these ideas have been used in the development of an asynchronous serial

receiver, complete with their Verilog modules.
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Figure B.14 The complete asynchronous receiver simulation.
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Appendix C: Tutorial on the
Use of Verilog HDL to Simulate
a Finite-State Machine Design

C.1 INTRODUCTION

This appendix quickly describes an FSM model in Verilog code and then simulates it using

SynaptiCAD’s VeriLogger Extreme simulator. The code for the model, VeriLogger Extreme,

and the code for most of the examples in the book are contained on the CDROM provided with

the book.

Amore detailed account of theVerilogHDL is provided inChapters 6–8,where the language

is developed at a slower and more defined pace.

C.2 THE SINGLE PULSE WITH MEMORY SYNCHRONOUS FINITE-STATE
MACHINE DESIGN: USING VERILOG HDL TO SIMULATE

The design of a single-pulse generator with memory is outlined and then a Verilog HDL file is

created. This Verilog file will use the most basic of the Verilog methods so as to keep it simple.

C.2.1 Specification

Whenever input s is asserted high, a single pulse is to be generated at the outputP. Signal smust

be returned low and then reasserted high again before another pulse can be generated. In

addition, a memory output L is to go high to indicate that a pulse has been generated; going

low again when the s input is returned to logic 0.

C.2.2 Block Diagram

Figure C.1 illustrates the block diagram of the system.
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C.2.3 State Diagram

A state diagram is implemented as illustrated in Figure C.2.

C.2.4 Equations from the State Diagram

The equations can be derived directly from the state diagram of Figure C.2, in this case using

D-type flip-flops:

A � d ¼ s0 � sþ s1

¼ =A=B � sþ A=B

¼ =B � sþ A=B

B � d ¼ s1þ s2þ s3 � s
¼ A=Bþ ABþ =AB � s
¼ Aþ B � s:

The output equations are

P ¼ s1 ¼ A=B and L ¼ s2þ s3 ¼ B:

Single-Pulse
Generator

with
Memory

FSM

Input s

Clock
Output L

Output P

Figure C.1 Block diagram of the system.
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Figure C.2 State diagram of the system.
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C.2.5 Translation into a Verilog Description

These equations can be translated into their Verilog form as shown below:

ad ¼ �B&s | A&�B,
bd ¼ A | B&s,
P ¼ A&�B,
L ¼ B;

Here, the AND operator (�) is replacedwith (&), the OR operator (þ) replacedwith (|), and the
NOToperator (/) replacedwith (�).Also, each equationendswith a comma(,) except for the last

equationwhich is endedwith a semicolon (;). Finally, thewhole equation setmust be placed into

a continuous assignment thus:

assign
ad ¼ �B&s | A&�B,
bd ¼ A | B&s,
P ¼ A&�B,
L ¼ B;

NowtheVerilogHDLfilewill becreated.Tocreate adesignusing theequations just derived,a

VerilogHDLfile using the data-flowmodeof designwill be created; that is, theVerilogHDLfile

is developed using the predefined logic equations.

Alternative ways would be to develop the Verilog HDL file using the logic gates required to

build the design or to use a behavioral structure. These alternative methods are described in

Chapters 6–8.

In Verilog, a design is built up using one or more modules. A module can have one or more

inputs and one or more outputs that define its terminal properties. These can, in turn, be

connected together by wires.

In this example, the Verilog description is made up of three modules:

� the module that describes the behavior of the D type flip flop used in the design;

� the module that describes the FSM;

� themodule that describes the tests to be carried out on the design (usually referred to as a ‘test

fixture’, or ‘test bench’, or ‘test module’).

The first module consists of a behavioural description of the D-type flip-flop used in the

design. Despite what has been said about the behavioural method, the D-type flip-flop is a

standard circuit element that will behave as expected. This D flip-flop is created as a module

called D_FF. It is illustrated in Listing C.1.

1 module D_FF(output q, input d,clk,rst);
2 reg q;
3 always @ (posedge clk or negedge rst)
4 if (rst¼¼ 0)
5 q<¼10b0;
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6 else
7 q<¼d;
8 endmodule

Listing C.1 The module to define the D-type flip-flop used in the design.

The behavioural description of the D-type flip-flop is a description of its terminal behavior.

The keywordsmodule andendmodule define the beginning and end of themodule. D_FF is

its name, and the signals between the parentheses are the terminal signals of the flip-flop. In this

case, q is the output and d, clk, and rst are inputs. The keywordsoutput andinput are needed

to define the signal types. The line numbers are provided for reference purposes only; they are

not entered when creating this Verilog code.

The flip-flop output needs to remember its last (present) state, so is further declared as a

register using the keyword reg in line 2. Note that each of the lines 1, 2, 5, and 7 ends with a

semicolon.

In line 3, an always keyword is used to define the conditions under which lines 4 to 7 will

occur.Verilog is defininghardware, and eachpart of the hardware description needs to be able to

execute in parallel. Thus, the always keyword with @ is used to define the conditions under

which the assignments on lines 5 and 7 will occur. In this case, the conditions are either when

there is a logic0 to logic1 transitionon theclk signal (referred toasposedge),or there is a logic
1 to logic 0 transition on the rst signal (referred to as negedge).

In line 4, the conditions upon which of the two assignments on lines 5 and 7 will occur are

specified using the if and else keywords. Here, if the input signal rst is logic 0, then the

assignment on line 5 will occur, i.e. q <¼1'b0;, otherwise the assignment in line 7 (under

the else) will occur, i.e. q <¼d;. Note the use of <¼ rather than ¼. This is preferred in a
sequential block (see Chapter 6 for details on why this is the case).

Theassignment in line5, i.e.q<¼1'b0;, assigns the logicvalue0 to theoutputq. The1'b0
is the way that Verilog defines a single binary bit to logic 0. Logic 1 would be 1'b1. Hence, the
syntax is<number of bits>'b< binary value, 0 or 1>.

The assignment in line 7, i.e. q <¼d;, simply makes the q output equal to the input signal

value of d, this being the required behaviour for the D-type flip-flop.

Finally, line 8 defines the end of the module.

Thus, it is seen that themoduleD_FFdefines the terminal behavior of aD-typeflip-flop. If the

rst (reset) is taken low (negedge rst), then the if (rst ¼¼ 0) will be true and the
assignment of line 5 will occur q<¼1'b0; to reset the flip-flop. Thereafter, if rst is taken
to logic 1 (reset removed from the rst input of the flip-flop), every time the clock input clk
receives a logic 0 to 1 transition (posedgeclk) the q outputwill take on the logic value of the d
input.

Thebehaviouralmethods todefine logic circuits and systemsare fullydescribed inChapters 6

and 7.

In the second module (shown in Listing C.2), called the FSM module, two instances of the

D_FF are created from the D_FF module, one called FFA in line 3 and the other FFB in line 4.

These are connected to the circuit of the single-pulse FSM; see signals inside the parentheses of

FFA and FFB.
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1 module fsm(input S,clk, output P,L,A,B);

2 wire ad, bd;
3 D_FF FFA(A,ad,clk,rst);
4 D_FF FFB(B,bd,clk,rst);

5 assign
6 ad¼�B&s | A&�B | A&�s,
7 bd¼ A | B&s,
8 P¼ A&�B,
9 L¼ B;

10 endmodule

Listing C.2 The FSM module.

Note that the terminal signals for theFSMare declared between the parentheses in line 1; they

are alsodefinedas inputs andoutputs.Note also that theflip-flopoutputsA andB aredefinedhere

as well. Each instance of the D flip-flop needs to be connected to external gates defined in the

assignment block so they need to be defined for each flip flop instance.

In line2, the signals adandbd (thed inputs toeachflip-flop) aredefinedaswires, since theyare

internal to the FSMmodule. Lines 3 and 4 define instances of the two flip-flops, using theD_FF

name, followed by an instance name (FFA for flip-flop A and FFB for flip-flop B).

Notehere that theAoutput is placedfirst in theparameter list since it is aqoutput from theflip-

flop, the data d input is the ad, the clock input clk, and finally the reset input rst. Flip-flop B

follows in the same manner.

So,bydefining the signalsusedby theD_FFasq,d, clk, and rst in thebehavioraldescriptionof

theDflip-flop, these signals can then be connected up to the signalsA, ad, clk and rst of the FFA,

and B, bd, clk and rst of the FFB used in the FSM. The order of these signals is important.

The logic equations follow in lines 6–9; note that this continuous assignment begins with a

Verilog keyword assign, which is needed so that the Verilog compiler can distinguish the

following logic equations.

Each line ends with a comma, except the last line 9, which should endwith a semicolon, thus

defining the end of the continuous assignment. The assignments make use of the ¼ (blocking

assignment), since the equations can take place in any order (see Chapter 6 for explanation).

In line10 theVerilogkeywordendmodule is used to terminate themodule that describes the

FSM.

Note that in earlier versions of Verilog the modules were defined as shown in Listing C.3.

Here, the inputs and outputs are defined after the module header in lines 2 and 3, rather than on

the module header in line 1. This is a minor difference, and some older versions of Verilog use

this arrangement and not the one shown in Listing C.2.

1 module fsm(s,clk, P,L,A,B); // signals here are not specified as
inputs or outputs.

2 input s,clk; // inputs defined here, not in the header.
3 output P,L,A,B; // outputs defined here, not in the header.
4 wire ad, bd;
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5 D_FF FFA(A,ad,clk,rst);
6 D_FF FFB(B,bd,clk,rst);

7 assign
8 ad¼�B&s | A&�B | A&�s,
9 bd¼ A | B&s,

10 P¼ A&�B,
11 L¼ B;
12 endmodule

Listing C.3 Alternative ‘older’ way to define a module.

The two modules defined so far, DFF and FSM, are all that are required to define the FSM.

However, in order to test the FSM to ensure that it is correct and performs in theway intended in

the specification, a third module is required. This is the test-bench module.

C.3 TEST-BENCH MODULE AND ITS PURPOSE

Figure C.3 illustrates the arrangement of the test-bench module in relation to the FSMmodule,

from which it can be seen that the test-bench module provides test signals (outputs that are

registered) to the FSM module. These outputs from the test-bench module are used to test the

FSM by applying the signals s, rst, and clk in such a way as to test the operation of the state

diagram, and hence the FSM.

The test-bench sequence is created by observing the requirements of the state diagram and

applying the signals s, rst, and clk so that it can test for all conditions. It is the test-benchmodule

that will define the sequence of signals that will be applied to the FSM in order to verify that the

state diagramstructure is followed correctly.Test-benchmodules canbedefined in amuchmore

concise form than the one shown here, and you will learn about these in Chapters 6 and 7.

Single-Pulse
Generator

with
Memory

FSM

S

Clk

Output L

Output P

Test
Bench
Module

rst

rst

Figure C.3 Connection of test-bench module to the FSM for testing.
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The test-bench module is shown in Listing C.4. This is a simplistic way to define the test-

benchmodule and is the easiest to understand. Chapters 6–8 contain other ways to define these.

//The Test Bench module.

1 module test;
2 reg s,clk,rst;
3 fsm single_pulse(s,clk,rst,P,L,A,B);

4 initial
5 begin
6 $dumpfile("single_pulse.vcd");
7 $dumpvars;

// initialise the inputs.
8 s¼0;
9 rst¼0;

10 clk¼ 0; // clk normally low.
//should stay in s0 since reset still on.

11 #10 clk¼�clk;
12 #10 clk¼�clk;

//release reset, should stay in s0.
13 #10 rst¼1;
14 #10 clk¼�clk;
15 #10 clk¼�clk;

// set s to 1 to move to s1.
16 #10 s¼1;
17 #10 clk¼�clk;
18 #10 clk¼�clk;

// move to s2 on next clock pulse.
19 #10 clk¼�clk;

#10 clk¼�clk;
20 // and on to s3 on next clock pulse.
21 #10 clk¼�clk;
22 #10 clk¼�clk;

// should stay in s3 on next clock pulse
// since s still 1.

23 #10 clk¼�clk;
24 #10 clk¼�clk;

// let s¼0 to allow fsm to return to s0
// on the next clock pulse.

25 s¼0;
26 #10 clk¼�clk;
27 #10 clk¼�clk;

// go around the loop again using
// repeat loop with 4 clk pulses.
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28 #10 s¼1;
29 repeat(8)
30 #10 clk¼�clk;

// back to s3
31 #10 s¼0;
32 #10 clk¼�clk;
33 #10 clk¼�clk;

// back to s0.
// finish the simulation.

34 #10 $finish;
35 end
36 endmodule

Listing C.4 The test-bench module.

The module of Listing C.4 starts at line 1 and is simply called test. It does not have, nor
indeed does it need, any input parameters apart from those in line 2, i.e. the signals to connect to

the FSM. These are s, clk, and rst and are defined as registers using the reg keyword. This is

because the signal values tobedefinedwithin the testmoduleneed tobe remembered (stored in a

register type) during the test sequence.

The FSM module is instantiated in line 3, and given the name single_pulse.
The signal assignment between the parenthesesmust follow the sameorder as that in the FSM

module definition.

What follows in lines 4–33 is the sequence of signal values to be applied to the inputs of the

FSMto test that the state sequence (andoutputs) arecorrect.The sequence isobtainedby looking

at the state diagram and applying signal values that allow the FSM to be completely tested. The

comment lines (beginning with //) indicate the test being carried out.

The state diagram (FigureC.2) andListingC.3 should be studied to see how the test sequence

has been obtained from the state diagram.

The keyword initial in line 4, followed by begin in line 5, defines the start of an

initialization block that endswith the keywordend in line 35. There aremore elaborateways to

do this, and these are discussed in Chapters 6 and 7.

In theinitial block, the logic level of the outputs s, rst, and clk are defined in lines 8, 9, and
10, all set to logic 0. In the case of the clock signal clk, this defines the clk to be initially at logic 0,

so that any clock pulses will be 0 to 1 transitions.

In line 11, the clock signal clk is toggled to logic 1, then in line 12 it is toggled to logic 0 again.

This is how a clock pulse is produced.�clk simply inverts the logic level of the clk signal.

The purpose of the test in lines 11 and 12 is to ensure that with the reset rst¼ 0 the FSMwill

remain in state s0 (see state diagram in Figure C.2).

The rst signal is raised to logic 1 in line 13, but notice that the assignment is

#10 rst ¼ 1;

The significance of the #10 is that it will delay the assignment 10 time-units before it will allow

rst to become logic 1. The actual delay value can be specified, but for now assume it to be 10 ns

into the simulation. Sowhat has happenedhere is that the signals s, rst, and clkwere assigned the
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value0at time0ns, thenafter 10ns the signal rstwas assigned thevalue1. In thisway, a sequence

of test signals can be applied sequentially to the FSMunder test by changing signal levels after a

certain time interval.The clockpulse in lines 11and12cannowbe seen to create a clockpulse of

10 ns duration.

In lines 14and15, another clockpulse is produced (clk going0 ! 1 ! 0); however, since s is

still at logic 0, the FSM should remain in state s0.

In line 16, s is made equal to logic 1 and the FSM can now clock through from s0 to s3 on the

clock pulses produced in lines 17–24.

At line 23 and 24, the FSM should remain in s3, since s is still at logic 1.

At line 25, s¼ 0 and the FSM can return to s0 on the next clock pulses in lines 26 and 27.

At line 28, s is again raised to logic 1, and in lines 29 and 30 a repeat block is used to cause

the FSM to step through states s0 to s3 to produce four clock pulses. This arrangement allows a

number of operations (in this case clock pulses) to be produced in a loop. In line 31 the input s is

cleared to0.Thenext twoclock assignments in lines 32and33cause theFSMtomoveback to its

initial s0 state.Finally, the simulationfinishesat line34with thekeyword$finish (this couldbe
replaced with $stop).

The whole Verilog file is compiled and simulated. If there are any errors in the design (these

could be syntax errors, i.e. spelling mistakes or errors in the design), then these need to be

eliminated and the process of compiling and simulation repeated.

Note that pressing the compile button (see Figure C.4) brings up a file-modified window.

Click ‘yes’ and then click the simulate button to resimulate after errors have been corrected.

This FSM has been simulated using the SynaptiCAD’s VeriLogger Extreme simulator.

Figure C.4 is a screenshot of the VeriLogger Extreme with the source Verilog code displayed

in the left-hand window and the waveforms of the simulation displayed in the right-hand

window.

Figure C.4 Screenshot of VeriLogger Extreme running under the BugHunter graphical debugger.
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C.4 USING SYNAPTICAD’S VERILOGGER EXTREME SIMULATOR

Install SynaptiCAD’sVeriLoggerExtremeSimulator located on theCDROMprovidedwith the

book or on SynaptiCAD’s website at www.syncad.com. This installation is the evaluation

version of the program,which is capable of simulating smallVerilog projects and displaying the

results.YoumaycontactSynaptiCADdirectly topurchasea full version (or student version) that

can simulate larger models and save the results files.

Run VeriLogger Extreme:

� ChooseStart>SynaptiCAD>SimulationDebug>VeriLoggerExtremeþBugHunter

menu to launch the simulator with the graphical debugger.

� Notice that theHelp>BugHunterVeriLoggerManualmenu launches ahelp programwith

the full simulator instructions.

� Also notice thatHelp>Tutorials>BasicVerilog Simulation is a tutorial on how to use the

graphical interface and test-bench generation features of VeriLogger Extreme.

Create a project to store the list of files to be simulated:

� Choose theProject>NewProjectmenu toopen theNewProjectWizarddialog (FigureC.5).

� In the Project Name box, type in FSM1, then click the Finish button. This will create a

project file named FSM1.hpj in the directory specified.

Copy or Create-&-Add the source file to the project:

� Either copy the source file, by right clicking on the User Source Files Folder and choosing

CopyHDLFiles to Source File Folder from the context menu which will open a file dialog

Figure C.5 Project wizard screen.
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(Figure C.6) and then use the browse button in the dialog to find the FSMSPWM.v on the

CDROM.

� Orcreate afilecalledFSMSPWM.vbychoosing theEditor>NewHDLFilemenuoption to

open an editor window. Type in your source code printed in this appendix and save the file.

Thenadd thefile to theproject by right clickingon theUserSourceFilesFolder andchoosing

Add HDL Files to Source File Folder from the context menu.

Figure C.6 Showing how to copy source file of Listings C.1–C.4 to project.

Figure C.7 Tool bar to build and simulate the code.
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Figure C.8 Verilog simulator output waveforms.
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Build and simulate the code:

� First, build the project by pressing the yellow Build button on the simulation button bar or

selecting the Simulate> Buildmenu (Figure C.7).

� Building the project compiles the source files, fills the project window with the hierarchical

structure of the design, and sets watches on all the signals and variables in the top-level

component. A build will automatically be done each time the simulation is run, but having a

separate build button enables you to create the project tree without having to wait for a

simulation to run. After the build you are also able to set the top-level component for the

project and/or select additional signals towatch using the project tree context menus. Watch

signals are those listed in the Stimulus and Results diagram.

� Check the Report window to find any syntax errors found by the build.

� Next, start the simulator bypressingoneof thegreenbuttons on theBuild andSimulate button

bar. Section 2.1 Build and Simulate in the on-line help explains the differences between the

types of single stepping and running.

� The simulated signals should appear in the Waveform window (Figure C.8).

� To produce waveforms with vertical transitions, first select theOptions>Drawing Prefer-

ences menu to open a dialog, and then in the Edge Display section and check the Straight

radio button.

C.5 SUMMARY

This tutorial looks at onlyoneofmanyways inwhich todevelop aVerilogdescriptionof anFSM

design. Other ways are discussed in Chapters 6–8. This tutorial also shows how you can use

SynaptiCAD’s VeriLogger Extreme simulator to verify your FSM design.

The designmethod is very easy to apply, with all the design information containedwithin the

state diagram. This information can then be ‘extracted’via the equations in order to synthesize a

given design. The simulation of the circuit can then be used to confirm the design. The latest

version of the software used in this tutorial can be downloaded free from SynaptiCAD at http://

www.syncad.com.Theversion ofVeriLogger Extrememay be updated from time to time, and a

more recent copy of the demo version can be down loaded from the above website.
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Appendix D: Implementing
State Machines using Verilog
Behavioural Mode

D.1 INTRODUCTION

In Chapters 1–5, state machines have been implemented using the equations obtained from the

state diagram. This approach ensures that the logic for the state machine is under complete

control of the designer.

However, if the state machine is implemented using behavioural mode, the Verilog compiler

will optimize the design.

There is a very close relationship between the state diagram and the behavioural Verilog

description that allows a direct translation from the state diagram to the Verilog code.

D.2 THE SINGLE-PULSE/MULTIPLE-PULSE GENERATOR WITH MEMORY
FINITE-STATE MACHINE REVISITED

In this system there are two inputs: s to start the system and x to choose either single-pulse or

multiple-pulsemode. In single-pulsemode, theLouput isused to indicate to theuser that a single

pulse has been generated. In multiple-pulse mode, L is suppressed. Figure D.1 illustrates the

state diagram for this system.

Rather than derive the equations directly from the state diagram, aVerilog description can be

obtained directly from the state diagram of Figure D.1. This is illustrated in Listing D.1.

// Behavioural State Machine.
module pulsar(s,clk,rst,P,L,ab);
1 input s,clk,rst;
2 output [1:0]ab,P,L;
3 reg [1:0]state, P, L;

4 parameter s0¼2’b00, s1¼2’b01, s2¼2’b11, s3¼2’b10;

// now define state sequence for FSM (from state diagram).
5 always @ (posedge clk or negedge rst)
6 if (�rst)
7 state<¼ s0;
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8 else
9 case(state)
10 s0: if (s) state<¼s1; else state<¼ s0;
11 s1: state<¼ s2;
12 s2: if (�x) state<¼ s3; else state<¼ s1;
13 s3: if (�s) state<¼s0; else state<¼ s3;
14 endcase

// now define the outputs @ each state.

15 always @ (state)
16 case(state)
17 s0: begin P¼1’b0; L¼1’b0; end
18 s1: begin P¼1’b1;
19 L¼ (state¼¼s1) &�x; //mealy output.
20 end
21 s2: begin L¼ (state¼¼s2) &�x; P¼ 1’b0; end
22 s3: begin P¼ 1’b0; L¼ (state¼¼s3) &�x; end
23 endcase
24 assign ab¼ state;
25 endmodule

Listing D.1 Verilog description of the state diagram.

A comparison between the state diagram of Figure D.1 and the state machine behaviour can

be made.

In Listing D.1, lines 5–14 define the state diagram sequence in terms of states and input

signals, and lines15–24define theoutputs in termsof each state.Bothof these setsof lines are, of

course, happening at the same time (i.e. in parallel).

After declaring the module and its signals in lines 1 and 2, the inputs and outputs are

defined.

Outputs are defined in line 2. Note the 2-bit vector [1:0]ab that will be used to show the

state of the FSM (Figure D.2). Line 3 defines the state vector [1:0]state used to keep track of the
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Figure D.1 State diagram for the single pulse with memory FSM.
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current state of the FSM, as well as the outputs P and L as register type. Line 4 defines the secondary

state variables for each state of the state diagram (Figure D.1). Note, these follow the binary values

defined for each state in Figure D.1.

In line 5, an always statement defines the conditions under which the case statement (lines

9–14)will be used. In line 6, the reset state is defined if rst transition is 1 to 0; otherwise theelse
will allow the case statement block (lines 10–14) to occur.

The case statement defines the four possible states that the FSM can reside in, and the

conditions under which the state transitions occur. The case uses the present state to select one
of the four possible next states. Initially, after a reset, statewill be s0(2’b00) at line10and theif
statement evaluates input s.

If input s is logic 1, then the next state will be s1; otherwise it will be s0.

On the next posedge of the clock signal the case statement will be activated again. If the

current state is s1, then at line 11 the next state will be s2.

Then, on the next posedge of clk, line 12 will ensure that the next state will be either s3 if

x ¼ 0, or s1 if it is logic 1. In line 13, the test of input swill decidewhether the FSMmoves to s0

(s¼ 0) or remains in s3.

Thus, the state sequence is determined by the case statement and use of the if statement to

evaluate input conditions, or just define the next state if no input condition is needed.

The output conditions are defined in a separate case block using outputs for each state as

defined in the state diagram. Note that, in line 19, theMealy output for L in state s1 is defined as

L¼ (state¼¼s1) &�x;

This ensures thatLwill be determined by thevalue of input xðx ¼ 0Þ and conditional on being in
state s1, i.e. L¼ s1 � /x as defined in the state diagram.

Thus, in thisway, ouputLwill onlybe logic 1 if the input x ¼ 0and theFSMis in s1; otherwise

it is suppressed. Output P will be assigned a logic 1 value.

Other case conditions are defined in a similarmanner and assigned the output values defined

in the state diagram of Figure D.1.

Comparing the behavioural statements from lines 5–14, and lines 15–25 with the state

diagramof FigureD.1, it is possible to see a strong relationship between theVerilog description

and the state diagram.

Using this approach allows an FSM design to be created without the need to define any

hardware logic. It is in fact a ’terminal behaviour and sequence’ for the FSM.

ListingD.2 defines the test-benchmodule for the system.This follows along the lines of other

test-bench modules used elsewhere in the book.

// now define the test bench fixture..
module test;
reg s,clk,rst;
wire [1:0]ab;
wire p, l;
pulsar uut(s,clk,rst,p,l,ab);
initial

begin
rst¼0;
clk¼0;
s¼0;
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x¼0;
#10 clk¼�clk;
#10 clk¼�clk;
//stays in s0.
#10 rst¼1;
#10 s¼1;
#10 clk¼�clk;
num;10 clk¼�clk;
// moves to s1.
#10 clk¼�clk;
#10 clk¼�clk;
// moves to s2.
#10 clk¼�clk;
#10 clk¼�clk;
// stays in s2.
#10 s¼0;
#10 clk¼�clk;
#10 clk¼�clk;
// moves back to s0.
// now make x¼1 to produce multiple pulses.
#10 x¼1;
#10 s¼1;
#10 clk¼�clk;
#10 clk¼�clk;
// move to s1
#10 clk¼�clk;
#10 clk¼�clk;
// move to s2
#10 clk¼�clk;
#10 clk¼�clk;
// move to s1 again
#10 clk¼�clk;
#10 clk¼�clk;
// and back to s1
#10 clk¼�clk;
#10 clk¼�clk;
// s2 again
#10 clk¼�clk;
#10 clk¼�clk;
#10 x¼0; //prepare to stop multiple pulse mode.
#10 clk¼�clk;
#10 clk¼�clk;
// to s3.
#10 clk¼�clk;
#10 clk¼�clk;
#10 s¼0;
#10 clk¼�clk;
#10 clk¼�clk;
// back to s0.
#10 $stop;

382 Appendix D



end
endmodule

Listing D.2 The test-bench module.

Figure D.2 illustrates the simulation waveforms for the design. Note the vector ab defi-

ning the state of the FSM at each clock transition. Compare this with the state diagram of

Figure D.1.

You should follow the waveform sequence to determine the paths taken through the state

diagram sequence. Both modes are tested and seen to work:

with x ¼ 0, the FSM is seen to produce a single output pulse;

with x ¼ 1, the FSMproduces a series of output pulses as it moves between s1 and s2, finally

returning to state s0 when x ¼ 0.

D.3 THE MEMORY TESTER FINITE-STATE MACHINE IN SECTION 5.6

This example can be coded directly in Verilog as a behavioural description using the state

diagram of Figure 5.15. The listing is illustrated in Listing D.3.

0ns 100ns 200ns 300ns

test.s

test.clk

test.x

test.rst

test.ab

test.P

test.L

0 1 3 2 0 1 3 1 3 1 3 2 0

Figure D.2 Simulation of the FSM using Listings D.1 and D.2.
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module
memory_tester_state_machine(clk,rst,st,fab,full,RC,P,CS,RD,WR,OK,
ERROR,abc);

input clk,rst,st,fab,full;
output [3:0]abc,RC,P,CS,RD,WR,OK,ERROR;

reg [3:0]state, RC,P,CS,RD,WR,OK,ERROR;
// assign secondary state variable values (as used in Figure 5.15)

parameter s0¼4’b0000, s1¼4’b1000, s2¼4’b1010, s3¼4’b0010,
s4¼4’b0110, s5¼4’b1110, s6¼4’b1100, s7¼4’b1101,
s8¼4’b1001, s9¼4’b1011, s10¼4’b0100;

// the state machine sequence..

always @(posedge clk or negedge rst)
if (�rst)

state¼ s0;
else
case(state)

s0: if(st) state<¼s1; else state<¼ s0;
s1: state<¼ s2;
s2: state<¼ s3;
s3: state<¼ s4;
s4: state<¼ s5;
s5: state<¼ s6;
s6: if(fab) state<¼ s7; else state<¼ s10;
s7: state<¼ s8;
s8: if(full) state<¼ s9; else state<¼ s1;
s9: state<¼ s9;
s10: state<¼ s10;

endcase

// the outputs for each state.

always @ (state)
begin
{RC,P,CS,RD,WR,OK,ERROR}¼ 7’b0011100;
case(state)

s0: begin assign RC¼1’b0;
P¼0;
CS¼1;
RD¼1;
WR¼1;
OK¼0;
ERROR¼0;

end
s1: begin assign RC¼1’b1;

CS¼1’b0;
P¼0; end

s2: begin WR¼1’b0; end
s3: begin C S¼1’b0;
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WR¼1’b1; end
s4: begin end
s5: begin RD¼1’b0;end
s6: begin end
s7: begin RD¼1’b1; end
s8: begin CS¼1’b1;

P¼ 1’b1; end
s9: begin OK¼1’b1;

P¼0; end
s10: begin ERROR¼1’b1; end

endcase

end
assign abc¼ state;
endmodule
module test;

reg st,clk,rst,fab,full;
wire [3:0]abc;

memory_tester_state_machine
uut(clk,rst,st,fab,full,RC,P,CS,RD,WR,OK,ERROR,abc);

initial
begin
rst¼0;
clk¼0;
st¼0;
fab¼0;
full¼0;
#10 rst¼1;
#10 st¼1;
#10 repeat(14)

#10 clk¼�clk;
#10 rst¼0;
#10 rst¼1;
#10 repeat(10)
#10 clk¼�clk;
#10 fab¼1;
#10 repeat(16)
#10 clk¼�clk;
#10 clk¼�clk;
//#10 rst¼0;
//#10 rst¼1;
#10 full¼1;
#10 repeat(20)
#10 clk¼�clk;
#10 $finish;

end
endmodule

Listing D.3 Behavioural description of memory tester from state diagram of Figure 5.15.
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The simulation is shown in Figure D.3.

The abc vector illustrates the FSMstates in terms of the secondary state variables allocated in

the state diagram of Figure 5.15. These were assigned to provide a unit distance code, and the

numbers shown in the simulation in Figure D.3 are the hexadecimal values.

The FSM is seen tomove around the state diagram from state s0 (0) through s1 (8), s2 (A), s3

(2), s4 (6), s5 (E), s6 (C), then s10 (4) the error state. The FSM is then reset back to state s0 and

recycles around the state diagram to s8 (9) and on to s9 (B) the OK state.

Thewrite cycle (8, A, 2) is followed by the read cycle (E, C), and again in (8, A, 2, 6, E, C,D).

D.4 SUMMARY

The use of a behavioural description has the advantage of using the information in the state

diagram directly. It can be seen that there is a one-to-one correspondence between the state

diagram structure and the Verilog structure, and this shows how the state diagram method can

allow a realization of the design directly (via the behavioural method) or via the Boolean

equations.

Bothmethods, owing to their formal descriptions, are suitable for computer implementation.

This has been exploited in a number of programs developed at Northumbria University by

postgraduate students.

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns

test.st

test.clk

test.rst

test.fab

test.full

test.abc

test.RC

test.P

test.CS

test.RD

test.WR

test.OK

test.ERROR

0 8 A 2 6 E C 4 0 8 A 2 6 E C D 9 8 A 2 6 E C D 9 B

Figure D.3 Simulation of the memory tester FSM of Listing D.3.
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