FSM-based Digital Design
using Verilog HDL

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

FSM-based Digital Design
using Verilog HDL

Peter Minns
lan Elliott

Northumbria University, UK

John Wiley & Sons, Ltd

Copyright © 2008 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the
terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or
faxed to (444) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 978-0470-06070-4

Typeset in 10/12 pt Times by Thomson Digital, Noida, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

Contents

Preface xi

Acknowledgements XV

1 Introduction to Finite-State Machines and State Diagrams for the Design

of Electronic Circuits and Systems 1
1.1 Introduction 1

1.2 Learning Material
1.3 Summary 21
2 Using State Diagrams to Control External Hardware Subsystems 23
2.1 Introduction 23
2.2 Learning Material 23
2.3 Summary 38
3 Synthesizing Hardware from a State Diagram 39
3.1 Introduction to Finite-State Machine Synthesis 39
3.2 Learning Material 40
3.3 Summary 66
4 Synchronous Finite-State Machine Designs 67
4.1 Traditional State Diagram Synthesis Method 67
4.2 Dealing with Unused States 69
4.3 Development of a High/Low Alarm Indicator System 71
4.3.1 Testing the Finite-State Machine using a Test-Bench Module 75
4.4 Simple Waveform Generator 76
4.4.1 Sampling Frequency and Samples per Waveform 78
4.5 The Dice Game 79

4.5.1 Development of the Equations for the Dice Game 81

Contents

6

7

4.6 Binary Data Serial Transmitter
4.6.1 The RE Counter Block in the Shift Register of Figure 4.15
4.7 Development of a Serial Asynchronous Receiver
4.7.1 Finite-State Machine Equations
4.8 Adding Parity Detection to the Serial Receiver System
4.8.1 To Incorporate the Parity
4.8.2 D-Type Equations for Figure 4.26
4.9 An Asynchronous Serial Transmitter System
4.9.1 Equations for the Asynchronous Serial Transmitter
4.10 Clocked Watchdog Timer
4.10.1 D Flip-Flop Equations
4.10.2 Output Equation
4.11 Summary

The One Hot Technique in Finite-State Machine Design

5.1 The One Hot Technique
5.2 A Data Acquisition System
5.3 A Shared Memory System
5.4 Fast Waveform Synthesizer
5.4.1 Specification
5.4.2 A Possible Solution
5.4.3 Equations for the d Inputs to D Flip-Flops
5.4.4 Output Equations

5.5 Controlling the Finite-State Machine from a Microprocessor/Microcontroller

5.6 A Memory-Chip Tester
5.7 Comparing One Hot with the more Conventional Design

Method of Chapter 4
5.8 A Dynamic Memory Access Controller

5.8.1 Flip-Flop Equations

5.8.2 Output Equations
5.9 How to Control the Dynamic Memory Access from a Microprocessor
5.10 Detecting Sequential Binary Sequences using a Finite-State Machine
5.11 Summary

Introduction to Verilog HDL

6.1 A Brief Background to Hardware Description Languages
6.2 Hardware Modelling with Verilog HDL: the Module

6.3 Modules within Modules: Creating Hierarchy

6.4 Verilog HDL Simulation: a Complete Example
References

Elements of Verilog HDL

7.1 Built-In Primitives and Types

83
87
88
91
92
92
94
95
98
100
102
102
103

105

105
110
114
116
117
118
119
120
120
123

126
127
131
131
132
134
143

145

145
147
152
155
162

163
163

Contents

8

9

7.1.1 Verilog Types

7.1.2 Verilog Logic and Numeric Values
7.1.3 Specifying Values

7.1.4 Verilog HDL Primitive Gates

7.2 Operators and Expressions

7.3 Example Illustrating the Use of Verilog HDL Operators:
Hamming Code Encoder
7.3.1 Simulating the Hamming Encoder

References

Describing Combinational and Sequential Logic using Verilog HDL

8.1 The Data-Flow Style of Description: Review of the Continuous Assignment

8.2 The Behavioural Style of Description: the Sequential Block

8.3 Assignments within Sequential Blocks: Blocking and Nonblocking
8.3.1 Sequential Statements

8.4 Describing Combinational Logic using a Sequential Block

8.5 Describing Sequential Logic using a Sequential Block

8.6 Describing Memories

8.7 Describing Finite-State Machines
8.7.1 Example 1: Chess Clock Controller Finite-State Machine
8.7.2 Example 2: Combination Lock Finite-State Machine with

Automatic Lock Feature
References

Asynchronous Finite-State Machines

9.1
9.2
9.3

9.4

9.5

9.6

9.7
9.8
9.9
9.10

9.11

Introduction

Development of Event-Driven Logic

Using the Sequential Equation to Synthesize an Event Finite-State Machine
9.3.1 Short-cut Rule

Implementing the Design using Sum of Product as used

in a Programmable Logic Device

9.4.1 Dropping the Present State n and Next State n + 1 Notation
Development of an Event Version of the Single-Pulse Generator with
Memory Finite-State Machine

Another Event Finite-State Machine Design from Specification

through to Simulation

9.6.1 Important Note!

9.6.2 A Motor Controller with Fault Current Monitoring

The Hover Mower Finite-State Machine

9.7.1 The Specification and a Possible Solution

An Example with a Transition without any Input

Unusual Example: Responding to a Microprocessor-Addressed Location
An Example that uses a Mealy Output

9.10.1 Tank Water Level Control System with Solutions

An Example using a Relay Circuit

163
167
169
170
172

185
188
195

197

197
198
204
204
209
217
229
240
245

252
265

267

267
269
272
275

276
277

277

280
280
281
285
285
289
291
293
293
296

iv Contents

9.12 Race Conditions in an Event Finite-State Machine
9.12.1 Race between Primary Inputs
9.12.2 Race between Secondary State Variables
9.12.3 Race between Primary and Secondary Variables

9.13 Wait-State Generator for a Microprocessor System

9.14 Development of an Asynchronous Finite-State Machine
for a Clothes Spinner System

9.15 Caution when using Two-Way Branches

9.16 Summary

References

10 Introduction to Petri Nets

10.1 Introduction to Simple Petri Nets
10.2 Simple Sequential Example using a Petri Net
10.3 Parallel Petri Nets
10.3.1 Another Example of a Parallel Petri Net
10.4 Synchronizing Flow in a Parallel Petri Net
10.4.1 Enabling and Disabling Arcs
10.5 Synchronization of Two Petri Nets using Enabling and Disabling Arcs
10.6 Control of a Shared Resource
10.7 A Serial Receiver of Binary Data
10.7.1 Equations for the First Petri Net
10.7.2 Output
10.7.3 Equations for the Main Petri Net
10.7.4 Outputs
10.7.5 The Shift Register
10.7.6 Equations for the Shift Register
10.7.7 The Divide-by-11 Counter
10.7.8 The Data Latch
10.8 Summary
References

Appendix A: Logic Gates and Boolean Algebra Used in the Book

A.1 Basic Gate Symbols Used in the Book with Boolean Equations
A.2 The Exclusive OR and Exclusive NOR
A.3 Laws of Boolean Algebra
A.3.1 Basic OR Rules
A.3.2 Basic AND Rules
A.3.3 Associative and Commutative Laws
A.3.4 Distributive Laws
A.3.5 Auxiliary Law for Static 1 Hazard Removal
A.3.5.1 Proof of Auxiliary Rule
A.3.6 Consensus Theorem
A.3.7 The Effect of Signal Delay in Logic Gates
A.3.8 De Morgan’s Theorem

299
300
300
300
301

304
309
312
312

313

313
318
319
323
324
325
326
327
329
333
333
333
333
334
334
335
335
336
336

337

337
338
338
339
339
340
340
341
341
342
343
343

Contents v
A.4 Examples of Applying the Laws of Boolean Algebra 345
A.4.1 Example: Converting AND-OR to NAND 345
A.4.2 Example: Converting AND-OR to NOR 345
A.4.3 Logical Adjacency Rule 345
A.5 Summary 346
Appendix B: Counting and Shifting Circuit Techniques 347
B.1 Basic Up and Down Synchronous Binary Counter Development 347
B.2 Example for a 4-Bit Synchronous Up-Counter Using 7-Type Flip-Flops 349
B.3 Parallel-Loading Counters: Using T Flip-Flops 352
B.4 Using D Flip-Flops to Build Parallel-Loading Counters with Cheap
Programmable Logic Devices 353
B.5 Simple Binary Up-Counter: with Parallel Inputs 354
B.6 Clock Circuit to Drive the Counter (And Finite-State Machines) 355
B.7 Counter Design using Don’t Care States 355
B.8 Shift Registers 357
B.9 Asynchronous Receiver Details of Chapter 4 358
B.9.1 The 11-Bit Shift Registers for the Asynchronous Receiver Module 360
B.9.2 Divide-by-11 Counter 362
B.9.3 Complete Simulation of the Asynchronous Receiver Module
of Chapter 4 364
B.10 Summary 365
Appendix C: Tutorial on the Use of Verilog HDL to Simulate a
Finite-State Machine Design 367
C.1 Introduction 367
C.2 The Single Pulse with Memory Synchronous Finite-State Machine
Design: Using Verilog HDL to Simulate 367
C.2.1 Specification 367
C.2.2 Block Diagram 367
C.2.3 State Diagram 368
C.2.4 Equations from the State Diagram 368
C.2.5 Translation into a Verilog Description 369
C.3 Test-Bench Module and its Purpose 372
C.4 Using SynaptiCAD’s VeriLogger Extreme Simulator 376
C.5 Summary 378
Appendix D: Implementing State Machines using Verilog Behavioural Mode 379
D.1 Introduction 379
D.2 The Single-Pulse/Multiple-Pulse Generator with Memory Finite-State
Machine Revisited 379
D.3 The Memory Tester Finite-State Machine in Section 5.6 383
D.4 Summary 386
Index 387

Preface

This book covers the design and use of finite state-machines (FSMs) in digital systems. It
includes stand-alone applications and systems that use microprocessors, microcontrollers, and
memory controlled directly from the FSM, as well as other common situations found in practical
digital systems. The emphasis is on obtaining a good understanding of FSMs, how they can be
used, and where to use them.

The popular and widely used Verilog hardware description language (HDL) is introduced and
applied to the description and verification of many of the designs in the book. In addition to logic
gate and Boolean equation-level styles of Verilog description, there is also a chapter covering the
use of HDL at the so-called behavioural level, whereby a design is described using the high-level
features provided by Verilog HDL.

There is also a chapter using the One Hot technique, commonly used to implement FSMs in
field programmable gate arrays with examples on the development of dynamic memory access
(DMA) controllers and data sequence detectors. Asynchronous (event-driven) FSMs not
requiring a clock signal are covered in a chapter using a technique that allows rapid development
of reliable systems. A chapter on the use of Petri-net-based controllers is included, allowing
parallel-based digital FSMs to be developed.

In the development of digital systems, microcontrollers have been used for many years to
control digital inputs and outputs, as well as process analogue information. Now, using the
techniques in this book, FSM-based designs can be implemented using a deterministic model,
the state diagram, as a design aid. Once developed, the state diagram can be used to implement
the final system using either Boolean equations obtained directly from the state diagram, or a
behavioural Verilog HDL description, again developed directly from the state diagram. External
devices, such as memory, address counters and comparators, can be implemented either from
the Boolean equations that define their operation or via behavioural-level descriptions in
Verilog HDL.

The book is targeted at undergraduate final-year students of Electrical, Electronic, and
Communications Electronic Engineering, as well as postgraduate students and practising
Electronic Design Engineers who want to know how to develop FSM-based systems quickly.
The book will assume an understanding of basic logic design and Boolean algebra, as would be
expected of a final-year undergraduate. The book sequence follows.

Xii Preface

The first three chapters are in the form of a linear frame programmed learning format to help
the reader learn the essential concepts of synchronous FSM design.

This set of notes has been used with undergraduate final-year students at our university for
some years now and has been well received by the students. These chapters cover the idea of
basic FSM design and synthesis. Once this is covered, the book reverts to a more familiar text.
However, the first three chapters, being linear, can be read in the same style as the more familiar
text if the reader desires.

A breakdown of the chapters in the book now follows.

Chapter 1 contains an introduction to FSMs, the Mealy and Moore models of an FSM,
differences between synchronous (clock-driven) FSMs and asynchronous (event-driven) FSMs,
the state diagram and how it can be used to indicate sequential behaviour and the inputs and
outputs of a system. This follows with a number of examples of FSMs to illustrate the way in
which they can be developed to meet particular specifications.

Chapter 2 covers the use of external hardware and how this hardware can be controlled by the
FSM. The examples include how to create wait states using external timers, how to control
analogue-to-digital converters, and memory devices. This opens up the possibilities of FSM-
based systems that are not normally covered in other books.

Chapter 3 is a continuation of the programmed learning text, looking at synthesization of state
diagrams using T flip-flops and D flip-flops, as well as initialization techniques.

The remaining chapters of the book will be in a more conventional format.

Chapter 4 covers synchronous (clock-driven) FSM examples, some with simulation. This
chapter gives some practical examples commonly found in real applications, such as a digital
waveform synthesizer and asynchronous serial transmit and receive blocks.

Chapter 5 is an introduction to the use of ‘One Hotting’ in synchronous FSM design. Amongst
the examples covered is a DMA controller and serial bit stream code detection.

Chapter 6 is an introduction to Verilog HDL and how to use it at the gate level and the
Boolean equation level, together with how to combine different modules to form a complete
system.

Chapter 7 introduces the basic lexical elements of the Verilog HDL. Emphasis is placed on
those aspects of the language that support the description of synthesizable combinational and
sequential logic.

Chapter 8 takes a more detailed look at the Verilog HDL, with emphasis on behavioural
modelling of FSM designs. It covers using an HDL to implement synchronous FSMs at the
behavioural level - with examples.

Chapter 9 is an introduction to asynchronous (event-driven) design of FSMs from initial
concepts through to the design of asynchronous FSMs to given specifications. This will also
include a brief discussion of race problems with asynchronous designs and how to overcome
them.

Chapter 10 is an introduction to synchronous Petri nets, and how they can be used to
implement both sequential and parallel FSMs. Petri nets allow the design of parallel FSMs
with synchronized control. This chapter shows how a Petri net can be designed and synthesized
as an electronic circuit using D-type flip-flops.

Each chapter contains examples with solutions, many of which have been used by the authors
in real practical systems.

There is a CD-ROM included with the book containing a digital simulation program to
aid the reader in learning and verifying the many examples given in the book. The program

Preface Xiii

is based on Verilog HDL. This tool has been used to simulate most of the examples in the
book.

Also on the CD-ROM are folders containing many of the book’s examples, complete with
test-bench descriptions to allow the simulations to be run directly on a PC-based computer.

Peter Minns BSc(H) PhD CEng MIET
Ian Elliott BSc(H) MPhil CEng MIET
Newcastle Upon Tyne

Acknowledgements

We would like to thank all those who have helped in the proof reading of this book. In particular,
we thank Safwat Mansi for his proof reading of our ideas and his helpful suggestions. In addition,
Kathleen Minns is thanked for her help in the proof reading of the entire manuscript.

We would like to thank our editors, Emily Bone, Laura Bell, Kate Griffiths and Nicky Skinner
for their help over the time that we have worked on this book. Thanks also to Caitlin Flint for her
help with the marketing of the book.

Special thanks go to Donna Mitchell at SynaptiCAD for her help with Appendix C on the use
of the VeriLoger Extreme Simulation Program on the CD-ROM with this book. Also, Gary
Covington for his help in creating the CD-ROM.

Finally, thanks to our wives, Helen and Kathleen, for putting up with our frequent disappear-
ances during the preparation of the book.

Any errors are, of course, entirely the responsibility of the authors.

]

Infroduction to Finite-State
Machines and State Diagrams
for the Design of Electronic
Circuits and Systems

1.1 INTRODUCTION

This chapter, and Chapters 2 and 3, is written in the form of a linear frame, programmed learning
text. The reason for this is to help the reader to learn the basic skills required to design clocked
finite-state machines (FSMs) so that they can develop their own designs based on traditional 7
flip-flops and D flip-flops. Later, other techniques will be introduced, such as One Hot,
asynchronous FSMs, and Petri nets; these will be developed along the same lines as the work
covered in this chapter, but not using the linear frame, programmed learning format.

The text is organized into frames, each frame following on consecutively from the previous
one, butattimes the reader may be redirected to other frames, depending upon the response to the
questions asked. It is possible, however, to read the programmed learning chapters as a normal
book.

There are rasks set throughout the frames to test your understanding of the material.

To make iteasier toidentify input and output signals, inputs will be in lowercase and outputs in
uppercase.

Please read the Chapters 1-3 first and attempt all the questions before moving on to the later
chapters. The reason for this approach is that the methods used in the book are novel, powerful,
and when used correctly can lead to a rapid approach to the design of digital systems that use
FSMs.

Chapters 1-5, 9 and 10 make use of techniques to develop FSM-based systems at the equation
and gate level, where the designer has complete control of the design.

Chapters 6-8 can be read as a self-contained study of the Verilog hardware description
language (HDL).

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

2 Introduction to Finite-State Machines and State Diagrams

1.2 LEARNING MATERIAL

Learning Material

Introduction to Finite-State Machines and State Diagrams

Learning Material

Introduction to Finite-State Machines and State Diagrams

Learning Material

Introduction to Finite-State Machines and State Diagrams

Learning Material

10 Infroduction to Finite-State Machines and State Diagrams

Learning Material 11

12 Infroduction to Finite-State Machines and State Diagrams

Learning Material 13

14 Infroduction to Finite-State Machines and State Diagrams

Learning Material 15

16 Infroduction to Finite-State Machines and State Diagrams

Learning Material 17

18 Infroduction to Finite-State Machines and State Diagrams

Learning Material 19

20 Infroduction to Finite-State Machines and State Diagrams

Summary 21

1.3 SUMMARY

At this point, the basics of what an FSM is and how a state diagram can be developed for a
particular FSM design have been covered:

e how the outputs of the FSM depend upon the secondary state variables;

22 Infroduction to Finite-State Machines and State Diagrams

o thatthe secondary state variables can be assigned arbitrarily, but that following a unit distance
code is good practice;

e anumber of simple designs have shown how a Mealy or Moore FSM can be realized in the way
in which the output equations are formed.

However, the state diagram needs to be realized as a circuit made up of logic gates and flip-
flops; this part of the development process is very much a mechanized activity, which will be
covered in Chapter 3.

Chapter 2 will look at a number of FSM designs that control outside-world devices in an
attempt to provide some feel for the design of state diagrams for FSMs. The pace will be quicker,
as it will be assumed that the preceding work has been understood.

2

Using State Diagrams to
Control External Hardware
Subsystems

2.1 INTRODUCTION

Inreal-world problems there is often a need to use external subsystems, such as hardware timers/
counters, analogue-to-digital converters (ADCs), memory devices, and handshake signals to
communicate with external devices.

This chapter looks at how a state diagram (and, hence, an FSM) can be used to control such
devices. This opens up a much wider range of activities for the FSM and can lead to solutions in
hardware that can be implemented in a relatively short time.

In later chapters, the ideas explored in this chapter will be used to develop some interesting
real-world systems.

2.2 LEARNING MATERIAL

Frame 2.1

One of the most common requirements in an FSM is the need to wait in a state for some
predefined period. For example, a need to turn on an outside world output for a certain period
of time, then turn it off again. This could be done by just allocating a number of consecutive
states with the required output held high, but this would be very wasteful of states (and the
corresponding flip-flops needed to implement the FSM) for all but very short delays. The best
way of dealing with this kind of requirement is to use an external timer unit that can be
controlled by the FSM.

A typical timer unit might look something like the illustration in Figure 2.1.

The timer unit has two inputs, the clock input clk and the start timer input ts, and a single
output TO. From the timing diagram (Figure 2.1) for this timer unit, the timer output TO will
go high when the timer start input ts makes a 0-to-1 transition. The output TO will remain
high until the time period has elapsed, after which it will go low.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

24 Using State Diagrams to Control External Hardware Subsystems

Learning Material 25

26 Using State Diagrams to Control External Hardware Subsystems

Learning Material 27

28 Using State Diagrams to Control External Hardware Subsystems

"Note that some ADCs have a busy signal instead of the eoc. These ADCs raise the busy signal when SC is asserted,
lowering it when the conversion is complete.

Learning Material 29

30 Using State Diagrams to Control External Hardware Subsystems

at the same time. The microprocessor will hold CE low long enough to allow the W signal to
write the data into the memory device. This is usually because the propagation delay is longer
in the CE path due to additional address decoding logic.

In a system controlled by an FSM, this can be done in the waveform diagram sequence, as
shown earlier in this frame in Figure 2.7. However, an alternative arrangement could be to
cause the CE signal to be delayed within the memory chip. This would be possible if the
memory was being implemented in an HDL to be contained in an FPGA, perhaps also
containing the FSM.

The main thing here is to ensure that the data can be written into the RAM before it is
deselected.

Note: the signals CE and Wneed to be controlled by the FSM whenever the memory is to be
written to or read from.

Note that if Wis replaced by R then the memory cycle is aread memory cycle in which data
stored in the memory chip will be output from the chip.

The read operation follows the same basic sequence as the write signal, and the arguments
discussed earlier about delaying the chip select also apply.

Now go to Frame 2.6 to see how the memory chip can be controlled from an FSM.

Frame 2.6

To access the memory device, the chip select line must be asserted (this means that the chip
select line must be active, in this case active is logic 0). Then, write data into the RAM device
by lowering the write signal line. A little later, raise the write line to logic 1 to write the data
into the RAM device.

To read the contents of the RAM, first select the chip select line by making it go low, then a
little time later set the read line low.

In most cases, ‘chip select and read’ or ‘chip select and write’ control lines can be raised
high (to disassert them) at the same time. It is usually at this point in the cycle that the memory
device is read or written; but, if there is a doubt about chip select remaining low long enough
for the write or read operation to take place, then it is best to raise write or read first before
raising the chip select signal.

In practice, the data bus will remain active for a few nanoseconds (typically 10 ns) in order
for the data to be written or read by memory in memory controlled by a microprocessor, butin
an FSM-controlled system the design engineer should ensure that this occurs either by
adding another state to the state machine or by creating a delay on the chip select signal in the
memory device.

The segment of timing diagrams of Figure 2.7 in Frame 2.5 illustrates this process.

When reading from and writing to memory devices, the process of reading and writing is
implied to be from the point of view of the controlling device. The controlling device in a
microprocessor system is the microprocessor. In our case, the controlling device is the FSM.

Task Tryproducing a segment of state diagram to control the memory device for writing.

Now go to Frame 2.7 to find out whether it is correct.

Learning Material 31

32 Using State Diagrams to Control External Hardware Subsystems

Learning Material 33

34 Using State Diagrams to Control External Hardware Subsystems

Learning Material 35

36 Using State Diagrams to Control External Hardware Subsystems

Learning Material 37

38 Using State Diagrams to Control External Hardware Subsystems

2.3 SUMMARY

This chapter has dealt with the way in which FSMs can be used to control external hardware in a
digital system. Later chapters will illustrate how these and other external devices can be
controlled by an FSM. One of the implications from this work is that many of the applications
normally developed using microcontrollers can be implemented using FSMs and hardware
logic. The block diagram and state diagram approach seen in Chapters 1 and 2 can be used, in
conjunction with modern HDLs to make this possible. The advantage, in some cases, will be a
design that uses less logic than a similar design using a microcontroller. You will see this
possibility later on when you have read later chapters.

For now, the next stage in our work is to see how a state diagram can be used to create a logic
circuit to realize the design. This work is covered in Chapter 3.

3

Synthesizing Hardware
from a State Diagram

3.1 INTRODUCTION TO FINITE-STATE MACHINE SYNTHESIS

At this point, the main requirements to design an FSM have been covered. However, the ideas
discussed need to be practised and applied to a range of problems. This will follow in later
chapters of the book and provide ways of solving particular problems.

In the development of a practical FSM there is a need to be able to convert the state diagram
description into areal circuit that can be programmed into a PLD, FPGA, or other application-
specific integrated circuit (ASIC). As it turns out, this stage is very deterministic and
mechanized.

FSM synthesis can be performed at a number of levels.

Develop an FSM using flip-flops, which can be:

— D-type flip-flops;
— T-type flip-flops;
— JK-type flip-flops.

Use ahigh-level HDL such as VHDL. This can be used to enter the state diagram directly into the
computer. The HDL can then be used to produce a design based upon any of the above flip-flop
types using one of a number of technologies.

Itis also possible to take the state diagram and convertitinto a C program and, hence, produce
a solution suitable for implementation using a micro-controller.

By using the direct synthesis approach, or an HDL, the final design can be implemented using:

e discrete transistor—transistor logic (TTL) or complementary metal oxide—semiconductor
(CMOS) components (direct synthesis);

PLDs;

FPGAs;

ASICs;

a very large-scale integration chip.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

40 Synthesizing Hardware from a State Diagram

Most technologies support D- and T-type flip-flops, and in practice these devices are used a lot
in industrial designs; therefore, this book will look at the way in which T flip-flops and D flip-
flops can be used in a design. Note: JK flip-flops can also be used, but these are not covered in this
book.

This chapter will look at the implementation of an FSM using 7-type flip-flops and then move
on to look at designs using D-type flip-flops.

Why T- and D-type flip-flops?

These are the most common types of flip-flop used today. The reason is that the 7"type can be
easily implemented from a D type, and the D type requires only six gates (compared with the JK
type, which requires about 10 gates). This means that D-type flip-flops occupy less chip area than
JK types. Another reason is that the D-type flip-flop is more stable than the JK flip-flop.

D-type flip-flops are naturally able to reset, in that if the D input is at logic 0, then the flip-flop
will naturally reset on the next clock input pulse (see later on in this chapter). This can be of great
benefit in the design of FSMs.

Go to Frame 3.1 to find out how to use the T flip-flop.

3.2 LEARNING MATERIAL

Learning Material 41

42 Synthesizing Hardware from a State Diagram

Learning Material 43

44 Synthesizing Hardware from a State Diagram

Learning Material 45

46 Synthesizing Hardware from a State Diagram

Learning Material 47

48 Synthesizing Hardware from a State Diagram

Learning Material 49

50 Synthesizing Hardware from a State Diagram

Learning Material 51

52 Synthesizing Hardware from a State Diagram

Learning Material 53

54 Synthesizing Hardware from a State Diagram

Learning Material 55

56 Synthesizing Hardware from a State Diagram

Learning Material 57

58 Synthesizing Hardware from a State Diagram

Learning Material 59

60 Synthesizing Hardware from a State Diagram

Learning Material 61

62 Synthesizing Hardware from a State Diagram

Learning Material 63

64 Synthesizing Hardware from a State Diagram

Learning Material 65

66 Synthesizing Hardware from a State Diagram

3.3 SUMMARY

This chapter has looked at the method of synthesizing a logic circuit from the state diagram.
Methods have been developed to make this process simple and effective for implementation
using both T-type flip-flops and D-type flip-flops. These methods are used in the development of
further examples in Chapter 4.

At this point, the main techniques to be used in the development of synchronous design of
FSMs have been completed and the rest of the book follows a more traditional format.

There is one more method to be considered in synchronous design, namely that of the ‘One
Hot’ technique, which will be dealt with in Chapter 5.

4

Synchronous Finite-State
Machine Designs

This chapter looks at a number of practical designs using the techniques developed in Chapters 1
to 3. It compares the conventional design of FSMs with the design proposed in the book. This
illustrates how more effective the latter method is in developing a given design. The traditional
method of designing FSMs is common in a lot of textbooks on digital design. It makes use of
transition tables and can become cumbersome to use when dealing with designs having a large
number of inputs. Even for designs having few inputs, the method used in Chapters 1-3 is
quicker and easier to use.

Most designers involved in the development of FSMs make use of unused secondary state
assignments to help reduce the flip-flop input and output equations. This practice is investigated
with some interesting results.

The chapter covers a number of practical system designs. Some have simulation waveforms
showing the FSM design working. The Verilog HDL code used to create the simulations will not
be shown, as Verilog HDL code development is not covered until later on in the book. However,
the respective Verilog codes are available on the CDROM disk that is included with this book, as
are the Verilog tools used to view the simulations.

Eight examples are discussed in this chapter, with each example introducing techniques that
help to solve the particular requirements in the design being investigated.

4.1 TRADITIONAL STATE DIAGRAM SYNTHESIS METHOD

Before continuing with the development of FSM systems based on the synthesization method
covered in Chapters 1-3, it is worth investigating the more popular traditional method of
synthesization used by many system designers. Then see what solutions are obtained by using
both methods. It should be possible to obtain the same results, or at least results that are of a
similar level of complexity (i.e. number of gates).

Consider the state diagram shown in Figure 4.1. This, being a four-state diagram, will
need two D-type flip-flops. Using the traditional synthesization method, begin by con-
structing a state table containing the present state (PS) values and the next state (NS)

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

68 Synchronous Finite-State Machine Designs

AB
10

Figure 4.1 A state diagram used in the comparison.

values for A and B, for all possible values of the input x. One then adds to this the next
states for the inputs Da and Db, for all possible values of x. The result is the state table
shown in Table 4.1.

The values for A and B in Table 4.1 are obtained by inspection of the state diagram in
Figure 4.1. For example, in state sO (PS of AB = 00) in coll the NS of AB for x = 0 will
be 00 in col2; however, if x = 1, the NS of AB = 01 in col3 (i.e. sl).

The values for the NS Da and Db values will follow the NS values for AB because in a
D flip flop the output of the flip flop (A, B) follows the Da and Db inputs.

The reader can follow the rest of the rows in Table 4.1 to complete the state table.

Table 4.1 Present state—next state table for the state machine.

coll col2 col3 col4 col5
PS NS NS NS NS
AB AB AB DaDb DaDb
x=0 x=1 x=0 x=1
Rowl 00 00 01 00 01
Row2 01 11 01 11 01
Row3 11 00 10 00 10

Row4 10 11 00 11 00

Dealing with Unused States 69

The next step is to obtain the Da and Db equations from the state table by writing
down the product terms where Da = 1 in both columns x =0 and x = 1.

Consider, for example, Da = 1 when A changes 0 to 1; look for PSA =0to NS A =1
inrow 2, and PSA=1to NS A =1 in row 3 of columns 1, 3 (x = 1):

e when PS AB = 01 (row 2) and x = 0, flip-flop A should set, and the product term /AB/x is
required;

e whenPSAB = 0l andx = 1 (row 2, col3), flip-flop A should be reset, and the term /A Bx is not
required;

e when PS AB =10 (row 4) and x =0, flip-flop A should set, and the term A/B/x is
required;

e when PS AB = 11 (row 3) and x = 1, flip-flop A should be set, and term ABx is required.

Therefore, the D input terms for Da are
D-a= /AB-/x+A/B-/x+ AB-x,
which cannot be reduced. For D-b=/A/B-x + /AB-/x + /AB-x + A/B-/x we have
D-b=/A-x+ /AB+A/B-/x.

The output equation for Z = s3 = A/B, since this is a Moore state machine.
Now do the problem using the synthesization method described in Chapters 1—3.

From the state diagram directly:

Da=sl-/x+s2-x+s3-/x
= /AB-/x+AB-x+A/B-/x
Db =s0-x + sl +s3-/x
=/A/B-x+ /AB+A/B
= /A-x+ /[AB+A/B-/x.
This is the same as obtained using the traditional method.
The main advantage of the method used in Chapters 1-3, over the traditional method, is that it
does not require the use of the state table. It is also much easier to use when the number of input

variablesis large (asis the case in large practical FSM designs) since the size of the present state—
next state table increases as more inputs are added.

4.2 DEALING WITH UNUSED STATES

When developing state diagrams that use less than the 2" states for n secondary state variables the
question of what to do with the unused states arises. Consider the state diagram of Figure 4.2.

70 Synchronous Finite-State Machine Designs

ABC
111

s4
/P/Q

ABC
011

Figure 4.2 A state diagram using less than the 2° states.

From the state assignment used in this example there are

Used states Unused states
sO =000 s5 =010

s1 =100 s6 =110

s2 =101 s7 =001
s3=111

s4 =011

The equations for D flip-flops are:
A-d=s0-s+sl+s2+4+s3-z
= +A/B/C-s+A/B+E&+A/BLE+A/BC 2.
The crossed-out literals are a result of applying logical adjacency and the aux rule (see
Appendix A). The result is
A-d=/B/C-s+A/B+AC -z
B-d=s2-y+s3-/7+s4
=A/BC-y+ -ABC- /z+ /ABC
=A/BC-y+BC- /z+ /ABC
C-d=sl-x+s2-y+s3+s4
=A/B/C-x+A-/B/C-y+ +ABC+ -/ABC.

Development of a High/Low Alarm Indicator System 71

Again, the crossed-out terms are using logical adjacency and the aux rule.

C-d=A/B/C-x+AC-y+ BC.
The output equations:

P=sl+s2=A/B/C+A/BC
P=A/B

Q =s2+s3=A/BC+ABC
Q = A/BC + ABC = AC.

If the state machine falls into the unused state s5 (/AB/C) then the result will be

A-d=0,B-d=0,andC -d =0 the state machine falls into sO.

If the state machine falls into unused state s6 (AB/C):
A-d=0,B-d=0,andC-d =0 again, the state machine will fall into s0.
If state machine falls into the unused state s7 (/A/BC):
A-d=0,B-d=0,and C-d =0 with next state being sO again.

This shows that the FSM designed with D-type flip-flops will be self- resetting.

Note that if Tflip-flops are used, then the FSM will not be self-resetting since the T'input either
toggles with T = 1 or remains in its current state with 7 = 0. The only way to ensue that it does
return to sO is to make transitions available for this, as illustrated in Figure 4.3. Clearly, this
requires more product terms in the equations forA -7, B - ¢, and C - t.

In general, if the state machine has a lot of 1-to-1 transitions and few 1-to-0 and
0-to-1 transitions, then T flip-flops may need less terms and, hence, a possible deduction in
logic.

If the state machine has few 1-to-1 transitions the D flip-flop solution may result in fewer
terms. However, the self-resetting features of the D flip-flop may provide a greater advantage in
the overall design.

The rest of this chapter contains anumber of practical examples, making use of the techniques
developed in the first three chapters.

4.3 DEVELOPMENT OF A HIGH/LOW ALARM INDICATOR SYSTEM

Figure 4.4 illustrates a block diagram for the proposed system. In Figure 4.4, the FSM is used to
control an ADC and monitor the converted analogue signal levels until either the low-level limit
or the high-level limit is exceeded. The low- and high-level values are set up on the Lo-word/
Hi-word inputs, which could be dual in-line switches. The comparators are standard 8-bit

72 Synchronous Finite-State Machine Designs

Figure 4.3 The arrangement needed for 7 flip-flops.

8-Bit Comparators

8 8
Vin A B # Hi-word
—»
ADC | 8 A8
8 8
A B 49.6 Lo-word
L A<B
\ v y
SC eoc lo hi
Synchronous FSM
AL
— st
rst LLL JHL
LowX o\ High
LED LED
System CLK
Reset Vee

Figure 4.4 Block diagram for the High/Low detector system.

Development of a High/Low Alarm Indicator System 73

comparator circuits similar to the standard 7485 devices. These could easily be incorporated into
a PLD/FPGA along with the FSM.

In this application it is assumed that, when the ADC output A exceeds the Hi-word, hi will go
tologic 1. An ADC output less than the Lo-word will make lo go tologic 1. The ADC could be a
separate device or its digital circuits could be implemented on a PLD/FPGA device and an
external R/2R network connected to the chip.

The system is to start when st goes high. It should perform analogue-to-digital conversions ata
regular sampling frequency dictated by the system clock and when either the Hi-word or Lo-
word are exceeded, turn on the appropriate LED indicator and stop. It can be returned to its initial
state by operation of the reset button. Note that in this example the alarm will not sound for an
ADC output that is equal either to Hi-word or Lo-word.

From this specification, a state diagram can be developed. The control of the ADC will follow
in much the same way that was used in Chapter 2.

The two digital comparators being combinational logic will give an output dependent on the
level of the ADC output. When the ADC output is equal to or less than hi-word but greater than
Lo-word, then both lo and hi will be low, signifying that the ADC value is between the two limits.
When the ADC output is greater than Hi-word, then hi will be logic 1 and is to sound the alarm
and turn on the HL indicator. When the ADC outputisless than Lo-word, then lo becomes logic 1
and the alarm turns on the LL indicator.

A state diagram has been developed as shown in Figure 4.5. Looking at this state diagram, the
system sits in sO from power on reset and waits for the start input to go high. Then the ADC signal
SC is raised to perform an analogue-to-digital conversion. After this the system falls into s2.
Here, the outputs from the two comparators are checked, and if either the Hi-word or the Lo-
word limit has been exceeded then the state machine will fall into s3. If, however, neither limit
has been exceeded, then the state machine will fall back into s1 to perform another analogue-to-
digital conversion.

/(lo+hi) _|

AB

lo+hi_|

Ins3 /LL =lo is in fact LL = /(s3.lo)

In 83 /HL = hi which is HL = /(s3.hi) AB

Both are mealy outputs 01

Note: /(lo + hi) is the same as lo + hi

Figure 4.5 A possible state diagram for the problem.

74 Synchronous Finite-State Machine Designs

Looking at the two-way branch state s2, itis clear that the inverse of 1o + hiis/(lo + hi). Asan
aside, if one applies De Morgan’s rule to /(lo + hi) one gets /lo - /hi, indicating for the transition
from s2 to s1 that both lo and hi must be low.

Moving on to look at s3, one can see that the two outputs HL and LL are dictated by the logic
state of the comparator outputs lo and hi so that in s3 the HL indicator should be active if hi = 1,
whereas the LL indicator should be active if lo = 1.

/HL = hi in s3 indicates that HL must be active low. The output equation for HL. will be
written as

HL = /(s3 - hi),

which means that HL will be logic O when hi = 1, but only when the state machineisin s3. Thisis
defining a Mealy active low output. This is how it was defined in Chapter 3.

In a similar way, LL = /(s3 - lo).

The best way to remember this idea is to think of the /HL = hi equation in the s3 state as
representing the equation HL. = /(s3 - hi), but then written inside the state circle one does not
need to include the s3, as it is implied.

Replacing the state number s3 with its secondary state variable value AB = 01, the two Mealy
outputs can be written as

HL = /(s3-hi) = /(/A-B-hi) and LL=/(s3-1o) = /(/A B lo),

which results in two three-input NAND gates. Remember, active low signals are inverted
(see Chapter 3).

So, from the equation for HL = /(/A - B - hi) it can be seen that, when in state s3, A =0
(/A =1),B = 1,and if hi = 1 then the output of the NAND gate will be zero, which is exactly
what is required to light the LED indicator (active low output).

Having gone into some detail to describe the logic behind the Mealy outputs, the next stepis to
determine the equations for the two flip-flops A and B. Using the method described in Chapter 3
for D flip-flops, these are

A-d=s0-st+sl+s2-/(lo+hi)=/A-/B-st+A-/B+A-B- /hi-/lo.
The equation for A - d could be simplified using the Auxiliary rule to form
A-d=/B-st+A-/B+A-/lo- /hi.
Moving on to flip-flop B:
B-d=sl-eoc+s2-(lo+hi)+s3.=A-/B-eoc+A-B-lo+A-B-hi+ /A-B.
Again, using the Auxiliary rule:

B-d=A-/B-eoc+B-lo+B-hi+ /A-B.

Development of a High/Low Alarm Indicator System 75

The remaining Moore-type outputs are SC = sl = A - /Band AL = s3 = /AB.

The next stage would be to develop a Verilog HDL file describing the circuit for the FSM,
and comparators. This has been done and is contained on the CDROM in the Chapter 4
folder.

4.3.1 Testing the Finite-State Machine using a Test-Bench Module

In this simulation (Figure 4.6), a test-bench module is added to the Verilog code in order to
test the FSM. To do this, test all paths of the state diagram. In the simulation of Figure 4.6
this has been achieved by first following the path sO — sl — s2 — s3 with a low limit
exceeded and the FSM remains in s3 (A = 0, B = 1) until a reset (rst = 0) is applied. Then,
the sequence is repeated with a Hi limit exceeded, followed by another reset. Finally, the
sequence s0 — sl — s2 — sl — s2 — sl — 52 — sl — s2 — s0 is followed, represent-
ing a no limits exceeded until finally another rst = O resets the FSM back to s0. Thus, in this
way the FSM is tested.

Ons 100ns [200ns |300ns [400ns [500ns |600ns ‘7(|)0ns

o AL
testrst | | | | |

test.st

[E—
test.eoc J_H_V—UW_
[
|

test.hi

test.lo

test.LL
test.HL

test. AL

|
testAl | |
|

test.B

| |

o R
1

|
O
s —

Figure 4.6 Simulation of the FSM controller.

76 Synchronous Finite-State Machine Designs

4.4 SIMPLE WAVEFORM GENERATOR

Sometimes there is a need to generate a waveform to order, perhaps to test a product on an
assembly line. An oscillator could be used for this purpose, but it can be tedious to build an
oscillator to do this if the waveform is not a pure sine wave, square wave, ramp, or triangular. One
way of generating a complex waveform would be to use a microcontroller with a digital-to-
analogue converter (DAC). The complex waveform could be stored into read only memory
(ROM) and accessed via the microcontroller. However, this seems overkill. There are also
potential sampling frequency limitations with the microcontroller. An alternative way would be
touse a clocked FSM. The sampling rate could then be controlled by the clock rate, which would
be limited by that of a PLD or FPGA. The complex waveform is still stored in a ROM but the
ROM is controlled by the FSM.

Consider the block diagram of Figure 4.7. In this system, raising the st input starts the
waveform generator. Each memory location is accessed in sequence and its content, a digitized
sample of the waveform, is sent to the DAC to be converted to an analogue form. When the end of
memory is reached, the address counter simply runs over to the zero location and starts again.

Setting the stinput low stops the system. The actual sampling rate and, hence, the period of the
waveform can be calculated once the state diagram is completed. The output of the DAC will
need to be filtered to remove the sampling frequency component — this can be accomplished
using a simple first-order low-pass filter section if the sampling frequency is much higher than
the highest synthesized waveform frequency. (Usually, it is to satisfy Shannon’s sampling
theory.)

The state diagram now needs to be developed. A little thought reveals that the block diagram
itself provides an indication of the sequence required.

Address Memory |Data Data
Geuis Bus Bus Latch DAC

l _) 5 aQ _» Vout

A
R

ov Filtered
l l l output
P CC full CS EN LP C ——
Clocked FSM
A rst st
FSM Start
Reset Waveform
genration

Figure 4.7 Block diagram for simple waveform generator.

Simple Waveform Generator 77

1. Initially, the address counter needs to be cleared to provide the necessary zero address for the
first location of the memory. The system should remain in state sO until the start input st is
asserted (high).

2. The memory then needs to be enabled, selected, and allowed to settle, after which the data in
the memory location will be available at the data latch inputs. Then the data need to be latched
into the data latch to be available at the input of the DAC.

3. Atthis stage, the address counter needs to be incremented so as to point to the next memory
location and the sequence in 2 repeated again as long as the start input is still asserted (high).

Note that, in this problem, the end of memory location is not an issue, since the address counter
can be allowed to overrun and start from location zero again. This does imply that the waveform
information can be fitted into the memory device so that the waveform is produced seamlessly. It
would be possible to add further logic to the system to ensure that this was always the case, but
this is not done in this example.

The state diagram can now be developed following the sequence of activities described above.

In Figure 4.8, the state diagram is seen to follow the sequential requirements for the system.
Note thatin s3 the P outputis a Mealy output. P is gated with the clock and can only go high when
in s3, and then only when the clock is low. This ensures that the address counter is pulsed (on the
rising edge of P) after the memory enable EN is disasserted (high). Therefore, the memory data
outputs will be tri-state during the change of memory address. The Data Latch ensures that the
DAC always has a valid data sample atits input. Note that an alternative arrangement for output P
would be to provide an additional state between s3 and s1 in which P = 1. This would avoid the
potential for a glitch at P output (as discussed in Chapter 1).

AB AB AB
00 10 11

Cycle time is 3xclk 01
s3 s s2 s3 s

it |_| I_l_ P=s3./clk
EN EN = s3

Figure 4.8 The complete state diagram for a simple waveform generator.

78 Synchronous Finite-State Machine Designs

The equations can now be developed:

A-d=5s0-st+ sl +s3
=/A-/B-st+A-/B+ /A-B
=/B-st+A-/B+ /A-B

B-d=sl+s2
=A-/B+A-B
=A.

Outputs are

CC=/s0=/(/A-/B) an active low output.
CS=s0=/A-/B although an active low signal it is only high in sO.
LP=s2=A-B.
EN =50 +s3 = /A high in these two states.
P=s3-/clk=/A-B-/clk a Mealy output gated with the clock.

In Verilog, these equations can be entered directly, but using the Verilog convention for
logic:

ANDis & ORis| NOTis~ exclusive OR is".

These equations would be contained in an assign block thus:

assign

A.d=~ B& st|A&~B|~As B,

B.d=A,

CC=~ (~ A & ~ B);

CS=~ A& ~ B,

LP = A&B,

EN=n~ A,

P=~ A&B&~ clk;
Appendix C contains a tutorial on how to produce a Verilog file to simulate a state machine. Also,
much more detail is available in Chapters 6 to 8.

4.4.1 Sampling Frequency and Samples per Waveform

From the state diagram of Figure 4.8 it is apparent that the system cycles though three states for
every memory access, so the sampling period is three times the clock period.

Therefore, for a sampling frequency of 300 x 10° Hz, a clock of 300 x10°x 3 = 900 x 10° Hz
is required. For a critical sampling-rate application, a dummy state could be added to make the
sampling frequency four times the clock frequency (for example).

The size of the memory can be whatever is required for the systems use, and will dictate the
size of the address counter. If the memory is 1 Kbyte, the address counter needs to be

The Dice Game 79

| Ons |100ns |200ns |300ns
| | | | | | | | | | | | | |

testst | |]
wor | UL UUUUUUUUUUL]
testrst | |
test.A | | | | | | | | |]
test.B | | | | | | | | ||
test.P [[[[]
test.CC

test.CS —‘
testEN | | [| [[1]
test.LP [[[[[

Figure 4.9 Simulation results for the FSM of the waveform synthesizer.

Number of flip-flops in address counter = In(1024)/In(2) = 10.

The simulation of the FSM is illustrated in Figure 4.9.

4.5 THE DICE GAME

In this example the system consists of seven LED indicators, a p input, and a clock. The block
diagram of the system is shown in Figure 4.10, with a single push switch p. The clock input could
be a simple oscillator circuitusing a 555 timer chip running at 100 Hz so as to provide a flicker to
add effect.

The LED indicators are arranged as illustrated in Figure 4.11 to look more realistic. In this
design itis assumed that low-current LEDs are used with a forward current of 2 mA. This makes
the current-limiting resistors 1800 2 fora 5 V supply. Itis also assumed that the FSM outputs are
open drain. Figure 4.11 illustrates how the seven LED indicators would look for each number
displayed. The situation when all LEDs are off is not shown.

The state machine is simple to develop, as all that is required is to display each number in
sequence, but at a speed that the user cannot follow. The state diagram consists of seven states,
each one to display a given LED pattern. The transition between each state is conditional on the
input p being equal to one for each transition. When the user releases the p button the FSM will
stop in a state. Because of the frequency of the clock, the user will not be able to follow the state
sequence, thus realizing the chance element of the game. Note that if the clock frequency is too
high then all the LED indicators will appear to be on when the p button is pressed. Having a

80

Synchronous Finite-State Machine Designs

Block Diagram of Dice Game

100 Hz

Clock

Figure 4.10 Block diagram of the dice game FSM

FSM

L1

L2

L3

L4

L5

L6

L7

LED1

Vdd=5V

<

e
“LED2

2

2

'
< LED3

MV

<" LED4
¥’ LED5

<" LED6

e
¥ LED7

¥
¥

L1
L3

L5

-
~

O

0O® VOe OO0

o
000 @00 |O0OO0

L2
L4

L6

LED1
LED3

LED5

-
m
v}
ﬂ

o000 6.0 o O
O

o000 0.0 o0 0O

Dice format and possible LED patterns

Figure 4.11 Dice format for numbers.

LED2

LED4
LED6

The Dice Game 81

ABC ABC ABC
000 010 110

With p=1 the FSM wiill
cycle through the states sO
to s6 at a rate of 10 ms per
Pl state.

The user will not be able to
follow the sequence at this
rate

ABC
100

L7,/L3,/L4

s6

ABC ABC ABC
011 111 101

Figure 4.12 State diagram for the dice game.

slower clock frequency leads to a flicker effect and, thus, adds to the excitement of the game.
Figure 4.12 shows the state diagram for the system.

4.5.1 Development of the Equations for the Dice Game

A-d=sl-p+s2+s3+s4+s5-/p
=/A-B-/C-p+A-B-/C+A-/B-/C+A-/B-C+A-B-C-p.

This can be reduced to

A-d=B-/C-p+A-/C+A-/p+A-/B
B-d=s0-p+sl+s2-/p+sd-p+s5+s6-/p
=/A-/B-/C-p+/A-B-/C+A-B-/C-/p+A-/B-C-p
+A-B-C+/A-B-C-p,

which reduces to

B-d=/A-/C-p+/A-B-/C+A-C-p+A-B-C+B-/p
C-d=s3-p+sd+s5+s6-/p
=A~/B-/C-p—|—A-/B-C—|—A-B-C+/A~B-C‘/p,

82 Synchronous Finite-State Machine Designs

reducing to
C-d=A-/B-p+B-C-/p+A-C.
The outputs (LEDs are active low) are

Ll =(s0+sl)=(/A-/B-/C+/A-B-/C = /A-/C)using active high in sOand slonly.
L2 = (s0+ sl +s2+4s3) = /C using active high in these states only.

L3 = /s6(active low) = /(/A-B - C).

L4 =/s6=/(/A-B-C) low in s6 only;hence invert.
L5=/(s4+s5+s6)=/(A-C+B-C) low in only these states; hence invert.

L6 = /(s2+ s34 s4 4+ 85+ s6)or (sO+sl) only high in sO or sl giving (/A - /C).
L7=/(s1+s3+s5)=/(/A-B-/C+A-/B-/C+A-B-C).

Figure 4.13 illustrates the dice FSM running through each state. The secondary state variables
a, b, and c can be seen to be moving through each state. The outputs L1 to L7 are responding as
expected and are illustrated in Figure 4.11.

|0nlS [|50|n3| [|190n|3 [|J|5I0nIS I 1 |20I0nls
test.p
test.clk 11
testrst] |

test.a \
test.h

test.c
test.L1 \

L

’7

test.L2]
L]
L]

—

—

test.L3
test.L4
test.L5
test L6 \

test.L7 L L |

Figure 4.13 Simulation of the dice game.

Binary Data Serial Transmitter 83

|0ns 50ns |100ns |150ns 200ns |250ns |300ns
LS L T e e A O O O A A I |
test.p
test.clk

test.rst J

estlt]] [

test.L2 |
test.L3 u

test.L4 ||

test.L5 L

test.L6 —‘ ’—‘

w| LT LI 1
Al 1 [
18 |
test.C]ﬁ]7

Figure 4.14 Dice game simulation with p input released showing FSM stopped in s3.

In Figure 4.14, the input p has been simulated as ‘on’ then ‘off’. The FSM is seen to have
stopped in state s3, then started again when p is set to logic 1.

Note that in both simulations the time-scale is in nanoseconds, but in practice the clock would
be slowed down to a 10 ms period.

4.6 BINARY DATA SERIAL TRANSMITTER

The next example involves sending the 4-bit binary codes of a counter to a shift register to be
serially shifted out over a serial transmission line.

Figure 4.15 shows the block diagram for a possible system. The FSM is used to control the
operation of the Binary Counter and the Parallel Loading Shift Register. Both of these devices
could be designed using the techniques described in Appendix B on counting methods. This
leads to a Verilog description (module) for each device.

The system is started by raising the st input to logic 1. This is to cause the FSM to remove
the reset from the Binary Counter and then load the current count value of the counter into
the parallel inputs of the shift register. On releasing the parallel load input LD to logic 1, the
shift register will clock the count value out over its transmit output (TX) at the baud rate
dictated by the clock. When the shift register is empty its RE signal will go high and this

84 Synchronous Finite-State Machine Designs

Reset counter

reset O
Binary Counter
Clock Counter
90 gt 92 g3
CB RC
> »| done
Det
> FSM
rst O—
A A h 4 h 4 st [e——
PO P1 P2 P3 gt D
Parallel Loading Shift S A N\
<« Register (includes Re Ck
counter)
RE

Register empty flag

Figure 4.15 Block diagram of the binary data serial transmitter.

will be seen by the FSM, which will then determine whether the last count value has been
sent. This is seen by the FSM when done = 1, detected by the detector block (an AND gate).
If not the last counter value, then the next count value will be loaded into the shift register
and the sequence repeated until all count values have been sent. At this point the system
will stop and wait for st to be returned to its inactive state before returning the FSM to its
sO state.

From the above description, the state diagram in Figure 4.16 is developed. This state
diagram is correct, but it is difficult to obtain a unit distance code for the secondary state
variables. If a dummy state s7 is added, then a unit distance coding between s6 and sO can
be obtained for the secondary state variables A, B, and C. Note: it is not apparent from
Figure 4.17, but the outputs in state s7 are the same as the state it is going to (s0), apart
from the RC output. The s5 to sl transition is not unit distance. If glitches are produced in
any outputs, then dummy states could be introduced between s5 and sl to establish unit
distance coding. The reader might like to try to establish a unit distance code for the state
diagram. This would require introducing an additional state variable (flip-flop), since all 2°
states have been used in this design.

Using Figure 4.17, the equations for the FSM are obtained from the state diagram and
implemented using D flip-flops:

A-d=sl+5s2+s3+s4
=/A-B-/C+A-B-/C+A-/B-/C+A-/B-C,

Binary Data Serial Transmitter

85

Remove reset
from binary counter

ABC ABC ABC
000 010 110

Load parallel
shift register

Pulse binary
counter
Wait for shift
register to empty
ABC ABC ABC
011 111 101

Wait for st going low Test for end of
toreturntos0. binary count sequence

Figure 4.16 State diagram for the binary data serial transmitter.

Remove reset
from binary counter
ABC ABC ABC
000 010 110

Load parallel
shift register

Pulse binary
counter

Wait for shift
register to empty

ABC ABC ABC
011 111 101
Wait for st goinglow Test for end of
toreturntos0. binary count sequence

Figure 4.17 State diagram with additional dummy state s7 to obtain unit distance code for the secondary

state variables.

86 Synchronous Finite-State Machine Designs

reducing to

A-d=B-/C+A-/B
B-d=5s0-st+sl+s4-re+s54s6-st
=/A-/B-/C-st+/A-B-/C+A-/B-C-te+A-B-C+ /A-B-C-st,

reducing to
B-d=/A-/C-st+/A-B-/C+A-C-te+B-C-st+A-B-C
C-d=s3+s4+s5-done+s6=A-/B-/C+A-/B-C+A-B-C-done+/A-B-C,
reducing to
C-d=A-/B+B-C-done+ /A-B-C.
The outputs (all Moore) are

RC = /s0(active low) = /(/A- /B - /C)
LD = /(s2) = /(AB/C)
CB = s3(active high) =A - /B - /C.
The serial transmitter simulation is shown in Figure 4.18. The state machine is tracked

through its state sequence in the usual way by comparing the A, B, and C values in Figure 4.18
with the state diagram A, B, and C values in Figure 4.17.

n\s | | ‘109"15‘ || PO(\)nS\ || popns\ || FO\On\S ||

testst] | |

e T
testrst] |

test.re] |
test.dong |

test.A L] |

test.B [1] L] |

test.C [] | |
test.RG |
test.LD L] L]

test.CB [] []

Figure 4.18 Simulation of the binary data serial transmitter.

Binary Data Serial Transmitter 87

4.6.1 The RE Counter Block in the Shift Register of Figure 4.15

The shift register in Figure 4.15 has an output RE to flag the point at which the register is empty.
This can easily be obtained by using a four-stage Binary Counter that becomes enabled when the
load input is disasserted (high). The counter can then be clocked with the same clock as the shift
register; then, when it reaches its maximum count 1000, the most significant bitis used as the RE
signal. Table 4.2 illustrates the effect.

From Table 4.2 it can be seen that when the counter reaches the eighth clock pulse the counter
rolls over to set the most significant bit of the counter D to logic 1. This bit acts as the RE register
empty bit. After shifting out the binary number, the FSM will return to its sO state, where the RC
output will once again go low and reset both the Binary Counter and the RE counter in the shift
register. Note that in this particular design an additional flip-flop E could be added to the binary
counter and this used as the RE output instead

The equations to describe the RE counter can be developed from the material in Appendix B
on counting applications. The equations, using 7T-type flip-flops, are

A-t=1
B-t=A
C-t=A-B
D-t=A-B-C
RE = D.

This last example has illustrated how a complete design can be developed in terms of Boolean
equations that can be directly implemented in Verilog HDL (or any other HDL for that matter).

There are examples in Appendix B showing how a synchronous binary counter can be
implemented using T flip-flops. Of course, the counter could be implemented as an asynchro-
nous (ripple-through) counter if desired.

Table 4.2 Illustrating the effect of a binary counter used to determine shift register empty.

Binary counter

Count value

Shift register empty when D = 1
D output stays set

es]
co—~———o0cooo|An
SO == OO == OO v]
—_— O, O = O =O=O |
O 0NNk W ~=O

88

Synchronous Finite-State Machine Designs

Clk |

Ld

p0

p1

D SETQ

cLr@

Sht_clk

/Ld

>

Figure 4.19 The 4-bit parallel loading shift register from Equations (B.9) to (B.12).

Also in Appendix B is an example of a parallel loading shift register using D flip-flops. The
equations for a four-stage shift register are repeated below from Appendix B:

Q0-d=din-1d+ po- /ld (B.7)
Ql-d=q0-1d+pl-/Id (BS)
Q2-d=ql -1d+p2-/Id (B.9)
Q3-d=q2-1d+p3-/Id (B.10)
Sft_clk = clk - 1d. (B.11)

Figure 4.19 shows the schematic circuit for the 4-bit parallel loading shift register developed

from Equations (B.7)—(B.11).

4.7 DEVELOPMENT OF A SERIAL ASYNCHRONOUS RECEIVER

Often, there is a requirement to use serial transmission and receiving of data in a digital system.
Although there are lots of serial devices on the market, it is useful to be able to implement one’s
own design directly to incorporate into an FPGA device. The advantage of this approach is that
the baud rate and protocols can be dictated by the designer, as can how the device will be
controlled.

In this example, the serial data input is encapsulated into an asynchronous data packet with
start (st) and stop (sp) protocol bits that have been added to the serial transmission packet. These

Development of a Serial Asynchronous Receiver 89

st start bit and sp1, and sp2 stop bits are the protocol bits
dO to d7 are the data bits (payload).

st | dO dl |d2 [d3 |[d4 |d5 | d6 |d7 |spl | sp2

S Immmmmmmmmme
RN N B T

t tot

The FSM controls the operation of the sample data pulse
clock rxck that clocks the shift register (arrowed every third
pulse).

This ensures that the data are sampled near the middle of
the data bit area of the packet Note that the 1-to-0
transition of the start bit st is used to synchronize the
receiver to the beginning of the data packet.

Figure 4.20 Protocol of the serial asynchronous receiver.

are used to provide a means of identifying the data packets as they arrive. This allows the data
packets to arrive at any time and at any selected rate (dictated by the baud rate).

The problem with receiving data is that it is necessary to ensure that the shift register is
clocked with correct data bits. To do this the FSM clock is used to drive an FSM to create a shift
register clock RXCK in the middle of the data bit time period. This RXCK clock pulse can be
seen in Figure 4.20 as the arrowed pulses occurring every third clk pulse. Thus, the clk signal
runs four times faster than the RXCK signal generated by the FSM. Note, the FSM needs to
detect the start of the data packet by looking for the 1-to-0 transition on the receiver input.

The block diagram for the serial asynchronous receiverisillustrated in Figure 4.21. The FSM
is used to create the shift register clock, and to control the operation of the serial asynchronous
receiver. The Divide by 11 Counter is used to count out the 11 bits that make up the protocol
packet. This provides a shift register full signal rxf to indicate to the FSM that a complete data
packet has arrived. The Data Latch is used for collecting the received data from the shift register
to send to the outside world device controlling the asynchronous receiver.

The FSM must wait for start (by monitoring for the st bit change 1 to 0); this is just the first
receive bit coming into the shift register. When detected, shift the data into the shift register. If
the stop bitis not correct, then the FSM canissue an error via signal ERR. Note, in this version the
start bitis tested along with the two stop bits via an AND gate (error detection signal ed) to ensure
packetalignment after the complete packetisreceived, the receiverrx inputis held atlogic 1 by a
pull-up resistor so that the start bit (active low) can be detected. The ack signal is available so that
the outside world device using the system can respond to an error condition (no error means
successful packet received). Healthy data packets will be latched into the data latch ready to be
read by the controlling device.

The signal CDC is used to clear the shift register and set st to logic 1, i.e. the flip-flop
representing the start bit of the shift register needs to be pre-set so that it can be cleared by the
incoming start bit from the serial line.

90 Synchronous Finite-State Machine Designs

Parallel data out — to outside world

S
0Q0 0Q10Q2 0Q3 0Q4 0Q5 0Q6 OQ7 :D_
Data Latch

d3 d4 d5 d6 d7
QsT Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 QSP1 QSP
Shift Register i—
clr X
C A
R
VVYV Vee Receive
data in
Clear Shift Register Divide
& counter
Clor By 11
counter
Start bit Receive Receive| ; ec_e;ve Slhlf:(
Pulse ¥ detection y Register full bit egister cloc
Pata latch ™o CDC o RXCK
PD
clk FSM ed ¢
_ Error detection
DRY ERR ack en rst detection
Data Error in Acknowledge Enable
Ready Received error Device initialise system (controlled by outside
data world device to recover from error)

Figure 4.21 Block diagram of the serial asynchronous receiver.

The en signal is used to enable and start the asynchronous receiver. This is necessary to ensure
that the system starts monitoring the clock so as to issue the shift register clock pulse (RXCK) at
the right time (in the middle of the data bit period).

Figure 4.22 illustrates the state diagram for the system. In Figure 4.22, the FSM waits for the
enable signal en going high and start signal st going low; it then moves through states s1, s2, and
s4 and onto s5 to shift the start bit into the shift register. This is required in order to ensure that the
start bit is detected and then shifted at the right time. In state s5, the shift register clock RXCK is
pulsed to place the start bitinto the shiftregister. It then falls into state s6, sending RXCK low and
proceeds to cycle through the second loop consisting of states s5, s6, s7, and s8.

These states count out the clock cycles and produce a shift register clock pulse (RXCK) at the
right time near the middle of each data bit. After all 11 bits have been clocked into the shift
register the 11-bit counter will issue a receive register full signal rxf, and the FSM will now fall
into state s9, where the start and stop bits are tested (ed should be logic 1).Ifed = 0, then the FSM
will move into s10 and issue the error signal.

The controlling device can then reset the asynchronous receiver and start again. If no error,
then the FSM moves to s11 to latch the data in the shift register into the data latch ready for the
controlling device to read (OQO0 to OQ7). It will also issue a data ready signal (DRY) to the
controlling device, which will acknowledge this by raising an ack signal. The FSM can then
move back to s0 via s12 (when ack goes low) to wait for the next data packet. The DRY and ack
signals form a handshake mechanism between the FSM and the controlling device.

Development of a Serial Asynchronous Receiver

91

ABCD ABCD ABCD ABCD
0000 1110
Wait for Q

enable
Wait for st 1 to 0 transtition then
clock into shift register

ABCD
1111

Pulse data
into shift reg.
Test for
shift reg

I’Xf_l full.

ABCD

1101
RXCK Shift reg. full

S9 /So check stop

3 clk 2nd clk
received ABCD received

0110

ack | froprn), ed|

Bits true
ack from controlling No start/stop bit errors
device so return to state sO so transfer data /ed_|
for next data packet from shift reg.
to data latch
and send data
Ready (DRY) to Start/Stop

controlling device bit error

Note: so initial signals are ABCD
/CDC, /PD, /ERR, /RXCK,/DRY 0101

Figure 4.22 State diagrams for the serial asynchronous receiver.

The device enable signal en will be left high until all data packets have been received.

Note that the state assignments miss s3, which was removed from the state diagram during
development when state s3 was no longer needed (owing to an error in the design at that time).

State diagram development tends to be an iterative process.

4.7.1 Finite-State Machine Equations

A-d=s0-en- /st+sl+s2+sd+s5+s8

B-d=sl 452+ s4 +s5-rxf 457+ s8 +s9 + 510 +s11 - /ack
C-d=s2+s4+5s5 /rxf + 56+ s7+s8+59-ed+sll +sl12-ack
D-d=s4+4585+5s6+s7+s8+59: /ed+s10

RXCK = s5 = ABCD

PD = dry = sl1 = /ABC/D

ERR =510 = /AB/CD.

The reader may like to complete these to form the equations in terms of A, B, C, and D.

The complete asynchronous serial receiver block is simulated, together with all the modules

in Figure 4.21, in Appendix B.

92 Synchronous Finite-State Machine Designs

4.8 ADDING PARITY DETECTION TO THE SERIAL RECEIVER SYSTEM

The foregoing example could be improved upon by making the first stop bit sp1 into a parity bit.
The parity bit would require combinational logic to check each bit of the protocol packet for
either even parity or odd parity. This would require an exclusive OR block made up of the 11 bits
of the packet.

For example, odd parity would require an odd parity output OP at the Transmitter of

OP = bo"b1"b22b3 b4 b5 b62b7 b8 b9 b10.
Or, including the protocol bits:
OP,;; = st*d0”d1~d2/~d37d4~d52d67d7~OP, "sp.

This output would be tested by the FSM for logic 1. Iflogic O, this would indicate that one or more
of the received bits was faulty.
Note that even parity EP can be detected by complementing the OP signal:

EP, = /OP,.

To implement the parity detector term, two input exclusive OR gates are cascaded with the last
exclusive OR gate providing the OP,, signal. The output of the parity block at the receiver is P.

Theinputsd0,dl, . .., d7 will be obtained from the output of the shift register in each case (see
Figure 4.21).

4.8.1 To Incorporate the Parity

The parity detector inputs are connected to the outputs of the shift register and its output OP,
made available as an input to the FSM via the last two bit comparator comparing OP, and OP,, |
in Figure 4.23.

Figure 4.24 shows the new protocol with the parity bit OP, (shown in lower case)
replacing spl.

Figure 4.25 shows the additional parity block added to the block diagram. This version detects
stop and parity bit errors at the output of the shift register; the start bit has not been tested (but
could be included if desired).

Figure 4.26 illustrates the modified state diagram with ODD parity detection. Note that
the input parity bit OP,,; must be compared with the generated parity bit OP,. If both
are the same, then there is no parity error. This comparison can be made with a 2-bit
exclusive NOR gate having an output P (OP, == OP,) being logic 1 if there is no
parity error and logic O otherwise. This output is an input p to the state machine (see
Figure 4.25).

In state s9, the bit sp is checked to find out whether the whole packet has been input, and s11
now tests for an odd parity error. In either case a failure will result in the FSM aborting the receive
packet process and falling into state s10 to await a reset from the controlling device. The logic
used in Figure 4.21 could be used to detect for start and stop bits if desired.

Adding Parity Detection to the Serial Receiver System

93

st

d4

Parity Generator at the

transmission serial device.
sp

st
do

d5
dé

dz
Parity checker at the receiver serial device

OP,
OP,+1
Odd parity error generation and
detection P =1 when number —\—_)Z>__(>_ P
of 1s is odd, zero otherwise Parity
detection

Figure 4.23 Arrangement of the parity generation and detection logic.

Serial signal protocol example

st start bit and sp1 and sp2 stop bits are the protocol bits
do to d7 are the data bits (payload)

st | dO di | d2 |d3 | d4 (d5 dé |d7 |opn | sp2

Ck TIIITIIITIIITIIITIIITIIITIIITIIITIIITIIITIII
tot

trrtr et

Shift register clocked inside each data bit area

Parity bit opn is the receive parity bit from the transmitter

Figure 4.24 Protocol with parity detection bit added.

94

Synchronous Finite-State Machine Designs

Parallel data out — to outside world
QST —pf
R - P
0Q0 0Q1 0Q2 0Q3 0Q4 OQ5 0Q6 OQ7 . Block
Data Latch asP—»|
d0 d1 d2 d3 d4 d5 d6 d7
QSt Q0 Q1 Q2 Q3Q4 Q5 Q6 Q7 OPnQSP,
Shift Register —
clr xo Rx
) 1
R Receive
—’\/\/\/—VCC Data in
Clear Shift Register Divide
& counter
C clr By 1"
counter
Start bit Receive Regeive Re(l:etive Sﬁhif;
Pulse v detection y Reg full bits v register clocl
Data latch ot cbc xf o RXCK
sp [€—
clk FSM
DRY ERR ack en rst p
¢ ¢ t Parity check
Data Errorin Acknowledge Enable .
Ready Received error Device Reset system (controlled by outside

data

world device to recover from error)

Figure 4.25 Block diagram with parity block added.

4.8.2 D-Type Equations for Figure 4.26

In the following equations, the variable P is the output of the parity check (OP, = OP,;)
connected to the input p of the FSM. See Figure 4.23.

A-d=s0-en- /st+ sl + 52+ s4 + 85+ s8 +s9-sp
= /A/B/C/D -en- /st+A/B/C/D + AB/C/D + ABC/D + ABCD

+/ABCD + AB/CD - sp

B-d=5sl+52+s4+s5 -rxf +s7+s8+59- /sp+s10+sll +s12- /ack
— A/B/C/D + AB/C/D + ABC/D + ABCD - rxf + /A/BCD + /ABCD
+AB/CD - /sp + /AB/CD + A/B/CD + /ABC/D - Jack

C-d=s2+s4+s5 /rxf +s6+s7+s8+sll-p+sl2+s13-ack
=AB/C/D + ABC/D + ABCD - /rxf + A/BCD + /A/BCD + /ABCD
+A/B/CD-p+ /ABC/D+ /A-/B-C- /D -ack

D-d=s4+4s5+56+s7+s8+59+sl0+sll-/p
— ABC/D + ABCD + A/BCD + /A/BCD + /ABCD + AB/CD

+ /AB/CD +A/B/CD - p.

An Asynchronous Serial Transmitter System 95

ABCD ABCD ABCD ABCD
0000 1000 1100 1110

Wait for
enable

Test for st low
At 2" clock

ABCD

0111 ABCD

1111

Pulse data
into shift reg.
Test for
shift reg

full.

ack_| 3% clk 20 clk
ABCD received ABCD received rxf_|
0110 1001 ABCD

9 @ 2
Check for

Shift reg. full
Parity bit error

ABCD

So check stop
Bits true

Ack from controlling No stop or parity bit
device so return to state sO errors So transfer data /sp_l
for next data packet from shift reg. To data /] p_|

latch and send data
Ready (DRY) to

controlling device Stop or parity

Bit error

Note: so initial signals are ABCD
/CDC, /PD, /ERR, /RXCK,/DRY 0101

Figure 4.26 The state diagram with odd parity added to FSM.

The outputs are as they were in the state diagram of Figure 4.22, except for
ERR = s10 = /AB/CD
PD = dry =s12 = /ABC/D
RXCK=s5=A-B-C-D.

The FSM part can be simulated, and this is illustrated in Figure 4.27. In this simulation, the test
sequence is

s0,s1,s2,s4,s5,56,57,58,55,589,s11,s12,s13,50,s1,s2,54,55,59,510, 50, s1,s2,s4,s5,s9,
s11,s10.
This ensures that all paths of the state diagram have been tested.

This should now be followed by a series of tests of all the other components, i.e. the shift
register, the divide-by-11 counter, and the parity block, before going on to test the whole system.

4.9 AN ASYNCHRONOUS SERIAL TRANSMITTER SYSTEM

Having developed an asynchronous receiver module, an asynchronous transmitter is required to
complete the serial device. Figure 4.28 shows the block diagram for an asynchronous serial
transmitter.

96 Synchronous Finite-State Machine Designs

Ons |200ns |400ns |600ns |800ns
N O e e e s O A |

testrst | | Il
test.clk I
[] [1]

. |1.o

test.st

test.sp

]
test.rxf
||
[
,_|
I

test.en

test.ack

test.A

test.B

test.C

test.D
|_|
I

test.PD

test.CDC

test RXCK N [l
test.ERR} []
test.DRY []

1
B
test.p | |_

Figure 4.27 Simulation of the FSM for the serial receiver.

InFigure 4.28, the input Data Latch provides the data to be transmitted and the protocol bits st
and sp are set to their expected values before being loaded into the Shift Register via the LD
output from the FSM. Note that there is no need for a slower transmit clock, as the FSM can
provide the shift register pulse at the right time.

The sequence is started by data being presented onto the parallel data inputs then the send
inputbeing sent high by the controlling device. The FSM then loads the data into the shiftregister
and starts transmitting it out to line. The Divide by 11 Counter records the point at which the
packet has been sent to line by raising the Transmit Register Empty (txe) signal high. The FSM
can then send a Request To Send (RTS) signal to the controlling device to inform it that the data
packet has been sent. The controlling device can set the ack signal high to say it has acknowl-
edged this operation.

A possible solution is illustrated in Figure 4.29.

It is important to ensure that the clock signal to the shift register is the same frequency as the
one used in the asynchronous receiver block. If it is not, then the receiver will not be able to
receive the data packets. Even if the two clocks are different by only a small amount, a frame
error could arise. This is when the difference in clock speeds produces a small difference in
the total packet time and, hence, one or more data bits can be lost. In effect, start and stop bits
must be sent and received correctly.

An Asynchronous Serial Transmitter System 97

Parallel data in — from outside world
St=0 —p
YV b by vy e
d1 d5 i

Generator
do d2 d3 d4 dé d7 47 Block
Data Latch Sp=1 »

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

yyyvvvyvy ¥ v

st d0 d1 d2 d3 d4 d5 d6 d7 OPn sp

«©

Shift Register —
Id TX
C '
Parity generator
Block Connected

to data Latch outputs

and St and sp bits Transmit

Data out

Load Shift Register Divide
& clear counter
Qar By 11
From controller counter
Transmit Shllft R;(eg
Pulse y Reg empty cloc
Data latch send LD txe CLKOUT
PD
clk FSM
RTS ack rst
Datg Acknowledge .
Transmitted From controller Reset system (controlled by outside
To controller world device to reset the system)

Figure 4.28 Block diagram for an asynchronous serial transmitter.

Total packet time = 11 x 1/(clock frequency).

For example, if the transmitter shift register clock is | MHz (usually referred to as the baud rate),
then

Total packet time = 11 x 1/(1 x 10°) = 11 x 1 ps = 11 psin duration.

The receiver shift register clock does have a tolerance; this is a result of the fact that the data are
sampled within a four-clock window (see Figure 4.20) and a small difference in the two packet
lengths can be accommodated.

In some commercial Universal Asynchronous Receiver Transmitter (UART) devices, 16
(rather than 4) is used for the clk signal used to generate the shift register clock (RXCK), giving a
greater resolution for detecting the logic value of the data bits.

Generally, if the clocks in both the transmitter and the receiver are of a high accuracy (as one
would expect from crystal oscillators), then there is usually not a problem. It would be easy to
restructure the receiver state diagrams of Figures 4.22 and 4.26 to accommodate a higher
resolution shift register clock by adding more states in the loop comprising s5 to s8, and adding
states between s1 to s5 for the start bit. However, such a design could make use of the One Hot
method covered in Chapter 5.

Note that the FSM clock is four times that of the baud rate.

The state diagram for the asynchronous transmitter is illustrated in Figure 4.29. In this
state diagram, the shift register is clocked every four FSM clock pulses as it moves between

98 Synchronous Finite-State Machine Designs

ABCD ABCD ABCD ABCD
0000 1000 1010 1110

Shift reg.

Load data Load shift reg. settling time

latch with data latch
data + st & sp bits

accept data
packet to send

fack_| ABCD ABCD
0110 0100

Produce
clkout
pulse every
4FSM clk

Check for
Dummy state All data shifted out shift reg.
to obtain unit sosend RTS to empty

distance coding controlling device.

Wait for acknowledge
from controlling device

ABCD
0101 ABCD
NOTE: Clk _| must be same as receiver FSM clock 1101

Controller can set send to logic 1 for duration of data packets
transactions with ack and RTS as handshakes between the controller
and asynchronous transmitter.

Figure 4.29 State diagram for the asynchronous serial transmitter.

s4, s8, 89, and s5. Note that for a 1 us baud rate the transmitter FSM clock would need to be
4 MHz.

4.9.1 Equations for the Asynchronous Serial Transmitter

A-d=s0-send + sl +s2+s3 +s4+s5- /txe
=/B-/C-/D-send+A-/B-/D+A-C-/D+A-B-/D+B-/C-/D- /txe
B-d=3s2+53+s4+s5+s8+59+s6- /ack
=A-C-/D+B-/C+ /A-B-/D- Jack
C-d=sl+s2+s5 txe+s6+s7-ack
=A-/B-/D+/A-B-/D -txe+ /A-C- /D
D-d=s4+s8
=A-B-/C-/D+A-B-/C-D
=A-B-/C
PD=sl=A-/B-/C-/D
CLKOUT =s4=A-B-/C- /D
LD=/s2=/(A-/B-C- /D)
RTS=s6=/A-B-C-/D.

An Asynchronous Serial Transmitter System 99

A simulation of the FSM results in the waveforms of Figure 4.30. In this simulation, the test
sequence is s0, s1, s2, s3, s4, 8, s9, s5, s4, 58, s9, 55, s6, 57, s0.

Using the asynchronous transmitter and receiver FSMs just described, it would be possible
with modern FPGAs to run at quite high baud rates, as illustrated below.

FSM clock Receiver Transmitter clock Baud rate
RXCK CLKOUT

4 MHz 1 MHz 1 MHz 1 mega baud

8§ MHz 2 MHz 2 MHz 2 mega baud

16 MHz 4 MHz 4 MHz 4 mega baud

32 MHz 8 MHz 8 MHz 8 mega baud

80 MHz 20 MHz 20 MHz 20 mega baud

Both transmit and receiver units use the same FSM clock frequency generated with their own

clock circuits.

The higher baud rates would need to use twisted-pair cables over relatively short transmission
distances up to around 1 m. Transmission line effects would need to be taken into account, but
this is beyond the scope of this book.

|0nsI _ |10(|JnsI . |20(|)nsI . |30(|)nsI . |40(|Jns
test.rst J
e I
testsend) | ||
test.txe \
test.ack]—‘
test.CLKOUT [] []
test.PD [] [
test.LD |]
test.RTS ’—‘
wa|] L1 []
test.B
test.C []]
test.D [1 |]

Figure 4.30 Simulation of the serial transmitter FSM.

100 Synchronous Finite-State Machine Designs

4.10 CLOCKED WATCHDOG TIMER

Most microcontrollers these days have abuiltin watchdog timer (WDT). The WDT is an addressable
device that can be written to on a regular basis. The idea is that the timer (usually a down counter) is
regularly written to reinitialize it to aknown count value. Between writes, the counter will be clocked
towards zero. If the microcontroller does not write to the WDT between countdown periods, then the
counter will reset to zero and this action can be used to reset the microcontroller.

The WDT thus acts as a safeguard to prevent the microcontroller from running out of control
(jumping to an instruction that is not part of the program sequence), perhaps due to a transient in
the power system.

Another use is in a microprocessor-based system where the operating system (perhaps a real-
time operating system) can regularly reset the WDT and, hence, provide a means of determining
a microprocessor system failure.

The application program running on the microcontroller needs to write regularly to the WDT
to prevent it from reaching the reset state.

Although most microcontrollers have this feature, a lot of microprocessor systems do not.
Therefore, a circuit would need to be designed for this purpose.

The clocked FSM system shown in Figure 4.31 is a basic system designed to perform the
action of a WDT. The system needs to be designed around the specific memory/IO cycle timing
of the microprocessor. In Figure 4.31 the memory/IO write cycle is based around a four-clock
pulse cycle time T1 to T4.

| |
| |
R I — | |
wpp | | I I I
| | | | |
| | [| | |
clk
Address | C€ WDP Down
) ; | FSM L
Ader Decoding Counter To
reset
iow T Microprocessor
o Initialize
initialize counter

Figure 4.31 Block diagram for a WDT for a microprocessor system.

Clocked Watchdog Timer 101

The system is controlled by an FSM that monitors the chip enable ce controlled by the address
decoding logic. This can respond to a particular address from the microprocessor. In addition,
the iow signal controlled by the microprocessor is also monitored by the FSM. When the
microprocessor addresses the WDT, ce goes low, followed by iow in the T2 clock period. On the
rising edge of the T3 clock period, the WDT pulse is generated. The FSM must produce this
watchdog pulse (WDP) at exactly the right time in the write cycle (T3 period). Both the FSM and
the down counter are clocked by the same microprocessor clock clk.

In Appendix B, the design of a down binary counter is described and Section B.1 shows how this
can be done. To provide this counter with a fixed starting value (to count down from), the flip flips of
the counter can be preset to aknown value, using a parallel loading counter (see Section B.3). This is
the purpose of the initialize inputin Figure 4.31 (essentially a parallel load input to the down counter).

Note that this same input provides the initial state for the FSM (which will be state zero). The
WDP will provide frequent reinitialization pulses to the down counter and, thus, prevent it from
reaching its zero state (which would otherwise cause a microprocessor reset).

A suitable state diagram is illustrated in Figure 4.32, wherein the FSM waits in state sO for the
microprocessor to write to the address of the WDT. This will cause ce to go low during the T1
state of the memory/10 cycle (see Figure 4.31) so that on the T2 rising clock edge the FSM will
move into s1. Here, it waits for the microprocessor to lower iow; then, on the next clock pulse
(T3), the FSM will move into state s2, where it will lower the WDP output signal. On the next
clock pulse (T4), the FSM will move to s3, raising the WDP, and wait for the ce signal to go high.
This will occur at the end of the memory/I1O write cycle and will be seen by the FSM on the rising
edge of T1.

The equations for the FSM that follow are from Figure 4.32.

AB
10
/ce_|(T2)
fiow_|(T3)
_I(T4)
AB AB

01 11

Each clock pulse corresponds to a T state

Figure 4.32 State diagram for the WDT.

102 Synchronous Finite-State Machine Designs

4.10.1 D Flip-Flop Equations

A-d=s0-/ce+sl
=/A-/B-/ce+A-/B
=/B-ce+A-/B
B-d=sl-/iow+s2+5s3- /ce
=A-/B-/iow+A-B+ /A-B- /ce
=A-/iow+A-B+B- /ce.

4.10.2 Output Equation
WDP = /(s2) = /(A - B).

The equation for ce would depend upon the desired address assigned to the WDT. For example, if
the address assigned was 300h (11 0000 0000 binary), then the equation would result in

ce=/(a9-a8- /a7 /a6 /a5 /a4 - /a3 - /a2 /al - [a0).

Ons ‘SOns ‘100ns ‘150ns 200ns
Lrr et rrr et

test.rst

= TR

test.ce

test.iow

test. WDP

test.A

test.B

Figure 4.33 The WDT FSM simulation.

Summary 103

There could be additional qualifier signals, i.e. in a PC using the IO memory map the signal /aen
would be required in order to distinguish between dynamic memory access (DMA) cycles and
IO cycles (see Chapter 5 for DMA). Also, the /iow signal would be needed to identify a write
cycle.

The above equation for ce would then be

ce=/(a9-a8-/a7- /a6- /a5 /a4 - /a3 - /a2 - /al - /a0 - /aen - /iow).

The equations to describe the down counter are repeated below from Appendix B for conve-
nience.

Qn-t= Hi:rll (/gp) for an n-stage counter, with the first T mflip-flop qO - 7 input = 1.

This equation expands to

Q0-r=1
Ql-t=/q0
Q2-t=/q0-/ql

Q3-t=/q0-/ql-/q2
Q4-t=/q0-/ql-/q2- /q3.

for a four-stage down counter.

Note that the counter needs an asynchronous initialization signal connected to each T flip-flop
to form the parallel loading input logic (see Equation (B.4) and Figure B.4).

Figure 4.33 shows the FSM in action. The output WDP goes low during state s2 after the
address-decoding ce and iow have been detected going low in sequence. The FSM state
transitions are clearly seen in the flip-flop A and B outputs.

Note thatin the above simulation there are additional clock pulses. These have been generated
by the test bench generator to test for the FSM remaining in states sO and s1 until changes in the ce
and iow signals occur. This would not happen in practice, since the microprocessor has control of
iow and the address-decoding logic ce.

4.11 SUMMARY

Inthis chapter, anumber of practical examples have been developed using the block diagram and
state diagram approach developed in the Chapters 1-3. These have then been implemented in
terms of D-type flip-flops. You may well decide to use some of these examples in your own
designs, or expand upon them to make them fit your own requirements.

In the next chapter, the idea of having a state for each D-type flip-flop will be introduced,
leading to systems that do not need secondary state variables.

S

The One Hot Technique in
Finite-State Machine Design

5.1 THE ONE HOT TECHNIQUE

The FSMs designed up to now have used secondary state variables to identify each state. This
requires the use of unit distance assignment, where possible, to try to avoid potential glitches in
output signals.

An alternative would be to assign a flip-flop for each state. Although this may be considered
wasteful, it has the advantage that it would in theory avoid the generation of output glitches,
since each state would have its own flip-flop. At any one time, only one flip-flop would be set, i.e.
the one corresponding to the state the FSM was currently in.

Thisideaiscalled ‘One Hotting’ and is much used in FSM designs that are targeted to FPGAs.
This is because FPGAs have an architecture that consists of many cells that can be programmed
to be flip-flops, or gates. So a large number of flip-flops is not difficult to achieve. A PLD, on the
other hand, has an architecture with only a limited number of flip-flops controlled from AND/
OR ‘sum of product’ terms.

Another feature of the One Hot technique is that it can require fewer logic levels because there
isnorequired logic from other state variables apart from the primary inputs and previous state(s).
This can result in faster logic speeds.

The method of implementing a ‘One Hot” FSM will now be described.

Consider Figure 5.1. In this example of the use of the One Hot technique, the single-pulse
generator with memory problem is revisited. It uses three states (rather than the four-state FSM
used in the original design). This is possible because one does not have to consider unit distance
coding and, hence, there are no secondary state variables.

The equations on the right in Figure 5.1 are the equations necessary to synthesize the FSM. To
understand where these come from, consider the One Hot state diagram.

Initially, the FSM should be in state sO. This can be arranged via an initialization input so that
the flip-flop representing state sO (called FFS0) is set, and all other flip-flops (FFS1 and FFS2) are
reset.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

106 The One Hot Technique in Finite-State Machine Design

Design equations:

s0-d=s2-/s + s0-/s

s1-:d=s0-s

s2:d=s1+s2's

Output is P =s1

L=s2

The state diagram does not need any secondary state
variables since each state is represented by a D-type
flip-flop.

At initialization, the flip-flops representing s1 and s2 are
reset, while that representing state s0 is set.

Figure 5.1 An example of the use of the One Hot technique.

Consider state sO. Here, the FSM should remain in state sO until the condition to exit sO occurs.
This is, of course, when the primary input signal s becomes logic 1.

However, the flip-flop FFSO needs a signal on its D input that will keep it in the set state. The
required signal is

sO - /s.

This is obtained from the fact that the FSM is in state sO and the ‘leaving condition’ from state sO
is s, so that while s is not true, i.e. s = 0, or /s, the flip-flop should remain set.

This term sO - /s is known as a ‘hold term’ because it holds the FFSO set until it is required to
change to the next state, s1.

Also, when the FSM reaches state s2 it will only return to state sO when the signal s is logic 0.
So there is another term:

s2 - /s.

This is known as the ‘set term’, or ‘turn on’ term, for the flip-flop.
The complete equation for the state sO flip-flop FFSO is

sO-d=s2- /s+s0 - /s.
S—— =

set term hold term

Now consider state s1. The condition to enter state s1 is when the FSM is in state sO and s = 1.
So, the equation for flip-flop FFS1 is

sl -d=s0 - s.

The One Hot Technique 107

Note that the ‘leaving condition’ from sl is a simple clock pulse. There is no input condition
along the transitional line between s1 and s2; therefore, when the FSM reaches state s1, it will
naturally exit state s1 on the next clock pulse, so a ‘hold term’ is not needed.

Now consider the final state s2.

The condition to enter state s2 is s1, since there is no input condition along the transitional line
between states sl and s2. There will, however, be a holding term between s2 and s0, which is

s2 - s.
While s = 1 the FSM must remain in state s2. So the equation for FFS2 will be
$2 -d=sl+5s2-s.

Finally, the output signal is

P =sl,
since only in state s1 will the output P be logic 1; L will only be active in state s2:

L =5s2.
The circuit for this FSM is illustrated in Figure 5.2. Note in Figure 5.2 the initialization logic is

fitted retrospectively. In a One Hot system, one of the flip-flops, representing the initial state in
the FSM, needs to be set, while all other flip-flops need to be cleared. If flip-flops without preset

S
s1 flip-flop s2 flip-flop
/s 1d —er s2:d S
s0 flip-flop
L
Clock (clk)
Initialize input

P
Figure 5.2 Circuit for the One Hot version of the single-pulse FSM.

108 The One Hot Technique in Finite-State Machine Design

sp_|

Design Equations:

Note that in equation s0-d = s2-sp + sO-/st
T
s1-d = sO-st + 83 + s1(x"/x) s1-d =s0-st+s3+
the term s1-(x -/x) is zero. s2-d =s1-x + s2:/sp
See text for explanation. s3=s1/x
P=s1+s2.

Figure 5.3 A second example with two-way branch.

and clear inputs are used, then a synchronous reset scheme needs to be adopted (as seen in
Chapter 3, Frames 3.16 and 3.19).

Now consider the two-way branch FSM design in Figure 5.3. In this example, the equation for
FFSO follows the rules already explained for the first example. In the equation for FFSI,
however, note that there is a term for entering state s1 via sO (sO - st) and a term to enter via s3.

The two-way branch leaving state sl is viasl - x (to state s2) and s1 - /x (to state s3), and the
combined terms result in

sl -d=s0-st+s3+sl-x- /x,
which reduces to
sl - d=5s0 - st+s3
because the s1 - x - /x terms would reduce to zero:
sl(/x - x) =0.
The FSM is held in s1 by complementing the inputs such that the leaving term between s1 and s2
(x)is complemented (/x) and the leaving term between s1 and s3 (/x) is also complemented (x) so
as to imply a hold in s1. Of course, this leads to
sl(/x - x)assl(1-0)orsl(0-1) resultingin the term sl being zero.
Looking at the state diagram of Figure 5.3, it can be seen that once the FSM reaches state s1 it

should leave this state either via the transition to state s2 or via the transition to state s3 on the next
clock pulse. There is no reason to hold it in state s1.

The One Hot Technique 109

Ix_|

v

Design equations:
s0-d = s2-/x + sO-/st
s1-:d=s0-st + s1:(/x- /y)
s2:d=s1-x+s2:x

s3 =51y +s3
P=s2+s3

Figure 5.4 An example with a two-way branch with noncomplementary inputs.

Therefore, the above interpretation for s1 is correct. Hence, the equation
sl - d=s0 - st+s3

is the correct one.

Note: in a state diagram with a two-way branch transition with complementary inputs (in this
case x and /x), the two-way branch term is dropped.

The other equations in Figure 5.3 follow in the usual way.

Now consider the following FSM shown in Figure 5.4. In this example there is again a two-
way branch, but this time the exit from each branch path is not complementary. Notice how the
equation for s1 - d contains a term

sL- (/x - /).

This is the required holding term that will hold the FSM in state s1 until either x becomes
logic 1 or y becomes logic 1, i.e. the FSM will remain in state s1 while both x and y are
logic 0.

Note: when using a two-way branch with different inputs along each transitional line (like x
and y), the two inputs (x and y) must be mutually exclusive.

Continuing with example of Figure 5.4, the invariant state s3 is entered from state s 1, but once
itisentered there is no transition from this state. The FSM will remain in state s3 until the FSM is
reinitialized to its initial state of sO. For this reason, the s3 term on the right-hand side of the
equation for s3 is needed.

Figure 5.5 shows an example you might like to attempt on your own. Do not look at the
solution below the figure until you have attempted to do it yourself.

110 The One Hot Technique in Finite-State Machine Design

Solution:

80 - d =55 sp + s0/st
sl-d=s0-st+s3-/p
s2-d=sl-x
s3-d=s2
s4-d=sl-/x+s3-p
s5-d=s4-q+s6+5s5-/sp
s6-d=s4-/q

Figure 5.5 Example for the reader. Do not look at the solution below until you have attempted to do it
yourself.

The One Hot technique is ideal for large state machines to be implemented using FPGA
devices, since an FPGA can accommodate alarge number of flip-flops. Also, the development of
the equations is very easy for a design developed at the logic gate level.

The rest of this chapter looks at a number of more complex FSM examples making use of the
One Hot technique. The following examples illustrate how an FSM can be used to implement
typical design problems where perhaps a microcontroller might have been used. Each example
features ideas that you might wish to incorporate into your own designs.

5.2 A DATA ACQUISITION SYSTEM

Usually, a microcontroller, or digital signal processor (DSP), is used to implement a DAS. In the
case of the microcontroller the ADC s builtinto the microcontroller chip. For applications using
a microcontroller with built-in ADC, the system will usually make use of integer data values
from the ADC. For DASs requiring high-speed data calculations, a DSP may be used. These can

A Data Acquisition System 111

Sample
Hold
Flash Vin
Memory Address Memory ADC |« «—
Counter h
Ful_ _d'la dr> @
% A
Eoc sc
() A
Cs w
y
CC R cCs w eoc SC
S/H
FSM
Ly f S
init MF stje—>"

K | Memory Full
C A -
Initialize FSM ”

Figure 5.6 Basic high-speed DAS.

be obtained using either integer arithmetic circuits or a built-in floating-point processor to carry
out the processing with ‘real” numbers.

One problem with all DASs is that they have finite processing speed limitations, usually due to
the processing limitations of the microprocessor used. To some extent this can be overcome by
using parallel processing and hardware arithmetic circuits.

A totally hardware arrangement could be designed around an FSM controlling hardware
adder/subtractor/multiplier/divider subsystems. This could increase the throughput of such
systems. Alternatively, the FSM could be used to ‘gather’ the data and store it for subsequent
processing by a microprocessor or DSP in situations where ‘real-time’ processing is notrequired.

This next example illustrates a much simpler system looked at in Chapter 2 and illustrated in
Figure 5.6. This basic system could use a flash ADC to allow very fast conversion times. The
overall system makes use of high-speed static RAM to store the converted digital values. The
system is designed to interact with another system. This other system starts the process off by
asserting the st input, and the FSM sends a memory full (f) response in due course.

For now, a state diagram can be developed for this basic system as illustrated in Figure 5.7.
This is much along the lines of the one developed in Frames 2.4-2.10. In this state diagram, the
sequence of control is clear. Once the external system sends a request for the system to start
filling the memory with data (st = 1), the following occurs:

e The sample-and-hold circuit is placed into hold mode ready for the ADC (s1).

e The flash ADC is placed into conversion mode and the FSM waits for the end of conversion
eoc signal to go high, signifying that a conversion has taken place (s2).

o Ins3, the FSM selects the memory device by asserting (low) its chip select input CS. The FSM
will move to s4 only when the ADC eoc signal returns to logic 0.

112 The One Hot Technique in Finite-State Machine Design

Wait for Place S/H into Start ADC Select memory
start input hold mode device

Enable write line
to access memory
data bus for writing

If|

Memory not full

Memory full so write next

so stop
Wait for next
initialization

Increment address De-select memory Write data into

memory location memory device
and test for
memory full

Figure 5.7 State diagram for the DAS.

e In s4, the FSM activates the memory chips write enable signal W (low).

e In s5, the memory write signal is taken high to write the data into the memory device.

e Ins6,the chip selectistaken high to deselect the memory. This ensures that the memory chipis
deselected before the address is changed.

e In s7, the address counter is pulsed by making CC = 1; the address counter is pulsed on the
rising edge of this signal. In s7, a check is made to see whether the last memory location has
been used (f); if not, the FSM moves around the loop comprising s1 to s7 again.

e This will continue until all the available memory has been filled with data, at which point the
FSM will fall into s8 and assert the mf output to the external device.

Note that the MF signal could be connected to the interrupt input of the remote device so that it
could start the process with st = 1 and be interrupted when the task is complete.
The One Hot equations now follow:

sO - d = /st flip-flop sO will be set during initialization and held until st = 1
sl -d=s0-st+s7-/f

s2 -d=s1+5s2- [eoc

s3 -d=s2-eoc+s3 - eoc

4 -d=s3
s5-d=s4
s6 - d =585
s7-d=-s6
s8 -d=s87 -f+s8 will hold in this state until reset.

A Data Acquisition System

113

The outputs are

S/H=s1+s2

SC =52

CS = /(s34 s4 +55)
W= /s4

MF = s8

R=/s0

CC =47

an active-low signal in states s3 to s5

an active-low signal in state s4 only

an active-low signal in state sO only

pulsing CC high as s7 is entered; CC goes low on leaving state s7.

These signals can be used to construct a Verilog file and simulated, as illustrated in Figure 5.8.
From Figure 5.8, it can be seen that the FSM loops four times, ending up in s8 at the end of the
third loop. Note the control of the memory chip select and write signals and the address counter
pulses. Also, at the end of the simulation the memory full mf signal goes high in state s8. The

reset is applied to return the

FSM to s0.

The system developed in Figure 5.6 allows digitized data to be stored into the memory, but
it does not provide any way of getting access to the data once it has been saved. The reader

On? [|20(|)ns| [|409nsl [|60(|)ns| [|809ns

test.st [
testot | ULV LU UL
test.rst J L
test.pst J

test.e [_J u

test.f []
test.sO _}

test.s1 ﬂ ﬂ ﬂ ﬂ

test.s2 J ﬁ ﬁ ﬂ

test.s3 j m m
test.s4 [1 1

test.s5 1 [[
test.s6 [1 [[1]
test.s7 ﬂ ﬂ ﬂ L
test.s8 [_L
testsA| [1 1 !
testsC| || [[1
wstos| || L1 \ L [|
testw |] L L] L]

testRY |
test.CC ﬂ ﬂ ﬂ L
test. MF [_L

Figure 5.8

Simulation of the data acquisition FSM controller.

114 The One Hot Technique in Finite-State Machine Design

might like to modify the system to allow this to happen, but some thought needs to be given to
what device is to be used to perform this operation.
The next example illustrates how memory can be controlled in this way.

5.3 A SHARED MEMORY SYSTEM

It is often required to be able to access the data stored in memory via some other controlling
device. For example, this could be an external microprocessor to process the stored data in the
memory. The example in Figure 5.9 illustrates how this might be done. In this system the
memory can be accessed by either the FSM or the external system (which could be a micro-
processor or DSP system). The memory is, in effect, ‘shared’. The idea is that during the data-
gathering phase, the FSM has sole access to the memory and deposits digitized samples of data
under its own control. During the data delivery phase the external device can access the memory,
but only when there is data to be read.

The external device must wait for the RMA (read memory available) signal going high, for
only when this signal is high will the FSM have disconnected itself from the memory device.
Also, when the external device has completed the read memory transaction, and disconnected
itself from the memory device, it must send an acknowledge signal ack to the FSM so that the
FSM canrevert toits initial state. The FSM in this system is the master device. Signals RMA and
ack form a handshake mechanism.

Addr Sample &
Counter Memory Hold
Data
<€ B s/
3 < H | Vin
| ADC L
Shared A
Memory
A
cswr
L J
Ext. Data In N B
439 >
==
‘ Ext. Data Out
EXTR <
EXTW 3] yux |«
EXCS
s0 4
A
—
Ext mf +
PC CC SEL CS W R SC eoc
P mf FSM Start system
<——{RVMA st ——
- Initialise system
— ack init ———

Figure 5.9 Block diagram of a shared memory system.

A Shared Memory System 115

Note that the FSM uses its SEL signal to control the selection of the tri-state buffers B1 to B4,
so that buffers B1 and B3 are selected when SEL = 0. Buffers B2 and B4 are selected by making
SEL = 1 to allow the external device to control the memory.

The ‘tri-state’ devices are thus connected to the memory device to allow it to be ‘shared’.

e The tri-state buffers B1 to B4 control the connection of the address and data buses.
The two-way Multiplexer M is used to control the memory device from the two sources (FSM
and external device).

e When its control input sO = 0, the CS, W, and R control lines from the FSM are connected to
the memory device. Otherwise, the external device has control of these three signals when
sO=1.

The following equations describe the behaviour of the multiplexer:

M_CS =CS - /SEL + EXT.CS - SEL
MW =W - /SEL + EXT_W - SEL
MR =R - /SEL +EXTR - SEL.

Note that the handshake signals RMA and ack are mandatory for this system to work, since the
external device must not have access to the memory unless it receives the RMA =1 from the
FSM. Likewise, only when the external device has disconnected itself from the memory can it
send the ack = 1 signal to the FSM.

The state diagram for this system (Figure 5.10) is very similar to that in Figure 5.7, but has
signals to control the memory device connection.

FSM has memory. Place S/H into Start ADC Select memory
Wait for start input hold mode device

Imf_| Enable write line
— to access memory

data bus for writing

Memory not full
so write next

Memory full Increment memory Deselect memory Write data into
so stop address and device memory device

Wait for next test for

initialization. memory full

Figure 5.10 State diagram for the shared memory FSM system.

116 The One Hot Technique in Finite-State Machine Design

Note that in the state diagram in Figure 5.10 it is assumed that the ADC is slower than the time
for the FSM to move from state s3 back round to state s2 and in s3 it waits for eoc to return low
before moving to s4.

The equations for this design can be obtained from the state diagram as follows.

D flip-flop d inputs:
sO - d=s8 - ack +s0 - /st
sl -d=s0-st+s7 - /mf
s2 -d=sl+s2- [eoc

3 -d=-5s2-eoc+s3 - eoc

s4 - d=1s3- Jeoc

s5 - d=s4

s6 - d =55

ST - d=s6

s8 - d =s7 - mf +s8 - /ack.

Output equations:

CC=/s0 active-low output

SEL = s8

RMA = s8

S/H=sl+s2

SC =52

CS = /(s3 +s4 +s5) active-low output

W= /s4 active-low output

PC =57 and assumes that the address counter is positive-edge triggered.

PC reverts to its inactive (PC = 0) state on leaving s7.

5.4 FAST WAVEFORM SYNTHESIZER

A number of design issues will be covered in this example, including some aspects of interfacing
to a microprocessor or microcontroller to an FSM-based design.

A frequency synthesizer is to be developed based around an FSM. The idea here is to be able to
transfer a set of data from a microprocessor/microcontroller via a parallel portal into a memory
device. Once this is done, the FSM is to read consecutive memory locations and output them to a
DAC. A block diagram of the system is illustrated in Figure 5.11.

Note that the waveform data may be any number of data samples in the memory, depending
upon the waveform period and sampling frequency. Therefore, the memory full signal mf is
actually an ‘end of waveform’ signal, generated by comparing the address bus value with an
‘Address Limit Value’ sent by the controlling device.

Fast Waveform Synthesizer 117

244 Latch

do Data in Addr

a7 Memory < Counter
Data out

Qe oo

) DAC

Address Limit Value —p Vout
Record/Playback
<4—— st \ 4
Data ready
system A B
Comparator
Y
ack DRDY st P CS WR RD mf CR PC

clk FSM

init
FSM initialization f

Figure 5.11 The fast waveform synthesizer block diagram.

Of course, the total number of waveform samples must be able to fit into the memory device,
but the end of waveform must be detected so that when the FSM cycles through to memory
location zero the waveform at the DAC output looks continuous and starts at the correct point in
the waveform.

Inthis diagram, the parallel ports to/from a microcontroller, say, are used to provide waveform
data to the memory. st is the start input and rp is an input to define record mode (logic 1) or
playback mode (logic 0). These two inputs could be from the microcontroller or simply provided
as user-activated switches.

5.4.1 Specification

On power up, the FSM looks for st asserted. Then, if the rp is logic 1, it will assert its DRDY
output high to let the microcontroller know that it is expecting a data byte. The micro-
controller puts a data byte onto the parallel port outputs dO to d7. The FSM then writes a
data byte to the memory device and then lowers its DRDY signal, to let the microcontroller
know it has dealt with the data byte. On seeing the DRDY signal go low, the microcontroller
lowers its ack signal line to let the FSM know that the transfer is complete. This process
continues until the memory is full. Note that memory full depends upon the number of
waveform samples placed into the memory device. The microcontroller places a limit value
onto the data lines, so that the FSM has a memory limit value to reach. At this point the
memory full signal mf will go to logic 1.

118 The One Hot Technique in Finite-State Machine Design

If the input rp is turned to the play position, then the FSM will start to send the data in the
memory repeatedly to the ADC so that the waveform will be displayed until such times as the st
input is disasserted.

A state diagram will be created based upon the specification and then implemented using One
Hot equations.

5.4.2 A Possible Solution

This is a relatively complex design making use of a program running on the microcontroller to
control the system via the parallel ports.

The state diagram needs two main loop paths: one for record mode and the other for playback
mode. By making use of Mealy outputs, it is possible to produce a state diagram using 13 states.
This is illustrated in Figure 5.12.

There are, of course other possible solutions, some of which will contain more states
(particularly if the outputs are all Moore). This solution makes use of Mealy outputs so that
the main part of the loop can be used for both write and read operations. The R and W signals are
active-low signals and are dealt with in the manner discussed in Frame 3.26.

A brief description of the state diagram is now given.

State sO output initial states are:
/CR, /DRDY, CS, W, R, /PC

Irp-st_| | Wait here for play
A Mode (rp=0)
Irp-ack_|

Write data to memory path:
s0, s1, s2, s3, s4, s5, s6, s7, s9, s12,
s2..

Read memory path:

Wait in s10 for rp to go low. Then:
s10, s11, s2, 83, s4, s5, s6, s7, 9, s2.
until mf high again, then return to s8,
s10, s11 path and repeat the
sequence again.

Will stop when st is taken low in s9.

Figure 5.12 One Hot State diagram for the waveform synthesizer FSM.

Fast Waveform Synthesizer 119

On operation of the start input st the state machine will leave state sO to s1 where it will remove
the address counter reset CR before moving, on the next clock pulse, to s2 to raise its ready flag
DRDY. On receiving the DRDY signal from the FSM, the microcontroller (via its parallel port)
will enable the tri-state data buffer connecting the parallel port to the memory data bus so that
data can be written to the latter — this by making rp = 1. This will also disable the other tri-state
bufferused for reading the memory data. The microcontroller will raise its ack signal to allow the
FSM to move to state s3, the memory chip select will be activated (CS = 0) to enable the memory
device, and on moving to s4 the memory write W will be lowered, since rp = 1 (write mode).
Note that in memory play mode rp = 0 it will be the read signal line that will be lowered in state
s4. Onmoving tos5, the CS and W (or R) will be raised to perform the memory write (or memory
read) of that particular memory location.

The FSM will, on the next clock pulse, move to s6 to deselect the memory chip before
moving on to s7, where it will raise the PC signal to pulse the address counter. A test will
be performed to see whether the memory is full. If the memory is not full, then the
state machine will follow the path s7 to s9, where it will lower the DRDY flag if in record
mode (rp = 1) and wait for an ack from the microcontroller (this allows the microcontroller
to prepare the next data byte to be sent to the memory). On reaching state s12 the state
machine will move on to state s2 to repeat the operation for the next memory location. Note,
as usual, PC is lowered on leaving s7.

This will continue until all of the memory is full. When this happens, the transition from
s7 will be to s8, not s9, and the state machine will send its usual DRDY to zero and wait for
acknowledgement from the microcontroller. On receiving the acknowledgement flag ack, it
will wait in s10 for the user to set the rp input to zero (indicating that the system is now in
playback mode).

In playback mode, the state machine will move to state s11 to reset the address counter and
thereby back to s2 to repeat the loop s2, s3, s4, s5, 56, s7, 89, and s2 repeatedly while rp = 0 and
st = 1. In this loop, the memory is being read, but now, since rp = 0, the address counter will
continue to roll over to zero after running through the memory up to the memory limit value until
the start input st = 0.

Note that the FSM waits for ack to be disasserted in states s§ and s9 to complete the
handshakes.

Areset can be added to the system to force it back to state sO at any point in the state sequence.

Development of the One Hot equations from the state diagram can now be undertaken.

5.4.3 Equations for the d Inputs to D Flip-Flops

sO - d=s0- /st hold term only

sl -d=s0-st+sl- /ip

2-d=sl -1p+sll+sl2 -rp+s9 - /rp-st+s2 - /ack
s3 -d=-5s2-ack

s4 - d=5s3

S -d=s4

s6 - d =55

120 The One Hot Technique in Finite-State Machine Design

s7-d
s8 - d =s7 - mf +s8 - ack
$9 -d=s7 - /mf+s9 - /(rp - /ack) - /(/rp - st) note hold term for two-way branch
$10 - d =8 - Jack +s10 - /(/rp - ack)
sll - d=s10- /rp - ack
$s12 - d=s9 - 1p - Jack +s12 - /(1p).

The output equations follow.

5.4.4 Output Equations

CR = /(s0 +sl1)
DRDY = s2 + 83 + s4 + 55 + s6 457 4510 4 s11 4 s12 alternatively, DRDY

= /(s8 4+ 59 - rp) as an active-low signal
CS = /(53 + s4 +s5)

W= /(s4 - 1p)
R=/(s4 - /ip)
PC = s7.

These can all be implemented in Verilog HDL directly.

5.5 CONTROLLING THE FINITE-STATE MACHINE
FROM A MICROPROCESSOR/MICROCONTROLLER

In order to develop the program, one needs a programmer’s model to illustrate the connection
interface between the FSM and the microcontroller.

From Figure 5.13 it can see that the microcontroller needs to use a byte-wide output port to send
waveform data to the memory, and two additional bits to form a handshake between the micro-
controller and the FSM. There is also a need for a byte-wide output port to send the memory limit
value. The main purpose of the microcontroller is to generate the waveform data to be used by the
FSM-based synthesizer. It is beyond the scope of this book to go into how this might be done, but the
individual digital values could be computed by the microcontroller to be sent to the memory device.

Listing 5.1 illustrates a program fragment for possible execution on the microcontroller. The
program is written in C, which is very common for microcontroller programming.

//-- includes needed by the program -----——-—--—--—-—-———————————-
#include <microcontroller.h> // standard C header file for the particular
microcontroller.

/) —==—- printer port register addresses ————————-—-—————————————
#define dataport 0x300 // address for port data outputs (change to suit
microcontroller)

#define ackdryrp 0x301 // address for handshake bits and rp (change to suit
microcontroller)

Controlling the Finite-State Machine 121

#define memlim 0x302 // address for the memory limit portal.
#define MAX 1024 // Limit of memory size — can be
// changed to suit your requirements. Not used in this example.

unsigned char mem limit value; // location to save limit value in.
// C Fuction prototypes used by the program.
void get data(void); // used to get the data from the FSM.
void Send data to FSM(void); / Use to send data to the parallel port.
int i;
unsigned char inbyte, outbyte;
unsigned char array [MAX] ;
//—-main program function-—--—-—--—--—-———————————~———————
int main (void)
{

get data(); // a C function that deals with the data you want to send.

Send_data_to_FSM(); // see below.

// could do other things here.
return (0); terminate the C program here.
} // end of main program.
// The C functions now follow.
void Send data to FSM(wvoid)
{

mem limit value = 255; //get the memory limit value to send.

MemLim = mem limit value; // send limit value to its portal.

for(i=0; i < sizeof (array); i++)

{
do{ // wait for data ready flag to go low from FSM.
inbyte =ackdryrp; // input from the ackdry port register.
inbyte &= 0x01; //mask all bits except the drdy bit.
} while (inbyte != 0x00); //keep on looping until data ready flag set

from FSM (active-low) .

[m e
outbyte =array[i] ; //get next data byte to send to FSM from array.
dataport =outbyte; // send it to FSM.
ackdryrp |= 0x02; //set ack bit to tell FSM
do{ // wait for drdy to go high again.

inbyte =acktryrp;

inbyte &= 0x01;
} while (inbyte !'= 0x01);
} // end of for loop.

} // end of C function to send data to FSM.

void get data (void)

{ // just generate data for a ramp waveform. Simple example.

for (1=0; i <mem limit value; i++)
{
array[i] =1i;
}
} // end of get data;

Listing 5.1 Example C code to control the waveform synthesizer.

122 The One Hot Technique in Finite-State Machine Design

7 6 5 4 3 2 1 0

Output
port

YOy Y oY oy vy

To the 244 data latch of frequency synthesizer (see Figure 5.11)

Limit
value
output
port
To A side of comparator (see Figure 5.11)
Port
with
- - - - - P ack |DRDY | input
&

output

T 7 F o
To/from FSM
(see Figure 5.11)

Parallel Port Registers - these could be directly from a microcontroller

Figure 5.13 Parallel port registers and their bit functions.

Listing 5.1 is very generic and would need to be tailored to a particular microcontroller. It is
made up of a main program function main () which calls two C functions.

In this example, the first of these functions, get_data (), is used to create a simple ramp
waveform by writing bytes to an array with the line

array[i] =1i;
up to a memory limit value. The for loop simply increments the i value from O up to
mem limit wvalandstoresitintoconsecutive elementsofthearray. Note,mem limit val
would be the value sent to the Comparator A inputs in Figure 5.11 to activate the mf signal when
the address inputs from the counter were the same as the ‘Address Limit Value’.

The second C function takes the content of the array and sends it to the FSM memory, via the
dataport of the microcontroller:

outbyte =array[i] ; //get next data byte to send to FSM from array.
dataport =outbyte; // send it to FSM.
ackdry=0x02; //set ack bit to tell FSM.

To control this operation, and to synchronize the FSM to the microcontroller, the dry and ack
signals are used as handshake signals. The microcontroller uses do—while loop constructs to
perform these operations.

A Memory-Chip Tester 123

do{ // wait for data ready flag to go low from FSM.
inbyte =ackdry; // input from the ackdry port register.
inbyte &= 0x01; //mask all bits except bl, the dry bit.
} while (inbyte != 0x00); //keep on looping until data ready flag
cleared from FSM.

The do—while loopisusedtoread in the status of the drdy bit (inbyte = ackdry) . Thisis
then stripped of all bits except the bit b0 dry with the instruction inbyte &= 0x01. This
is compared with 0x00, and if not equal (!=) causes the do—while loop to repeat until dry
is setto zero, making thewhile (inbyte !=0x00) false and causing the program to fall out
of the do—while loop. In this way, the program cannot get past the first do—while loop until
dry = 0. The second do—while loop looks for drdy to go high before getting the next data
value from the array to send to the FSM.

The program continues to repeat the actions again until all the data in the array have been sent
to the FSM memory.

This short description should give you an insight into how the waveform data can be sent to the
FSM. For the generation of more complex data, e.g. sine waves and exponentially decaying sine
waves, a more complex get data () function would need to be developed.

5.6 A MEMORY-CHIP TESTER

An FSM-based test system can be used to test memory chips prior to fitting them onto a
circuit board. Fitting memory chips direct from the manufacture can be expensive if a faulty
memory device is discovered at the final testing stage of production and the defective
memory has to be removed, particularly if the device is soldered directly onto the printed
circuit board.

The memory tester could typically be used in the Goods Inward Department of a factory that
was using a large number of memory chips. This would allow each memory chip to be tested and
could form the basis of a quality control on overall quality of the memory chips received from a
particular manufacturer. The memory tester should be easy to use by an unskilled operator and
function as a ‘go—no-go’ tester.

The basic idea is to write some data into the memory chip and read the data back to check that
they are the same. In such a test, any location found to be faulty would deem the memory chip to
be faulty and it would, therefore, be rejected.

Figure 5.14 illustrates the block diagram for the memory tester. In this version, the data 55 hex
(0101 0101 binary) is written into each consecutive memory location, then read back and
compared using the digital bitwise comparator. The bitwise comparison follows the Boolean
equation

Bitn = /(An~Bn),
where # is the exclusive OR operator. This operation is (with the NOT operator /) the exclusive

NOR .e. exclusive OR negated. n represents the bit being ex-NORed. The ex-NOR operation is
shown below for completeness.

124 The One Hot Technique in Finite-State Machine Design

Data to Comparator
compare
with in
Addr memory 99 —) A B
counter Address T —
_> data State B
| Memory Bufier [P
under
() test enable
Pulse -
Counter SEt-e 0
ata to
000 butfer (— 55 wrte to
memory
enable
Reset OK Error
Counter] ? ?
RC P CS RD WR OK ERROR
o full
» FSM fab [€—
st init
clk St (to start memory tester) Initialize
FSM

Figure 5.14 Block diagram for the memory tester.

An A Bn Bitn

— o = O
—_——O O
_—0 O

The system can be started by raising input st, the start input. The FSM will control the memory
operations and test the fab input to determine whether what was written is the same as what is
read.

A more sophisticated version could be developed in which each memory location is
tested with the data 55 hex, then retested with the data AA hex to check for adjacent stuck at
1 or O faults. Other tests, such as checking adjacent memory locations to test for inter-
memory location faults, could also be included; however, for this simple tester the 55 hex
data will suffice.

The output ‘A = B’ connected to the fab input of the FSM is the logical product of all 8-bit
comparisons bit0—bit7; so, if all exclusive NOR outputs are at logic 1, then the ‘A = B’ output
will be logic 1. This is expressed mathematically as

A Memory-Chip Tester 125

Outputs:

0000 0011 OK=s10
ERROR=s11

RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
St_| WR=/s2

RD=/(s5+s6)

P=s8.

Note: the secondary state variables are not needed
for the One Hot solution, but are included here for a
comparison with a conventional design.

Figure 5.15 State diagram for the memory tester.

‘A==B =fab= [/(An Bn),

where An and Bn are bitn on each A and B input and IT indicates that each /(An * Bn) is ANDed
(i.e. product).

The state diagram for the memory tester is illustrated in Figure 5.15. In this state diagram, the
initial states of the outputs have not been shown, but they can, of course, be deduced from the
state diagram, since each state shows the change of outputs. So, for example, RC = 01in s0, then
in s1 it becomes RC =1, and remains so for all other states in the diagram. Likewise, CS = 0 in
sl,soitmustbe CS = 11in s0. Following on, the other initial values in sO are P = 0, ERROR = 0,
OK =0, W=1,RD = 1. Note that the state diagram has been allocated a set of secondary state
variables ABCD. These are not needed in the One Hot design, but they are used later on when a
comparison with the more conventional method used in Chapter 4 is made.

Instatessl,s2,and s3, the data 55 hex is written into the current memory location pointed to by
the address counter. States s4, s5, and s6 are used to read the memory location and in state s6 the
FSM tests fab. If fab = 1, then the memory location is OK and the FSM proceeds to pulse the
address counter in s8 and checks to see whether all memory locations have been tested in state s9.
If not, the whole process is repeated.

126 The One Hot Technique in Finite-State Machine Design

One Hot Design Equations:
s0-d = s0-/st
s1-d = s0-st + s9-/full
s2:d=s1
s3-d=s2
s4-:d =83
sb:d = s4
s6-d = s5 (no hold term since two-way branch)
s7-d = s6-fab
s8d=s7
s9-d = s8 (no hold term since two-way branch)
§10-d = s9-full +s10
s11-d = s6-/fab + s11
Outputs:

OK=s10

ERROR=s11

RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2

RD=/(s5+s6)

P=s8.

Figure 5.16 The One Hot equations for the memory tester.

Inthe case of a good memory chip the FSM will loop around the states s1 to s9 repeatedly until
the memory full indicator forces the FSM into state s10. The only way out of this state is via a
system reset. This ensures that, after a memory test, the system waits for operator intervention.

Atany time a memory location is found to be faulty, the FSM will drop into s11 and stop. The
only way out of s11 is via a system reset.

The One Hot equations for the memory tester are given in Figure 5.16.

The state diagram of Figure 5.15 has a Moore output P. The rising edge of P will clock the
address counter on entering state s8, P being lowered on leaving s8. The memory chip enable is
disasserted in s7 prior to this action. The address counter only responds to the rising edge of P, so
that on the next clock pulse the state of full can be tested in state s9.

5.7 COMPARING ONE HOT WITH THE MORE CONVENTIONAL DESIGN
METHOD OF CHAPTER 4

InFigure 5.15, a set of secondary state variables has been provided so that this example could be
implemented with four flip-flops. If this was done, the D-type equations would be as shown in
Figure 5.17.

This, of course, uses the same technique used in Chapter 4, not the One Hot method. You
might like to complete the equations and minimize to compare with the One Hot solution
above.

It is useful at this stage to do a comparison between the One Hot method and the method that
uses secondary state variables in the last example.

A Dynamic Memory Access Controller 127

D Flip Flop Design Equations:

A-d =50-st+s1+s4+s5+s6-fab+ s7 + s9/full.
B:d=s3+s4+s5+s6+s11.
C-d=s1+s2+s3+s4+s9full.

D-d = s6-fab + s7 + s8 + s9-full.

Outputs:

OK=s10

ERROR=s11

RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2

RD=/(s5+s6)

P=s8.

Figure 5.17 Memory tester design implemented with four flip-flops.

One Hot Secondary state
Complexity Simple Need to define the state
Number of flip-flops 12 4
Combinational logic Simple Complex

The One Hot design is simple, uses more flip-flops but has simple combinational logic. The
design using secondary state variables needs to be assigned a unique secondary state coding and
has more complex combinational logic. However, it requires only four flip-flops. The One Hot
arrangement needs 12 flip-flops and 15 gates, whereas the secondary state implementation needs
four flip-flops and 13 gates. A hidden advantage of the One Hot design is that it makes more
efficient use of the space on an FPGA device.

5.8 A DYNAMIC MEMORY ACCESS CONTROLLER

DMA controllers are used in some computer systems in order to allow data to be moved from one
part of the memory system to another or from memory to a peripheral device (such as a printer or
disk drive for example). If these data moves were done by the computing microprocessor, this
would tie the microprocessor up and slow down the computing system. The PC has a special chip
called the DMA controller, the 8257 (now largely integrated into an ASIC device), that performs
these tasks.

This next example gives some idea of how a simple DMA controller could be developed
around an FSM. The design could be integrated into an FPGA.

128 The One Hot Technique in Finite-State Machine Design

A

\ 4 A 4
st load ACK

Source
Address

DMA Address bus
Controller

Destination
Address

Data bus

Byte
Count

Figure 5.18 Block diagram of a possible DMA controller.

Figure 5.18 shows a possible arrangement for a DMA controller. The source and destination
addresses need to be supplied by the microprocessor, as well as the number of words to be
transferred (Byte Counter). The size of the data could be bytes (8 bits), words (16 bits) or even
double words (32 bits), since the design can be scalable. In this design, itis assumed that these are
delivered via an input port, but registers could be provided with address decoding for a memory-
mapped DMA controller.

The dashed line marks the boundary of the DMA controller. The Memory Pool/Peripheral
Device is external.

A DMA controller must be able to isolate itself from the memory/peripheral device when not
being used, and this is achieved using tri-state devices.

Essentially, the DMA controller is designed to respond to an input st. At this point it should
accept the source, destination addresses, and the number of words/bytes to be transferred. Then
it should interrupt the microprocessor to let it know it is about to take over the memory/
peripheral. The microprocessor will then isolate itself from these devices and send the
load signal high to let the DMA controller know this has been done, and also provide it with
the source/destination addresses and the byte count. At this point, the DMA controller will load
the source, destination counters, and the byte counter.

Note that the registers are clocked synchronously with the system clock (on negative edge of
clk) but enabled via the FSM output ec. The DMA controller now has enough information to
carry out the transaction. This involves:

1. Selecting the source address and reading its content into a buffer.
2. Selecting the destination address and depositing the buffer content into this address.

A Dynamic Memory Access Controller 129

3. Decrementing the byte counter and advancing the source and destination address counters.
4. Repeating 1 to 3 until all data transactions are completed (indicated by the byte counter
reaching zero).

The DMA controller can now be developed in more detail. Clearly, a parallel-loading up
counter is needed for both the source address and the destination address. Also, a parallel-
loading down counter is required for the byte counter. Appendix B describes how these can be
simply designed in detail.

Since the source and destination counter outputs need to be connected to the address bus, they
should have tri-state buffers to isolate them from the memory/peripheral address bus when the
DMA controller is not in use. The source or the destination address counters are used one at a
time to avoid bus contention. The DMA controller will also need a data register and buffer
connected so that the data read from one memory location can be fed to another memory
location. This data buffer acts as a holding register within the DMA controller. The buffer needs
to be isolated from the memory/peripheral data bus when not being used. Finally, all these
internal devices need to be controlled by the FSM.

Figure 5.19 illustrates a possible block diagram for the DMA controller. Figure 5.19 shows a
lot of detail and contains internal signals used by the FSM to control the operation of the DMA
controller.

Ext

Source
Addr
L - CNT1 Memory DataBus _ Ext
Pool < P> Dzt
clk @ A Bus
CE W R
load
Destination Clk enable ¢ ¢ T Ext
Addr P Sel Mux —— CE
CNT2 CEW R — w
> B2 A
o
clk g"
— A = L -
a
load
Clk enable |
Byte
Count CNT3
O
clk
([) load
Clk enabl

done B2 ECLDB1 M CEW R DPI B3
FSM —— Ck
st load ACK INT FSM initialize

Ff oy

Figure 5.19 Detailed block diagram for the DMA controller system.

130 The One Hot Technique in Finite-State Machine Design

The FSM must carry out the transactions 1 to 4 detailed above. These, in turn, need to be defined in
terms of the actions required to control the hardware in Figure 5.19. These actions will involve:

1. Waiting for the start signal st.

2. Providing an interrupt to the microprocessor to get it to isolate itself from the memory.

3. Waiting for a load signal from the microcontroller; when obtained, loading the source,
destination, and byte count into the relevant counters.

Then:

4. The source memory needs to be selected and data read from the memory into the data holding
register.

5. The source address needs to be isolated from the memory and the destination memory
selected.

6. The data in the holding register needs to be transferred into the output buffer B3 and stored
into the memory destination address.

After all this:

7. The byte counter needs to be decremented and checked to see whether all bytes of data have
been transferred.

8. Ifthere are more bytes to transfer, then the FSM needs torepeat 1 to 7 again. This is to continue
until all bytes are transferred, indicated by the byte counter being decremented to zero.

The state diagram for the DMA controller can now be developed. The final form of this state
diagramisillustrated in Figure 5.20. Study this diagram together with the diagram of Figure 5.19
to see how the DMA controller is controlled from the FSM.

Load addresses
and byte count.

Return interrupt
to zero.

Interrupt

Idle state .
microprocessor

Select mux
+ source addr's

De-select
memory

De-select
read

Clock data Read mode.
Select into latch.

destination Enable data out

address to memory

Write data into
destination.

Select write

Clock data int
ock data o for Memory

output data latch Determine

if all done.

Clock source/ De-select
destination & destination
byte counter address.

Wait for st low
as an acknowledge

from remote device. /done—l

Figure 5.20 The state diagram for the DMA controller FSM.

A Dynamic Memory Access Controller 131

A number of points need to be considered:

1. Whenreading the source memory location (states s4 to s7), the chip select and read signals CE
and R need to be kept active while data is transferred into the holding register (s6 and s7)
before they are disasserted (to their high state in states s8 and s9 respectively). This is different
to the way in which memory read cycles have been done in other examples.

2. Writing the data from the output buffer follows the more usual arrangement, whereby the chip
isselected (s11), then write is selected (s13), and finally both CE and Ware deselected (s14 for
W, s15 for CE) to write the data into the memory destination location.

3. Note that the source, destination, and byte count registers are enabled via the EC output from
the FSM in state s16, and that the system clock clk clocks the data on the negative clock edge.

The One Hot equations can now be determined.

5.8.1 Flip-Flop Equations

sO - d =518 - /st+s0 - /st s10 - d =s9
sl -d=s0"-st+sl - /load sl1 - d =510

s2 - d=sl - load s12 - d =sll

$3 - d=s2+sl7 - /done s13 - d=sl2

4 - d=-5s3 sl4 - d =513

5 -d=s4 s15 - d =sl14

$6 - d =55 s16 - d =sl15

s7-d=-s6 s17 - d =sl16

s8 - d=y¢7 s18 - d =s17 - done +s18 - st.
$9 - d =58

5.8.2 Ouiput Equations
INT = sl
LD = /s2 active-low signal
Bl =53+ 54 +5s5+s6+ 57 +5s8+5s9
B2 =511 4512 4513 +s14
B3 =12 + 13 +s14
CE = /(s4 +s5+36+s7+s8+sll+s12+5s13+s14) active-low signal
R=/(s5+s6+s7) active-low signal
W = /s13 active-low signal
EC =sl6
DPI = s6
M = (sO+ sl +s2+5s18); considering the high signal levels
instead of low signal levels
ACK =s18.

132 The One Hot Technique in Finite-State Machine Design

Ons I 100ns |200ns ISODHS |40()ns ISDOnS ISOOnS |700ns
(S S S et S ot S i s U i SN M it Y D it Y It e B

test.clk

test.rst

||
test.pst || |
testst | |
test.done [
test.load
test.so [~ | [
testst | [|
test.s2 [
test.s3 Il Il
test.s4] [
test.s5 Il I
test.s6]]
test.s7 [[
test.s8 [1
test.s9 [[
test.s10]]
test.s11] [
test.s12 M Il
test.s13] 1
test.s14 [[
test.s15 1 1
test.s16 [[
test.s17] 1 |
test.s18 1|
testv | [1 |
test.B2 [] [1
test.B3 [1 [1
test.EC]]
test.LD L]
testm [| [
testoE || | R | I
test.W LI L
test.R
test.DPI]]
test. ACK [|
test.INT [

Figure 5.21 Simulation of the DMA FSM block.

The FSM block is simulated in Figure 5.21. In this simulation, the main loop comprising of states
s3 to s17 is traversed twice. On the second loop, the done input is true (logic 1) and the FSM
moves to s18 before returning back to state sO. This proves the operation of the FSM.

5.9 HOW TO CONTROL THE DYNAMIC MEMORY ACCESS
FROM A MICROPROCESSOR

The DMA systemiis started with the start input, which in the previous design would need to be via
an output port from the microprocessor. This is sometimes useful, since it avoids the need for
address decoding logic.

A more appropriate way would be to have this signal via the memory (or I/O map) of the
microprocessor. Normally, this would require using a byte-wide port.

In Figure 5.22, the start signal st is generated by a microprocessor using a spare address
location. The address used here is 380 hex or 11 1000 0000 binary for this purpose. A typical
memory or Input/Output access cycle is illustrated, from which it is clear that when the chip
enable Ce and the IOW are both low (as would be generated by the microprocessor) the output
from the address decoding logic corresponding to the address 380 hex would go high. The next

How to Control the Dynamic Memory Access 133

T1 T2 T3 T4 T1 T2

S O N B B [A

Iow / |
_|
ST \ Rising edge of
3 latches St into the D flip-flop
CE > 380h st e Latched st
Address —
Address Bus . _
Decoding — Yo
) From Logic 386h to clearlatch
MICI’OpI’OCESSOI’
IOW——pp 1/0 location 380h appears
IOR —— | As a 1-bit output port
Representing the input st.
clock This needs to be latched

Into a 1-bit buffer so it can
be read by the FSM.

Figure 5.22 Generating a start signal from a microprocessor for the FSM.

clock pulse from the microprocessor clock (T3 rising edge) would clock the st value into the
D-type flip-flop.

The microprocessor would need to use an address (386 hex in this case) to reset the D flip-flop
atan appropriate time. However, before this, the microprocessor would need to wait for the ACK
response from the FSM.

Figure 5.23 illustrates how this could be done, together with the generation of the st
signal. In Figure 5.23, the additional data latch is used to store the state of the FSM output
ACK. The FSM raises the ACK signal line and clocks it into the data latch with the pak
signal (added to the FSM for this purpose). The microprocessor can read the ACK signal by
addressing 381 hex, which takes the tri-state buffer out of its tri-state, thus setting bit dO of
the data bus to that of the ACK signal stored in the D-type flip-flop during the memory or IO
read cycle of the microprocessor.

The ACK signal will be read by the microprocessor in the T4 state on the rising edge of CE and
IOR signals during the read cycle (see Figure 5.24) into an appropriate internal register within
the microprocessor.

The state diagram fragment shown in Figure 5.25 shows the relevant state sequence needed to
use the microprocessor memory or IO mapped control. Note that this can be used with the other
states of Figure 5.20 in the DMA controller.

Of course, this example is based upon hypothetical microprocessor bus timing, but it does
illustrate a possible method.

134 The One Hot Technique in Finite-State Machine Design

1. 1/O location

380h appears As a one bit port
representing input St. \
CE > 380h st Latched st| st
Address = FSM
Address Bus)]
q Decoding
. _|Ack
. From Log IC 386h to clear]latd]
Mlcroprocessor
IOW—po|
IOR 4. Address 386his| LPAK CLR
Used By the
microprocessor
clock to reset the DFF
DO Effectively a

\

One bit port Tri-State

D1
I Buffer _
D2 Q crR
— ﬂ 2. FSM raises ACK
X . at the appropriate
—D3 3. T,”'State Buffer is time, and clocks It
Activated when the into the DFF
D4 Microprocessor addresses o ine 2
ficrop with PAK signal.
it with I/O address 381h.
D5
D6 ST = 380h = a9-a8-a7-/a6-/a5-/a4-/a3-/a2-/a1-/a0-/Ce-liow
D7 i
— ACK = 381h = a9-a8-a7-/a6-/a5-/a4-/a3-/a2-/a1-a0-/Celior
Data Bus of
Microprocessor CLR = 386h = a9-a8-a7-/a6-/a5-/a4-/a3-a2-a1-/a0-/Ce-liow

Figure 5.23 The whole arrangement for writing to and reading from the FSM.

5.10 DETECTING SEQUENTIAL BINARY SEQUENCES
USING A FINITE-STATE MACHINE

A very common requirement in communication and computer network systems is to detect
binary sequences. The following example illustrates the idea and can be scaled up and changed
to detect other sequences.

One common approach is to insert a shift register into the transmission line and use
digital comparators to detect the incoming binary stream after the number of bits corre-
sponding to the binary code have been shifted into the shift register. This, of course,
introduces an n-bit delay. So, to detect a 4-bit code introduces a 4-bit delay. If the code to be
detected is longer (e.g. 8 or 16 bits), or other devices are to be added to the line to detect
other codes, then the delay increases.

An alternative approach is to monitor the transmission line passively in real time and process
the binary bits in an FSM. This will not introduce any delay.

Consider a system such as the one shown in Figure 5.26. In this system, the FSM monitors the
input binary sequence continuously looking for the sequence d = 1101 (this could be any
sequence in practice, but this one will suffice).

The FSM needs to synchronize to 4-bit data streams; in Figure 5.26, the first data stream is
1011, then the next 1101 (the required sequence), followed by the sequence 0011. The output M
should go high at the end of the sequence 1101.

Detecting Sequential Binary Sequences 135

T T2 T3 T4 T T2

oo [LT LT LT
S S —

~
IOR |_§\> Rising edge

of CE and IOR

Latched Store ack into
v microprocessor
ACK
CE - 380h st D gl Latched st
Address — 1
Address Bus . _
_> Decoding [arQ
_ From Logic CLR] 386hto clear latch
Microprocessor
Rl | ACK
IOW—— PAK
IOR — A
clock Qo
CLR
Data bit dO Latched ACK I—

Figure 5.24 The arrangement for reading the ACK signal from the FSM.

Wait for st FSM raise ACK
from Microprocessor when it is required.

Other States
of Figure 5.20

FSM raises CLR FSM pulses PAk
to clear the latch, to latch ack into
and waits for St data latch.

to go low.

State Diagram fragment showing FSM interaction with the Microprocessor

Figure 5.25 Illustration of the state sequence needed for using the microprocessor memory or IO mapped
control.

136 The One Hot Technique in Finite-State Machine Design

dinput sequence

101111010011 —» FSM
—» M output

clk (goes high

rst when sequence

detected)
reset]

Figure 5.26 Binary sequence detector.

The best way to develop the state diagram for this application is to start with a state diagram
that follows the required sequence; see Figure 5.27, where the required sequence d = 1101 is
detected in state s4, where the FSM stops.

However, it is necessary to go through the 4-bit sequence and return to state s0 if the required
sequence is not detected. This is shown in Figure 5.28, where the state diagram is seen to cater for
all possible combinations.

For example, an input sequence of d = 1100 would follow states s0, s1, s2, s3, sO. An input
sequence 1111 would follow states s0, s1, 52, s7, s0; and so on. In this way, the FSM keeps in step
with the incoming binary sequence.

Once the correct sequence is found, the FSM will stop in state s4.

The FSM clock needs to synchronize with the middle of the data bits being monitored; this
could be done using the same technique used in the asynchronous receiver design of Figure 4.20
in Section 4.7.

The design can be implemented using the One Hot method, resulting in the following
equations:

$O - d=s3- /d+5s7

sl -d=s0-d
s2-d=sl-d
s3-d=s2-/d

s4 - d=5s3-d+s4
s5-d=s0"-/d

$6 - d=s5+sl - /d
7 -d=s6+s2 -d

State diagram showing detection of
required sequence

L 0L B0 9@

Required sequence 1101
detected in state s4

Figure 5.27 State diagram segment to detect required sequence.

Detecting Sequential Binary Sequences 137

/d_|

Figure 5.28 State diagram completed for all possible input combinations.

and output
M = s4.

This design can be built up in Verilog and simulated as illustrated in Figure 5.29. This
simulation runs through all possible paths of the state diagram in order to test out the FSM
logic.

|0ns |100ns |200ns |300ns |400ns |5o
oo oo P P

s] L
wstpst] | I
oo B
wo| 1L J1_ 1 L 1]
M N

M 0 [
B M
wse| [Ml
M M

wa| 1T 1]

Figure 5.29 Simulation of the sequence detector.

—

138 The One Hot Technique in Finite-State Machine Design

In the first sequence, the simulation is seen to follow the sequence s0, s5, s6, s7, sO. This is
followed by the sequence s0, s1, 2,83, s4, with M = 1. After this, the FSM s reinitialized back to
sO for another sequence by lowering rst and pst (asynchronous initialization). Then, the
sequence s0, s1, s2, s7, sO occurs. This is followed by other sequences to complete the testing
of all paths through the state diagram. Note that during the last sequence, i.e. s0, s5, s6, the
asynchronous initialization forces the FSM back to s0.

The system could be modified so that it continues indefinitely to monitor the incoming
sequence, providing an M = 1 output whenever the correct sequence is detected. This can easily
be done by making M a Mealy output in state s3, so that

M =53 -d.

If dis not 1 in state s3, neither is M. Of course, state s4 is no longer needed in this case.

Figure 5.30 shows the final state diagram In Figure 5.30, the M output is made a Mealy output
in s3 so that the FSM can return to s0 after any sequence. In this way the FSM can continue to
monitor incoming sequences forever and remain synchronized to the 4-bit pattern.

In Figure 5.31, the sequence detector can be seen to return to sO after detecting the 1101
sequence. Note: the output M is only 1 whend = 1.

The same technique could be applied for longer sequences, making use of more states and
more flip-flops.

One limitation of the sequence detector of Figure 5.30 is that it is limited to detecting one
particular binary sequence, in this case 1101. It would be more useful to have an FSM that could
accept any binary sequence without having to redesign the state diagram.

In Figure 5.30, the FSM looks at the line bits with the same variable d. Instead, the d input
could be compared bit by bit with a number of digital 1-bit comparators (exclusive NOR gates),
each one having a bit of the code to compare the incoming bits with. Figure 5.32 illustrates a
possible arrangement. In this case, a more realistic 8-bit code is to be detected.

Also note that the code to be detected can be stored into a data latch prior to starting the
detection process. This system can be used to detect up to 255 different codes (assuming the code
0000 0000 is not used).

The equation for M is now
M=s3-d

Figure 5.30 Final state diagram for continuous monitoring for the d = 1101 sequence.

Detecting Sequential Binary Sequences 139

s, |10, [2ons,, [%ns fROns, [0S
etdl | [] [] ||

testrst| | I

testpst| | I
testM ﬂ

wol L T1 LT 1]
fest.s1 [11 Tl

fest.s2 [] M [

fest.§3 (] []

test.sh

test.s6

=

1

test.s7 [Tl

Figure 5.31 Final simulation of the sequence detector.

Registered code Check
8-bit code RCO codes
C1 RC1 .
c2 RC2 /f))i>°*
C3 Octal RC3
C4 Data RC4) -
c5 Latch
7
d5
Latch Data RC6 ["
RC7
Serial D input stream D d7

Comparator scheme for checking Data stream codes

Figure 5.32 Comparators used to compare each bit with a pre-stored code.

140 The One Hot Technique in Finite-State Machine Design

Registered code g:gec:

8-bit code w

Co

c =

C2 RC2

c3 g"tta' RC3 g

ata ;)5 >
Cd Latch RC4 ;

o N e}
o |01

d

;

RC5 d

Latch|Data

;

RC6 d

i

Serial dinput stream BC7 Di
i Clk
Comparator scheme for checking data Erable FSM

stream codes connected to FSM

Figure 5.33 Full system of the general 8-bit binary code detector.

The code CO to C7 is loaded into the data latch and is presented as a registered code RCO to RC7
and connected to one input of the single-bit digital comparators.

The input bits from line d are all connected to the other comparator inputs, so that eight
compared bits dO to d7 are available to the FSM.

Figure 5.33 shows the full system: an additional input to the FSM en is used to start the system
and an additional output LD is used to latch the code value to be detected.

The state diagram for the FSM is illustrated in Figure 5.34. The state diagram of Figure 5.34
follows the same basic idea developed in the state diagram of Figure 5.30, but for a byte-wide
code. Note that rather than compare each d bit at the line, the FSM now compares each bit after
it has been compared with the desired code with the 1-bit comparators, first bit dO, then d1,
through to bit d7.

Now the FSM is a fixed sequence that can detect any possible 8-bit code. All that needs to be
done is load the required code into the data latch before starting the detector. The system can be
disabled at any time by disasserting the input en. This will cause the system to stop at the end of
the current sequence then return to state s0.

A little thought shows that the same FSM could be used to detect a number of different codes
one after the other by simply changing the codes in sequence.

One aspect of the system not yet discussed is how to synchronize the system to the line bit
stream. One way to do this would be to start the system off with a synchronization bit stream
code, say 10101010xx, prior to starting the code detection process, where x is an additional bit
that could be either O or 1. This could be broadcast by the sender.

The additional bits are needed to allow the FSM to load the data latch with the desired code to
be detected. The same FSM could be used for this, since all that needs to be done is to load up the
synchronization code. Once the synchronization byte is detected (via M) the code to be detected
would be loaded into the data latch and the code detection sequence started.

Detecting Sequential Binary Sequences 141

Initialize input starts FSM in s0. Controlling device loads code to be
detected into data latch. Then enables detector with En=1. FSM latches

this code into the data latch with Ld signal.

Thereafter, FSM cycles through states according to data input received.
Controlling device can stop the detector at the end of any sequence by
lowering En to 0 and stopping the FSM in state s0.

Figure 5.34 The state diagram for the FSM-based byte-wide code detector.

The One Hot equations can be obtained directly from the state diagram of Figure 5.34:

sO - d=s9 - /en+s0 - /en

sl -d=s0-en

$2 -d=sl+s9 -en+sl6
s3-d=s2-d0

s4 - d=-s3-dl

S5 -d=s4-d2

s6 -d=s5-d3
s7-d=-s6-d4

8§ -d=s7-d5

9 -d=-s8-d6

sl0 - d =52 - /dO

sll - d=s3 - /dl +5sl10
s12 - d=s4 - /d2 4+ 511
s13 - d=s5-/d3+sl12
sld - d =56 - /d4 + 513
sl5 - d=s7 - /d5+sl4
sl6 - d =sl15

142 The One Hot Technique in Finite-State Machine Design

Ons |1 00ns |200ns |300ns |400ns |500ns
Ll 1 1 1 il 1 1 1 il 1 1 1 1l [l 1 1 Ll 1

test.clk

1
testrst f| | ||
test.pst || |]
test.M [
testso [| [
test.s1]_‘
test.s2 [[[
test.s3 [
test.s4 [
test.s5]
test.s6 [
test.s7 [
test.s8 [
test.s9 [
test.s10 [[
test.s11 [[
test.s12 [[
test.s13 [[T |
test.s14]_‘]_L
test.s15 [
test.s16 [
test.en
test.LD [
test.dO \
test.d1
test.d2 \
test.d3
test.d4 \
test.d5
test.d6 \
test.d7

Figure 5.35 Simulation of the FSM sequence detector using a code 11001011.

with outputs

M =59 -d7
LD =sl.

Of course, the code to be detected could be any length, since the state diagram could be
developed for any particular length following the same basic idea.

The simulationin Figure 5.35 shows the system in which the code to be identifiedis 11001011.
This code is first loaded into the latch via the CO to C7 inputs. The simulation then presents a
number of serial d input sequences, with the last one being the one the system is trying to detect.
The M output goes high at the end of this sequence.

The complete system, comparator, octal latch and FSM as connected up in Figure 5.33 is
simulated and illustrated in Figure 5.36. Only the system inputs and output signals are visible
here (see block diagram in Figure 5.33), along with the FSM state sequence so that the
state sequence of the state machine in Figure 5.34 can be followed. Note that the sequence
to be detected in this simulation is C[7:0] = 11001011. This sequence is detected at the end of
the simulation at around 700 ns into the simulation, and can be clearly seen in the bottom two
signals (d input and M output).

Summary 143

Ons 200ns 400ns 600ns |800ns
i (T o i)

test.cO

test.c1

test.c2

test.c3

test.c4

test.c5

test.cé

test.c7

test.en

test.clk

test.rst

test.pst
test.sO

test.s1

test.s2

test.s3

test.s4

test.s5

test.s6

test.s7

test.s8

test.s9

test.s10

test.s11

test.s12

test.s13

test.s14

test.s15

test.s16

test.d

test.M

Figure 5.36 Simulation of the complete 8-bit sequence detector.

5.11 SUMMARY

This chapter has explored the use of the One Hot technique to implement FSMs. These are
particularly useful forimplementation in FPGA devices and have the advantage of not requiring
secondary state variables. The hand calculations are much easier to perform and can be
converted into Verilog HDL easily. Also, owing to the large size of FPGAs, large FSM designs
can be implemented without the need to consider secondary state variable assignment.

6

Infroduction to Verilog HDL

6.1 ABRIEFBACKGROUND TO HARDWARE DESCRIPTION LANGUAGES

This chapter will introduce the fundamental aspects of what has become an essential tool for the
modern digital system designer, namely the HDL. There are many different HDLs used for a
variety of purposes. Some are best suited to low-level design, making use of logic gates and
Booleanequations (e.g. ABEL [1]), while other so-called system-level languages are intended to
aid the design and verification of entire systems comprising both hardware and software
(examples are SystemC [2] and System Verilog [3]).

In addition to the support for digital systems, in which events and values are modelled in
discrete terms, HDLs have evolved to encompass the realm of continuous time or analogue
behaviour. Apart from mentioning these languages in passing, this book will not consider the
details of this category of HDL.

The HDL described in this book is the very popular, and relatively easy-to-learn, Verilog HDL
[4], often referred to as ‘Verilog” or ‘HDL’ (the names ‘Verilog’ or Verilog HDL’ are used
interchangeably throughout this book). The language has a considerable user base among
the digital design communities within both industry and academia across the globe. Verilog
HDL is unique with regard to the breadth of support it provides for describing and simulating
digital systems. Using built-in models of metal oxide—semiconductor (MOS) transistors, the
language allows digital circuits to be described at the so-called switch level, where individual
switches can exhibit detailed timing and signal strength behaviour. The switch level is very
close, in representative terms, to the actual physical implementation of the digital integrated
circuit, this makes Verilog HDL the first choice of language used to verify designs beyond the
circuit level. At the other extreme, the high-level language constructs contained within the
language facilitate the use of a more abstract and, therefore, powerful representation known as
behavioural or register transfer level (RTL) in which the design is represented by storage
registers and operations involving the movement and processing of information stored in them.
It is perhaps the latter capability that makes Verilog HDL and other similar languages the only
effective way of dealing with the complexities of contemporary digital design.

The Verilog HDL started out as a proprietary tool in the 1980s, but soon gained widespread
popularity as digital integrated circuits and systems became more complex. Consequently, it
was introduced into the public domain and subject to standardization by the IEEE in the mid
1990s. The majority of the examples used in this book make use of the Verilog HDL defined by

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

146 Infroduction to Verilog HDL

the IEEE Standard 1364-2001 released in 2002. This version of Verilog HDL introduced many
new powerful features, along with some cosmetic changes, bringing it in line with one of the
other most popular HDLs, namely VHDL (Very High Speed Integrated Circuit Hardware
Description Language) [5].

The two most widely used HDLs, i.e. Verilog HDL and VHDL, despite sharing the same
acronym, differ in terms of syntax and general appearance, the latter being similar to the Ada
programming language [6] and the former having some C-like features. Despite these cosmetic
differences, the two HDLs share very similar semantics and tend to be used in the same manner
towards achieving the same eventual goal of designing and implementing a cost-efficient digital
system that meets the specification in terms of performance and economics.

In addition to their use in design simulation and verification, both Verilog and VHDL can be
used as the input language to the automated process of hardware creation known as logic
synthesis [7]. The vast majority of digital circuits implemented in actual hardware have been
synthesized from a design description written in one of these languages. Modern logic-synthesis
software tools are highly reliable, producing optimum and efficient logic circuits often imple-
mented in the form of programmable logic. It should be noted that the role of the digital designer
isnoless important, however, despite the availability of such tools. What has happened is that the
designer is now able to work at a higher level of abstraction, making use of the expressive power
of the HDL to create ever more complex designs, while the detailed issues and processes
surrounding implementation have been largely automated.

The use of design languages is now well established and the modern electronic designer
needs a working knowledge of at least one of the popular HDLs to compete in the employ-
ment market. Migrating designs between one particular HDL and another is a relatively
straightforward task, once the fundamentals have been mastered. It is far more challenging to
learn and master an HDL from scratch for the first time, and apply it to a real-world design
problem, than it is to convert a given design into an alternative language, having already
mastered an HDL.

As mentioned previously, the huge growth in the use of HDLs such as Verilog HDL and
VHDL, along with the constant increase in complexity and integration of hardware and
software, brought about by the advances in microelectronic technology, has resulted in the
development of what are referred to as system-level languages such as SystemC [2] and
System Verilog [3].

While SystemC has been developed around the popular C++ language and, therefore, lacks
support for low-level digital design, System Verilog is a superset of Verilog HDL and, therefore,
possesses all of the digital hardware modelling capabilities of Verilog in addition to the higher
level data abstraction and software integration needed by today’s system-on-a-chip designers.

By learning Verilog HDL, therefore, the digital designer is setting down the foundations for a
long and prosperous career, with the comfort of knowing that support exists within the design
tools and languages for the ever more complex designs of the future.

To summarize this section, here are some of the key advantages of using an HDL such as
Verilog HDL.:

e Technology independence — designs written in an HDL are largely independent of the target
technology and, therefore, future-proof.

e Textual descriptions are concise, unambiguous and self-documenting.

o Standard language promotes design reuse and portability between design tools.

Hardware Modelling with Verilog HDL: the Module 147

e Textual descriptions replace or augment schematics.

e Automated design — logic synthesis tools accept designs written using an HDL.

e High-level design — the designer is freed from the tedium of gate-level design to concentrate
on system-level aspects.

6.2 HARDWARE MODELLING WITH VERILOG HDL: THE MODULE

In Verilog HDL, the basic unit of hardware is known as a module. In common with C-language
functions, modules are free standing and cannot, therefore, contain definitions of other modules.
A module can be instantiated within another module, however, in a similar manner to whicha C
function can be called from another C function; this provides the basic mechanism for the
creation of design hierarchy in a Verilog description.

Listing 6.1 shows the basic layout of a module:

module module-name (list-of-ports);
local wire/reg declarations
parallel statements

endmodule

Listing 6.1 Basic layout of a module.

Note that in this and subsequent listings all keywords are shown in bold. The hardware
descriptionis enclosed by the keywordsmodule and endmodule, the former being immediately
followed by the name of the module and a list of ports enclosed in parentheses. (Some modules
do not require ports; therefore, the 1ist-of-ports is empty.)

Note that the semicolon at the end of the first line (the module header) is always required, but
no semicolon is required after the bracketing keyword endmodule.

Within the module header, the 1ist-of-ports enclosed between the parentheses fully
specifies the size (number of bits) and direction of the ports (input or output, etc.), along with the
name of the port.

In this manner, the first line of a module contains all of the details of the module that are
visible from outside, i.e. the module header represents the interface specification or module
prototype.

Immediately below the module header, items that are to be used within the confines of the
module are declared. The second line of Listing 6.1 shows the most common local objects to be
reg and wire; these represent internal storage and/or connections used within the module.
Consistent with other languages, Verilog requires that all objects mustbe declared before they are
referenced; therefore, this means that they tend to be located at the top of the module body. The
local wire and reg objects represent signals used within the module to link together the logical
elements described by the so-called parallel statements. The term ‘parallel statements’ refers to
the manner in which this group of statements executes during a simulation, i.e. concurrently, in a
manner similar to that of real digital hardware. The parallel statements describe the behaviour,
structure and/or data flow of the design encapsulated by the module. They can take a variety of
forms; among these are primitive gates, module instantiations and continuous assignments, all of
which will be described in detail in due course.

148 Infroduction to Verilog HDL

1 module myxor (output y, input a, Db);
2 assign y = a " b;

3 endmodule

s Oo—
b y

Figure 6.1 A simple module.

A Verilog module description consists of case-sensitive ASCII text, the file containing the
text of a module with a given module-name is conventionally stored under the filename
‘module-name.v’. An example of a very simple module is shown in Figure 6.1. The listing
in the figure includes line numbers that are for reference purposes only; they must not
appear in the actual source text.

As shown in Figure 6.1, the module describes a two-input exclusive-OR gate named myxor
having single-bit inputs a and b and an output y. The names and direction of the module ports are
specified by the comma-separated list enclosed within parentheses on line 1. The ports of a Verilog
module have a default width of 1 bit, and in some cases a port may need to be both an input and an
output, i.e. bidirectional. Verilog uses the reserved word inout to specify a bidirectional port.

The functionality of the module given in Figure 6.1 is defined by the so-called continuous
assignment statement on line 2, assigning the output y the expression a ~ b (where * is bit-wise
exclusive-OR in Verilog). The keyword assign is used to indicate a continuous assignment.
Such a statement creates a static binding between the expressions on the left- and right-hand
sides of the = operator; it is most commonly used to describe combinational logic.

Despite the similarity with an assignment used in the C language, the continuous assignment
online 2 in Figure 6.1 is a parallel statement; this means that it is constantly active and awaiting
events on either of the input signals a and b to trigger its execution. Such events would depend on
the activity of external sources applied to the module inputs.

Specifically, whenever a change in value occurs on either or both of the inputs a and b, the
expression on the right-hand side of the assignment on line 2 is evaluated and the result is
assigned to the target of the continuous assignment on the left-hand side of the = operator
(output y) at the start of the next simulation cycle.

A module may contain any number of continuous assignment statements, all of which act in
parallel and, therefore, may be written in any order.

Figure 6.2 shows an example of a module containing multiple continuous assignments. Such a
description is sometimes referred to as a dataflow style description. The Verilog source
describes the logic diagram shown below the text in the figure. In this example, each gate is
modelled by a separate continuous assignment on lines 7, 8 and 9. An alternative would have
been to describe the logic using a single statement such as

assign F=~((A&B)|(C&D));

The above assignment illustrates the similarity between Verilog and the C language in terms of
the bit-wise logical operators: inversion (~) , logical AND (&) andlogical OR (|) . Also,note

Hardware Modelling with Verilog HDL: the Module 149

1 //Note — Comments are written in the same

2 //style as C++ (block comments use /* */)

3 //Verilog description of a AND-OR-INVERT gate
4

5 module AOI (input A, B, C, D, output F);

6 wire W1, W2;

7 assign Wl = A & B;

8 assign W2 = C & D;

9 assign F = ~(Wl | W2);

10 endmodule

A Wi
B
F
C
D W2

Figure 6.2 A Verilog AND-OR-INVERT module.

the use of parentheses in the above assignment, these force the order of operator evaluation to
reflect the logical structure being described.

Note that the continuous assignment statements on lines 7, 8 and 9 could have been written
in any order without changing the behaviour of the logic, internal single-bit wires (declared
on line 6) are used to connect the outputs of the two AND assignments (lines 7 and 8) to the inputs
of the two-input NOR assignment. The order of execution of the continuous assignments
on lines 7, 8 and 9 is determined by events on the primary inputs A, B, C, D and internal wires
Wl and wW2.

For example, if input A changed from logic O to logic 1, this event on A would cause the
assignment on line 7 to execute. This, in turn, would cause the value on wire W1 to change from
logic Otologic 1, assuming input B was already at logic 1. It should be noted that the event on w1
occurs at the same time as the event on input 2, since the continuous assignment does not specifty
any propagation delay. However, the simulator updates signals using a mechanism that involves
discrete cycles known as simulation cycles, in which signals are updated as a result of assign-
ment execution.

An infinitesimally small delay, sometimes referred to as delta delay, elapses each time
the simulation cycle advances. So, if the event on input A occurred at a time of 10 ns,
the resulting change in wire W1 would occur at a time of 10 ns + 1d, where d represents
‘delta’.

Referring back to Figure 6.2, an event on W1 has the effect of triggering the continuous
assignment on line 9, which, depending on the value of W2, may or may not result in a change in
the module output F. If a change in F were to occur, it would be at a time of 10 ns + 2d, due to the
one-delta introduced by the assignment execution.

A wire is a particular case of the more general category of Verilog objects known as nets, all
of which share the common requirement of having to be driven continuously, either by a

150 Infroduction to Verilog HDL

continuous assignment or by virtue of being connected to the output of a primitive gate or
module instantiation.

Note: the left-hand side, or target, of a continuous assignment statement must be a
wlre.

The portsof amodule (2, B, C, Dand Fonline 5 of the example shown in Figure 6.2) are also
wires by default; as such, they may appear on the left- or right-hand sides of continuous
assignments, depending on whether they are outputs or inputs respectively. Unlike some
HDLs, the Verilog language allows ports that have been defined as outputs to appear on the
right-hand side of an assignment. This flexibility is included to reflect a common situation in
hardware, where a module output signal is internally fed back into an input within the same
module.

Figure 6.2 also shows the format used in Verilog for adding comments to a description. Lines
1, 2 and 3 illustrate the similarity between Verilog comment delimiters and those used by the C
and C++ languages. Comments are a useful tool for adding documentation to a design
description.

The next example of a Verilog module illustrates several additional aspects of the language
not yet mentioned.

Figure 6.3 shows a very simple Verilog description of a 4-bit binary adder along with its
corresponding symbolic representation. The module header, spanning lines 1, 2, 3 and 4, shows
how multi-bit ports are defined. In this case, the inputs a and b and the output sum are all 4 bits
wide, being represented as buses on the symbol.

1 module add4(output [3:0] sum,

2 output c¢ out,

3 input [3:0] a, b,

4 input c_in);

5 assign #15 {c_out, sum} = a + b + c_in;

6 endmodule

c_in
—) -
add4 SUM =
—) |
c_out

\

Figure 6.3 Verilog module and symbol for a 4-bit adder.

Hardware Modelling with Verilog HDL: the Module 151

For example, line 3 of the listing given in Figure 6.3 defines two input ports each having 4 bits
ordered 3 down to 0:

input [3:0] a, b,

Ports having the same direction and width can be listed together or on separate lines, whichever
is preferred. The expression [3: 0] is the bit range of the port; for mathematical purposes, the
left-hand bit (in this case bit 3) is always assumed to be the most significant bit.

The module presented in Figure 6.3 is described by a single continuous assignment statement
situated on line 5:

assign #15{c out, sum} =a+ b+ c in;

The above assignment gives some indication of the expressive power of an HDL such as Verilog.
To describe an adder, it is simply a case of adding the three input port values together using the
built-in 4 operator whenever any of the inputs change, and continuously assigning the result to
the outputs. If required, the adder could also have been described in terms of Boolean equations,
logic gates or even individual MOS transistor switches, such is the flexibility of Verilog. There
are a couple of important points concerning the above assignment that are worth highlighting at
this point:

e The expression on the right-hand side of the assignment operator performs an unsigned
addition by default.

e Since a and b are referred to without specifying a bit range, their entire 4-bit values are added
along with the single-bit carry input ¢_in.

e Thecarryinputc_inisautomatically added to the least significantbitsof aand b (a[0] andb
[01).

e The result produced by adding the three inputs is potentially 5 bits in length; therefore, the
target of the continuous assignment is the concatenation of the outputs ¢ _out and sum (using
the { } operator), with c¢_out occupying the most significant bit position (bit 4).

e The inclusion of #15 after the keyword assign indicates a delay of 15 time-units between
any input change and the resulting change in the outputs. Time delays are described in more
detail in Chapter 7.

In all of the above examples of Verilog modules, all the objects representing digital signals are
of type wire. This includes both the internal signals and the module ports. This is due to the
simple combinational nature of the examples considered thus far: each module has defined a set
of simple combinatorial relationships between the inputs and outputs; there is no need to store
any values. Unconnected wires are effectively undriven and, therefore, are assigned the high-
impedance value z.

In addition to wires, Verilog provides the reg (short for register) type variable to describe
signals that have the ability to retain, or store, the last value assigned to them.

In common with wires, the reg-type signal defaults to 1 bit, but it can also be defined as
having multiple bits using the same notation as wires, as illustrated by the following
example:

reg [7:0] count; //an 8-bit register variable

The use of the reg object will be considered in detail in Chapter 7.

152 Infroduction to Verilog HDL

6.3 MODULES WITHIN MODULES: CREATING HIERARCHY

An important tool used by software engineers is so-called top-down design. Simply described,
this involves breaking a complex problem into a set of clearly defined sub-problems, which may
in turn be further subdivided into yet simpler problems. In the C/C++-languages, and others, the
basic unit of execution is the function or procedure; these self-contained blocks of code are
intended to perform a relatively simple task. The software engineer will create the functions
required to implement the low-level tasks and make use of them in higher level functions by
means of the function or procedure calling mechanism. In this manner, a complex software
application can be implemented as a hierarchy of functions nested to any required depth. In
digital hardware design, a similar hierarchical approach can be applied to complex design
problems by means of module instantiation.

As stated earlier, modules can instantiate, or create an occurrence of, other user-defined
modules as well as predefined gates and switches. In this manner, Verilog provides support for
the fundamental tools used in the creation of complex digital systems, namely hierarchy,
modularity and regularity [8].

Creating hierarchical designs in Verilog is quite straightforward. Having defined a module
and stored it in a text file, it may be compiled into a library (or, in some tools, a project database)
and referenced in other modules using the following syntax:

module-name instance-name (list-of-connections) ;

In the above, the module name is the name of the module as defined by the module header, the
instance-name is a unique name assigned to this particular instance or occurrence of the
module. The 1ist-of-connections defines the details of how the instanced module’s ports
are connected within the enclosing, or parent, module.

Figure 6.4 shows the block diagram of a digital system described by a Verilog module
named modT. As shown in the figure, the so-called parent module, modT, contains three

modT
Ul out1
4
in1 + X modA v _l
5 wi K
U3 I— F modB G out2
E
in2 M modC N +w2—| u2
8

Figure 6.4 Block diagram of a module containing instances of other modules.

Modules within Modules: Creating Hierarchy 153

instances of other previously defined modules having names modA, modB and modC; the
latter are sometimes referred to as child modules. The labels U1-U3 represent the unique
instance name for each instantiation; such labels are mandatory, since any given module
may be instantiated more than once.

The names of the ports of each child module shown in Figure 6.4 are enclosed within the
module’s block; inputs enter on the left or bottom edge and outputs exit on the right or top
edge.

Listing 6.2 shows the equivalent Verilog description of the block diagram of Figure 6.4.

1 module modT (input [4:0] inl,

2 input in2,
3 output [3:0] outl,
4 output out2) ;

5 wire [7:0] w2;

6 wirewl;

7 modAULl(.X(inl),.Y(wl));
8 modBU2(.F(wl),.E(w2),.K(outl),.G(out2));

9 modCU3(.M(in2),.N(w2));

10 endmodule

Listing 6.2 Verilog description for modT.

As was the case previously, the line numbers along the left-hand column are included for
reference purposes; they do not form part of the module text. Lines 1 to 4 define the module
header for modT: input inl is a 5-bit port and output out1 is a 4-bit port; all remaining ports
are single bit. Lines 5 and 6 declare two internal wires used to link modules moda and
modC to modB.

The block structure shown in Figure 6.4 is effectively created by the module instantiation
statements on lines 7, 8, and 9. Each line begins with the name of the module being instantiated;
this is followed by a space and then the unique instance name (U1, U2, .. .).

In Verilog, there are two alternative ways of specifying module connectivity: the preferred
method, known as explicit association, is used in Listing 6.2.

In this notation the ports of the child module are explicitly associated with particular signals
by means of the ‘dot’ (.) notation, whereby the name of the signal being connected to the port is

154 Infroduction to Verilog HDL

given in parentheses immediately after the selected port name, as shown below:

module-name instance-name (.port-name (net-name),...);

Explicit association has two important advantages over the second method that is sometimes
used to define connectivity (discussed below):

e the connections may be listed in any order;
o the presence of both the port name and the name of the signal to which itis attached minimizes
the possibility of errors.

The second method of defining module connectivity is known as positional association. In
this notation, each port of the instantiated module is connected to the net occupying the
corresponding position in the port list of the child module. For example, to instantiate module
modA using positional association:

modA Ul (inl, wl); //positional association

Clearly, positional association is less robust than explicit association due to the possibility of
listing the connected signals in the wrong order. The Verilog compiler may not always report
errors such as mismatches in the bit width or port direction caused by the wrong ports being
connected to the wrong signals.

Occasionally, itis necessary to leave certain ports of a module unconnected. This can apply to
both inputs and outputs. Regardless of whether explicit or positional association is used,
unconnected ports are indicated by simply leaving blank the space where the connected signal
name would normally appear. The two lines shown below illustrate the appearance of uncon-
nected ports using the two alternative formats:

//output port ‘K’ is open circuit
modB U2 (.F(wl), .E(w2), .K(), .G(out2));
//input port ‘E’' 1is unconnected
modB U4 (wl,, outl, out2);

When an input is left unconnected, the Verilog simulator will force the corresponding port to
take on the high-impedance value z.

As mentioned previously, Verilog uses two types of object to model signals in digital
hardware:

e netor wire —must be continuously driven. The primary use is to model connections between
continuous assignments and instantiations.

e reg-retains the last value that was assigned to it. Often (but not exclusively) used to represent
storage elements.

Verilog imposes a set of rules regarding the nature of module ports and the type of object they
can be connected to in a hierarchical design. Within the confines of a module, ports of direction

Verilog HDL Simulation: a Complete Example 155

module
input
reg or net net output net
—r—>
reg or net
inout
t '
ne net

port

Figure 6.5 Illustration of Verilog port connectivity rules.

input or inout are implicitly of type net (defaulting to wire). Module output ports can be of
either the net or reg type.

The output and inout ports of a module must be connected to nets at the next level up in the
hierarchy. However, an input port may be driven by either a net- or a reg-type signal.

The above rules are summarized in Figure 6.5.

6.4 VERILOG HDL SIMULATION: A COMPLETE EXAMPLE

In this section, a complete example of a Verilog-HDL design, including a simulation fest-fixture
is presented. One of the key advantages of using an HDL, such as Verilog, is the ability to use the
powerful features of the language to create the simulation environment for the design, as well as
the design itself. This is the idea behind the so-called test-fixture (sometimes referred to as test-
bench or test-module).

The main purpose of the test-fixture is to verify correct operation of the design; this can
involve simply generating an input stimulus in order that the output responses may be observed,
or more sophisticated techniques may be used to detect subtle design errors in more complex
designs.

The principal advantage of the test-fixture results from the fact that it is written in the
same standard language as the design and, therefore, provides the flexibility of simulation
tool independence, being capable of running on any system that supports the IEEE standard
Verilog.

Figure 6.6 shows the Verilog description and symbol for a single-bit binary adder [1].
The module FA uses the dataflow style of description to capture the behaviour of the logic;
continuous assignments on lines 2 and 3 contain Boolean equations for the sum and carry
outputs of the adderrespectively. In terms of propagation delays, the adder module is ideal.
Changes in any of the module inputs A, B and ci will trigger execution of the two
continuous assignments, causing the S and Cy outputs to be updated after one simulation
cycle (delta).

The full adder module shown in Figure 6.6 could be described in a variety of alternative
ways, ranging from primitive MOS switch circuitry at the lowest level, to high-level

156 Infroduction to Verilog HDL

1 module FA(output S, Cy, input A, B, Ci);

\S)

assign S = A"B"Ci;
3 assign Cy = (A&B) | (A&C1i) | (B&C1i);

4 endmodule

— B FA Cy[—»

Figure 6.6 Verilog module and symbol for a binary full adder.

behavioural style. In this manner, Verilog supports the idea of top-down design, whereby a
design is initially captured in an abstract manner to enable rapid verification of the design
concept. The design can then be refined by changing its representation into a more detailed
form, becoming closer to the eventual hardware technology being targeted.

Having defined the single-bit adder module, Figure 6.7 illustrates how four full adders can be
cascaded to form the so-called 4-bit ripple carry adder [1].

The module header (lines 1 and 2) for Add4 now defines outputs and inputs having a range of
3:0, i.e. 4 bits. The carry-input to the least significant bit and the carry-output from the most
significant bit are the only single-bit ports.

The 4-bit adder is constructed using four module instantiations of the full adder module,
having instance names fa0—fa3; these are situated on lines 4—11. The full adders are
interconnected by the carry vector Cy (declared on line 3), as shown in the circuit below the
listing, along with the external carry input Cin and the carry output Co, forming the ripple
carry chain.

Notice the use in the listing in Figure 6.7 of explicit association and bit selection in
defining the connectivity of the instantiated full adder modules. For example, individual
bits of the A and B input vectors are connected to the corresponding full adder stage input
ports by including the relevant bit number in square brackets after the name of the port, as
shown below:

.A(Ain[1]) //FA port ‘A’ connects to bit-1 of input vector ‘Ain’

Although slightly longer, this technique is far clearer and leads to fewer errors being incorpo-
rated into the design.

Having constructed the 4-bit adder module, a test-fixture is used to verify the correctness of
the design. Listing 6.3 and Figure 6.8 respectively show the Verilog listing and block diagram of
a suitable test-fixture for the Add4 module.

Verilog HDL Simulation: a Complete Example 157

1 module Add4 (output [3:0] Sum, output Co,
2 input [3:0] Ain, Bin, input Cin);
3 wire [2:0] Cy;
4 FA fa0(.S(Sum([0]), .Cy(Cy[0O]), .A(Ain[0]),
5 .B(Bin[0]), .Ci(Cin));
6 FA fal(.S(Sum[1l]), .Cy(CyI[1l]), .A(Ain[1]),
7 .B(Bin[1]), .Ci(CyI[0]));
8 FA fa2(.S(Sum([2]), .Cy(Cy[2]), .A(Ain[2]),
9 .B(Bin[2]), .Ci(CyI[1l]));
10 FA fa3(.S(Sum[3]), .Cy(Co), A(Ain[31]),
11 .B(Bin[3]), .Ci(CyI[2]));
12 endmodule
fa0 i fa1 i fa2 i fa3
Bin[0] Bin[1] Bin[0] Bin[3]
Ainfo) Lp{A FA A1) A FA A2 A FA A3 A FA
B Cy B Cy B Cy B Cy —|
—Cin® Ci S Cylol—» Ci S Cylll—»| Ci S Cvi2l— Cj S Co
| |
Sum[0] Sum(1] Sum[2] Sum(3]
Figure 6.7 Verilog module and circuit for a 4-bit adder.
mut
Amlie-| A
Sum S -
initial block B P Bin Add4
/ Co ' C_out—p
C_in—»{ Cin
error-»
check_sum

Figure 6.8 Block diagram of 4-bit adder test-module.

158 Infroduction to Verilog HDL

1 ‘timescalelns/1lns
2 module Test Add4(); //test module - no ports needed

3 //input stimulus
4 reg(3:0] A, B;
5 regC in;

//wire to hold check sumand error flag
7 wire[4:0] check sum;
8 wireerror;

9 //output responses
10 wire[3:0] S;
11 wireC out;

12 integer test;

13 initial //only allowed in test module — runs once only
14 begin

15 {A, B, C_in} =9'b000000000;

16 #100; //wait for 100 time units

17 for (test =0; test <512; test =test +1)

18 begin //apply all input values

19 {A, B, C_in} =test;

20 #100;

21 end

22 $stop; //system command - stops the simulation
23 end

24 //instantiate the module-under-test
25 Add4mut (.Sum(S),.Co(C out),.Ain(A),.Bin(B),
26 .Cin(C_in));

27 //add inputsusingbuilt-in '+ ' operator
28 assigncheck sum=A+B+C in;

29 //compare withmut output

30 assignerror = (check sum!={C out, s});

31

32 endmodule

Listing 6.3 Verilog test-module for 4-bit adder.

The block diagram of Figure 6.8 shows the structure of the test fixture. The conventional name
given to the module being tested within the test fixture is module-under-test or mut, as shown
above the symbol of the Add4 module in Figure 6.8. The Verilog test-fixture generates a set of test
input stimuli for the adder inputs 2, B and Cin by means of a behavioural construct known as an
initial sequential block; this is represented by the circle to the left of the adder in Figure 6.8.

Verilog HDL Simulation: a Complete Example 159

In order to perform a basic check that the 4-bit adder performs the correct operation, the built-in
Verilog + operator is used to produce a 5-bitresultnamed check _sumfrom the initial block outputs.

The check sum value is compared with the outputs of the 4-bit adder using the built-in
Verilog not-equal-to operator (!=). A diagnostic output named error indicates when there is a
mismatch between the outputs of the adder and the result of performing the summation of the
stimulus. In this manner, the test-fixture provides a simple single-bit indication of the validity of
the Add4 module outputs.

The test-fixture Verilog description is given in Listing 6.3. This module makes use of several
language constructs that have yet to be described. These new elements will be discussed briefly
here and covered in more detail in Chapters 7 and 8.

The test-fixture module begins on line 1 with a so-called compiler directive. These
special directives serve a similar purpose to the pre-processor directives found in the C/
C++ languages; however, rather than beginning with the hash (#) symbol, Verilog uses the
grave accent (") character to indicate such a directive. The timescale directive on line 1 of
Listing 6.3 defines a time scale and a time precision, the latter appearing after the ‘/°
character. In this example, both the time scale and precision are specified as 1 ns; this means
that any time delay values appearing within the body of the module are interpreted by the
simulator as representing a whole number of nanoseconds. The time precision can be set to
as small a unit as the femtosecond (10~!%s), thus allowing extremely precise timing
simulation to be performed. In this example, there is no need for such precision.

The module header on line 2 indicates that the Test Add4 module is a test-fixture module
rather than a design module by virtue of the fact that there are no inputs and outputs. Note that the
empty parentheses after the module name are optional and, therefore, can be omitted without
incurring a syntax error; the terminating semicolon is always required, however.

Lines 4 and 5 declare the input stimulus signals that are connected to the inputs of the adder
module. The keyword reg indicates that these signals must retain their value in between being
updated by assignments within the sequential initial block starting on line 13.

The outputs of the module-under-test (lines 25 and 26) and the continuous assignments
on lines 28 and 30 are continuously driven by these statements; therefore, they are declared as
wires on lines 10, 11, 7 and 8 respectively.

The main part of the test-fixture is contained within the sequential initial block covering
lines 13 to 23 in Listing 6.3. As stated previously, all signals that are assigned values by this block
must be declared as type reg, in order that they retain the value last assigned to them during
execution of the block.

The statements enclosed within the initial block execute sequentially and once only. This
means that this type of block is only suitable for use in a test-fixture; it has no direct equivalent in
terms of hardware.

Execution of the initial block starts at line 15, at a simulation time of 0 ns. The inputs are
initialized to logic 0 using the following sequential statement:

{A, B, C_in} = 9'b000000000;

The inputs 2, B and C_in are collectively assigned zeros by grouping them together using the
concatenation operator { }.

Line 16 suspends execution of the sequential block for 100 ns; this allows the module-
under-test toproduce a response to the input stimulus. The hash (#) symbol represents a
time delay in this particular context.

160 Infroduction to Verilog HDL

Following on from the initial time delay, lines 17 to 21 contain a £or loop thatiterates through
the values0to 511y using an integer variable test, thelatter being declared on line 12. Note
that integer is areserved word that declares a signed whole number (usually 32 bits in length)
thatbehavesin a similar manner to a reg, in that it, too, retains its value in between being updated
by assignments within a sequential block.

for (test = 0; test < 512; test = test + 1)
begin //apply all input values

{A, B, C_in} = test;

#100;
end

The body of the £for loop is a block enclosed between the keywords begin and end. The
first statement (line 19) assigns the least significant 9 bits of the integer variable test to the
aggregate of the inputs, this apparent mixing of different types either side of an assignment
is permitted in Verilog.

The second statement within the for loop introduces a 100 ns delay before execution
continues with the next iteration of the loop. In this manner, an exhaustive set of input
combinations are applied to the adder inputs starting at ‘000000000,” and ending at
‘1111111115 (511,), each combination being applied for 100 ns.

The value of the loop variable test is incremented at the end of the loop and tested at the start of the
loop; therefore, when it reaches 512, the condition test < 512 becomes false and the loop
terminates. An important point to note here is the possibility of a £or loop being infinite, i.e. never
terminating. This would occur if the loop variable test had been declared as a reghaving alength of 9
bits rather than as a 32-bit integer. Since the range of values used within the loop and the number of
inputs both correspond to a vector of length 9-bits, this may have seemed a logical course of action.

However, a problem occurs when the value of ‘test’ reaches ‘111111111,’.

Incrementing this value by one results in ‘000000000,’, due to the way in which a 9-bit unsigned
binary number overflows. The terminating condition test < 512 can never be satisfied, since the
9-bit test value can never exceed 511;,. Therefore, if a 9-bit reg had been used as the loop counter
rather than an integer, the simulator would carry on applying the same sequence indefinitely
while using up increasing amounts disk space to store the results!

One possible solution would be to declare test as a 10-bit reg; the spare bit allows the loop
variable to reach the terminating value of ‘1000000000,’.

Having applied an exhaustive set of input values, the simulation is automatically stopped by
means of a very common Verilog system task on line 22, repeated below:

Sstop;

System tasks are always preceded by the dollar ($) symbol and perform a wide variety of
useful functions, ranging from performing detailed timing checks ($setup (), $hold(),
etc.) to outputting simulation data to a file (Sdumpvars, $dumpfile(‘‘filename’)). The
$stop system task is often used within a test-fixture to end the simulation run forcibly; examples
showing the use of other system tasks will be covered in Chapters 7 and 8.

The description of the test-fixture shown in Listing 6.3 concludes with the continuous
assignments on lines 28 and 30 and repeated below:

assign check_sum =A + B + C_in;
assign error = (check sum !={C out, S});

Verilog HDL Simulation: a Complete Example 161

Table 6.1 Details of a few of the most popular Verilog simulator tools.

Name Vendor Web site

Active-HDL® Aldec http://www.aldec.com/education/students/

Student Edition Incorporated

Modelsim-PE Mentor http://www.model.com/resources/student_edition/download.asp
Student**® Graphics

Verilogger®™ Synapticad http://www.syncad.com/syn_down.htm

Xilinx® ISE Xilinx http://www.xilinx.com/ise/logic_design_prod/webpack.htm
Simulator*

*The ISE Simulator is part of the free “WebPACK’ programmable logic design suite available from Xilinx®.
#* A vendor-specific version of Modelsim™® is also available from Xilinx® (ModelsimXE®).

The above assignments generate a single-bit diagnostic signal named error which goes high if
there is a discrepancy between the actual output of the 4-bit adder module and the theoretical
value predicted by the built-in addition operator. Although this may seem a little unnecessary,
given the simplicity of the design, it hopefully illustrates the potential advantage of using the
expressive power of the Verilog language to aid in the verification of a more complex design.

Simulation of the 4-bit adder module and associated test-fixture requires a Verilog-2001 [9]
compatible simulation tool. There are several excellent Verilog simulators available from a
variety of vendors. Table 6.1 contains details of a few of the most popular tools.

Regardless of which of the simulators in Table 6.1 is used, the process of simulation starts with
the creation of the Verilog sources. Itis normal practice to store each individual module’s textual
description in aunique ASCII text file (usually named ‘module-name.v’). Most simulation tools
include a context-sensitive text editor to aid in the creation of the source files; such an editor will
include colour-coded keyword highlighting, line numbering and automatic indentation and
formatting of the language statements. All the previously mentioned features help the designer
to understand and maintain complex designs.

Most simulators make use of the concept of a project. This is essentially a repository for
all of the Verilog files used in the design. Once written, the source files are added to the
project prior to the next step, i.e. compilation. The process of compilation is similar in many
ways to that used in other high-level language development systems: the objective is to

‘ 23.‘5ps‘ ‘
Test_Add4.A[3:0] 7
Test_Add4.B[3:0] P[3 [4 5 [6 [7 [8 [9 [10 [11 [12

Test_Add4.C_in
Test_Add4.5[3:0] |10 [11[11 12 [13[13[14 [15[15 o [1[1] 2 [3] 3[4
Test_Add4.C_out [

‘ 24.‘Ous‘ ‘ ‘ 24.‘5ps‘ ‘ ‘ 25.0us

Test_Addd.check sum[4:0] 10 [11 | 12 [13 [14 [15 | 16 [17 | 18 | 19 [20
Test_Add4.error
Test_Add4.test[31:0] | 23d 231 23 239 234 239 23d 237 234 23d 24d 241 24d 249 244 244 24 247 249 24

Figure 6.9 Partial simulation result for 4-bit adder test-module.

162 Infroduction to Verilog HDL

build an executable model suitable for loading into the simulation kernel, once any syntax
errors have been corrected.

All Verilog simulators provide a graphical output in the form of timing waveforms. Figure 6.9
shows the partial result from running the simulation of the Test Add4 test-fixture module given
in Listing 6.3.

REFERENCES

1. Wakerly J.F. Digital Design: Principles and Practices, 4th edition. New Jersey: Pearson Education,
2006.

. www.systemc.org [2007 October].

. www.systemverilog.org [2007 October].

. www.verilog.com [2007 October]. (Links to IEEE Standards site and other Verilog information.)

www.accellera.org/home [2007 October].

www.adacore.com/home/ada_answers/ada_overview [2007 October].

. www.synopsys.com/products/logic/design_compiler.html [2007 October].

. Weste N.H.E., Eshraghian K. Principles of CMOS VLSI Design. Addison Wesley, 1993; Section 6.2.

. Ciletti M.D. Advanced Digital Design with the Verilog HDL. New Jersey: Pearson Education, 2003;
Appendix I — Verilog-2001.

In addition to the references listed, there are a considerable number of excellent internet sites containing
tutorial and reference material on Verilog; many of these can be located using a standard internet search
engine by entering the keyword ‘Verilog’

7

Elements of Verilog HDL

This chapter introduces the basic lexical elements of the Verilog HDL. In common with other
high-level languages, Verilog defines a set of types, operators and constructs that make up the
vocabulary of the language. Emphasis is placed on those aspects of the language that support the
description of synthesizable combinatorial and sequential logic.

7.1 BUILT-IN PRIMITIVES AND TYPES
7.1.1 Verilog Types

As mentioned in Chapter 6, Verilog makes use of two basic types: nets and registers. Generally,
nets are used to establish connectivity and registers are used to store information, although the
latter does not always imply the presence of sequential logic.

Within each category there exist several variants; these are listed in Table 7.1. All of the type
names, listed in Table 7.1, are Verilog reserved words; the most commonly used types are shown
in bold.

Along with the basic interconnection net type wire, two additional predefined nets are
provided to model power supply connections: supplyO and supplyl.

These special nets possess the so-called ‘supply’ drive strength (the strongest; it cannot be
overridden by another value) and are used whenever it is necessary to tie input ports to logic 0 or
logic 1. The following snippet of Verilog shows how to declare and use power supply nets:

module ...
supplyO gnd;
supplyl vdd;
nand gl(y, a, b, vdd); //tie one input of nand gate high

endmodule

The power supply nets are also useful when using Verilog to describe switch-level MOS
circuits. However, the Verilog switch-level primitives [1] (nmos, pmos, cmos, etc.) are not

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

164 Elements of Verilog HDL

Table 7.1 Verilog types.

Nets (connections) Registers (storage)
wire

tri

supply0 reg
supplyl integer
wand real

wOor time
trio realtime
tril

triand

trireg

trior

generally supported by synthesis tools; therefore, we will not pursue this area any further
here.

Of the remaining types of net shown in the left-hand column of Table 7.1, most are used to
model advanced net types that are not supported by synthesis tools; the one exception is the net
type tri. This net is exactly equivalent to the wire type of net and is included mainly to
improve clarity. Both wire and tri nets can be driven by multiple sources (continuous
assignments, primitives or module instantiations) and can, therefore, be in the high-impedance
state (z) when none of the drivers are forcing a valid logic level. The net type tri can be used
instead of wire to indicate that the net spends a significant amount of the time in the high-
impedance state.

Nets such as wire and tri cannot be assigned an initial value as part of their
declaration; the default value of these nets at the start of a simulation is high impedance
(2).

The handling of multiple drivers and high-impedance states is built in to the Verilog HDL,
unlike some other HDLs, where additional IEEE-defined packages are required to define types
and supporting functions for this purpose.

The right-hand column of Table 7.1 lists the register types provided by Verilog; these have the
ability toretain a value in-between being updated by a sequential assignment and, therefore, are
used exclusively inside sequential blocks. The two most commonly used register variables are
reg and integer; the remaining types are generally not supported by synthesis tools and so
will not be discussed further.

There are some important differences between the reg and integer types that resultin the
reg variable being the preferred type in many situations.

A regcan be declared as a 1-bit object (i.e. no size range is specified) or as a vector, as shown
by the following examples:

reg a, b; //single-bit register variables
reg [7:0] busa; //an 8-bit register variable

Built-In Primitives and Types 165

As shown above, a reg can be declared to be of any required size; it is not limited by the word
size of the host processor.

An integer, onthe other hand, cannot normally be declared to be of a specified size; it takes
on the default size of the host machine, usually 32 or 64 bits.

The other difference between the integer and reg types relates to the way they are
handled in arithmetic expressions. An integer is stored as a two’s complement signed
number and is handled in arithmetic expressions in the same way, i.e. as a signed quantity
(provided that all operands in the expression are also signed). In contrast, a reg variable is by
default an unsigned quantity.

Ifitis necessary to perform signed two’s complement arithmetic on regs or wires, then they
can be qualified as being signed when they are declared. This removes the host-dependent
word length limit imposed by the use of the integer type:

reg signed [63:0] sigl; //a 64-bit signed reg
wire signed [15:0] sig2; //a 16-bit signed wire

The use of the keyword signed to qualify a signal as being both positive and negative also
applies to module port declarations, as shown in the module header below:

module modl(output reg signed [11:0] dataout,
input signed [7:0] datain,
output signed [31:0] dataout?);

Finally, both the integer and reg types can be assigned initial values as part of their
declarations, and in the case of the reg this can form part of the module port declaration, as
shown below:

module modl(output reg clock =0,
input [7:0] datain = 8'hFF,
output [31:0] dataout2=0);

integer i =3;

The differences discussed above mean that the reg and integer variables have different
scopes of application in Verilog descriptions. Generally, reg variables are used to model actual
hardware registers, such as counters, state registers and data-path registers, whereas integer
variables are used for the computational aspects of a description, such as loop counting. The
example in Listing 7.1 shows the use of the two types of register variable.

The Verilog code shown describes a 16-bit synchronous binary up-counter. The module
makes use of two always sequential blocks — a detailed description of sequential blocks is
given in the Chapter 8.

The first sequential block, spanning lines S to 11 of Listing 7.1, describes a set of flip flops that
are triggered by the positive edges (logic 0 to logic 1) of the ‘clock’ input.

166 Elements of Verilog HDL

The state of the flip flops is collectively stored in the 16-bit reg-type output signal named g,
declared within the module header in line 2. Another 16-bit reg-type signal, named t, is
declared inline 3. This vector is the output of a combinational circuit described by the sequential
block spanning lines 12 to 20. This illustrates the point that a reg-type signal does not always
represent sequential logic, being necessary wherever a signal must retain the value last assigned
to it by statements within a sequential block. The always block starting on line 12 responds to
changes in the outputs of the flip flops g and updates the values of t accordingly. The updated
values of the t vector then determine the next values of the g outputs at the subsequent positive
edge of the ‘clock’ input.

module longcnt (input clock, reset, output reg[15:0] g);

1

2

3 reg[l5:0] t; //flip-flop outputs and inputs
4 //sequential logic

5 always @ (posedge clock)

6 begin

7 if (reset)

8
9
1
1

g<=16'b0;
else
g<=qg"” t;

= O

end

12 always Q@(q) //combinational logic
13 begin: t block

14 integer i; //integer used as loop-counter
15 for (1i=0; i<16; i=1+4+1)

16 if (1==0)

17 t[i] =1"b1;

18 else

19 t[i] =qi-1] & t[i—1];

20 end

21 endmodule

Listing 7.1 Use of Verilog types reg and integer.

The second sequential block (lines 12-20) is referred to as a named block, due to the presence
of thelabel t block after the colon online 13. Naming a block in this manner allows the use of
local declarations of both regs and integers for use inside the confines of the block (between
begin and end). In this example, the integer i is used by the for loop spanning lines
15-19, to process each bit of the 16-bit reg t, such that apart from t[0] , which is always
assigned alogic 1, the ithbitof t (t[i]) isassigned the logical AND (&) of the (i — 1)th bits of
gand t. The sequential always block starting on line 12 describes the iterative logic required to
implement a synchronous binary ascending counter.

Built-In Primitives and Types 167

longent

always block
(flip-flops)

I—Q[1510]_>

always block
(t_block)

Figure 7.1 Block diagram of module longcnt.

Figure 7.1 shows the structure of the 1ongcnt module given in Listing 7.1.

Simulation of a4-bit version of the binary counter module 1 ongcnt results in the waveforms
shown in Figure 7.2. The waveforms in Figure 7.2 clearly show the g outputs counting up in
ascending binary, along with the corresponding t vector pulses causing the g output bits to
‘toggle’ state at the appropriate times. For example, when the g outputis ‘0111,’, the t vectoris
‘11115’ and so all of the output bits toggle (change state) on the next positive edge of ‘clock’.

7.1.2 Verilog Logic and Numeric Values

Eachindividual bit of a Verilog HDL reg or wire can take on any one of the four values listed in
Table 7.2. Verilog also provides built-in modelling of signal strength; however, this feature is

generally not applicable to

synthesis and, therefore, we will not cover it here.

Of the four values listed in Table 7.2, logic 0 and logic 1 correspond to Boolean false and true
respectively. In fact, any nonzero value is effectively true in Verilog, as it is in the C/C++

Ons |50ns |100ns |150ns |200ns
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

test_longent.reset

test_longcent.clock

Uy

test_longcnt.longent_ut.t[0]

test_longent.longent_ut.t[1]

._I__I__I__I__I__I__I__I__I__I__

test_longent.longent_ut.t[2]

m 1 1 1 1

test_longent.longent_ut.t[3]

m 1 1

test_longent.longent_ut.t[3:0]

7 A B IF T3 [T 7 [T 3T [FIT[3IT1[711

test_longent.count[0]

test_longent.count[1]

test_longent.count[2]

h_l—_l—_l—

test_longent.count[3]

test_longent.count[3:0]

.0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|O|1|2|3|4

Figure 7.2

Simulation results for module 1 ongcnt (4-bit version)

168 Elements of Verilog HDL

Table 7.2 Four-valued logic.

Logic value Interpretation

0 Logic O or false

1 Logic 1 or true

X Unknown (or don’t care)
z High impedance

programming languages. Relational operators all result in a 1-bit result indicating whether the
comparison is true (1) or false (0).

Two meta-logical values are also defined. These model unknown states (x) and high
impedance (z); the x is also used to represent ‘don’t care’ conditions in certain circumstances.
At the start of a simulation, at time zero, all regs are initialized to the unknown state x, unless
they have been explicitly given an initial value at the point of declaration. On the other hand,
wires are always initialized to the undriven state z.

Once a simulation has commenced, all regs and wires should normally take on meaningful
numeric values or high impedance; the presence of x usually indicates a problem with the
behaviour or structure of the design.

Occasionally, the unknown value x is deliberately assigned to a signal as part of the
description of the module. In this case, the x indicates a so-called don’t care condition, which
is used during the logic minimization process underlying logic synthesis.

Verilog provides a set of built-in pre-defined logic gates, these primitive elements respond to
unknown and high-impedance inputs in a sensible manner. Figure 7.3 shows the simulation
results for a very simple two-input AND gate module using the built-in and primitive. The
simulation waveforms show how the output of the module below responds when its inputs are
driven by x and z states.

1 module valuedemo (output y, input a, b);
2 and gl (y, a, b);
3 endmodule

Referring to the waveforms in Figure 7.3, during the period 0-250 ns the and gate output y
responds as expected to each combination of inputs aand b. Attime 250 ns, the ainputisdrivento
the z state (indicated by the dotted line) and the gate outputs an x (shaded regions) between 300
and 350 ns, since the logical AND of logic 1 and z is undefined. Similarly, during the interval
400-450 ns, the x on the b input also causes the output y to be an x.

time(ns) ->
0 50 100 150 200 250 300 350 400

-
. ‘
%

Figure 7.3 The and gate response to x and z.

Built-In Primitives and Types 169

However, during the intervals 350—400 ns and 250-300 ns, one of the inputs is low, thus
causing y to go low. This is due to the fact that anything logically ANDed with alogic O results in
logic 0.

7.1.3 Specifying Values

There are two types of number used in Verilog HDL: sized and unsized. The format of a sized
number is

<size>'<base><number>.

Both the <size> and <base> fields are optional; if left out, the number is taken to be in
decimal format and the size is implied from the variable to which the number is being assigned.

The <size>isadecimal number specifying the length of the numberin terms of binary bits;
<base> can be any one of the following:

binary borB
hexadecimal horH
decimal (default) dorD
octal oorO

The actual value of the number is specified using combinations of the digits from the set (0, 1, 2,
3,4,5,6,7,8,9, A, B, C, D, E, F). Hexadecimal numbers may use all of these digits; however,
binary, octal and decimal are restricted to the subsets(0, 1), (0-7) and (0-9) respectively. Below,
are some examples of literal values written using the format discussed above:

4'v0101 //4-bit binary number
12'hefd //12-bit hex number
16'd245 //16-bit decimal number
1'b0, 1'bl //logic-0 and logic-1

Generally, it is not necessary to specify the size of a number being assigned to an integer-
type variable, since such objects are unsized (commonly occupying 32 bits or 64 bits, depending
upon the platform).

The literals x and z (unknown and high impedance) may be used in binary-, hexadecimal- and
octal-based literal values. An x or z sets 4 bits in a hex number, 3 bits in an octal number and 1 bit
in a binary number.

Furthermore, if the most-significant digit of a value is 0, z or X, then the number is
automatically extended using the same digit so that the upper bits are identical.

Below, are some examples of literal values containing the meta-logical values x and z:

12'hl13x //12-bit hex number ‘00010011xxxx' in binary
8'hx //8-bit hex number ‘xxxxxxxx' 1in binary

16'bz //16-bit binary number ‘zzzzzzzzzzzzzz2zZ'
11'b0 //11-bit binary number ‘00000000000

170 Elements of Verilog HDL

As shown above, the single-bit binary states of logic 0 and logic 1 are usually written in the
following manner:

1'b0 //logic-0
1'bl //logic-1

Of course, the single decimal digits 0 and 1 can also be used in place of the above. As mentioned
previously, in Verilog, the values 1 ' b0 and 1 'b1 correspond to the Boolean values ‘false’ and
‘true’ respectively.

7.1.4 Verilog HDL Primitive Gates

The Verilog HDL provides a comprehensive set of built-in primitive logic and three-state
gates for use in creating gate-level descriptions of digital circuits. These elements are all
synthesizable; however, they are more often used in the output gate-level Verilog net-list
produced by a synthesis tool.

Figures 7.4 and 7.5 show the symbolic representation and Verilog format for each of the
primitives [1]. The use of the primitive gates is fairly self-explanatory; the basic logic gates, such
as AND, OR, etc., all have single-bit outputs but allow any number of inputs (Figure 7.4 shows
two-input gates only). The Buffer and NOT gates allow multiple outputs and have a single input.

The three-state gates all have three terminals: output, input and control. The state of the control
terminal determines whether or not the buffer is outputting a high-impedance state or not.

For all gate primitives, the output port must be connected to a net, usually a wire, but the
inputs may be connected to nets or register-type variables.

Anoptional delay may be specified in between the gate primitive name and the instance label;
these can take the form of simple propagation delays or contain separate values for rise-time,
fall-time and turnoff-time delays [1], as shown by the examples below:

//AND gate with output rise-time of 10 time units

//and fall-time of 20 time units

and # (10, 20) gl (t3, tl1, a);

//three-state buffer with output rise-time of 15 time unit,
//fall-time of 25 time units

//and turn-off delay time of 20 time units

bufifl # (15, 25, 20) bl (dout, din, cl);

Figure 7.6 shows a simple example of a gate-level Verilog description making use of the built-
in primitives; each primitive gate instance occupies a single line from numbers 4 to 8 inclusive. A
single propagation delay value of 10 ns precedes the gate instance name; this means that changes
atthe input of a gate are reflected at the output after this delay, regardless of whether the outputis
rising or falling. The actual units of time to be used during the simulation are defined using the
timescale compiler directive; this immediately precedes the module to which it applies, as
shown in line 1 in Figure 7.6.

(@)
=3
@
(2]
<
3
<3
o

Verilog Instantiation

in1 out . .
:D— and al (out, inl, in2);
in2
in1

out))
:D— nand nal (out, inl, in2);
in2
in1

out . .
:[>— or ol (out, inl, in2);
in2
in1 t
:Do—ou nor nol (out, inl, in2);
in2
in1 t
:)D_ou xor xol (out, inl, in2);
in2
in1 t
:)Do—ou xnor xnol (out, inl, in2);
in2
in “outt .
_| So—— not ntl (outl, in);
in “outt)
_| > buf bl (outl, in);

Figure 7.4 Verilog primitive logic gates.

Gate Symbol Verilog Instantiation

in out

—>— | bufifi gl(out, in, ctrl);
ctrl

in out

2 bufif0 gl (out, in, ctrl);

ctrl

in out

—l& notifl gl (out, in, ctrl);
ctrl

in out

—lt notif0 gl (out, in, ctrl);

ctrl

Figure 7.5

Verilog primitive three-state gates

172 Elements of Verilog HDL

1 “timescale 1 ns /1 ns
2 module x or s (output y, input a, b);
3 wire tl1, t2, t3, t4;

and #10 gl (t3, tl1, a);
and #10 g2 (t4, t2, b);
not #10 g3 (tl, b);
not #10 g4 (t2, a);
or #10 g5(y, t3, t4);

O I o U1 >

Figure 7.6 Gate-level logic circuit and Verilog description.

Gate delays are inertial, meaning that input pulses which have a duration of less than or equal
to the gate delay do not produce a response at the output of the gate, i.e. the gate’s inertia is not
overcome by the input change. This behaviour mirrors that of real logic gates.

Gate delays such as those used in Figure 7.6 may be useful in estimating the performance of
logic circuits where the propagation delays are well established, e.g. in the model of a TTL
discrete logic device. However, Verilog HDL descriptions intended to be used as the input to
logic synthesis software tools generally do not contain any propagation delay values, since these
are ignored by such tools.

7.2 OPERATORS AND EXPRESSIONS

The Verilog HDL provides a powerful set of operators for use in digital hardware modelling. The
full set of Verilog operators is shown in Table 7.3. The table is split into four columns, containing
(from left to right) the category of the operator, the symbol used in the language for the operator,
the description of the operator and the number of operands used by the operator.

Inspection of Table 7.3 reveals the similarity between the Verilog operators and those of
the C/C++ languages. There are, however, one or two important differences and enhance-
ments provided by Verilog in comparison with C/C++. The main differences between the
C-based languages and Verilog, in terms of operators, are summarized overleaf:

Operators and Expressions 173

Table 7.3 Verilog operators.

Operator type Symbol Operation Operands
Arithmetic * Multiply

/ Divide

+ Add

- Subtract

% Modulus

o Raise to power
Logical ! Logical negation

&& Logical AND

I Logical OR
Relational > Greater than

< Less than

>= Greater than or equal

<= Less than or equal
Equality == Equality

1= Inequality

=== Case equality
l== Case inequality

Bitwise Bitwise NOT

[N NS S R S e i N T O NS T NS TRL i \O N NI (S R S I S I 'O (S R (O I NS I (S TRC i O (S NS T (S I O (S

& Bitwise AND

\ Bitwise OR

A Bitwise exclusive OR

A~ or ~A Bitwise exclusive NOR
Reduction & Reduction AND

~& Reduction NAND

| Reduction OR

~| Reduction NOR

A Reduction EXOR

A~ or AN Reduction EXNOR
Shift > Shift right

< Shift left

>> Shift right signed

K Shift left signed
Concatenation {} Concatenate Any number
Replication {{}} Replicate Any number
Conditional ?: Conditional 3

e Verilog provides a powerful set of unary logical operators (so-called reduction operators) that
operate on all of the bits within a single word.

e Additional ‘case’ equality/inequality operators are provided to handle high-impedance (z)
and unknown (x) values.

e Thecurly braces ‘{’ and ‘}’ are used in the concatenation and replication operators instead of
block delimiters (Verilog uses begin ... end for this).

The operators listed in Table 7.3 are combined with operands to form an expression that can
appear on the right hand side of a continuous assignment statement or within a sequential block.

174 Elements of Verilog HDL

c[3:0]
a[3:0]
a[3l N
—bmﬁD"m_
a2} 3
b[Q]ﬁDC[Z]

a[0] 3\
—[b EO]ﬁDiC[O]_

b[3:0]

// 4 2-input Exor gates
assign ¢ = a[3:0] *b[3:0];

Figure 7.7 Exclusive OR of part-selects.

The operands used to form an expression can be any combination of wires, regs and
integers;but, depending on whether the expression is being used by a continuous assignment
or a sequential block, the target must be either a wire or a reg respectively.

In the case of multi-bit objects (buses), an operand can be the whole object (referenced by the
name of the object), part-select (a subset of the bits within a multi-bit bus) or individual bit, as
illustrated by the following examples.

Given the following declarations, Figures 7.7-7.10 show a selection of example continuous
assignments and the corresponding logic circuits.

wire [7:0] a, b; //8-bit wire
wire [3:0] c; //4-bit wire
wire d; //1-bit wire

Figure 7.7 illustrates the use of the bitwise exclusive OR operator on two 4-bit operands. As
shown by the logic circuit in Figure 7.7, part-selects [3: 0] of the two 8-bit wires, a and b, are
processed bit-by-bit to produce the output c.

Individual bits of awire or reg are accessed by means of the bit-select (square brackets [])
operator. Figure 7.8 shows the continuous assignment statement and logic for an AND gate with
an inverted input.

cl2}
D

//2-input And with inverted I/P
assign d = c[2] & ~ a[6];

Figure 7.8 Logical AND of bit-selects.

Operators and Expressions 175

a[7:0]

a[7
a[6
a[5
a4
a[3
a[2
a[1
al0

//8-input Nor gate using reduction NOR
assign d = ~|a;

Figure 7.9 Reduction NOR operator.

The bit-wise reduction operators, shown in Table 7.3, are unique to Verilog HDL. They
provide a convenient method for processing all of the bits within a single multi-bit operand.
Figure 7.9 shows the use of the reduction-NOR operator. This operator collapses all of the bits
within the operand a down to a single bit by ORing them together; the result of the reduction is
then inverted, as shown by the equivalent expression below:

assign d=~(a[7] |al6] |al5] |al4] |al3] |al2] |all] |al0]) ;

The target d of the continuous assignment statement in Figure 7.9 will be logic 1 if all 8 bits of
a are logic 0, otherwise d is assigned logic 0. All of the reduction operators act on one operand
positioned to the right of the operator. Those that are inverting, such as reduction NOR (~/|) and
reduction NAND (~&), combine all of the bits of the operand using bitwise OR or bitwise AND
prior to inverting the single-bit result. The bitwise reduction operators provide a convenient
means of performing multi-bit logical operations without the need to instantiate a primitive gate.
Finally, if any bit or bits within the operand are high impedance (z), the result is generated as if
the corresponding bits were unknown (x).

The last example, shown in Figure 7.10, illustrates the use of the conditional operator (? :) to
describe a set of four 2-to-1 multiplexers, the true expression a[3 : 0] is assigned to ¢ when the
control expression, inthis case d, is equal to 1 ' b1. When the single-bit signal d is equal to logic
0 (1'b0), the target c is assigned the false expression a[7: 4] .

The unsigned shift operators (<, > in Table 7.3) shuffle the bits within a multi-bitwire or reg
by a number of bit positions specified by the second operand. These operators shift logic Os into the
vacant bit positions; because of this, care must be taken when shifting two’s complement (signed)
numbers. If a negative two’s complement number is shifted right using the ‘>’ operator, then the
sign bit is changed from a 1 to a 0, changing the polarity of the number from negative to positive.

Right-shifting of two’s complement numbers can be achieved by means of the ‘shift right
signed’ (>3>>) operator (provided the wire or reg is declared as signed) or by using the
replication/concatenation operators (see later).

176 Elements of Verilog HDL

Mux
e 3 3: O et A
a[7:0] Y p=c[3:0}—
[7:4]— B
sel
d

//8-to-4 multiplexer using conditional operator

assign ¢ = d ? al[3:0] : a[7:4];
Figure 7.10 An 8-to-4 multiplexer.

The following assignments illustrate the use of the unsigned shift operators:

//declare and initialize X
reg[3:0] X=4'b1100;
Y=X>1; //Result is 4'b0110
Y=X<K1; //Result is 4'b1000
Y=X>2; //Result is 4'b0011

Verilog supports the use of arithmetic operations on multi-bit reg and wire objects as well
as integers; thisis very useful when using the language to describe hardware such as counters
(+, — and %) and digital signal processing systems (* and /).

With the exception of type integer, the arithmetic and comparison operators treat objects
of these types as unsigned by default. However, as discussed in Section 7.1, regs and wires (as
well as module ports) can be qualified as being signed. In general, Verilog performs signed
arithmetic only if all of the operands in an expression are signed; if an operand involved in a
particular expression is unsigned, then Verilog provides the system function $signed () to
perform the conversion if required (an additional system function named $Sunsigned ()
performs the reverse conversion).

Listing 7.2 illustrates the use of the multiply, divide and shifting operators on signed and
unsigned values. As always, the presence of line numbers along the left-hand column is for
reference purposes only.

//test module to demonstrate signed/unsigned arithmetic
1 module test v2001 ops();

2 reg[7:0] a=8'b01101111; //unsigned value (111;,)

3 reg signed [3:0] d=4'b0011; //signed value (+3;y)

4 reg signed [7:0] b=8'b10010110; //signed value (—106;,)

Operators and Expressions 177

5 reg signed [15:0] c¢; //signed value
6 initial

7 begin
8 c=a* b; // unsigned value * signed value
9 #100;

10 c=S$signed (a) * b; // signed value * signed value
11 #100;
12 c=b /d; // signed value +~ signed value

13 #100;

14 b=b>>4; //arithmetic shift right

15 #100;

16 d=d<2; //shift left logically

17 #100;

18 c=b* d; // signed value * signed value
19 #100;

20 Sstop;

21 end

22 endmodule

Time a d b c Line
0 111 3 —106 16 650 8
100 111 3 —106 —11766 10
200 111 3 —106 -35 12
300 111 3 -7 -35 14
400 111 —4 -7 -35 16
500 111 —4 -7 28 18

Listing 7.2 Signed and unsigned arithmetic.

The table shown below the Verilog source listing in Listing 7.2 shows the results of simulating
the module test v2001 ops () ; the values of a, b, c and d are listed in decimal.

The statements contained within the initial sequential block starting on line 6 execute
from top to bottom in the order that they are written; the final $ st op statement, atline 20, causes
the simulation to terminate. The result of each statement is given along with the corresponding
line number in the table in Listing 7.2.

The statement on line 8 assigns the product of an unsigned and a signed value to asigned value.
The unsigned result of 16 650, is due to the fact that one of the operands is unsigned and,
therefore, the other operand is also handled as if it were unsigned, i.e. 150, rather than —106.

The statement on line 10 converts the unsigned operand a to a signed value before multiplying
itby another signed value; hence, all of the operands are signed and the result, therefore, is signed
(=11766).

The statement on line 12 divides a signed value (—106;¢) by another signed value (43o),
giving a signed result (—35¢). The result is truncated due to integer division.

178 Elements of Verilog HDL

Line 14 is asigned right-shift, or arithmetic right-shift (3> operator). In this case, the sign-bit
(most significant bit (MSB)) is replicated four times and occupies the leftmost bits, effectively
dividing the number by 16,y while maintaining the correct sign. In binary, the result is
‘111110015, which is —74o.

A logical shift-left (<) is performed on a signed number on line 16. Logical shifts always
insert zeros in the vacant spaces and so the result is ‘1100,’, or —4,.

Finally, on line 18, two negative signed numbers are multiplied to produce a positive result.

The use of the keyword signed and the system functions $signed and $Sunsigned are
only appropriate if the numbers being processed are two’s complement values that represent
bipolar quantities. The emphasis in this book is on the design of FSMs where the signals are
generally either single-bit or multi-bit values used to represent a machine state. For this reason,
the discussion presented above on signed arithmetic will not be developed further.

The presence of the meta-logical values z or x in a reg or wire being used in an arithmetic
expression results in the whole expression being unknown, as illustrated by the following
example:

//assigning values to two 4-bit objects
inl=4'b101x;

in2=4'b0110;

sum=1inl + in2; //sum= 4'bxxxx due to ‘x’' in inl

Figure 7.11 shows a further example of the use of the Verilog bitwise logical operators. The
continuous assignment statement on lines 4 to 7 makes use of the AND (&), NOT (~) and OR (|)
operators; note that there is no need to include parentheses around the inverted inputs, since the
NOT operator (~) has ahigher precedence than the AND (&) operator. However, the parentheses
around the ANDed terms are required, since the ‘&’ and ‘|” operators have the same precedence.

Figure 7.12 shows an alternative way of describing the same logic described by Figure 7.11.
Here, anested conditional operator is used to select one of four inputs 1 0—1 3, under the control
of a 2-bitinput s1, sO and assign it to the output port named out.

There is no limit to the degree of nesting that can be used with the conditional operator, other
than that imposed by the requirement to maintain a certain degree of readability.

The listing in Figure 7.13 shows another use of the conditional operator. Here, itis used on line
3 to describe a so-called ‘three-state buffer’ as an alternative to using eight instantiations of the
built-in primitive bufif 1 (see Figure 7.5).

When the enable input is at logic 1, the Dataout port is driven by the value applied to
Datain; on the other hand, when the enable input is at logic 0, the Dataout port is
effectively undriven, being assigned the value ‘zzzzzzzz’.

In addition to ports of direction input and output, Verilog provides for ports that allow
two-way communication by means of the inout keyword. Figure 7.14 illustrates a simple
bidirectional interface making use of an inout port. It is necessary to drive bidirectional ports
to the high-impedance state when they are acting as an input, hence the inclusion of the 8-bit
three-state buffer on line 3. The Verilog simulator makes use of a built-in resolution mechanism
to predict correctly the value of awire thatis subject to multiple drivers. In the current example,
the bidirectional port Databi canbe drivento alogic 0 orlogic 1 by an external signal; hence, it

Operators and Expressions 179

1 //A 4-to-1 multiplexer described using bitwise operators

2 module mux4 to 1 (output out,

3 input i0, i1, i2, i3, sl1, s0);
4 assign out = (~sl & ~sO0 & 1i0) |

5 (~s1l & sO0 & 1i1) |

6 (sl & ~s0 & i2) |

7 (sl & sO & 13);

8 endmodule

nst

_IO,,sc— \
4

—il

SO———
nst

out—

—i2

ns0———f
st

— i
SO
1

—60—[:>x_m0—
—S1~I>e—ns1—

Figure 7.11 A 4-to-1 multiplexer described using bitwise operators.

)
-/

1 //A 4-to-1 mux described using the conditional operator
2 module mux4_ to_ 1 (output out,
3 input i0, i1, i2, i3, sl1, s0);

4 assign out = sl ? (sO ? i3 : 12)
5 : (sO ? i1 : 1i0);

6 endmodule

i0
i1
i2: mux4_to_1 out:
i3
s0
S 1

Figure 7.12 A 4-to-1 multiplexer described using nested conditional operators.

180 Elements of Verilog HDL

1 //An 8-bit three-state buffer
2 module Tribuff8 (input [7:0] Datain, input enable,
output [7:0] Dataout);

3 assign Dataout = (enable == 1'bl)? Datain : 8'bz;

4 endmodule

eDatain Dataout

enable

Figure 7.13 An 8-bit three-state buffer.

has two drivers. The presence of a logic level on the Databi port will override the high-
impedance value being assigned to it by line 3; hence, Datain will take on the value of the
incoming data applied to Databi as a result of the continuous assignment on line 4.

The simple combinational logic example given in Figure 7.15 illustrates the use of the logical
OR operator (||) and the equality operator (==). The module describes a three-input majority
voter that outputs a logic 1 when two or more of the inputs is at logic 1.

On line 4, the individual input bits are grouped together to form a 3-bit value on wire abc.
The concatenation operator ({ }) is used to join any number of individual 1-bit or multi-bit

1 //An 8-bit bi-directional port using a three-state buffer
2 module Bidir (input [7:0] Databuff,

output [7:0] Datain,

input enable, inout [7:0] Databi);

(enable == 1’bl)?Databuff : 8bz;
Databi;

3 assign Databi
4 assign Datain

5 endmodule

m—Databuff Databi -

enable

- Datain

Figure 7.14 A bidirectional bus interface.

Operators and Expressions 181

1 //A 3-input majority voter with 10 ns delay
“timescale 1 ns/ 1lns
3 module maj3 (input a, b, c, output m);

N

4 wire [2:0] abc = {a, b, c}; //join inputs together
5 assign #10 m = (abc == 3'b110) ||
6 (abc == 3'b101) ||
7 (abc == 3'b011) ||
8 (abc == 3'bl1l1l); // ’on’ terms
9 endmodule
a
D] — maj3 m

C

Figure 7.15 A three-input majority voter.

wires or regs together into one bus signal. Line 4 illustrates the use of the combined wire
declaration and continuous assignment in a single statement.

The continuous assignment on lines 5 to 8 in Figure 7.15 incorporates a delay, such that any
input change is reflected at the output after a 10 ns delay. This represents one method of
modelling propagation delays in modules that do not instantiate primitive gates.

The expression on the right-hand side of the assignment operator on line 5 makes use of the
logical OR operator (||) rather than the bitwise OR operator (|). In this example, it makes no
difference which operator is used, but occasionally the choice between bitwise and object-wise
isimportant, since the latter is based on the concept of Boolean true and false. In Verilog, any bit
pattern other than all zeros is considered to be true; consider the following example:

wire[3:0] a=4'b1010; //true

wire[3:0] b=4'b0101; //true

wire[3:0] c=a&b; //bit-wiseresult is 4b0000 (false)
wired=a&&b; //logical result is 1’bl (true)

Verilog-HDL provides a full set of relational operators, such as greater than, less than and
greater than or equal to, as shown in Table 7.3. The following example, given in Figure 7.16,
illustrates the use of these operators in the description of a memory address decoder.

The purpose of the module shown in Figure 7.16 is to activate one of four active-low ‘chip
select’ outputs Csbar{3:0] , depending upon what particular range of hexadecimal address
values is present on the 16-bit input address. Such a decoder is often used to implement the
memory map of a microprocessor-based system.

Each of the continuous assignments on lines 4, 6, 8 and 10 responds to changes in the value of
the input Address. For example, Csbar{2] isdrivento logic 0 when Address changes to a
hexadecimal value within the range 15004 to 16FF,¢ inclusive.

182 Elements of Verilog HDL

1 //16-bit Address Decoder

2 module Addr dec(input [15:0] Address,

3 output [3:0] Csbar);

4 assign Csbar([0] = ~((Address >= 0) &&

5 (Address <= 16’h03FF));

6 assign Csbar[l] = ~((Address >= 16’h0800) &&
7 (Address <= 16’hl2FF));

8 assign Csbar[2] = ~((Address >= 16’h1500) &&
9 (Address <= 16’hl6FF));

10 assign Csbar[3] = ~((Address >= 16’h1700) &s&
11 (Address <= 16’h18FF));

12 endmodule

(O—Csbar[0}—
(O—Csbar[1}——
emmAddressemms Addr_dec
(O—Csbar[2}——

(O—Csbar[3}——

Figure 7.16 Memory address decoder using the relational operators.

Another example of the use of the relational operators is shown in Figure 7.17. This shows the
Verilog description of a 4-bit magnitude comparator.

The module given in Figure 7.17 makes use of the relational and equality operators, along
with logical operators, to form the logical expressions contained within the conditional
operators on the right-hand side of the continuous assignments on lines 5 and 7. Note the careful
use of parentheses in the test expression contained within line 7 for example:

((a>b) || ((a==Db) && (agtbin==1'bl))) ?

The parentheses force the evaluation of the logical AND expression before the logical OR
expression, the result of the whole expression is logical ‘true’ or ‘false’,i.e. 1 'bl or 1 'b0. The
result of the Boolean condition selects between logic 1 and logic 0 and assigns this value to the
agtbout output. The expression preceding the question mark (?) on lines 7 and 8 could have
been used on its own to produce the correct output on port agtbout; the conditional operator is
used purely to illustrate how a variety of operators can be mixed in one expression.

The expression used on the right-hand side of the continuous assignment on line 9, shown
below, makes use of the bitwise logical operators to illustrate that, in this case, the outcome is
exactly the same as that which would be produced by the logical operators:

altbout = (a<b) | ((a==Db) & altbin);

Operators and Expressions 183

1 //4-bit magnitude comparator

2 module mag4comp (input [3:0] a, b,

3 input aegbin, agtbin, altbin,

4 output aegbout, agtbout, altbout);

5 assign aegbout = ((a == b) && (aegbin == 1'bl))?
6 1'bl : 1'b0;

7 assign agtbout = ((a > b) || ((a == b) &&

8 (agtbin == 1'bl))) ? 1'bl : 1'bO;

9 assign altbout = (a < b) | ((a == b) & altbin);

10 endmodule

mag4comp
—a» == —aeqout—p
> —agtbout—m
< —altbout—»
—H
T Expansion
aeqblin inputs
agtbin
| altbin

Figure 7.17 A 4-bit magnitude comparator.

The relational and logical operators used in the above examples will always produce a result
of either logic 0 or logic 1 provided the operands being compared do not contain unknown (x) or
high-impedance (z) values in any bit position. In the event that an operand does contain a meta-
logical value, these operators will generate an unknown result (x), as illustrated by the examples
below:

reg[3:0] A=4'b1010;
reg[3:0] B=4'b1101;
reg[3:0] C=4"'blxxx;

A <= B //Evaluates to logic-1
A>B //Evaluates to logic-0
A && B //Evaluates to logic-1

184 Elements of Verilog HDL

C == B //Evaluates to x
A<C //Evaluates to x
C||B //Evaluates to x

In certain situations, such as in simulation test-fixtures, it may be necessary to detect when a
module outputs an unknown or high-impedance value; hence, there exists a need to be able to
compare values that contain x and z.

Verilog HDL provides the so-called case-equality operators (‘==="and ‘!==") for this
purpose. These comparison operators compare xs and zs, as well as Os and 1s; the result is
always 0 or 1. Consider the following examples:

reg[3:0] K=4"'blxxz;
reg[3:0] M=4"'blxxz;
reg[3:0] N=4"'blxxx;

K ===M //exact match, evaluates to logic-1
K===N //1-bit mismatch, evaluates to logic-0
M !==N //Evaluates to logic-1

Each of the three reg signals declared above is initialized to an unknown value; the three
comparisons that follow yield 1s and Os, since all four possible values (0, 1, x, z) are considered
when performing the case-equality and case-inequality bit-by-bit comparisons.

The last operators in Table 7.3 to consider are the replication and concatenation operators;
both make use of the curly-brace symbol ({ }) commonly used to denote abegin. . .endblock
in the C-based programming languages.

The concatenation ({ }) operator is used to append, or join together, multiple operands to form
longer objects. All of the individual operands being combined must have a defined size, in terms
of the number of bits. Any combination of whole objects, part-selects or bit-selects may be
concatenated, and the operator may be used on either or both sides of an assignment. The
assignments shown below illustrate the use of the concatenation operator:

//A=1'bl, B=2'b00, C=3"'b110

Y={A, B ; //Y1is 3'b100

z={C, B, 4'b0000} ; //Z is 9'b110000000
W={a, BlO], Cl1]1}; //Wis 3'b101

The following Verilog statements demonstrate the use of the concatenation operator on the
left-hand side (target) of an assignment. In this case, the ‘carry out’ wire c_out occupies the
MSB of the 5-bit result of adding two 4-bit numbers and a ‘carry input’:

wire[3:0] a, b, sum;
wirec in, c_out;

//target is 5-bits long [4:0]
{c_ out, sum} =a+b+c _in;

Example lllustrating the Use of Verilog HDL Operators 185

The replication operator can be used on its own or combined with the concatenation operator.
The operator uses a replication constant to specify how many times to replicate an expression. If
j is the expression being replicated and k is the replication constant, then the format of the
replication operator is as follows:

{7}
The following assignments illustrate the use of the replication operator.
//a=1'bl, b=2'b00, c=2"'b10

//Replication only
Y={4{a}} //Y is 4'b1111

//Replication and concatenation
Y={4{a}, 2{b}} //Yis 8'b11110000
Y={3{c}, 2{1'bl}} //Yis 8'b10101011

One possible use of replication is to extend the sign-bit of a two’s complement signed number,
as shown below:

//a two's comp value (—54;,)
wire[7:0] data=8'b11001010;

//arithmetic right shift by 2 places
//data is 8'b11110010 (—14;0)
assigndata ={3{ datal7]} , datal6:2]} ;

The above operation could have been carried out using the arithmetic shift right operator >>’;
however, the wire declaration for data would have to include the signed qualifier.

7.3 EXAMPLE ILLUSTRATING THE USE OF VERILOG HDL OPERATORS:
HAMMING CODE ENCODER

This section presents a complete example involving the use of some of the Verilog HDL
operators discussed previously. Figure 7.18 shows the block symbol representation and Verilog
HDL description of a Hamming code [2] encoder for 8-bit data. The function of the module
Hamenc8 isto generate a set of parity check bits from an incoming 8-bit data byte; the check bits
are then appended to the data to form a 13-bit Hamming codeword [2]. Such a codeword
provides error-correcting and -detecting capabilities, such that any single-bit error (including
the check bits) can be corrected and any 2-bit error (double error) can be detected.

The details of how the Hamming code achieves the above error-correcting and -detecting
capabilities are left to the interested reader to explore further in Reference [2].

186 Elements of Verilog HDL

=

//Hamming Encoder for an 8-bit Data word
2 module HamencS8 (input [7:0] Data,

3 output [4:0] Parout);

4 //define masks to select bits to xor for each parity bit

5 localparam MaskPl = 8’b01011011;

6 localparam MaskP2 = 8'b01101101;

7 localparam MaskP3 = 8’b10001110;

8 localparam MaskP4 = 8’'b11110000;

9 assign Parout([4:1] = {~(Data & MaskP4),
~(Data & MaskP3),
~(Data & MaskP2),
~(Data & MaskPl) };

10 assign Parout[0] = "~{Parout[4:1], Data};

11 endmodule

+Data—> Hamenc8 '+ Parout==gm-
8 5

Figure 7.18 An 8-bit Hamming code encoder.

Lines 2 and 3 of Figure 7.18 define the module header for the Hamming encoder, the output
Parout isasetof five parity check bits generated by performing the exclusive OR operation on
subsets of the incoming 8-bit data value appearing on input port Data.

The bits of the input data that are to be exclusive ORed together are defined by a set of masks
declared as local parameters onlines 5to 8. The Localparamkeyword allows the definition of
parameters or constant values that are local to the enclosing module, i.e. they cannot be
overridden by external values. For example, mask MaskP1 defines the subset of data bits
that must be processed to generate Parout[1] , as shown below:

Bit position -> 76543210
MaskP1=8'b01011011;
Parout[l] =Datal[6] "Datal4] "Data[3] "Datal[l] *Data[0] ;

The above modulo-2 summation is achieved in module Hamenc 8 by first masking out the bits to
be processed using the bitwise AND operation (&), then combining these bit values using the
reduction exclusive OR operator. These operations are performed for each parity bitas part of the
continuous assignment on line 9:

~(Data & MaskP1l)

Exampile lllustrating the Use of Verilog HDL Operators 187

The concatenation operator ({ }) is used on the right-hand side of the continuous assignment
on line 9 to combine the four most significant parity check bits in order to assign themto Parout
[4:1].

The double-error-detecting ability of the Hamming code is provided by the overall parity
check bit Parout[0] . This outputis generated by modulo-2 summing (exclusive OR) all of the
data bits along with the aforementioned parity bits, this being achieved on line 10 of Figure 7.18
by a combination of concatenation and reduction, as repeated below:

assign Parout[0] = *{Parout[4:1], Data} ;

In performing the above operation, certain data bits are eliminated from the result due to
cancellation, this is caused by the fact that the exclusive OR operation results in logic O when the
same bit is combined an even number of times. The overall parity bit is therefore given by the
following expression:

Parout[0] =Data[7] "Data[5] "Datal[4] "Datal[2] "Datal[l] "Datal0] ;

Data bits Data[6] and Data[3] are not included in the above equation for the overall parity.
This is reflected in the logic diagram of the Hamming encoder, shown in Figure 7.19; this circuit
could represent the output produced by a logic synthesis software tool after processing the
Verilog description of the Hamming encoder shown in Figure 7.18.

Data[4] Parout[4]
Data[5]]
Data[6]

Data[7]

Data[1] Parout[3]
Data[2]]
Data[3]

Data[7]

Data[0]

Datai2lf— W~ Parout(2]
Data[3] |
Data[5] | #/

Data[6]

Data[0]
Data[1] SK\ Parout[1]
Data[3] |
0] e———

Data[6]
Data[7]
Data[5]
Data[4] Parout[0]
Data[2]
Data[1]
Data[0]

Data[7:0]

Figure 7.19 Hamming encoder logic diagram.

188 Elements of Verilog HDL

7.3.1 Simulating the Hamming Encoder

The operation of the Hamming encoder module shown in Figure 7.18 could be verified by
simulation in an empirical manner. This would involve applying a set of random input data bytes
and comparing the resulting parity check bit outputs against the values predicted from the
encoder Boolean equations.

An alternative, and more systematic, approach would be to make use of a Hamming code
decoder to decode the encoder output automatically, thus providing a more robust checking
mechanism (assuming the Hamming decoder is correct of course!).

The use of a Hamming decoder module also allows the investigation of the error-correcting
and -detecting properties of the Hamming code, by virtue of being able to introduce single and
double errors into the Hamming code prior to processing by the decoder.

A Verilog HDL description of an 8-bit Hamming code decoder is given in Listing 7.3.

//Verilog description of a 13-bit Hamming Code Decoder
1 module Hamdec8 (input [7:0] Datain,

input[4:0] Parin,

output reg[7:0] Dataout,

output reg[4:0] Parout,

output regNE, DED, SEC) ;

//define masks to select bits to xor for each parity
localparam MaskP1 =8'b01011011;
localparam MaskP2 =8'b01101101;
localparam MaskP4 =8'b10001110;
localparam MaskP8 =8'b11110000;

aodbx W N

[e)}

reg [4:1] synd; //error syndrome
7 reg PO; //regenerated overall parity

8 always @ (Datain or Parin)
9 begin

//assign default outputs (assumes no errors)
10 NE=1"bl;
11 DED=1'b0;
12 SEC=1'b0;
13 Dataout =Datain;
14 Parout =Parin;
15 PO="{ Parin, Datain} ; //overall parity
16

//generate syndrome bits
17 synd4] = (* (Datain & MaskP8)) "Parin[4] ;
18 synd3] = (*(Datain & MaskP4)) “Parin[3] ;

Example lllustrating the Use of Verilog HDL Operators

189

19
20
21
22
23
24

25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

synd[2] = (* (Datain & MaskP2))*Parin[2] ;
synd1l] = (® (Datain & MaskP1l)) "Parin[l] ;
if ((synd == 0) && (PO ==1'b0)) //no errors
; //accept default o/p
else if (PO ==1'bl) //single error (or odd no!)
begin
NE=1"'b0;
SEC=1"'bl;
//correct single error
case (synd)
0: Parout[0] =~Parin[0] ;
1: Parout[l] =~Parin[l] ;
2: Parout[2] =~Parin[2] ;
3: Dataout[0] =~Datain[0] ;
4: Parout[3] =~Parin[3] ;
5: Dataout[l] =~Datain[1] ;
6: Dataout [2] =~Datain[?] ;
7: Dataout[3] =~Datain[3] ;
8: Parout[4] =~Parin[4] ;

9: Dataout[4] ~Datain[4] ;
10: Dataout[5] =~Datain[5] ;
11: Dataout[6] = ~Datain[6] ;
12: Dataout[7] [7]

default:

begin
Dataout =8'b00000000;
Parout =5"'b00000;

end

’

= ~Datain[7

endcase
end
else if ((PO == 0) && (synd !=4'b0000))
begin //double error
NE=1"'b0;
DED=1'bl;
Dataout =8'b00000000;
Parout =5'b00000;
end
end //always

endmodule

Listing 7.3 An 8-bit Hamming code decoder.

190 Elements of Verilog HDL

The module header on line 1 of Listing 7.3 defines the interface of the decoder, the 13-bit
Hamming code input is made up from Datain and Parin and the corrected outputs are on
ports Dataout and Parout. Three diagnostic outputs are provided to indicate the status of the
incoming code:

NE: no errors (Datain and Parin are passed through unchanged)
DED: double error detected (Dataout and Parout are set to all zeros)
SEC: single error corrected (a single-bit error has been corrected").

Note that all of the Hamming decoder outputs are qualified as being of type reg; this is due to
the behavioural nature of the Verilog description, i.e. the outputs are assigned values from within
a sequential always block (starting on line 8).

Lines 2 to 5 define the same set of 8-bit masks as those declared within the encoder module;
they are used in a similar manner within the decoder to generate the 4-bit code named synd,
declared in line 6. This 4-bit code is known as the error syndrome; it is used in combination with
the regenerated overall parity bit PO (line 7) to establish the extent and location of any errors
within the incoming Hamming codeword.

The main part of the Hamming decoder is contained within the always sequential block
starting on line 8 of Listing 7.3. The statements enclosed between the begin and end
keywords, situated on lines 9 and 55 respectively, execute sequentially whenever there is a
change in either (or both) of the Datain and Parin ports. The always block represents a
behavioural description of a combinational logic system that decodes the Hamming codeword.

At the start of the sequential block, the module outputs are all assigned default values
corresponding to the ‘no errors’ condition (lines 10 to 14); this ensures that the logic described
by the block is combinatorial. Following this, on lines 15 to 20 inclusive, the overall parity and
syndrome bits are generated using expressions similar to those employed within the encoder
description.

Starting on line 21, a sequence of conditions involving the overall parity and syndrome bits is
tested, in order to establish whether or not any errors are present within the incoming codeword.

If the overall parity is zero and the syndrome is all zeros, then the input codeword is free of
errors and the presence of the null statement (;) on line 22 allows the default output values to
persist.

Ifthe firstconditiontested by the 1 £. . .else statementisfalse, then the nextcondition (line 23)
is tested to establish whether a single error has occurred. If the overall parity is alogic 1, then the
decoder assumes that a single error has occurred; the statements between lines 24 and 47 flag this
fact by first setting the ‘single error’ (SEC) output high before going on to correct the error. The
latterisachieved by the use of the case statementon lines 27 to 46; the value of the 4-bit syndrome
is used to locate and invert the erroneous bit.

Finally, the if...else statement tests for the condition of unchanged overall parity
combined with a nonzero syndrome; this indicates a double error. Under these circumstances,
the Hamming decoder cannot correct the error and, therefore, it simply asserts the ‘double error
detected’ output and sets the Dataout and Parout port signals to zero.

'An odd number of erroneous bits greater than one would be handled as a single error, usually resulting in an
incorrect output.).

Exampile lllustrating the Use of Verilog HDL Operators 191

The Hamming code encoder and decoder are combined in a Verilog test module named
TestHammingCcts, shown in Listing 7.5, and in block diagram form in Figure 7.20.
An additional module, named InjectError, is required to inject errors into the valid
Hamming code produced by the Hamming encoder prior to being decoded by the Hamming
decoder.

The InjectError module is given in Listing 7.4.

//Module to inject errors into Hamming Code
1 module InjectError(input [7:0] Din,

input [4:0] Pin,

output [7:0] Dout,

output [4:0] Pout,

input [12:0] Ein);
2 assign { Dout, Pout} ={ Din, Pin} "~ Ein;

3 endmodule

Listing 7.4 The 13-bit error injector module.

This uses a single continuous assignment to invert selectively one or more of the 13 bits of the
incoming Hamming codeword by exclusive ORing it with a 13-bit error mask named Ein, in
line 2.

As shown in the block diagram of Figure 7.20 and Listing 7.5, the test module comprises
instantiations of the encoder, decoder and error injector (lines 33 to 46) in addition to two
initial sequential blocks named gen data and gen _error, these being situated on
lines 13 and 20 respectively of Listing 7.5.

// Verilog test fixture for Hamming Encoder and Decoder
1 “timescale 1lns / 1ns
2 module TestHammingCcts () ;

//Hamming encoder data input
3 reg [7:0] Data;
//Error mask pattern
4 reg [12:0] Error;
//Hamming encoder output
5 wire [4:0] Par;
//Hamming code with error
9 wire [7:0] EData;
7 wire [4:0] EPar;
// Hamming decoder outputs
8 wire DED;
9 wire NE;

192 Elements of Verilog HDL

10 wire SEC;
11 wire [7:0] Dataout;
12 wire [4:0] Parout;

13 initial //generate exhaustive test data
14 begin : gen data

15 Data=20;

16 repeat (256)

17 #100 Data=Data+ 1;
18 Sstop;
19 end

20 initial //generate error patterns
21 begin : gen error
22 Error=13'b0000000000000;

23 #1600;

24 Error=13"'b0000000000001;

25 #100;

26 repeat (100) //rotate single error

27 #100 Error ={ Errox[11:0] , Errox[121} ;
28 Error =13'b0000000000011;

29 #100;

30 repeat (100) //rotate double error

31 #100 Error ={ Errox[11:0] , Errox[121} ;
32 end

//instantiate modules

33 Hamenc8 Ul (.Data (Data),
34 .Parout (Par)) ;

35 Hamdec8 U2 (.Datain (EData),

36 .Parin (EPar),

37 .Dataout (Dataout),
38 .DED (DED) ,

39 .NE (NE) ,

40 .Parout (Parout),
41 .SEC (SEC)) ;

42 InjectError U3 (.Din (Data),
43 .Ein(Error),

44 .Pin (Par),

45 .Dout (EData),

46 .Pout (EPar)) ;

47 endmodule

Listing 7.5 Hamming encoder/decoder test-fixture module.

“wreISeIp J00[q AINIXY-1$9) IOPOOIP/IoPooud Surwey (g"L dInSL

t

loue~uab
ND MD loug
~f—NOJedm——t [0):/JiN0IEY N
~a—inoejeg=—— [0:/]in0EIEQ [0ZHUT |
-«+—q3a—— a3a [0:]uved |f—ied3 [0:7linod [0:7]Uld | et [0:7JiN0E S [0:2]ereq »
«—03s— 23S ejep uab
3s gouawey

<«+—3aN———{ 3N [0:2]urereq |egm—eiea3 b [0:2hnoa [0:2]uia |

gospwey l1oyo8lu| Jou3 1eq

194 Elements of Verilog HDL

The gen _data initial block uses the repeat loop to generate an exhaustive set of 8-bit
input data values ascending from 0, to 255 at intervals of 100 ns, stopping the simulation on
line 18 by means of the $stop command. The gen _error block, on lines 20 to 32, starts by
initializing the error mask Error to all zeros and allows it to remain in this state for 1600 ns in
order to verify the ‘no error’ condition.

On line 24 of Listing 7.5, the error mask is set to 13'b0000000000001, thereby
introducing a single-bit error into the least significant bit of the Hamming codeword. After
applying this pattern for 100 ns, a repeat loop (lines 26 and 27) is used to rotate the single-bit
error through all 13 bits of the error mask at intervals of 100 ns for 100 iterations, this sequence
c|)n|s| ! zloloqsl ‘Ilolor;lsl 6I0I0rllsl ?olor}sl 1|(|)u|s ! 1|2|uls ! 1|"|mlsl bus

TestHammingCcts.Data[7:0] 00] o1 02] 03] 04] 05] 06] 07] 08] 09| OA[0B] 0C| oD] OE| OF

TestHammingCcts.Par[4:0] 00] 07[oB] oC| oD] oA 06] 01] OE[09] 05[] 02| 03] 04] 08| OF]
TestHammingCects.Error{12:0] 0000 |
TestHammingCcts.EData[7:0] | _00] 01] 02] 03] 04] 05] 06[07] 08 09] 0A[0B[0C[0D| OE[OF]

TestHammingCcts.EPar[4:0] 00] 07[oB] oC| oD] 0A] 06] o1] OE[09] 05[] 02| 03] 04] 08| OF]
TestHammingCcts.SEC N

TestHammingCcts.NE [
TestHammingCcts.DED
TestHammingCcts.Dataout[7:0] 00] o1] 02] 03] o4] o5] o6] 07] 08] 09] OA[oB] OC[0oD] OE[OF]
TestHammingCcts.Parout[4:0] 00] o7] oB] oCl oD[0A] o6] 01] OE[09] 05[] 02] 03] 04] 08] OF]

(a)

‘IL(?MISI ‘I"zlulsl ‘Huls ! ‘IL(I;HISI ‘ILSI”ISI |5-?H|5| ?2Iuls ! ?4|H|S !

TestHammingCcts.Data[7:0] 28] 29[2A[2B[2C[2D[2E[2F[30] 31[32[33| 34[35] 36] 37
TestHammingCcts.Par[4:0] 1B] 1C| 10] 17] 16] 11] 1D] 1A[06] 01] oD[0A[oB[oC[o0of 07]
TestHammingCcts.Error[12:0] osod osod 100d 00oi o000f o004 oood o01d oo2qd ooad ooso| otod oz0q odod osod 100
TestHammingCcts.EData[7:0] 08] 69| AA[2B| 2C| 2D] 2E[2F] 31[33] 36] 3B[24] 15[76] B7]

TestHammingCcts.EPar{4:0] 1B| 1C| 10| 16| 14] 15[15] oA[06] o1] oD] 0A] oB] oC| 00| 07]
TestHammingCcts.SEC
TestHammingCcts.NE
TestHammingCcts.DED

TestHammingCcts.Dataout[7:0] 28] 29| 2A[2B 2C]| 2D[2E| 2F[30 31] 32[33[34[35[36[37]
TestHammingCcts.Parout[4:0] 1B] 1C| 10] 17] 16] 11] 1D] 1A[06| o1] oD[0A[oB[oC[o0of o07]
(b)

) 1?.6Iu?) 1?.8Iu?) 1I9.(?u?) 1.9'2.u.5) 1?.4:u?) 1$I3.6:usI) 1?.§uls) 29.(?us
TestHammingCcts.Data[7:0] |[B9 [BA[BB [BC [BD[BE |[BF[CO|[CT|[C2[C3[C4[C5]|C6[C7]C8
TestHammingCcts.Par{4:0] |16 | TA[1ID [1C[1B [17 [10 [OF [08 [04 [03 [02 [05 [09 [OE | O1
TestHammingCcts.Error{12:0] Joo18] 0030 [0060 0oco[0180] 0300 0600] 0Coo[1800 0009] 0003] 0006 000C| 0018] 0030 0060
TestHammingCcts.EData[7:0] [B9 [BB [B8 [BA [BT [A6 [8F [A0 [01 [42 3 4 5 6 B
TestHammingCcts.EPar{4:0] JOE [OA [1ID [1C [1B [17 [10 [OF [08 J05 [00 | 04 [09 [11 [1E] O
TestHammingCcts.SEC
TestHammingCcts.NE
TestHammingCcts.DED |

TestHammingCcts.Dataout[7:0] 00 |

TestHammingCcts.Parout[4:0] 00
(c)

Figure 7.21 TestHammingCcts simulation results showing: (a) no errors; (b) single-error correc-
tion; (c¢) double-error detection.

References 195

will demonstrate the Hamming decoder’s ability to correct a single-bit error in any bit position
for a variety of test data values.

Finally, onlines 28 to 31, the error mask isreinitializedtoa valueof 13'b0000000000011.
This has the effect of introducing a double-error into the Hamming codeword. As above, this
pattern is rotated through all 13-bits of the Hamming code 100 times, at intervals of 100 ns, in
order to verify the decoder’s ability to detect double errors for a variety of test data. Simulation
results for the TestHammingCcts test module are shown in Figure 7.21a—c.

Figure 7.21a shows the first 16 test pattern results corresponding to an error mask value of all
zeros (third waveform from the top), i.e. no errors. The top two waveforms are the 8-bit data
(Data) and 5-bit parity (Par) values representing the 13-bit Hamming code output of the
Hamming encoder module; all waveforms are displayed in hexadecimal format.

The outputs of the error injector module (EData and EPar), shown on the fourth and fifth
waveforms, are identical to the top two waveforms due to the absence of errors. The diagnostic
outputs, SEC, NE and DED, correctly show the ‘no errors’ output asserted, while the bottom two
waveforms show the Hamming code being passed through the decoder unchanged.

Figure 7.21b shows a selection of test pattern results corresponding to an error mask contain-
ing a single logic 1 (third waveform from the top), i.e. a single error.

The outputs of the error injector module (EData and EPar), shown on the fourth and fifth
waveforms, differ when compared with the top two waveforms by a single bit (e.g. 2A ¢, 10,6
becomes AA g, 10,6 attime 4.2 ps). The diagnostic outputs, SEC, NE and DED, correctly show
the ‘single error corrected’ output asserted, while the bottom two waveforms confirm that the
single error introduced into the original Hamming code (top two waveforms) has been corrected
after passing through the decoder.

Figure 7.21c shows a selection of test pattern results corresponding to an error mask contain-
ing two logic 1s (third waveform from the top), i.e. a double error.

The outputs of the error injector module (EData and EPar), shown on the fourth and fifth
waveforms, differ when compared with the top two waveforms by 2 bits (e.g. BCj¢, 1Cyg
becomes BA 4, 1C¢ at time 18.8 ps). The diagnostic outputs, SEC, NE and DED, correctly
show the ‘double error detected’ output asserted, while the bottom two waveforms confirm that
the double error introduced into the original Hamming code (top two waveforms) has been
detected and the output codeword is set to all zeros.

In summary, this section has presented a realistic example of the use of the Verilog HDL
operators and types to describe a Hamming code encoder, decoder and test module. The
behavioural style of description has been used to illustrate the power of the Verilog language
in describing a relatively complex combinatorial logic system in a high-level manner.

Chapter 8 covers those aspects of the Verilog language concerned with the description of
sequential logic systems, in particular the FSM.

REFERENCES

1. Ciletti M.D. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL. New Jersey:
Prentice Hall, 1999.

2. Wakerly J.F. Digital Design: Principles and Practices, 4th Edition. New Jersey: Pearson Education,
2006 (Hamming codes: p. 61, section 2.15.3).

8

Describing Combinational
and Sequential Logic using
Verilog HDL

8.1 THE DATA-FLOW STYLE OF DESCRIPTION:
REVIEW OF THE CONTINUOUS ASSIGNMENT

We have already come across numerous examples in the previous chapters of Verilog designs
written in the so-called data-flow style. This style of description makes use of the parallel
statement known as a continuous assignment. Predominantly used to describe combinational
logic, the flow of execution of continuous assignment statements is dictated by events on signals
(usually wires) appearing within the expressions on the left- and right-hand sides of the
continuous assignments. Such statements are identified by the keyword assign. The keyword
is followed by one or more assignments terminated by a semicolon.

All of the following examples describe combinational logic, this being the most common use
of the continuous assignment statement:

//some continuous assignment statements
assign A=qg[0], B=qgl[l], C=q [2];

assign out = (~sl & ~s0 & 10) |
(~sl & sO & 11) |
(sl & ~s0 & 12) |
(sl & sO & 13);

assign #15{ c out, sum} =a+b +c_in;
The continuous assignment statement forms a static binding between the wire being assigned

on the left-hand side of the = operator and the expression on the right-hand side of the assignment
operator. This means that the assignment is continuously active and ready to respond to any

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

198 Describing Combinational and Sequential Logic using Verilog HDL

1 module latch (output g, input data, en);
2 assign g = en ? data : qg;

3 endmodule

data

en

Figure 8.1 Describing a level-sensitive latch using a continuous assignment.

changes to variables appearing in the right-hand side expression (the inputs). Such changes result
in the evaluation of the expression and updating of the target wire (output). In this manner, a
continuous assignment is almost exclusively used to describe combinatorial logic.

As mentioned previously, a Verilog module may contain any number of continuous assign-
ment statements; they can be inserted anywhere between the module header and internal wire/
reg declarations and the endmodule keyword.

The expression appearing on the right-hand side of the assignment operator may contain
both reg- and wire-type variables and make use of any of the Verilog operators mentioned in
Chapter 7.

The so-called target of the assignment (left-hand side) must be a wire, since it is continuously
driven. Both single-bit and multi-bit wires may be the targets of continuous assignment statements.

It is possible, although not common practice, to use the continuous assignment statement to
describe sequential logic, in the form of a level-sensitive latch.

The conditional operator (? :) is used on the right-hand side of the assignment on line 2 of the
listing shown in Figure 8.1. When en is true (logic 1) the output q is assigned the value of the
input data continuously. When en goes to logic 0, the output g is assigned itself, i.e. feedback
maintains the value of g, as shown in the logic diagram below the Verilog listing.

It should be noted that the use of a continuous assignment to create a level-sensitive latch, as
shown in Figure 8.1, is relatively uncommon. Most logic synthesis software tools will issue a
warning message on encountering such a construct.

8.2 THE BEHAVIOURAL STYLE OF DESCRIPTION:
THE SEQUENTIAL BLOCK

The Verilog HDL sequential block defines a region within the hardware description conta-
ining sequential statements; these statements execute in the order they are written, in just the

The Behavioural Style of Descriptfion: the Sequential Block 199

same way as a conventional programming language. In this manner, the sequential block
provides a mechanism for creating hardware descriptions that are behavioural or algorithmic.
Such a style lends itself ideally to the description of synchronous sequential logic, such as
counters and FSMs; however, sequential blocks can also be used to describe combinational
functions.

A discussion of some of the more commonly used Verilog sequential statements will reveal
their similarity to the statements used in the C language. In addition to the two types of sequential
block described below, Verilog HDL makes use of sequential execution in the so-called task
and functionelements of the language. These elements are beyond the scope of this book; the
interested reader is referred to Reference [1].

Verilog HDL provides the following two types of sequential block:

e The always block. This contains sequential statements that execute repetitively, usually in
response to some sort of trigger mechanism. An always block acts rather like a continuous
loop that never terminates. This type of block can be used to describe any type of digital
hardware.

e The initial block. This contains sequential statements that execute from beginning to
end once only, commencing at the start of a simulation run at time zero. Verilog
initial blocks are used almost exclusively in simulation fest fixtures, usually to create
test input stimuli and control the duration of a simulation run. This type of block is not
generally used to describe synthesizable digital hardware, although a simulation model
may contain an initial statement to perform an initialization of memory or to load
delay data.

The two types of sequential block described above are, in fact, parallel statements;
therefore, a module can contain any number of them. The order in which the always and
initial blocks appear within the module does not affect the way in which they execute.
In this sense, a sequential block is similar to a continuous assignment: the latter uses a
single expression to assign a value to a target whenever a signal on the right-hand side
undergoes a change, whereas the former executes a sequence of statements in response to
some sort of triggering event.

Figure 8.2 shows the syntax of the initial sequential block, along with an example
showing how the construct can be used to generate a clock signal.

As can be seen in lines 3 to 8, an initial block contains a sequence of one or more state-
ments enclosed within a begin. . .end block. Occasionally, there is only a single statement
enclosed within the initial block; in this case, it is permissible to omit the begin...end
bracketing, as shown in lines 12 and 13. It is recommended, however, that the bracketing is
included, regardless of the number of sequential statements, in order to minimize the possibility
of syntax errors.

Figure 8.2 also includes an example initial block (lines 14 to 21), the purpose of which is
to generate arepetitive clock signal. A local parameter named PERIODis defined inline 14; this
sets the time period of the clock waveform to 100 time-units. The execution of the initial
block starts at time zero at line 18, where the CLK signal is initialized to logic 0; note that the
signal CLK must be declared as a reg, since it must be capable of retaining the value last
assigned to it by statements within the sequential block. Also note that the initialization of CLK

200 Describing Combinational and Sequential Logic using Verilog HDL

1 //general syntax of the initial sequential block
2 //containing more than one statement
3 injitial
4 begin
5 //sequential statement 1
6 //sequential statement 2
7 ..
8 end
9
10 //general syntax of the initial sequential block
11 //containing one statement (no need for begin...end)
12 injtial
13 //sequential statement
14 localparam PERIOD = 100; //clock period
15 reg CLK;
16 initial
17 begin
18 CLK = 1'b0;
19 forever //an endless loop!
20 # (PERIOD/2) CLK = ~CLK;
21 end

e s B
|

CLK |
—_— T b | e
1 1 1 1
| | | |
1 1 1 1
0

Figure 8.2 Syntax of the initial block and an example.

could have been included as part of its declaration in line 15, as shown below:

15 reg CLK = 1'b0;

Following initialization of CLK to logic 0, the next statements to execute within the
initial block are lines 19 and 20 of the listing in Figure 8.2. These contain an
endless loop statement known as a forever loop, having the general syntax shown

below:

forever

begin

//sequential statement 1

The Behavioural Style of Descriptfion: the Sequential Block 201

//sequential statement 2
end

In common with the initial block itself, the forever loop may contain a single
statement or a number of statements that are required to repeat indefinitely; in the latter case,
it must include the begin. . .end bracketing shown above. The example shown in Figure 8.2
contains a single delayed sequential assignment statement in line 20 (the use of the hash symbol
within a sequential block indicates a time delay). The effect of this statement is to invert the
CLK signal every 50 time-units repetitively; this results in the CLK signal having the waveform
shown at the bottom of Figure 8.2.

As it stands, the Verilog description contained in lines 14-21 of Figure 8.2 could present
a potential problem to a simulator, in that most such tools have a command to allow the sim-
ulator to effectively run forever (e.g. ‘run —all’ in Modelsim™). The forever loop in lines
19 and 20 would cause a simulator to run indefinitely, or at least until the host computer ran out
of memory to store the huge amount of simulation data generated.

There are two methods by which the above problem can be solved:

1. Include an additional initial block containing a $stop system command.
2. Replace the forever loop with a repeat loop.

The first solution involves adding the following statement:

//n is the no. of clock pulses required
initial # (PERIOD*n) S$stop;

The above statement can be inserted anywhere after line 14 within the module containing the
statements shown in Figure 8.2. The execution of the initial block in line 16 commences at the
same time as the statement shown above (0 s); therefore, the delayed $stop command will
execute at an absolute time equal to n* PERIOD seconds. The result is a simulation run lasting
exactly n clock periods. It should be noted that, in order for the above statement to compile
correctly, the variable n would have to be replaced by an actual positive number or would have to
have been previously declared as a local parameter.

The second solution involves modifying the initial block in lines 1621 of the listing
given in Figure 8.2 to that shown below:

initial
begin

CLK =1'b0;

repeat (n) //an finite loop
begin

(PERIOD/2) CLK = 1'bl;

(PERIOD/2) CLK = 1'b0;
end

O J o U W N

202 Describing Combinational and Sequential Logic using Verilog HDL

9 S$stop;
10 end

The repeat loop is a sequential statement that causes one or more statements to be repeated
a fixed number of times. In the above case, the variable n defines the number of whole clock
periods required during the simulation run. In this example, the loop body contains two delayed
assignments to the reg named CLK; consequently, the begin. . .end bracketing is required.

Each repetition of the repeat loop lasts for 100 time-units, i.e. one clock period. Once all of
the clock pulses have been applied, the repeat loop terminates and the simulation is stopped
by the system command in line 9 above.

An important point to note regarding the repeat and forever loops is that neither can be
synthesized into a hardware circuit; consequently, these statements are exclusively used in
Verilog test-fixtures or within simulation models.

Listing 8.1a—e shows the various formats of the Verilog HDL sequential block known as the
always block. The most general form is shown in Listing 8.1a: the keyword always is
followed by the so-called event expression; this determines when the sequential statements in
the block (between begin and end) execute. The @ (event expression) isrequired for
both combinational and sequential logic descriptions.

In common with the initial block, the begin...end block delimiters can be omitted if
there is only one sequential statement subject to the always @ condition. An example of this is
shown in Listing 8.1e.

(a)
1 always @ (event expression)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5
6 end

(b)
1 always @ (inputl or input2 or input3...)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5
6 end

(c)
1 always @ (inputl, input2, input3...)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5
6 end

(d)
1 always Q(*)
2 begin

The Behavioural Style of Description: the Sequential Block 203

3 //sequential statement 1
4 //sequential statement 2
5
6 end

(e)
1 always @ (a)
2 y=a* a;

Listing 8.1 Alternative formats for the always sequential block: (a) General form of the always
sequential block; (b) always sequential block with or-separated list; (c) always sequential block
with comma-separated list; (d) always sequential block with wildcard event expression; (e) always
sequential block containing a single sequential statement.

Unlike the initial block, the sequential statements enclosed within an always block
execute repetitively, in response to the event expression. After each execution of the sequ-
ential statements, the always block usually suspends at the beginning of the block of state-
ments, ready to execute the first statement in the sequence. When the event expression next
becomes true, the sequential statements are then executed again. The exact nature of the event
expression determines the nature of the logic being described; as a general guideline, any of the
forms shown in Listing 8.1 can be used to describe combinational logic. However, the format
shown in Listing 8.1b is most commonly used to describe sequential logic, with some modifica-
tion (see later).

Alsoin common with the initial block, signals that are assigned from within an always
block must be reg-type objects, since they must be capable of retaining the last value assigned
to them during suspension of execution.

It should be noted that the always block could be used in place of an initial
block, where the latter contains a forever loop statement. For example, the following
always block could be used within a test module to generate the clock waveform
shown in Figure 8.2:

1 localparam PERIOD = 100; //clock period
2 regCLK =1"'b0;

always
begin
(PERIOD/2) CLK = 1'bl;
(PERIOD/2) CLK = 1'bO0;
end

~N o U1 W

The always sequential block, shown in lines 3 to 7 above, does not require an event expression
since the body of the block contains sequential statements that cause execution to be suspended
for a fixed period of time.

This example highlights an important aspect of the always sequential block: it must contain
either at least one sequential statement that causes suspension of execution or the keyword

204 Describing Combinational and Sequential Logic using Verilog HDL

always must be followed by an event expression (the presence of both is ambiguous and,
therefore, is not allowed).

The absence of any mechanism to suspend execution in an always block will cause a
simulation tool to issue an error message to the effect that the description contains a zero-delay
infinite loop, and the result is that the simulator will ‘hang’, being unable to proceed beyond time
Zero.

In summary, the use of an always block in a test module, as shown above, is not
recommended owing to the need to distinguish clearly between modules that are
intended for synthesis and implementation and those that are used during simulation
only.

8.3 ASSIGNMENTS WITHIN SEQUENTIAL BLOCKS:
BLOCKING AND NONBLOCKING

An always sequential block will execute whenever a signal change results in the event
expression becoming true. In between executions, the block is in a state of suspension;
therefore, any signal objects being assigned to within the block must be capable of
remembering the value that was last assigned to them. In other words, signal objects that
are assigned values within sequential blocks are not continuously driven. This leads to the
previously stated fact that only reg-type objects are allowed on the left-hand side of a
sequential assignment statement.

The above restriction regarding objects that can be assigned a value from within a sequential
block does not apply to those that appear in the event expression, however. A sequential block
canbe triggered into action by changes in both regs and/or wires; this means that module input
ports, as well as gate outputs and continuous assignments, can cause the execution of a
sequential block and, therefore, behavioural and data-flow elements can be mixed freely within
a hardware description.

8.3.1 Sequential Statements

Table 8.1 contains a list of the most commonly used sequential statements that may
appear within the confines of a sequential block (initial or always); some
are very similar to those used in the C language, while others are unique to the Verilog
HDL.

A detailed description of the semantics of each sequential statement is not included in
this section; instead, each statement will be explained in the context of the examples
that follow. It should also be noted that Table 8.1 is not exhaustive; there are several
less commonly wused constructs, such as parallel blocks (fork...join) and
procedural continuous assignments, that the interested reader can explore further in
Reference [1].

With reference to Table 8.1, items enclosed within square brackets ([]) are optional, curly
braces ({ }) enclose repeatable items, and all bold keywords must be lower case.

Assignments within Sequential Blocks: Blocking and Nonblocking 205

Table 8.1 The most commonly used Verilog HDL sequential statements.

Sequential statement

Description

begin
{ seqg_statements}
end

if (expr)
seq statement
[else
seq_statement |

case (expr)
{ { value,} : seq statement}

[default:seg statement]
endcase

forever
seq_statement

repeat (expr)

seq_statement

while (expr)
seq_statement

for (expl; exp2; exp3)
seq statement
(time_value) seq statement

@ (event expr) seq statement

Blocking sequential assignment
Nonblocking sequential assignment

Null statement. Also required at the end of each
statement

Block or compound statement. Always required if
there is more than one sequential statement

Conditional statement, expression (expr) must
be in parentheses. The else part is optional and
the statement may be nested. Multiple statements
require begin. . .end bracketing

Multi-way decision, the expression (expr) must be
in parentheses. Multiple values are allowed in each
limb, but no overlapping values are allowed between
limbs. Default limb is required if previous values
donot cover all possible values of expression. Multiple
statements require begin. . .end bracketing

Unconditional loop. Multiple statements require
begin...end bracketing

Fixed repetition of seq_statement a number of
times equal to expr. Multiple statements require
begin. . .end bracketing

Entry test loop (same as C) repeats as long as expr is
nonzero. Multiple statements require begin...end

bracketing

Universal loop construct (same as C). Multiple
statements require begin. . .end bracketing

Suspends a block for time value time-units

Suspends a block until event expr triggers

206 Describing Combinational and Sequential Logic using Verilog HDL

The continuous assignment parallel statement makes use of the = assignment operator
exclusively. As shown in Table 8.1, sequential assignments can make use of two different types
of assignment:

e blocking assignment — uses the = operator;
e nonblocking assignment — uses the <= operator.

The difference between the above assignments is quite subtle and can resultin simulation and/or
synthesis problems if not fully understood.

The blocking assignment is the most commonly used type of sequential assignment when
describing combinational logic. As the name suggests, the target of the assignment is updated
before the next sequential statement in the sequential block is executed, in much the same way as
in a conventional programming language. In other words, a blocking assignment ‘blocks’ the
execution of the subsequent statements until it has completed. Another aspect of blocking
sequential assignments is that they effectively overwrite each other when assignments are made
tothe same signal. An example of thisis seen in the Hamming code decoder example at the end of
Chapter 7 (see Listing 7.3), where the decoder outputs are initialized to a set of default values
prior to being conditionally updated by subsequent statements.

On encountering a nonblocking assignment, the simulator schedules the assignment to take
place at the beginning of the next simulation cycle, this normally occurs at the end of the
sequential block (or at the point when the sequential block is next suspended). In this manner,
subsequent statements are not blocked by the assignment, and all assignments are scheduled to
take place at the same point in time.

Nonblocking assignments can be used to assign several reg-type objects synch-
ronously, under control of a common clock. This is illustrated by the example shown in
Figure 8.3.

The three nonblocking assignments on lines 17, 18 and 19 of the listing shown in
Figure 8.3 are all scheduled to occur at the positive edge of the signal named ‘CLK’.
This is achieved by means of the event expression on line 15 making use the event qualifier
posedge (derived from positive-edge), i.e. the execution of the always sequential block
is triggered by the logic O to logic 1 transition of the signal named CLK. This particular form
of triggering is commonly used to describe synchronous sequential logic and will be
discussed in detail later in this chapter.

The nonblocking nature of the assignments enclosed within the sequential block means
that the value being assigned to R2 at the first positive edge of the clock, for example, is the
current value of R1,i.e. ‘unknown’ (1 'bx). The same is true for the value being assigned to R3
atthe second positive edge of CLK; thatis, the current value of R2, whichisalso 1 'bx. Hence,
the initial unknown states of R1, R2 and R3 are successively changed to logic 0 after three
clock pulses; in this manner, the nonblocking assignments describe what is, in effect, a 3-bit
shift register, as shown in Figure 8.4.

Figure 8.5 shows an almost identical listing to Figure 8.3, apart from the three assig-
nments in lines 17, 18 and 19, which in this case are of the blocking variety. The initial value
of regsR1,R2 and R3 isunknown as before, and the reg RO is initialized at time zero to logic 0.

The effect of the blocking assignments is apparent in the resulting simulation result shown in
Figure 8.5: all three signals change to logic O at the first positive edge of the CLK. This is due to

Assignments within Sequential Blocks: Blocking and Nonblocking 207

1 ‘“timescale 1 ns/ 1 ns

2 module non blocking assignmnts();

3 reg R1, R2, R3, RO, CLK;

4 initial

5 begin

6 RO = 1'bO0;

7 CLK = 1'bO;

8 repeat (3)

9 begin

10 #50 CLK = 1'bl;

11 #50 CLK = 1'b0;

12 end

13 Sstop;

14 end

15 always @ (posedge CLK)

16 begin //a sequence of non-blocking assignments

17 R1 <= RO;

18 R2 <= R1;

19 R3 <= R2;

20 end

21 endmodule

Ons | 50ns | 100ns | 150ns | 200ns | 250ns
| S | | S | | I | | S | | I | | I |
non_blocking_assignmnts.CLK]]]
non_blocking_assignmnts.R0O
non_blocking_assignmnts.R1 _
non_blocking_assignmnts R2 |
non_blocking_assignmnis R3_ [|
Figure 8.3 [Illustration of nonblocking assignments.
R1 R2
- CLK CLK CLK

J_Ll‘ CLK

Figure 8.4 Nonblocking assignment equivalent circuit.

208 Describing Combinational and Sequential Logic using Verilog HDL

1 ‘timescale 1 ns/ 1 ns
module blocking assignmnts();

3 reg R1, R2, R3, RO, CLK;

4 initial

5 begin

6 RO = 1'b0;

7 CLK = 1'bO;

8 repeat (3)

9 begin

10 #50 CLK = 1'bl;
11 #50 CLK = 1'b0;
12 end

13 $stop;

14 end

15 always @ (posedge CLK)
16 begin //a sequence of blocking assignments

17 R1 = RO;
18 R2 = R1;
19 R3 = R2;
20 end

21 endmodule

Ons | 50ns | 100ns | 150ns | 200ns | 250ns |
|- | I | |- |- I |- I

blocking_assignmnts.CLK

blocking_assignmnts.RO

blocking_assignmnts.R3

blocking_assignmnts.R2

blocking_assignmnts.R1

Figure 8.5 Illustration of blocking assignments.

the fact that the blocking assignment updates the signal being assigned prior to the next
statement in the sequential block. The result is that the three assignments become what is, in
effect, one assignment of the value of RO to R3. The equivalent circuit of the always block
listed in Figure 8.5 is shown in Figure 8.6.

The choice of whether to use blocking or nonblocking assignments within a sequential block
depends on the nature of the digital logic being described. Generally, it is recommended that
nonblocking assignments are used when describing synchronous sequential logic, whereas
blocking assignments are used for combinational logic.

Describing Combinational Logic using a Sequential Block 209

RO R3

I S

- CLK

U

Figure 8.6 Blocking assignment equivalent circuit.

Sequential blocks intended for use within test modules are usually of the initial type;
therefore, blocking assignments are the most appropriate choice.

A related point regarding the above guidelines is that blocking and nonblocking assignments
should not be mixed within a sequential block.

g[z) Cl?(ESCI?IBINC-; COMBINATIONAL LOGIC USING A SEQUENTIAL

The rich variety of sequential statements that can be included within a sequential block means
that the construct can be used to describe virtually any type of digital logic. Figure 8.7 shows the
Verilog HDL description of a multiplexer making use of an always sequential block.

The module header in line 1 declares the output port out as a reg, since it appears on the
left-hand side of an assignment within the sequential block. This example illustrates that
despite the keyword reg being short for register, it is often necessary to make use of the reg
object when describing purely combinational logic.

=

module mux (output reg out, input a, b, sel);

2 always @(a or b or sel)
3 begin
4 if (sel)
5 out = a;
6 else
7 out = Db;
8 end
9 endmodule
a
out
mux
b
sel

Figure 8.7 A two-input multiplexer described using an always block.

210 Describing Combinational and Sequential Logic using Verilog HDL

The event expression in line 2 of the listing in Figure 8.7 includes all of the inputs to the block
in parentheses and separated by the keyword ox. This format follows the original Verilog-1995
style; the more recent versions of the language allow either a comma-separated list or the use of
the wildcard ‘ *’ to mean any reg or wire referenced on the right-hand side of an assignment
within the sequential block.

Regardless of the event expression format used, the meaning is the same, in that any input
change will trigger execution of the statements within the block.

The sequential assignments in lines 5 and 7 are of the nonblocking variety, as recommended
previously. The value assigned to out is either the a input or the b input, depending on the state
of the select input sel.

One particular aspect of using an always sequential block to describe combinational logic is
the possibility of creating an incomplete assignment. This occurs when, for example, an
if.. .else statement omits a final else part, resulting in the reg target signal retaining the
value that was last assigned to it.

In terms of hardware synthesis, such an incomplete assignment will result in a latch being
created. Occasionally, this may have been the exact intention of the designer; however, it is a
more common situation that the designer has inadvertently omitted a final el se or forgotten to
assign a default value to the output. In either case, most logic synthesis software tools will issue
warning messages if they encounter such a situation.

The following guidelines should be observed when describing purely combinational logic
using an always sequential block:

Include all of the inputs to the combinatorial function in the event expression using one of the
formats shown in Listing 8.1b—d.

To avoid the creation of unwanted latches, ensure either of the following is applicable:

— assign a default value to all outputs at the top of the always block, prior to any
sequential statement such as if, case, etc.;

— in the absence of default assignments, ensure that all possible combinations of input
conditions result in a value being assigned to the outputs.

The example in Figure 8.8 illustrates the points discussed above regarding incomplete
assignments.

The designer of the module latch implied listed in Figure 8.8 has used an always
block to describe the behaviour of a selector circuit. The 2-bit input sel1[1:0] selects one of
three inputs a, b or ¢ and feeds it through to the output y.

The assumption has been made that y will be driven to logic Oif sel isequal to 2 'b11. This
is, of course, incorrect: the omission of a final else clause results in y retaining its current
value (since it is a reg), hence the presence of the feedback connection between the y output
and the lower input of the left-hand multiplexer of the circuit shown in Figure 8.8. The synthesis
tool has correctly inferred a latch from the semantics of the if...else statement and the
reg object.

There are two alternative ways in which the listing in Figure 8.8 may be modified in order to
remove the presence of the inferred latch in the synthesized circuit. These are shown in
Figure 8.9a and b, with the corresponding latch-free circuit shown in Figure 8.9c.

Describing Combinational Logic using a Sequential Block 211

1 module latch implied(input a, b, c,
2 input [1:0] sel,
3 output reg vy);
4 always @ (*)//wildcard triggering
5 begin
6 if (sel == 2'b00)
7 y = a;
8 else if (sel == 2'Db01)
9 y = b;
10 else if (sel == 2'bl0)
11 y = C;
12 end
13 endmodule
a 0
b 5 MUX Y
MUX !
c
1
sel[1] sel[1], sel[0]
sel[0]
/\
sel[0]
sel[1]

Figure 8.8 Example showing latch inference.

The listing shown in Figure 8.9a adds a final el se partin lines 12 and 13; this has the effect of
always guaranteeing the output vy is assigned a value under all input conditions. Figure 8.9b
achieves the same result by assigning a default value of logic 0 to output y in line 6.

Of the alternative strategies for latch removal exemplified above, the use of default assign-
ments at the beginning of the sequential block is the more straightforward of the two to apply;
therefore, this is the recommended approach to eliminating this particular problem.

The following examples further illustrate how the Verilog HDL can be used to describe a
combinational logic function using an always sequential block. The first example, shown in
Figure 8.10, describes a three-input to eight-output decoder (similar to the TTL device known as
the 74L.S138).

212 Describing Combinational and Sequential Logic using Verilog HDL

The function of the t t 1138 module is to decode a 3-bitinput (A, B, C), and assert one of eight
active-low outputs. The decoding is enabled by the three G inputs (G1, G2A, G2B), which must
be set to the value (1, 0, 0). If the enable inputs are not equal to (1, 0, 0), then all of the Y outputs
are set high.

This behaviouris described using an always sequential block that responds to changes on all
inputs, starting in line 3 of the listing shown in Figure 8.10. The Youtputs are set to a default value
of all ones in line 5 and this is followed by an i £ statement that conditionally asserts one of the

(a)

1 module data selector (input a, b, c,
2 input [1:0] sel,

3 output reg V)

4 always Q@(a, b, c, sel) //same as '*’
5 begin

6 if (sel == 2'b00)

7 y = a;

8 else if (sel == 2'b01)

9 y = b;

10 else if (sel == 2'b10)

11 y = ¢Cc;

12 else //final else removes latch
13 y = 1'b0;

14 end

15 endmodule

1 module data selector(input a, b, c,
2 input [1:0] sel,
3 output reg v);

4 always @ (a or b or c or sel)

5 begin

6 y = 1'b0; //default assignment

7 if (sel == 2'b00)

8 y = a;

9 else if (sel == 2'b01)

10 y = b;

11 else if (sel == 2'bl0)

12 y = C;

13 end

14

15 endmodule

Figure 8.9 Removal of unwanted latching feedback: (a) removal of latch using final

else part; (b) removal of latch using assignment of default output value; (c) synthesized circuit for (a)
and (b).

Describing Combinational Logic using a Sequential Block 213

(©

a 0
y
b 0 MUX
MUX 1
c
1
0
sel[1] sel[1], sel[0]
sel[0]
/\
sel[0]

sel[1]
Figure 8.9 (Continued).

Y outputs to logic 0, depending on the decimal equivalent (0-7) of (A, B, C), in lines 6 and 7
respectively.

Simulation of the tt1138 module is achieved using the Verilog test-fixture shown in
Figure 8.11. The test-fixture module shown in Figure 8.11 makes use of a so-called named
sequential block starting in line 6. The name of the block, gen tests, is an optional label that

1 module ttll138(input A, B, C, Gl, G2A, G2B,

2 output reg [7:0] Y);
3 always @(A, B, C, Gl, G2A, G2B)

4 begin

5 Y = 8'hFF; //set default output
6 if (Gl & ~G2A & ~G2B)

7 Y[{A, B, C}] = 1'b0O;

8 end

9 endmodule

ow»
S

— G1 Y5
—J G2A Y6
—J G2B Y7

PTTTTTTY

Figure 8.10 Three-to-eight decoder Verilog description and symbol.

214 Describing Combinational and Sequential Logic using Verilog HDL

must be placed after a colon following the keyword begin. Naming a sequential block in this
manner (both always and initial blocks may be named) allows items, such as regs and
integers, to be declared and made use of within the confines of the block. These locally
declared objects may only be referenced from outside the block in which they are declared by
preceding the object name with the block name; for example, the integer t in the listing of
Figure 8.11 could be referenced outside of the initial block as follows:

gen tests.t

The use of locally declared objects, as described above, allows the creation of a more
structured description. However, it should be noted that, at the time of writing, not all logic
synthesis tools recognize this aspect of the Verilog language.

The integer t is used within the initial block to control the iteration of the for loop
situated between lines 9 and 12 inclusive. The purpose of the loop is to apply an exhaustive set of
input states to the (A, B, C) inputs of the decoder. The syntax and semantics of the Verilog for
loop is very similar to that of its C-language equivalent, as shown below:

for (initialization; condition; increment) begin
sequential statements
end

The above is equivalent to the following:

initialization;
while (condition) begin
sequential statements

increment;
end

In line 10 it can be seen how Verilog allows the 32-bit integer to be assigned directly to 3-bit
concatenation of the input signals without the need for conversion.

The timing simulation results are also included in Figure 8.11; these clearly show the
decoding of the 3-bit input into a one-out-of-eight output during the first 800 ns. During the
last 200 ns of the simulation, the enable inputs are setto 3 'b000 and then 3'b011 in order to
show all of the Y outputs going to logic 1 as a result of the decoder being disabled.

Finally, it should be noted that the very simple description of the decoder given in Figure 8.10
isnotintended to be an accurate model of the actual TTL device; rather, itis a simple behavioural
model intended for fast simulation and synthesis.

A second example is shown in Figure 8.12. This shows the Verilog source description
and symbolic representation of a majority voter capable of accepting an n-bit input word.
The function of this module is to drive a single-bit output named ma j to either alogic 1 or logic O
corresponding to the majority value of the input bits. Clearly, such a module requires an odd
number of input bits greater than or equal to 3 in order to produce a meaningful output.

The module header (lines 2 and 3 of the listing in Figure 8.12) includes a parameter
named n to set the number of input bits, having a default value of 5. The use of a parameter

Describing Combinational Logic using a Sequential Block

215

1 ‘timescale 1 ns/ 1 ns

2 module test ttl138;

3 reg A, B, C, Gl, G2A, G2B;

4 wire [7:0] Y;

5 initial

6 begin : gen tests

7 integer t;

8 {Gl, G2A, G2B} = 3'b100;

9 for (t = 0; t <=7; t =t + 1) begin

10 {A, B, C} = t;

11 #100;

12 end

13 //disable the decoder

14 {Gl, G2A, G2B} = 3'b000;

15 #100;

16 {Gl1, G2A, G2B} = 3'b011;

17 #100;

18 Sstop;

19 end

20 ttll138 uut(.A(Ap),

21 .B(B),

22 .C(C),

23 .G1(G1l),

24 .G2A (G2An),

25 .G2B (G2B),

26 LY (Y));

27 endmodule

Ors ,, [199ns , [200ns, (30003 , [496ns, |500n, [60ns 700, [800ns , 900,

test_ttl138.gen_tests.t{31:0] 0 1 2 3 4 5 6 7 8

test tt1138.Y[0] [

test t1138.Y[1] | J

test_tt138.Y[2] | J

test_tti138.Y[3] | J

test t1138.Y[4] | J

test t1138.Y[5] | [

test t11138.Y[6] | [

test tt138.Y[7] | [

test tt138.Y[7:0]| _FE [FD [FB [F7 [B [DF [BF [7F] FF
test_ttl138.uut. A |
test tt1138.uut.B |

test tti138.uut.C | [| |

test t11138.uut.G1 |

test_tti138.uut. G2A

1

test_ttl138.uut. G2B

Figure 8.11 Test fixture and simulation results for the three-to-eight decoder module.

216 Describing Combinational and Sequential Logic using Verilog HDL

1 // n-bit majority voter, (n must be odd and >= 3)

2 module majn # (parameter n = 5)

3 (input [n-1:0] A, output maj);

4 integer num ones, bit;

5 reg is x;

6 always @ (A)

7 begin

8 is x = 1'b0;

9 num_ones = 0;

10 for (bit = 0; bit < n; bit = bit + 1) begin
11 if ((A[bit] === 1'bx) || (A[bit] === 1'bz))
12 is x = 1'bl;

13 else if (A[bit] == 1'bl)

14 num ones = num ones + 1;

15 end

16 end

17 assign maj = (is_x == 1'bl)? 1'bx

18 (n - num ones) < num ones;

19 endmodule

majn

m AlN-1:0] maj—

Figure 8.12 Verilog description and symbol for an n-bit majority voter.

makes the majority voter module potentially more useful due to it being scalable, i.e. the user
simply sets the parameter to the desired value as part of the module instantiation.

Two register-type objects, in the form of integers are declared in line 4. The first,
num_ones, is used to keep track of the number of logic 1s contained in the input A, and the
second, named bit, is used as a loop counter within the £or loop situated in lines 10—15. A
single-bit reg named is_x is declared in line 5 to act as a flag to record the presence of any
unknown or high-impedance input bits.

The behaviour of the majority voteris described using an always sequential block commen-
cing in line 6 of the listing show in Figure 8.12. The block is triggered by changes in the input
word A, and starts by initializing is _x and num_ones to their default values of zero. The for
loop then scans through each bit of the input word, first checking for the presence of an unknown
or high-impedance state and then incrementing num_ones each time alogic 1is detected. Note
the use of the case-equality operator (===) in line 11 to compare each input bit of A explicitly
with the meta-logical values 1 'bx and 1 'bz:

(Albit] === 1'bx) || (A[bit] === 1'bz)

On completion of the for loop inline 15, the sequential block suspends until subsequent events
on the input A.

Describing Sequential Logic using a Sequential Block 217

The output ma j is continuously assigned a value based on the outcome of the always block.
The expression in lines 17 and 18 assigns 1'bx to the output subject to the conditional
expression being true, thereby indicating the presence of an unknown or high impedance among
the input bits. In the absence of any unknown input bits, the output is determined by comparing
the number of logic 1s within A (num_ones) with the total number of bits in A (n):

(n — num ones) < num_ones

Itisleft to the reader to verify that the above expression is true (false), i.e. yields alogic 1 (logic 0)
if num_ones is greater (less) than the number of logic Os in the n-bit input A.

The simulation of a 7-bit majority voter module is carried out using the test module shown in
Figure 8.13. This test module instantiates a 7-bit (n = 7) majority voterinline 5. The initial
block starting in line 6 sets the input to all zeros in line 8 and then applies an exhaustive set of
input values by means of a repeat loop in lines 9-12 inclusive. The expression 1 << 7, used
to set the number of times to execute the repeat loop, effectively raises the number 2 to the
power 7, by shifting a single logic 1 to the left seven times. This represents an alternative to
using the ‘raise-to-the-power’ operator “**’, which is not supported by all simulation and
synthesis tools.

After applying all known values to the A input of the majority voter module, the test module
then applies two values containing the meta-logical states (lines 14—17) in order to verify that the
module correctly detects an unknown input.

Figure 8.13 also shows a sample of the simulation results produced by running the test
module. Inspection of the results reveals that the module correctly outputs alogic 1 when four or
more, i.e. the majority of the inputs, are at logic 1. The behaviour of the internal objects
num_ones and is_x can also be seen to be correct.

8.5 DESCRIBING SEQUENTIAL LOGIC USING A SEQUENTIAL BLOCK

With the exception of the simple level-sensitive latch given in Figure 8.1, Verilog HDL
descriptions of sequential logic are exclusively constructed using the alway s sequential block.
The reserved words posedge (positive edge) and negedge (negative edge) are used within
the event expression to define the sensitivity of the sequential block to changes in the clocking
signal. Figure 8.14 shows the general forms of the always block that are applicable to purely
synchronous sequential logic, i.e. logic systems where all signal changes occur either on the
rising (a) or falling (b) edges of the global clock signal.

The use of both posedge and negedge triggering is permitted within the same event
expression at the beginning of an always block; however, this does not usually imply dual-
edge clocking. The use of both of the aforementioned event qualifiers is used to describe
synchronous sequential logic thatincludes an asynchronous initialization mechanism, as will be
seen later in this section.

Figure 8.15 shows the symbol and Verilog description of what is perhaps the simplest of all
synchronous sequential logic devices: the positive-edge-triggered D-type flip flop.

The module header, in line 1 of the listing in Figure 8.15, declares the output Q to be a reg-
type signal, owing to the fact that it must retain a value in between active clock edges. The use of

the keyword regq is not only compulsory, but also highly appropriate in this case, since Q
represents the state of a single-bit register.

218

Describing Combinational and Sequential Logic using Verilog HDL

1 “timescale 1 ns/ 1 ns
2 module test majn;

3 reg [6:0] Ain;

4 wire M;

5 majn #(.n(7)) maj7(.A(Ain), .maj(M));

6 initial

7 begin

8 Ain = 0;

9 repeat (1 << 7) begin

10 #100;

11 Ain = Ain + 1;

12 end

13 #100;

14 Ain = 7'b1001x01;

15 #100;

16 Ain = 7'b000zzl11;

17 #100;

18 Sstop;

19 end

20 endmodule

[|2|'5rpsl ! |3|'0rps| ! |3|'5rpsl ! |4|'on|151 ! |4|'5n|151 ! |5|'0nps| !

L R (o U I O By 1
testmajnmaj7 ANl | | [L[L[L [L [1 [1L [1 T

test_majn.maj7.A[2]

—

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

———————— —
I —
| 1 [

test_majn.maj7.is_x

test_majn.maj7.num_ones[31:0]

EEFEREEE FEFFEFEEFEEEEEEFEEERER]

| 10.5ms | 11.0ms | 11.5ms | 12.0ms | 12.5ms | 13.0ms
I 1 [1 1 [[

test_majn.maj7.A[0]

test_majn.maj7.A[1]

test_majn.maj7.A[2]

L

0

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

test_majn.maj7.is_x

mi il

test_majn.maj7.num_ones[31:0]

(@]
el
[
[
LSl
[
[
LSl
(@]
[l
[
[
LSl
[
[
LSl
[l
[
LSl
LSl
(]
[
[l
[l
(]
[l
(]

Figure 8.13 Test fixture and simulation results for the n-bit majority voter.

Describing Sequential Logic using a Sequential Block 219

()

1 always((posedge clock)

2 begin

3 //sequential statement 1

4 //sequential statement 2

5

6 end

o £ 141 F]

(b)

1 always(@ (negedge clock)

2 begin

3 //sequential statement 1

4 //sequential statement 2

5

6 end

oo [3 4 4 [}

Figure 8.14 General forms of the always block when describing synchronous sequential logic:
(a) positive-edge-triggered sequential logic; (b) negative-edge-triggered sequential logic.

The always sequential block in lines 2 and 3 contains a single sequential statement (hence
the absence of the begin. . .end bracketing) that performs a nonblocking assignment of the
input value D to the stored output Q on each and every positive edge of the input named CLK. In
this manner, the listing given in Figure 8.15 describes an ideal functional model of a flip flop:
unlike areal device, it does not exhibit propagation delays, nor are there any data sez-up and hold
times that must be observed. To include such detailed timing aspects would result in a far more
complicated model, and this is not required for the purposes of logic synthesis.

As mentioned previously, it is conventional to use the nonblocking assignment operator
when describing sequential logic. However, it is worth noting that the above flip-flop description
would perform identically if the assignment in line 3 was of the blocking variety. This is due to the
fact that there is only one signal being assigned a value from within the always block.

1 module dff (output reg Q, input D, CLK);

N

always @ (posedge CLK)
Q <= D;

w

4 endmodule

—Io o}l——>

>—PCLK

Figure 8.15 A positive-edge-triggered D-type flip-flop.

220 Describing Combinational and Sequential Logic using Verilog HDL

1 “timescale 1 ns/ 1 ns
2 module test dff();

3 reg CLK, D;

4 wire Q;

5 dinitial

6 begin

7 D = 1'b0;

8 repeat (3) @ (negedge CLK) ;
9 D = 1"bl;

10 end

11 initial

12 begin

13 CLK = 1'b0O;

14 #100;

15 repeat (4) begin

16 #50 CLK = 1'bl;
17 #50 CLK = 1'b0;
18 end

19 Sstop;

20 end

21 dff dut(.Q(Q), .D(D), .CLK(CLK)):;

22 endmodule

Ons | 100ns 200ns 300ns 400ns
[R Lo (N (R (-1
test_dff.dut.CLK [[[[

test_dff.dut.D [

Figure 8.16 D-type flip-flop test module and waveforms.

Figure 8.16 shows a Verilog test-module and corresponding simulation waveform results
for the D-type flip flop. This test module makes use of two initial sequential blocks to produce
the Dand CLK inputs of the flip flop. Line 8 illustrates the use of the @ (event expression)
statement within a test module; in this case, the repeat loop waits for three conse-
cutive negative-edge transitions to occur on the CLK before setting the data input D to a logic 1.

Inspection of the timing waveforms below the listing in Figure 8.16 shows that the Q output of
the flip flop remains in an unknown state (shaded) until the first O-to-1 transition of the clock; in
other words, the flip-flop is initialized synchronously. In addition, the change in the data input D
appears to occur at the second falling-edge of the clock, despite the fact that the repeat loop
specifies threeiterations; this apparent discrepancy is due to the change from the initial state
of CLK,i.e. 1 'bx,to 1 'b0 at time zero, being equivalent to a negative edge at the very start of

Describing Sequential Logic using a Sequential Block 221

1 // A 4-bit UP Counter with asynchronous reset
2 module cntr4 (input clock, reset,

3 output reg [3:0] count);

4 always @ (posedge reset or posedge clock)

5 begin

6 if (reset == 1'bl)

7 count <= 4'b0000;

8 else //synchronous part

9 count <= count + 1;

10 end

11 endmodule
cntr4
— reset

count [0..3]
—pclock

Figure 8.17 Verilog description of a 4-bit counter.

the simulation run. Finally, it can be seen that the Q output of the flip-flop changes state
coincident with the rising edge of the clock, in response to the change from logic 0 to logic 1
on the data input at the preceding clock falling edge.

The following examples illustrate how the always sequential block is used to describe a
number of common sequential logic building blocks.

Figure 8.17 shows the symbol and Verilog description for a 4-bit binary counter having an
active-high asynchronous reset input. The input named reset takes priority over the synchro-
nous clock input and, when asserted, forces the counter output to zero immediately. This
aspect of the behaviour is achieved by means of the reference to posedge reset inthe event
expression in line 4 along with the use of the 1 £. . .else statement in lines 6—9 of the listing in
Figure 8.17.

The presence of the event qualifier posedge before the input reset might imply that
the module has two clocking mechanisms. However, when this is combined with the test for
reset ==1"blinline 6, the overall effectis to make reset actas an asynchronous input that
overrides the clock.

When the reset input is at logic 0, a rising edge on the c1lock input triggers the always
block to execute, resulting in the count being incremented by the sequential assignment
statement located within the else part of the i f statement (see line 9).

Consistent with previous sequential logic modules, the 4-bit counter makes use of nonblock-
ing assignments directly to the 4-bit output signal, this having been declared within the module
header as being of type reg, in line 3. Note that Verilog allows an output port such as count to
appear on either side of the assignment operator, allowing the value to be either written to or read
from. This is evident in line 9 of the listing in Figure 8.17, where the current value of count is
incremented and the result assigned back to count.

Figure 8.18 shows a test module and the corresponding simulation results for the 4-bit counter.
The waveforms clearly show the count incrementing on each positive edge of the clock input,
until the asynchronous reset input RST is asserted during the middle of the count = 8 state,
immediately forcing the count back to zero.

222 Describing Combinational and Sequential Logic using Verilog HDL
1 “timescale 1 ns/ 1 ns
2 module test cntr4();
3 reg CLK, RST;
4 wire [3:0] Q;
5 initial
6 begin
7 RST = 1'bl;
8 repeat (3) @ (negedge CLK) ;
9 RST = 1'bO0;
10 repeat (8) @ (negedge CLK) ;
11 RST = 1'bl;
12 @ (negedge CLK) ;
13 RST = 1'b0;
14 end
15 initial
16 begin
17 CLK = 1'b0;
18 #100;
19 repeat (30) begin
20 #50 CLK = 1'bl;
21 #50 CLK = 1'b0;
22 end
23 Sstop;
24 end
25 c¢cntrd4 dut(.clock(CLK), .reset(RST), .count(Q)):;
26 endmodule
Onlsl [|50|0n? [|1'9m? [|1'|5m? [|2'0Imsl [|2.5Imsl [|3.0ms
testonva_arauoook | TUTLTUT U LU0 UL T U T U L
test_cntr4_ardut.reset| |]
testontd ardutcountioll 1 1 L1 LTI UL LT
test.entr4_ardutcounttl) [| [| [L [L [L T L T
test_cntr4_ar.dut.count[2]] [
test_cntr4_ar.dut.count[3] M I
test_cntr4_ar.dut.count(3:0] 0 [1[2[3T4[5[6[7]] 0 [1]2[3[4[5]6]7[8[9[A[BICIDIE[F]O[T]2]
! [|90|0n|S [|1'9m? [|1'|1m|S [|1'|2m? [|1'i’3m?
test_cntr4_ar.dut.clock [] [] [| | | | |
test_cntr4_ar.dut.reset - -]
test_cntr4_ardut.counti] [| [|]
test_cntr4_ar.dut.count[1] | | |
test_cntr4_ar.dut.count[2] |
test_cntr4_ar.dut.count[3] []
test_cntr4_ar.dut.count[3:0] 5] 6 | 7 [8] 0 | 1

Figure 8.18 Verilog test-module and simulation results for the 4-bit counter.

Describing Sequential Logic using a Sequential Block 223

1 //A 4-bit shift register with

2 //asynch active-low reset and shift enable

3 module shift4 (input clock, clrbar, shift, serial,
4 output reg [3:0] q);

5 always @ (negedge clrbar or posedge clock)

6 begin

7 if (clrbar == 1'b0)

8 g <= 4'b0;

9 else if (shift == 1'bl) //synchronous part
10 g <= {gq[2:0], serial};

11 end

12 endmodule

— serial shift
— shift
—d clrbar g[0..3]

— clock

Figure 8.19 Verilog description of a 4-bit shift register.

As expected, the 4-bit count value automatically wraps around to zero on the next positive
edge of the clock when the count of all-ones (4 'b1111) is reached.

The next example of a common sequential logic module is given in Figure 8.19, showing the
Verilog description and symbol for a 4-bit shift register. The module header declares an active-
low asynchronous clear input named c1rbar and a synchronous control input named shift,
the latter enables the contents of the shift register (4-bit output reg q) to shift left on the active
clock edge.

The sequential always block is triggered by the following event expression in line 5 of the
listing shown in Figure 8.19:

always (@ (negedge clrbar or posedge clock)

The presence of the qualifier negedge indicates that it is the logic 1 to logic O transition
(negative edge) of the input c1lrbar that triggers execution of the sequential block. This, in
conjunction with the test for clrbar being equal to logic 0, at the start of the if...else
statement in line 7, implements the asynchronous active-low initialization.

Inline 9, the input shi ft is compared with logic 1 at each positive edge of the clock input. If
this is true, then the following statement updates the output g:

q<={ql[2:0], serial} ;

The above sequential assignment shuffles the least significant three bits of q into the three most
significant bit positions while simultaneously clocking the serial data input (serial) into the
least significant bit position. In other words, a single-bit, left-shift operation is performed for
each clock cycle that shift is asserted.

The corresponding test module for the shift register is provided in Figure 8.20. The module
test shift4isverysimilartothe test module showninFigure 8.18 for the 4-bit counter. Two

224

Describing Combinational and Sequential Logic using Verilog HDL
1 ‘timescale 1 ns/ 1 ns
2 module test shiftd();
3 reg CLK, CLRB, SFT, SER;
4 wire [3:0] Q;
5 initial
6 begin
7 CLRB = 1'bO;
8 SFT = 1'b0;
9 SER = 1'bl;
10 repeat (2) (@ (negedge CLK) ;
11 CLRB = 1'bl;
12 repeat (3) (@ (negedge CLK) ;
13 SFT = 1'bl;
14 repeat (6) (@ (negedge CLK) ;
15 CLRB = 1'b0;
16 @ (negedge CILK) ;
17 CLRB = 1'bl;
18 repeat (6) begin
19 @ (negedge CLK) ;
20 SER = ~SER;
21 end
22 end
23 initial
24 begin
25 CLK = 1'b0;
26 #100;
27 repeat (30) begin
28 #50 CLK = 1'bl;
29 #50 CLK = 1'bO;
30 end
31 Sstop;
32 end
33 shift4 dut(.clock(CLK), .clrbar (CLRB),
34 .shift (SFT), .serial(SER), .g(Q));
35 endmodule
On‘s‘ L ‘50‘0n§ L ‘1'(\)"‘5\' | ‘1'\5"‘8\ L ‘2'9"‘8\ 1 ‘2'5\"18\ | ‘3'0'“8
test_shitt4_arautoeck] TUUUUUUUUULUUUUUUUUUUUUUUUUUUUU]
test_shift4_ar.dutclrbar | | L]
test_shift4_ar.dut.shift
test_shift4_ar.dut.serial LI LT L
test_shift4_ar.dutqol] [| [LT LT 1
test_shiftd_ar.dutq(1]) [1 [LT LI 1
test_shift4_ar.dut.q[2] [LT L
test_shift4_ar.dut.q[3] 1 L L 1L
test_shift4_ar.dut.q[3:0] 0 [1]3]7] F JO [1[2]5]A[5]A[5]B]7] F

Figure 8.20

Verilog test-module and simulation results for the 4-bit shift register.

Describing Sequential Logic using a Sequential Block 225

1 //D-Type FF with asynch. Set and Reset

2 module dff asr (output reg g, gb,

3 input d, clk, set, reset);

4 always ((posedge clk or posedge set

5 or posedge reset)

6 begin

7 if (reset) begin //reset has highest priority

8 q <= 0;

9 gb <= 1;

10 end else if (set) begin //set has second highest
11 q <= 1;

12 gqb <= 0;

13 end else begin //clock when set and reset are low
14 q <= d;

15 gqb <= ~d;

16 end

17 end

18 endmodule

—d B qf—
B
(%]
—>ck © gbp—

Figure 8.21 D-type flip-flop with asynchronous set and reset.

initial sequential blocks are used, one to provide an input stimulus and the other a set of
clock pulses; the resulting simulation waveforms are also shown in Figure 8.20.

The previous two examples have shown how a sequential logic module can be described
having either a single active-high or active-low asynchronous reset. The following example
shows how both asynchronous reset and set inputs can be accommodated, if required.

Figure 8.21 shows the Verilog module and symbol for a D-type flip-flop having true and
complementary outputs along with both a set input and a reset input for asynchronous
initialization to either logic 1 or logic O respectively. Note that, in general, although this example
makes use of only active-high control inputs, any combination of active-high and active-low
control can be described by use of the posedge and negedge event qualifiers.

Lines 4 and 5 of the listing given in Figure 8.21 or together three inputs to form the
event expression, one of which (c1k) is the synchronous clock. This event expression,
combined with the nested if...else...if...else statement, implements the hierarch-
ical reset and set operations in conjunction with synchronous clocking. Notice the use of the
begin...end bracketing to enclose the two assignments that make up each part of the
if.. . else statement.

226 Describing Combinational and Sequential Logic using Verilog HDL

1 //An 8-bit register with synchronous reset
2 module REG8SR (output reg [7:0] Dataout,

3 input [7:0] Datain,

4 input Rst, Clk);

5 always (@ (posedge Clk) //triggers on 'Clk’ only
6 begin

7 if (Rst)

8 Dataout <= 0;

9 else

10 Dataout <= Datain;

11 end

12 endmodule

REG8SR

s Datain[0..7] Dataout[0..7] |

— Rst
— Clk

Figure 8.22 Example of a module using synchronous reset.

In certain situations it may be necessary, or indeed desirable, to perform all initialization
synchronously. Inthis case, all assignments to the reg-type outputs of a sequential logic module
are synchronized to the positive or negative edges of the master clock input.

The example shown in Figure 8.22 illustrates how the above can be implemented. The figure
shows a Verilog module and symbol for a fully synchronous 8-bit data register. The event
expressionin line 5 of the listing shown in Figure 8.22 refers only to the positive edge of the C1k
input. Therefore, all assignments to Dataout are subject to this condition, including the reset
operation that occurs when Rst is at logic 1.

The last example in this section is a Verilog design that makes use of various aspects from
previous examples, such as scalability, synchronous clocking and behavioural modelling.

Figure 8.23 shows the listing and symbolic representation for a so-called universal register/
counter capable of performing a number of useful operations, in addition to having scalable
input and output data ports. The latter is achieved by means of a parameter named size
declared in the module header.

The module unireg, as well as being a parallel data register, is capable of performing the
function of an up/down counter as well as providing left and right shifting. The number of bits
that make up the register is defined by a parameter in line 2 of the listing, and, as shown, itis set to
a default value of 8.

Describing Sequential Logic using a Sequential Block

227

O J o Ul WM

NN BB R R R PP B o
WN R OW®WJO U s WN R O

24
25
26

27

//Scalable Universal Register/Counter
module unireg # (parameter size = 8)
(input clock, serinl, serinr,
input [2:0] mode,
input [size-1:0] datain,
output reg [size-1:0] dataout,
output termcnt);

always Q@ (posedge clock) //synchronous counter

begin
case (mode)

0 : dataout <= 0; //clear

1 : dataout <= datain; //parallel load

2 dataout <= dataout + 1; //increment

3 dataout <= dataout - 1; //decrement

4 : begin //shift left using '<<’ operator
dataout <= dataout << 1;
dataout[0] <= serinl;

end

//shift right using concatenation

5 : dataout <= {serinr, dataout[size-1:1]};

default : dataout <= dataout; //refresh
endcase
end

//continuous assignment to detect zero

assign termcnt = (mode == 3) ? ~|dataout
((mode == 2) ? &dataout : 0);
endmodule
— serinr unireg
— serinl

dataout[0..size]
: datain[0..size]
mode[0..2]

— clock

terment|——

Figure 8.23 A universal counter/register module.

228 Describing Combinational and Sequential Logic using Verilog HDL

The dataout portof the unireg module constitutes the register itself; this is declared in line
6 of the module header. Each operation that the register performs is synchronized with the positive
edges of the c1 ock input; the nature of the operation is determined by a 3-bit control input named
mode declared in line 4. The function selection nature of the mode input is implemented using a
case. . .endcase statement between lines 10 and 22; each possible value of mode corresponds
to one of the unique branches situated in lines 11-21. There are a total of seven operating modes,
the last (mode = 6 or 7) being covered by the final default branch in line 21.

Serial data inputs are provided for left and right shifting, via input ports serinl and
serinr respectively. With reference to the listing in Figure 8.23, lines 15—18 correspond
to the shift left operation (mode = 4), where the register bits are shifted to the left by one
position and the serial data present on input port serinl is loaded into bit O of the register.
This synchronous data movement is achieved through the use of two nonblocking assign-
ments in lines 16 and 17.

A mode value of 5 corresponds to a right shift. This corresponds to line 20 of the listing, where
the concatenation operator is used to move the most significant size-1 bits into the least
significant size-1 bitpositions. The leftmost bit (MSB) of the register is loaded with the serial
data applied to the serinr input port.

Operating modes 0 to 3 are self-explanatory; these correspond to the sequential assignments
situated in lines 11-14 of the listing in Figure 8.23.

The remaining mode of operation is covered by the defaul t branch of the case statement;
this is the refresh mode, corresponding to a mode value of 6 or 7. The default sequential
assignment simply assigns the register with the current value of dataout,i.e. itself. This could
have been achieved in an alternative manner, as shown below:

default: ; // refresh using null statement

The null statement (;) is a ‘do nothing’ statement; in the above context it indicates that the
dataout register is to retain its current value by virtue of not being updated. The choice of
whether to use this method of retaining or refreshing the value stored in a reg-type signal, as
opposed to the method shown in line 21, is a matter of personal preference.

The last output port of the uniregmoduleis awire-type signal named termcnt, whichis
a shortened form of ‘terminal count’. The purpose of this output is to indicate when the register
has reached the maximum or minimum value when operating in count-up or count-down mode
respectively.

The flexible nature of the dat aout register length makes it difficult to compare it with a fixed
maximum value such as 8 ' hFF; this problem is overcome by the use of the conditional operator
and the bitwise reduction operators, as shown in the continuous assignment in lines 25 and 26 of
the listing of Figure 8.23, and repeated below:

assign termcnt = (mode == 3) ? ~|dataout: ((mode == 2) ? &dataout: 0);

The above expression detects when the operating mode is either ‘count-up’ (2) or ‘count-down’
(3) and respectively assigns the reduction AND or the reduction NOR of dataout to the
terment port. It is straightforward to appreciate that the expression will result in a logic 1 if
mode is equal to 2 (3) and all of the register bits are logic 1 (logic 0), otherwise the above
expression will be a logic 0.

Describing Memories 229

Figure 8.24 includes a listing of a test module named Test unireg, the purpose of which
is to allow simulation of the universal register/counter described above. The module contains
adeclaration of alocal parameter (test _size)inline 3 thatis effectively a constant value for
use within the enclosing module. In this case, the local parameter test size is assigned the
value 4. This corresponds to the number of bits contained in the parallel data input reg, and data
output wire, connected to the register (see lines 7 and 9), as well as being used to override the
value of the parameter that sets the width of the instantiated universal register/counter
(size). This latter use of a local parameter, to determine the value of a parameter usedina
scalable module, is implemented in line 12 of the test module shown in Figure 8.24.

The test module shown in Figure 8.24 includes two initial sequential blocks, the first of
which generates a repetitive clock signal in lines 20—25 inclusive. The second initial block,
spanning lines 26—49, generates a sequence of stimulus signals to exercise the various operating
modes of the universal register/counter. The results of running the simulation are shown below the
listing in Figure 8.24.

After clearing the register to zero by forcing the mode input to zero, the register is
then set to counting-up mode (2) for 30 clock cycles. Inspection of the simulation
waveforms clearly shows the data output bits counting up in binary, during which the
terminal count (termcnt) output goes high coincident with a data output value of all
ones.

The test module then sets the mode control to count-down mode (3) for a further 30 clock
cycles. The data output bits follow a descending sequence and, as expected, the terminal
count output is asserted when the state of all zeros is reached. The other operating modes of
the universal register/counter are activated by subsequent statements in the initial block,
shifting left (mode = 4) and shifting right (mode = 5), parallel load (mode = 1) and
refresh (mode = 7) between lines 38 and 47; the simulation is stopped by the system
command in line 48.

8.6 DESCRIBING MEMORIES

This section presents some very simple modules that can be used as rudimentary
simulation models of RAM and ROM. These modules lack the timing accuracy and
sophistication of the Verilog simulation models that are occasionally provided by
commercial memory-device manufacturers. However, they can nevertheless be used
effectively whenever a fast, functional model is required as part of a larger system
simulation.

The Verilog descriptions discussed in this section serve to further reinforce some of the
aspects that have already been covered, such as scalability and the use of parameters, as well as
behavioural modelling with sequential blocks. In addition to these important elements of
Verilog, the memory models presented here make use of other features not yet covered in
previous chapters; these are as follows:

e arrays — the principle mechanism used to model a memorys;
e bidirectional ports — the ability to use a single port as an input or output;
e memory initialization — loading a memory array with values from a file.

230 Describing Combinational and Sequential Logic using Verilog HDL

1 ‘timescale 1 ns/1 ns
2 module Test unireg();

3 localparam test size = 4; //size of the unireg

4 //inputs

5 reg clock, serinl, serinr;

6 reg [2:0] mode;

7 reg [test size-1:0] datain;

8 //outputs

9 wire [test size-1:0] dataout;

10 wire termcnt;

11 //instantiate the unireg module, 4-bits in size
12 unireg #(.size(test_size))

13 mut (.clock (clock),
14 .serinl (serinl),

15 .serinr (serinr),

16 .mode (mode) ,

17 .datain (datain),

18 .dataout (dataout),
19 .termcnt (termcnt)) ;

20 initial //generate a 100 ns clock

21 Dbegin

22 clock = 0;

23 forever

24 #50 clock = ~clock;
25 end

26 initial //apply test inputs

27 begin

28 serinl = 0;

29 serinr = 1;

30 mode = 0;

31 datain = 'h9;

32 #200 mode = 2;

33 repeat (30) //wait for 30 clock edges
34 @ (posedge clock);

35 mode = 3;

36 repeat (30)

Figure 8.24 Test module and simulation results for universal register/counter.

Describing Memories 231

37 @ (posedge clock) ;
38 mode = 4;
39 repeat (8)
40 @ (posedge clock) ;
41 mode = 5;
42 repeat (8)
43 @ (posedge clock);
44 mode = 1;
45 #400 mode = 2;
46 #800 mode = 7;
47 #1000;
48 Sstop;
49 end
50 endmodule
OYY:S 1 1 1 1":8 1 1 1 2":3 1 1 1 3":8 1 1 1 4mls 1 1
TesLunireg mutclock [TILULU UL TUT UL TUU U U LU DU UUU T UUU UL
Test_unireg.mut.mode[2:0] 0] 2 | 3
Test_unireg.mut.datain[3:0]
Test_unireg.mut.serinl
Test_unireg.mut.serinr
Test_unireg.mut.terment 1 1|
Test_unireg. mutdataoutio] I [1 (LML L LML U U U ULl
Test_uniteg. mut dataout{1] ML L L L L L L rLr
Test_unireg.mut.dataout[2] | | | | | | | | | |]
Test_unireg.mut.dataout[3] [1]]
[Test_unireg.mut.dataout(3:0] ORI [[ATI TTTTTTTTdTTd[AgITITTTTTTTd[44T49 T[]
||6m|s|||7ms|||8m|s|||9ms||
Testunireg mutciook JUUUUUIUIUUTUU LTI U UUTU T IUU SIS U UU U IO UOU]
Test_unireg.mut.mode[2:0] | 4 | 5 | 2 | 7
Test_unireg.mut.datain[3:0]
Test_unireg.mut.serinl
Test_unireg.mut.serinr
Test_unireg .mut.terment [
Test_unireg.mut.dataout/0] | | [[[— yJguyuuyuuyu
Test_unireg.mut.dataout[1] | | [| LI 111
Test_unireg.mut.dataout[2] [| [| [|
Test_unireg.mut.dataout[3] |]
Test_unireg.mut.dataout[3:0] [543 0 1] F [9TTI[I[AA 1

Figure 8.24 (Continued).

The Verilog language does not support the creation of a new and distinct composite type such
as an array or record; instead, an array of regs can be declared using the following syntax (an
array of wires can be declared in a similar manner):

//An array of m, n-bit regs
reg [n-1:0] mem[0O:m-1] ;

232 Describing Combinational and Sequential Logic using Verilog HDL

The above line declares an array having m elements, each one comprising an n-bit reg. In
this manner, the object named mem can be viewed as a two-dimensional array of bits, i.e.
a memory.

The capabilities of the Verilog language in terms of array handling were considerably
enhanced with the release of the Verilog-2001 standard, with multidimensional arrays and
the ability to reference an individual bit directly being two of the key improvements. The
aforementioned new features provided by the update are not required by the simple memory
models presented here, however; for further information, see Reference [2].

The other feature commonly made use of in memory models is bidirectional data commu-
nication. Most RAMs make use of a bidirectional three-state data bus to allow both read and
write accesses using a single set of bus wires. The Verilog language provides for this by means of
the inout port mode, along with the built-in simulation support for the high-impedance state in
conjunction with the resolution of multiple signal drivers. It should be noted that the inout port
is modelled as a wire having one or more drivers. During a read operation, for example, the
inout portis driven by the value being accessed from the memory array; otherwise it is driven
to the high-impedance state. During a write operation to a RAM, the portis driven by an external
source which, combined with the high-impedance value being driven onto the data bus by the
memory module itself, automatically resolves to a value to be written into the memory array.

Figure 8.25 shows the symbol and Verilog description of a simple and flexible RAM module.
The model is general purpose insofar as it provides scalable address and data buses, allowing
different-sized memories to be instantiated.

Line 4 of the listing of the module named ram declares the parameters Awidthand Dwidth.
These define the width of the addre s s and da t a ports subsequently declared in lines 6 and 7 of
the module header. Three active-low control signals are declared in line 5, having the following
functionality:

e web — write-enable, writes data into the memory array when low;

e ceb — chip-enable, enables the memory for reading or writing;

e oeb — output-enable, drives the data from the memory array onto the data port during a read
operation.

The length of the memory array is equal to the number 2 raised to the power of the number of
address input bits, i.e. 2*"*4“" The local parameter declared on line 8 computes this value by
means of the shift-left operator (since, as mentioned previously, not all simulators support the
“*’ operator).

The localparam Length is then used in the declaration of the memory array in line 9 of
the listing in Figure 8.25.

Lines 11 and 12 describe the logic for a memory read operation using a continuous assign-
ment, as repeated below:

assign data = (~ceb & ~oeb & web) ?
mem[address] : 'bz;

The above statement is executed whenever a change occurs in any of the signals on the right-
hand side of the assignment operator (=); this includes all of the memory control inputs, as well
as the address value.

Describing Memories 233

1 //A generic static random access memory

2 //Awidth 1is no. of address lines

3 //Dwidth is no. of data lines

4 module ram # (parameter Awidth = 8, Dwidth = 8)
5 (input web, oeb, ceb,

6 inout [Dwidth-1:0] data,

7 input [Awidth-1:0] address);

8 localparam Length = (1 << Awidth);

9 reg [Dwidth-1:0] mem[O:Length-11; //memory array

10 //memory read
11 assign data = (~ceb & ~oeb & web) ?
12 mem[address] : 'bz;

13 //memory write

14 always @ (posedge web) //occurs on 0-1 transition on web
15 if ((ceb == 1'b0) && (oeb == 1'bl))

16 mem[address] = data;

17 endmodule

ram
web (pavidh y ppigih)
ceb
oeb

data[Dwidth:0]
address[Awidth:0]

Figure 8.25 Verilog description and symbol for a simple RAM.

The inclusion of the condition that ‘write-enable’ must be a logic 1 during a read limits the
possibility of a so-called bus contention, the result of trying to perform a read and a write
simultaneously.

The memory word being read is accessed using the familiar array indexing notation ([])
found in the C language and also when accessing individual bits or bit ranges of a multi-bit reg
orwire.

It should be pointed out that the Verilog-1995 language does not allow part- or bit-selects to be
used in conjunction with an array access, this being one of the enhancements introduced with the
update resulting in Verilog-2001. This limitation does not affect the simple memory models
discussed here, since all accesses to memory arrays are to whole words only.

The use of a continuous assignmentin lines 11 and 12 of the listing in Figure 8.25 is consistent
with the definition of the data port as mode inout, effectively making it behave as awire.
The continuous assignment will drive the bidirectional data ports of the memory module with
the high-impedance state if the condition preceding the ‘?” is false.

234 Describing Combinational and Sequential Logic using Verilog HDL

The memory write operation is implemented by the sequential always block in lines
14-16 of the listing in Figure 8.25. The incoming data value is latched into the memory
array at the rising edge of the active-low ‘write-enable’ control input, providing the
memory is enabled and not attempting to perform a read. In this case, the bidirectional
data ports of the memory are being used as input wires; the Verilog simulator automati-
cally resolves the value on the data port from the combination of the high-impedance state
being assigned by the continuous assignment in lines 11 and 12 and the value being driven
onto the port from the external source.

Figure 8.26 shows the Verilog source description of a test module for the ram model of
Figure 8.25. Animportant aspect of the testmodule test ramis the requirement to declare the
local signal to be connected to the bidirectional data port of the ramasawireratherthanareg,
as would normally be the case if it were purely an input.

The wire named data,declared and continuously assigned in lines 9 and 10, must be driven
to the high-impedance state when the memory is being operated in read mode.

In order to achieve the above, the test module makes use of a single-bit reg, named
tri cntr (short for tri-state control), to control when the data to be written, data reg, is
driven onto the bus wire data. During write operations, tri cntr is set high to enable the
data_reg values to be written to the memory array, whereas during read operations
tri cntr is forced to logic 0 with the corresponding effect of making the data bus wire
high impedance.

A 16-byte RAM isinstantiated in the test module in lines 35-38, by overriding the address and
data width parameters with the numbers 4 and 8 respectively. The initial sequential block,
starting atline 11, performs a sequence of 10 writes to the address locations 0 to 9; the data being
written is an alternating sequence containing the hexadecimal values 8' h55 and 8 ' hAA. At
the end of this sequence of writes the address is reset back to zero and the data bus wire is
driven to the high impedance state by setting tri cntr to logic O in line 26. The second
repeatloop situated between lines 27 and 32 then performs 10 read operations from addresses
0109, as above.

Figure 8.27 shows a block diagram to illustrate the structure of the test module described in
Figure 8.26.

Simulation of the test-module results in the waveforms shown below the listing in Figure 8.26.
As shown, the write operations occur as a result of the webar pulses being applied during the
middle of each valid address and data value interval. The resulting stored values are then read out
by disabling the datareg source by lowering tri cntr, and then applying a sequence of
oebar pulses while incrementing the address.

A ROM can be used wherever there is a need to store and retrieve fixed data during a
simulation. For example, a set of test patterns could be stored in a ROM and subsequently
used as test data (both stimulus and responses) for a module under test during the execution of a
test module.

An embedded microcontroller may make use of an external ROM to store the fixed machine
code program it will fetch and execute as part of a system-level simulation.

A simple Verilog model of a ROM, along with the corresponding symbolic representation, is
given in Figure 8.28. In common with the RAM described above, the memory is designed to be
scalable, having parameters to define the width of both the address bus and the data bus declared
as part of the module header.

Describing Memories

235

w N

O ~J o U1 b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39

//test module for a 16-byte RAM

“timescale 1 ns/ 1 ns
module test ram;

reg webar, oebar, csbar;

reg [7:0] datareg;

reg tri cntr; //data hi-z control

reg [3:0] address;

//three-state buffer for data input/output

wire [7:0] data = (tri cntr == 1'bl)?
datareg : 8'bz;

initial

begin : test

tri cntr = 1'bl; //make data available

webar = 1'bl; oebar = 1'bl;
csbar = 1'bl; datareg = 8'b01010101;
address = 4'd0;
#10 csbar = 1'b0;
repeat (10) //perform 10 writes
begin
#10 webar = 1'b0;
#10 webar = 1'bl;
#10 address = address + 1;
datareg = ~datareg;
end
address = 4'd0;

tri cntr = 1'b0; //make data high impedance

repgat (10) //perform 10 reads
begin

#10 oebar 1'b0;

#10 oebar = 1'bl;

#10 address = address + 1;
end
Sstop;

end

ram #(.Awidth(4), .Dwidth(8))
ram ut (.web (webar),
.oeb (oebar), .ceb(csbar),

.data (data), .address (address)):;

endmodule

Figure 8.26 Test module and simulation results for the simple RAM.

236 Describing Combinational and Sequential Logic using Verilog HDL

0'\18 [! ‘ 5(\)ns\ [‘ 1\00r\1$ [‘ 1\50r\1$ [‘ 2\()0"\]5 ! ! ‘ 2\50'\18 [‘ s\oons
testram.ram _ut.address[3:0] 0 | 1 | 2 | 31 41 5 1 6 1 7 1 81 9]
testram.datareg(7:0] 56 | AA [55 | AA [55 | AA | 5 [AA | 55 [AA |
testram.tri_cntr LI

testram.csbar ||

testram.webar

testram.oebar

testram.ram_ut.data[7:0] 55 | AA] 55 | AA] 55] AA [55 | AA | 55 [AA |
‘ B\OOWS I ‘ 3\50'?5 ! ‘ 4POTS ! ‘ 4‘?0?3 [‘ S\OOTS [‘ 5;50?3 [‘ 600ns
testram.ram_utaddress[3:0] |g [0 [1 [2 | 3 [4 [5 [6 [7 | 8 [9
testram.datareg[7:0] [AA] 55

testram.tri_cntr
testram.csbar

testram.webar | |

testram.oebar

testram.ram_ut.data[7:0] |AA[ZZ[5§ ZZ|A4 ZZ|55 ZZ[AA ZZ ZZ|AA ZZ 55| ZZ|AA ZZ 55| ZZ|AA

Figure 8.26 (Continued).

As in the case of the RAM module of Figure 8.25, the module rom in Figure 8.28 uses a
localparamto calculate the length of the memory using the number of address bits at line 6,
and then goes on to declare the actual memory array at line 7. The behaviour of the model is
encapsulated in a single continuous assignment in line 8 of the listing in Figure 8.28; this
statement assigns the contents of the memory array mem, indexed at location address, to the
data output port, providing that the output enable control input oeb is asserted. Note that, in the
case of the ROM, the data output port is of mode outputrather than inout, since data are only
everread from the module. With the output enable control input at logic 1, the data outputis setto
the high-impedance state.

The actual contents of the ROM array mem are not specified anywhere in the Verilog
description shown in Figure 8.28. For this type of ROM description, the stored data are defined
externally, in an ASCII text file, and loaded into the memory array at the beginning of the

ram_ut
/ test \

reg ram
webar P web

reg
cebar P ceb

| re9 «+—» data[7:0]
oebar P oeb
data[0..7]
tri_cntr
address[0..3]

address|0..3]

datareg|0..7]

initial block

three-state buffer

Figure 8.27 Block diagram of the module test ram.

Describing Memories 237

//a scalable read only memory module

module rom # (parameter Awidth = 8, Dwidth = 8)
(input oeb,
output [Dwidth-1:0] data,
input [Awidth-1:0] address);

g w N

6 localparam Length = (1 << Awidth);
7 reg [Dwidth-1:0] mem[0:Length-1]1; //memory array

8 assign data = (oeb == 1'b0) ? mem[address] : 'bz;

9 endmodule

rom
(279N Dwidth)

—(oeb

data[Dwidth:0]

1 address[Awidth:0]

Figure 8.28 Verilog description of a ROM.

simulation. This method of initializing a ROM can also be used for a RAM, if required. It also
provides a convenient way of loading a large amount of data into a memory from a file generated
by a third-party tool, such as an assembler.

There are two ‘system commands’ that are available for loading a memory array from a text
file:

e Sreadmemb (‘“‘filename’’ , array name);
e Sreadmemh (‘“‘“filename’’ , array name);

The difference between the two functions lies in the format used to represent the stored data
within the text file; the first function requires the data to be entered into the text file in binary,
whereas the second makes use of a text file containing hexadecimal values.

Listing 8.2 shows the contents of an example text file containing binary data values for
loading into a memory array. The first line specifies the numeric address, in hexadecimal format,
of the starting location. This is usually equal to zero. Subsequent use of the @hex address
delimiter allows the memory to be initialized in discrete sections with different blocks of data.

@0
1010 0000 1111 1011 0010 1001 0110 1110
01111101 1011 1111 0000 0001 0010 0101

238

Describing Combinational and Sequential Logic using Verilog HDL

1010 0000 1111 1011 0010 1001 0110 1110
0111 1101 1011 1111 0000 0001 0010 0101

Listing 8.2 Contents of the file rom data.txt

The actual data values are listed in the order they will be stored in memory separated by white
space, such as one or more space characters or the new-line character. If the number of values

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

‘timescale 1 ns/ 1 ns
module Test rom();

wire [3:0]

Data;

reg [4:0] Address;

reg oebar;

initial //initialise rom with data from file
Sreadmemb ("rom data.txt", dut.mem);

rom #(.Awidth(5),

dut (.oeb (oebar),
.data (Data),

.address (Address)) ;

initial
begin
Address

repeat (32

begin
oebar

0;
)

= 1'bl;

#25 oebar =

#50 oebar

#25;

1'b0;
1'bl;

Address = Address + 1;

end
Sstop;
end
endmodule

Ons
| I

20‘0n‘5 1

40‘0n‘S [

.Dwidth (4))

GO‘OH‘S [

//read entire rom contents

Bo\on\s [

1'9“? [

1'\2“\3 11

Test_romdut.address[4:0]

00 [O

02 | 03

04 [05

06 [07

08 [09

0A | 0B

oC [oD

Test_rom.dut.oeb

L S

Testfromdut.data[S:O]laAZOZFZB22ZQZGZEZ7ZDZBZFZOZ12

Figure 8.29

Verilog test-module for the ROM.

Describing Memories 239

contained within the text file is less than the size of the memory array, then the remaining
memory array locations are undefined.

The text file name field *“*filename’’ isa valid path name to the text file containing the data.
The exact format used here depends on the operating system of the computer used to perform the
Verilog simulation, but generally the name of the text file is all that is required if the file is in the
same location (folder or directory) as the Verilog source files that make use of it.

The call to the system commands $readmemb () and $readmemh () may be made from
within the actual memory module itself,in which case the array name field refers to the name
of the memory array defined within the enclosing module, e.g. mem in the listing shown in
Figure 8.28.

In the present example, the initialization of the ROM memory array is performed within
the test-module Test rom, shown in Figure 8.29. Here, an initial block in lines 6 and 7,
containing a single statement, loads the binary data shown in Listing 8.2 into the memory array:

Sreadmemb ("' rom data.txt'', dut.mem) ;

As shown above, the reference to mem must be preceded by the instance name of the rom
being instantiated in lines 8—11 of the listing shown in Figure 8.29. The default values of the
address and data widths of the ROM are overridden such that a ‘32 x 4’ (32 words, 4-bits per
word) memory is instantiated; this corresponds to the memory array values defined by the
rom_data.txt file shown in Listing 8.2.

The remainder of the test module shown in Figure 8.29 corresponds to an initial block
between lines 12 and 24 that reads each stored value out from the memory array, from location
0to31. Theresulting simulation waveforms shown below the listing in Figure 8.29 illustrate this
process; careful inspection of the data values output during the periods when oebar is asserted
reveals that they are identical to those stored in the text file rom data.txt.

The last example in this section on Verilog memories shows an alternative approach to
describing a ROM. Listing 8.3 shows the source description of amodule named rom_case. As
the name suggests, this variation of a ROM makes use of the Verilog case...endcase
sequential statement.

//read only memory using a case statement
module rom case # (parameter Awidth = 8, Dwidth = 8)
(input oeb,
output [Dwidth-1:0] data,
input [Awidth-1:0] address);

g w N

o reg [Dwidth-1:0] data i;

7 always @ (address)

8 begin

9 case (address) //define rom contents
10 0: data i = 'h88;

11 1: data_i = 'h55;

12 2: data_i = 'haa;

13 3: data_i = 'h55;

14 4: data i = 'hcc;

15 5: data_i = 'hee;

240 Describing Combinational and Sequential Logic using Verilog HDL

16 6: data 1 = "hff;

17 7: data_i = 'hbb;

18 8: data_i = 'hdd;

19 9: data i = 'hll;

20 10: data i = 'h22;

21 11: data_i = 'h33;

22 12: data i = 'h44;

23 13: data i = 'h55;

24 14: data_i = 'h66;

25 15: data i = 'h77;

26 default: data i = 'hO0; //use "‘x' or ‘0’
27 endcase

28 end

29 //three-state buffer

30 assign data = (oeb == 1'b0) ? data_i: 'bz;

31 endmodule

Listing 8.3 Verilog description for the ROM using a case statement.

The module header is identical to that of the module shown in Figure 8.28; this is
followed by the declaration of a reg named data_1i having Dwidth bits. This object acts
as a signal to hold the output of the case statement, prior to being fed through the ‘three-
state buffer’ at line 30.

The always block in line 7 responds to events on the input address only; the enclosed case
statement then effectively maps each address value to the appropriate data value. In this manner,
the ‘contents’ of the memory are explicitly defined within the module itself, rather than being
contained in an external file. This may restrict this approach to the description of relatively small
memories, due to having to specify each value explicitly within the module text.

Where the number of data values is less than the capacity of the memory (2*"*9"), the
default branch in line 26 must be included to cover the unused memory locations. A default
value of x rather than zero will result in a smaller logic circuit if the ROM is to be implemented in
the form of a combinational logic circuit, since an x is interpreted as a ‘don’tcare’ condition by a
logic synthesis software tool.

8.7 DESCRIBING FINITE-STATE MACHINES

This section describes how the Verilog HDL can be used to create concise behavioural-style
descriptions of FSMs. The underlying building block of many digital systems, the FSM is a
vitally important part of the digital system designer’s toolbox. The behavioural statements
provided by Verilog facilitate the quick and straightforward creation of synchronous FSM
simulation models, once the state diagram has been drawn. This, when combined with the wide
availability of powerful logic synthesis software tools, makes the realization of state machines
extremely efficient and rapid.

Figure 8.30 shows the block diagram structure of a general synchronous FSM. As shown in
Figure 8.30, the FSM comprises two major blocks connected in a feedback configuration: the

Describing Finite-State Machines 241

Input[m-1:0] OUTPUT/NEXT-STATE LOGIC
STATE REGISTER | |P[M-1:0] OP[k-1:0] [l Output[k-1:0]
=pp-| D[n-1:0] Q[N-1:0] [e———-1 PS[n-1:0] NS[n-1:0]
Present-State[n-1:0]

Clock > Clock

Reset

Next-State[n-1:0]

Reset——

Figure 8.30 General FSM block diagram.

STATE REGISTER and the OUTPUT/NEXT-STATE LOGIC. There are several possible
variations on the basic structure; however, the state register generally consists of a collection
of n flip-flops (where 2" must be greater than or equal to the number of FSM states), and the
OUTPUT/NEXT-STATE LOGIC block contains the combinational logic that predicts the next
state and the output values.

The general block diagram shown in Figure 8.30 represents the so-called Mealy FSM,
where the k output bits depend both on the n state bits and the m input bits. Initialization of
the FSM may be provided through the use of an asynchronous Reset input that forces all
of the state flip-flops into a known state (usually zero). One possible disadvantage of the
Mealy FSM architecture is the fact that the Output can change asynchronously, in
response to asynchronous changes in the Input. This can be removed by making the
outputs depend only on the Present-State signal, i.e. the output of the state register.
This modified structure is better known as the Moore FSM. This section will present
guidelines and examples on how to construct Verilog behavioural descriptions of both
Mealy and Moore FSMs.

The starting point in the design of any FSM is the state diagram. This graphical
representation provides a crucially important visual description of the machine’s beha-
viour, allowing the designer to determine the number of states required and establish the
logical transitions between them. Once the number of states has been determined, the next
step is to assign a unique binary code to each state; this is known as the state assignment.
In Verilog, the state assignment can be defined in a number of different ways, using:

e local parameters;
e parameters declared as part of the module header;
e the “define compiler directive.

The first of these is perhaps the most obvious choice, since the state values are likely to
be a set of fixed codes referenced from within the module describing the FSM. The
following line of Verilog illustrates how a set of state values is defined for an FSM having
four states:

localparam sO = 2'b00,
sl =2"'001,

242 Describing Combinational and Sequential Logic using Verilog HDL

s2 =2'b10,
s3=2"'bll;

From the point of the above declaration, the symbolic names s0. . .s 3 can be used instead of the
binary codes, making the description more readable.

Defining the state values as a set of in-line parameters within the module header provides the
additional flexibility of being able to reassign them when the FSM module is instantiated, as
shown below:

//module header with in-line parameters
module fsm # (parameter sO = 0,

sl =1,
s2 =2,
s3 = 3)

(input clk, ..., output...);
//overriding default parameter values
fsm#(.s0(2

)y
s1(0),
s2(3),
.s3 (1))
F1(.clk(CLK),)7

The third approach makes use of the " define compiler directive in a similar manner to the
way in which #define is used in the C/C+4+ languages to perform text substitution. The
compiler directives come before the module header, as shown by the following example:

“define WAIT 4'b001
“define IDLE 4'b011
“define ACK1 4'b101
“define ACK2 4'b110

module fsm(...);

Within the body of the fsm module above, reference is made to the defined state values as
follows:

//identifier must be prefixed by grave-accent character
Present-State <= "IDLE;

The STATE REGISTER block shown in Figure 8.30 is described by an always sequential
block; therefore, the output signal it assigns to must be declared as a reg-type object, as shown

below:

reg[n-1:0] Present-State; //number of states must be <= 2"

Describing Finite-State Machines 243

The typical format of the state register sequential block is shown in Listing 8.4.

1 always @ (posedge Clock or posedge Reset)
2 begin

3 if (Reset == 1'bl)

4 Present-State <= s0;

5 else

6 Present-State <= Next-State;

7 end

Listing 8.4 General format of state register always block.

As described in previous sections, the sequential block shown in Listing 8.4 describes
synchronous sequential logic with active-high asynchronous initialization (active-low asyn-
chronous initialization is equally possible).

On each 0-to-1 transition of the Clock signal, the Present-State is updated by the
incoming Next-State value in line 6, the latter being produced by the OUTPUT/
NEXT-STATE LOGIC block. Now the Present-State signal is an input to the
OUTPUT/NEXT-STATE LOGIC block; therefore, it responds to this input change, com-
bined with the current values of the inputs, by updating the Next-State output value. The
feedback signal Next-State is now ready for the next positive edge of the clock to occur,
thereby updating the Present-State in a cyclic manner.

Itis good practice to split the OUTPUT/NEXT-STATE LOGIC block into two separate parts,
one for the outputs and another for the next state. This results in a more readable and, therefore,
maintainable description. Listing 8.5 shows the outline Verilog source description for the ‘next-
state’ part of this block.

1 always @ (Present-State, Inputl, Input2, Input3...)
2 begin

3 //consider each possible state
4 case (Present-State)

5 sO0: if (Inputl == 1'b0)

6 Next-State <= sl;

7 else

8 Next-State <= s0;

9 sl: ...;

10 s2: ...;

11 default: Next-State <= s0;
12 endcase

13 end

Listing 8.5 General format of next-state always block.

As shown in Listing 8.5, the next-state always block describes combinational logic; there-
fore, the guidelines discussed in Section 8.2 must be observed in order to ensure that Next -
State is assigned a value under all possible conditions. (This is achieved in Listing 8.5 by
means of the default branch in line 11.)

The always sequential block must be sensitive to changes in both the Present-State
signal and all of the FSM inputs, as shown in line 1. The case. . .endcase statement, situated

244 Describing Combinational and Sequential Logic using Verilog HDL

between lines 4 and 12 inclusive, considers each possible state and assigns the resulting
Next-State depending on the input conditions. In this manner, the next-state part of the
block describes the flow around the state machine’s state diagram in terms of behavioural
statements. The fact that the Next -State signal is assigned values by an always sequential
block means that it must be declared in a similar manner to the Present-State signal, as
follows:

reg [n-1:0] Next-State; //output of combinational behaviour

The default branch (line 11) of the case statement is required to define the behaviour of the
FSM for any unused states; these states result from the fact that the number of used states may be
less than the number of possible states. If the FSM finds itself in an unused state, then the safest
approach is to move it directly and unconditionally to the reset state, otherwise the designer
may take the slightly more risky approach of treating all unused states as don’t care states, in
which case the default branch would be

default: Next-State <= 'bx;

The part of the OUTPUT/NEXT-STATE LOGIC block shown in Figure 8.30 that drives the
FSM outputs may be described using either an additional always block or by means of
continuous assignments. The choice between these approaches depends upon the complex-
ity of the output logic. For Moore-type FSMs, the outputs depend only on the present state;
therefore, the expressive capabilities of the continuous assignment are usually adequate.
The potentially more complicated output logic of a Mealy FSM may require the use of a
sequential block, in which case it is important to remember to qualify the outputs as being
of type reg.

The following extract illustrates the use of the continuous assignment to describe the output
logic of a simple Mealy FSM:

assign Outputl = ((Present-State == s0)
&& (Inputl == 1'b0)) ||
((Present-State == s2)

&& (Input2 ==1'bl));

Here, the outputOutput1 depends directly on both the present state and the inputs. A variation
on the use of separate sequential blocks, for the state-register and next-state feedback logic, is to
combine these in asingle always block. This approach has the advantage of making the Verilog
description more concise and involves combining the sequential logic behaviour shown in
Listing 8.4 with the combinational logic behaviour shownin Listing 8.5, as shown in Listing 8.6.

reg[n-1:0] state; //single state register

always (@ (posedge clock or posedge reset)
begin
if (reset ==1)

o U W N

Describing Finite-State Machines 245

7 state <= State0;

8 else

9 case (state)

10 Statel: if (Inputl == 0)
11 state <= State?2;

12 else

13 state reg <= readlone;
14 State2: if (Input2 ==1)
15 state <= State3;

16 else

17 state <= State?2;

18

19 default: state <= 3'bxxx
20 endcase

21 end

Listing 8.6 General format of combined state-register and next-state logic always block.

Another consequence of using a combined sequential block for the state register and next-
state logic is the removal of the need for two separate reg-type signals for present state and next
state. As shown in Listing 8.6, only a single declared regnamed stateisrequiredinline 2; the
behavioural description both assigns to (lines 7, 11, 15....) and reads from (line 9) this combined
signal. The combined sequential block is triggered by positive edges on either the clock or reset
input (assuming asynchronous active-high initialization is being employed). After testing for
the reset condition in line 6, the behaviour is much the same as that of the next-state logic givenin
Listing 8.5, making use of the case. . .endcase statement to consider each state and input
condition to implement the sequential behaviour described by the state diagram.

In effect, the statements between lines 9 and 20 of the source listing shown in Listing 8.6
describe a self-contained synchronous feedback logic system where the signal state is the
output of a set of D-type flip-flops and the inputs of the flip-flops are described by the
combination of the case and 1 £. . .else statements.

The following example FSM designs serve to illustrate the points discussed above further.
The first example is concerned with the description of an FSM to control the timers used by two
people playing a game of timed chess, and the second looks at a simple combination lock with
automatic locking mechanism.

8.7.1 Example 1: Chess Clock Controller Finite-State Machine

Figure 8.31 shows the block diagram of a system used by two chess players to record the
amount of time taken to make their respective moves. The players, referred to as Player-A and
Player-B, each have their own timer (TIMER-A and TIMER-B), the purpose of which is to
record the total amount of time taken in hours, minutes and seconds for their moves since the
commencement of the game.

The exact details of the timer internal operation are beyond the scope of this discussion, since
we are primarily concerned with the description of the FSM that controls them. The timer control
inputs, en and rst, shown in Figure 8.31, operate as follows:

e rst — when logic 1, resets the time to zero hours, zero minutes and zero seconds.

246 Describing Combinational and Sequential Logic using Verilog HDL

TIMER-A TIMER-B
Timer Timer,
g 2 5 [

Player-A's Button Player-B's Button

T !
i 1 Chess Clock FSM

Ta
Cir
Tb

Reset
Clock

J B

CLOCK

Figure 8.31 Block diagram of chess clock system.

e en — when logic 1, enables the time to increment from the current time value. When en is
logic 0, the current elapsed time is held constant.

Atthe start of a new game, the Reset input is asserted to initialize the system and clear both
timers to zero time. This is achieved by means of the C1 r output of the Chess Clock FSM being
driven high, thereby asserting the reset (r s t) input of both timers. Each chess player has a push-
button, which when pressed applies a logic 1 to their respective inputs, Pa and Pb, of the Chess
Clock FSM. After resetting the timers, the player who is not making the first move presses their
push-button in order to enable the other player’s timer to commence timing.

For example, if Player-A is to make the first move, then Player-B starts the game by pressing
their push-button. This has the effect of activating the Ta output of the Chess Clock FSM block
shown in Figure 8.31, in order to enable TIMER-A to record the time taken by Player-A to make

Describing Finite-State Machines 247

Stop
[Ta, [Tb, ClIr

RunA
Ta, /Tb, ICIr

/Ta,/Tb,/Clr

Figure 8.32 State diagram for chess clock controller FSM.

the first move. Once Player-A completes the first move, Player-A’s button is pressed in order to
stop their own timer and start Player-B’s timer (Ta is negated and Tb is asserted).

For the purposes of this simulation, it is assumed that the Pa and Pb inputs are asserted
momentarily for at least one clock cycle, and the potential problems resulting from switch
bounce and metastability [3] may be neglected.

In the unlikely event that both players press their buttons simultaneously, the Chess Clock
FSM is designed to disable both timers by negating Ta and Tb.

This will hold each player’s elapsed time until play recommences in the manner described
above, i.e. Player-A (Player-B) presses their push-button to re-enable TIMER-B (TIMER-A).

The state diagram for the Chess Clock FSM is shown in Figure 8.32. As shown, the FSM
makes use of four states having the names shown in the upper half of the state circles. The states
ofthe FSM outputs Ta, Tb and C1r are listed in the lower half of every state circle; those outputs
preceded by ‘/’ are forced to logic 0, whereas those without ‘/° are forced to logic 1. The
presence of the output states within each of the state circles indicates that the Chess Clock FSM is
of the Moore variety.

The values of the inputs, Pa and Pb, are shown alongside each corresponding state transition
path (arrow) using a format similar to that used to show the state of the outputs. The movement
from one state to another occurs on the rising edge of the C1ock input. Where the number of
transitions shown originating from a given state is less than the total number possible, the
remaining input conditions result in a so-called sling, i.e. the next state is the same as the current
state.

For example, the state named RunA in Figure 8.32 has two transitions shown on the diagram
corresponding to the input conditions (Pa, Pb) = (1, 0) and (1, 1). The remaining input
conditions, (Pa, Pb) = (0, 0) and (0, 1), cause the state machine to remain in the current state;

248 Describing Combinational and Sequential Logic using Verilog HDL

hence, there exists a sling in state RunA corresponding to the condition that the Pa input is at
logic 0 and the Pb input can be either logic O or logic 1, the latter indicating the presence of a
don’t care condition for input Pb.

The asynchronous, active-high Reset input forces the FSM directly into the state named
Stop, irrespective of any other condition.

The FSM depicted visually by the state diagram shown in Figure 8.32, is described in a
behavioural style by the Verilog HDL listing given in Listing 8.7.

module chessclkfsm(input reset, Pa, Pb, clock,
output Ta, Tb, Clr);

N

3 //ascending state assignment
4 localparam RunA = 0, RunB =1, Stop =2, Wait = 3;

5 reg[1:0] state;

6 //combined state register and next state sequential block
7 always @ (posedge clock or posedge reset)
8

begin
9 if (reset)
10 state <= Stop;
11 else
12 case (state)
13 RunA:
14 casex ({ Pa, Pb})
15 2'b0x: state <= RunA;
16 2'bl0: state <= RunB;
17 2'bll: state <=Wait;
18 endcase
19 RunB:
20 casex ({ Pa, Pb})
21 2'bx0: state <= RunB;
22 2'b01: state <= RunA;
23 2'bll: state <=Wait;
24 endcase
25 Stop:
26 case ({ Pa, Pb})
27 2'p00: state <= Stop;
28 2'b01: state <= RunA;
29 2'p10: state <= RunB;
30 2'bll: state <= Wait;
31 endcase
32 Wait:
33 if (Pa == Pb)
34 state <= Wait;
35 else if (Pa == 1"'bl)
36 state <= RunB;
37 else

38 state <= Runa;

Describing Finite-State Machines 249

39 endcase
40 end

41 //Moore output assignments depend only on state

42 assign Ta = state == RunA;
43 assign Tb = state == RunB;
44 assign Clr = state == Stop;

45 endmodule
Listing 8.7 Verilog description of the Chess Clock FSM.

The module chessclkfsmmakes use of a local parameter to define the state values. Each
state name shown in the state diagram of Figure 8.32 is assigned a value in line 4. This is followed
by the declaration of a 2-bit reg to hold the state of the FSM; this description makes use of the
single always block approach outlined in Listing 8.6.

The sequential always block spanning lines 7-40 of the listing shown in Listing 8.7
describes the state register and next-state logic. The presence of a don’t-care condition in one
of the state transitions for states RunA and RunB suggests the use of a special variation of the
case statement known as casex.

The use of casexinstead of caseinlines 14 and 20 allows the explicituse of the ‘don’t-care’
value (x) within the literals specified in lines 15 and 21. In effect, this means that one or more of
the inputs can be either logic 0 or logic 1, e.g. lines 14 and 15 are equivalent to the following:

14 case ({ Pa,Pb})
15 2'b00, 2'b01: state <= RunA;
16

The case statement considers each possible value of state; in this example there is no
requirement for a default branch, since the number of states is equal to a power of 2.
State Stop has four unique next states, hence the need for a nested case...endcase
statement with four branches, or limbs, situated in lines 27-30 inclusive. The case
statement gives equal priority to each of the individual limbs or branches enclosed within
the bounds of case. . .endcase; hence, the matching expressions must be nonoverlapping
or mutually exclusive. As seen previously, multiple values may be specified on a single
branch, so long as none of these values appears within any other of the branches within the
statement.

The next-state behaviour of the Wait state is described using a nested if...else
statement in order to illustrate the flexibility of the Verilog language. It is straightforward to
appreciate that the semantics of the statement in lines 33-38 inclusive of the source
description in Listing 8.7 are equivalent to the state transitions shown on the state diagram
of Figure 8.32, bearing in mind that there is a sling condition corresponding to input values
(Pa, Pb) = (0, 0) and (1, 1).

It should be noted that, despite the priority implied by the nested 1 £. . .else. . .if statement
semantics, the circuitry resulting from synthesis of this description will not include any
prioritized logic. This is due to the fact that the conditions specified in each part of the
if. . .else statement are mutually exclusive.

250 Describing Combinational and Sequential Logic using Verilog HDL

The outputs Ta, Tb and C1 r, of the Chess Clock FSM, are of the Moore variety, i.e. dependent
on the state of the machine only. These are generated by means of the continuous assignments in
lines 42—44 of the source description shown in Listing 8.7. Each output is generated by
continuously comparing the value of the state-register state with the local parameter value
corresponding to the state in which the output is asserted.

In this simple example, each output is asserted in only one state; therefore, the logic of the
outputs amounts to little more than a single AND gate.

The output logic can be further simplified by encoding the states of the FSM with values that
match the outputs. In the present example, the output values are unique for each state, so this
would involve simply defining the state values to be the same as the output values, i.e. replace the
local parameter declarations with those shown in lines 4—7 of Listing 8.8.

3 //state assignment matches outputs Ta, Tb, Clr
4 localparam RunA = 3'b100,

5 RunB = 3'b010,

6 Stop = 3'b001,

7 Wait = 3'b000;

8 reg[2:0] state; //no. of state bits = no. of outputs

39 default: state <= 3'bx;
40 endcase

41 //outputs are equal to state bits
42 assign Ta = state[2] ;

43 assign Tb = state[l] ;

44 assign Clr = state[0] ;

Listing 8.8 Alternative state assignment to match outputs.

The output continuous assignments, situated in lines 42—44 of the listing given in Listing 8.7,
would be replaced by the corresponding lines shown in Listing 8.8. As shown, each outputisnow
mapped directly to the corresponding bit of the state register.

Another consequence of modifying the state assignments, as described above, is the
need to change the number of state bits to match the number of outputs. The replacement
state-register declaration, in line 8 of Listing 8.8 now declares a register having 3-bits;
therefore, the next-state behaviour must be modified by the addition of a default
branch in line 39, so that the additional (23 — 4 = 4) unused states are covered by the
case statement.

Simulation of the Chess Clock FSM module chessclkfsm is achieved by means of
the simple test module shown in Figure 8.33. The resulting timing waveforms are also
shown in Figure 8.33, where the relationship between the inputs, state and outputs can be
seen to follow that defined by the state diagram. Most Verilog simulation tools provide a
facility whereby the values of the state waveform can be displayed in terms of the state
names used on the state diagram, as is the case here. This is a significant visual aid
when attempting to analyse, understand and verify the behaviour of an FSM using
simulation.

Describing Finite-State Machines

251

[

i

H = O 00 J oy !

= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35

‘timescale 1ms / 1 ms
module Test chessclkfsm();

reg RES, A, B, CLK;
wire Ta, Tb, Clrt;

//generate a 10 Hz clock
initial
begin
CLK = 1'b0;
forever
#50 CLK = ~CLK;
end

//generate inputs
initial
begin
RES=1'bl; A=1'b0; B 1'b0;
#200 RES = 1'b0;
#200;
A=1"bl;
#550 A = 1'b0;
#350 B =1"bl;
#750 B =1"'b0;
#400;
A=1"'bl; B=Dbl;
#350;
A=1'b0; B=1"'b0;
#450;
A=1"bl;
#800;
Sstop;
end

//instantiate the FSM
chessclkfsm mut (.reset (RES),
.Pa (A), . Pb(B), . clock (CLK),
.Ta (Ta), .Tb (Tb), .Clr (Clrt));
endmodule

Figure 8.33 Test module and simulation waveforms for chess clock FSM.

252 Describing Combinational and Sequential Logic using Verilog HDL

Test_chessclkfsm.RES | |

Test_chessclkfsm.CLK
Test_chessclkfsm.A [| [

Test_chessclkfsm.B [I | |

Test_chessclkfsm.Ta]
Test_chessclkfsm.Tb | [| |
Test_chessclkfsm.CIrt [|

Test_chessclkfsm.mut.state[1:0] Stop | RunB | RunA Wait [RunB

Figure 8.33 (Continued).

8.7.2 Example 2: Combination Lock Finite-State Machine with Automatic
Lock Feature

The second example of an FSM-based design is a rather more complex system that makes use of
several modules, both combinational and sequential. This example also serves to illustrate the
interaction of an FSM with other synchronous sequential modules, all described in abehavioural
style and clocked by a common clock signal.

Figure 8.34 shows the block diagram of a so-called ‘digital combination lock’ system. At the
heart of the system there is an FSM, labelled CONTROLLER in the figure, the function of which
is to detect when a user has entered the correct four-digit secret code via the Key Pad Switches,
shown at the left-hand side of Figure 8.34.

The user sees a keypad with eight active-low push-button switches (SW[O0]...SW[7]). The
first four (SWJO...3]) are hardwired into the system via a four-to-one multiplexer; these
represent the code switches. It is up to the user to connect the multiplexer inputs to the keypad
switches corresponding to the secret code; in this manner, the secret access code is hardwired
into the system.

The eight-input AND gate, connected to all of the switches in Figure 8.34, provides an output
named allsw that goes to logic O if any switch is pressed. The output of the four-to-one
multiplexer, named mux_out, will go to logic 0 if the switch being pressed corresponds to the
multiplexer select address input sel[0. . 1]. In this manner, the multiplexer is able to select
each switch in the code in sequence; the output mux_out will go low only if the correct switch
has been pressed.

The input push-button switches are asynchronous inputs by nature, whereas the combination
lock system operates entirely synchronously. It is impossible to predict for how long any push-
button will be pressed; therefore, the duration of the logic 0 pulses coming into the system on
signalsmux_out and allswisentirely unpredictable. If the aforementioned signals were fed
directly into the FSM, then a single key depression lasting 0.5 s, for example, would be
interpreted as a sequence of approximately » inputs, where

n=0.5/clock period.
The above problem is overcome by means of the simple ‘edge detector’ circuit shown in

Figure 8.35. The system makes use of two of these circuits, labelled DET1 and DET?2 in
Figure 8.34. As shown in Figure 8.35, the circuit is essentially a synchronous 2-bit shift

“WRJSAS YO0[UOIRUIqUIOD JO WeRISRIP Yo0[g ¢S NS

olms

1esp
MIWLL ndu| %0010 ZHOL
H01D < o0[0
— e
noswi] SAYOIMS ped Aoy
M _— e e o e S —
— o o o o o o o
do o 00 6 00
H0P Gg—9
WS4001 wekue < PPoPRP abpe o ¢
) msje N
[0:1Imsjes 1es9) 45— FAEN]
yoop 44— oo |e v |e o |n
5 souwnus ERERERERERERE:
mshue < SEdERBRNZ
pajo0] FIpaso0]
MS8POd —] 1303903
wuefe H wiee 2 €
000 g3— 8
inoewy gg—-—— 510010p S
MS3p0D = uebpe q————H = ©
Y3 TI0Y1NOD NE[mno xnw xnw |
0

- paxo0]

pos wieje

(.

Aeidsiq yuswboag-, 198

il

254 Describing Combinational and Sequential Logic using Verilog HDL

edge_in q0
- —
D Q D Q detected
nq1
CLK 'Qp— CLK 1Qp———m—mmmm
clock
>

Figure 8.35 Logic diagram of edge detector edgedet.

register with the output of the first flip-flop ANDed with the inverse of the output of the
second flip-flop.

This simple circuit performs both synchronization and edge detection, in that it produces a
single clock-cycle-length logic 1 pulse at the output named detected, near to the point when
theinput, edge in,undergoesalogic 1 tologic O transition, regardless of how long edge in
remains at logic 0.

Neglecting the usual problems of metastability [3], which result whenever there is a need to
interface between asynchronous and synchronous domains, the logic circuit of Figure 8.35
provides an effective means of interfacing the push-button switches to the FSM.

The outputs, codesw and anysw, of the two edge detectors feed directly into the FSM
LOCKFSM. The fact that the edge detectors and the FSM are clocked by the same signal ensures
synchronization between the two separate modules such that if a key is pressed, and it is the
correctkey (i.e. the four-to-one multiplexeris selecting the key), the 1ock f smreceives alogic 1
pulse on both codesw and anysw during the same clock cycle. The arrival of the two pulses
indicates the correct key was pressed and the FSM then advances to the next state.

The Verilog descriptions of the D-type flip-flop and the edge detector are shown in Listings 8.9
and 8.10 respectively.

1 module dff (output reqg g, input d, clk);
2 always (@ (posedge clk) g <= d;

3 endmodule
Listing 8.9 Verilog source description of D-type flip-flop.

1 module edgedet (input edge in,
2 output detected,
3 input clock) ;

4 wire g0, gl;

5 dff dff0(.q(g0), .d(edge_in), .clk(clock));
[dff dffl(.g(gl), .d(g0), .clk(clock));

7 assign detected = g0 & ~ql;

8 endmodule

Listing 8.10 Verilog source description of edge detector.

Describing Finite-State Machines 255

The block diagram of Figure 8.34 includes a timer module (TIMER) labelled T1. This
module interfaces with the FSM via signals ent imer (enable timer) and timeout (timer
timed out) and is clocked by the same master clock as the FSM and edge detectors, ensuring
synchronization.

The function of the timer is to provide an automatic locking mechanism, returning the
system to the locked state after a delay of 30 s subsequent to the system entering the
unlocked state.

The master clock signal is intended to have a frequency of 10 Hz, so the timer imple-
ments the required delay by counting to 300,(, as shown in the Verilog source description
shown in Listing 8.11.

1 module Timer (input Clock, Start, output Timeout) ;
2 //time delay value in clk pulses

3 localparam NUMCLKS = 300;

4 reg[8:0] g;

5 always @ (posedge Clock)

6 begin

7 if (!Start|| (g == NUMCLKS))
8 q<=9'b0;

9 else

10 q<=g+1;

11 end

12 //decode counter output
13 assign Timeout = (g == NUMCLKS) ;

14 endmodule

Listing 8.11 Verilog source description of automatic lock timer.

The Timer module behaviour is entirely synchronous: with the input named Start atlogic
0, the timer is disabled and the count g held at zero.

The FSM starts the timer when it enters the unlocked state by asserting entimer
(connected to timer input Start), this allows the count g to increment on each
clock edge until it reaches the terminal value NUMCLKS (300,(), at which point the
Timeout output of the timer goes high for one clock cycle and the count returns to
Zero.

The FSM responds to the logic 1 on its timeout input by returning to state sO, where the
locked output returns high. By returning to state sO, the FSM also negates the entimer
output, thereby disabling the timer until the next time it is required.

The remaining module, as yet not discussed, in the block diagram of Figure 8.34, is the
seven-segment decoder named SEGDISP. This module is purely combinational and drives
an active-low seven-segment display unit that displays the state of the system, based on the
values of the alarm and locked outputs of the FSM: ‘L’ for locked, ‘U’ for unlocked
and ‘A’ for alarm. The Verilog behavioural description of the module is given in List-
ing 8.12.

256 Describing Combinational and Sequential Logic using Verilog HDL

1 module segdisp (input locked,alarm,
2 output SA, SB, SC, SD, SE, SF, SG) ;

3 regl[6:0] seg;

4 always @ (locked or alarm)

5 begin

6 if (alarm == 0)

7 seg = 7'b0001000; //display ‘A&
8 else if (locked == 0)

9 seg = 7'b1000001; //display ‘U’
10 else

11 seg = 7'b1110001; //display ‘I’
12 end

13 assign {SA, SB, SC, SD, SE, SF, SG} = seg;

14 endmodule

Listing 8.12 Verilog source description of seven-segment display decoder.

Figure 8.36 shows the state diagram for the 1 ock £ sm module at the heart of the combination
lock system.

The FSM is initialized by asserting the asynchronous reset input, this forces it into state s0,
where the 1locked and alarm outputs are both at logic 1, indicating the system is locked and
notin a state of alarm (alarmis active-low). The 2-bit se 1 sw output of the Lockfsmis set to
zero, thereby selecting the first input push-button in the sequence via the four-to-one multi-
plexer. The timer is disabled on account of entimer being at logic 0.

What happens next depends on which of the eight push-button switches is pressed. If the first
switch in the code sequence is pressed (SW[0]), then the input signals codesw and anysw go
high simultaneously, causing the FSM to move into state s1, where it remains until a subsequent
key is pressed.

In state s1 the se1lsw output of the FSM is set to 1, thereby selecting the second input of the
multiplexer, this being connected to the second switch in the code sequence, SW[1]. Pressing
SWI1] in state s1 asserts both codesw and anysw again, advancing the FSM into state s2.

On entering state s2, the FSM changes selsw to 2, thereby selecting the third input of the
multiplexer, this being connected to the third switch in the code sequence, SWI[2].

In a similar manner to that described above, pressing switches SW[2] followed by SW[3]
causes the Lock f smto enter the unlock state, having pressed all four keys (SW[0]. . .SW[3])
inthe correct order. The 1 ocked output goes tologic 0 and the seven-segment display shows the
letter ‘U’.

As shown in Figure 8.36, the ent imer output of the FSM is now asserted, thereby enabling
the timer. The 1ockfsm will remain in the unlock state for as long as the timeout input
remains at logic 0 (assuming the asynchronous reset input is not asserted).

As discussed above, this corresponds to a duration equal to 300;(clock periods or 30 s,
whereupon the FSM will return to state sO and reassert the 1ocked output.

In any of the Lockfsm states (s0, s1, s2 and s3), pressing the incorrect key pad switch will
result in a pulse arriving from anysw, via the eight-input AND gate, but there will be no such

Describing Finite-State Machines 257

sO
locked,
alarm,

/entimer,

reset

timeout

/codesw,
anysw

locked,

alarm,
/entimer,
selsw =1

/codesw,
anysw

unlock

wron

Jocked, "Tlocked,
/alarm, alarm,
/entimer, entimer,
selsw =0

selsw =0

/codesw,
anysw

s2
locked,
alarm,

/entimer,

selsw =

/codesw,
anysw

codesw,
anysw

s3
ocked,
alarm,

/entimer,

selsw =3

Figure 8.36 Combination lock FSM (1ock f sm) state diagram.

pulse on codesw, due to the fact that the currently selected multiplexer input will not be

asserted low.
The state diagram of Figure 8.36 shows that, under these circumstances, the FSM will move to

state wrong, indicating that the incorrectkey was pressed. In this particular state, the active-low
alarm output is asserted and the display unit outputs the code for the letter ‘A’.

The absence of any transitions leaving state wrong indicates the presence of an
unconditional state transition leading from the wrong state back to itself (a ‘sling’), i.e.
the only way to exit the alarm state is to force an asynchronous reset. Needless to say, the
clear input would, therefore, have to be located in a secure environment, enabling only a
qualified operator to reset the alarm.

The Verilog behavioural description of the 1ockfsm module is shown in Listing 8.13.

1 module lockfsm(input clock, reset,

258 Describing Combinational and Sequential Logic using Verilog HDL

2 codesw, anysw,

3 output reg[1:0] selsw,

4 output locked, alarm, entimer,

5 input timeout) ;

6 localparam s0=3'b000, s1=3'b001, s2=3'b010,
7 s3=3"'b011,

8 wrong=3'b100, unlock=3"'b101;

9 reg[2:0] lockstate;

10 always @ (posedge clock or posedge reset)
11 begin

12 if (reset == 1'bl)

13 lockstate <= s0;

14 else

15 case (lockstate)

16 sO0 : if (anysw & codesw)
17 lockstate <= s1;

18 else if (anysw)

19 lockstate <= wrong;
20 else

21 lockstate <= s0;

22 sl : if (anysw & codesw)
23 lockstate <= s2;

24 else if (anysw)

25 lockstate <= wrong;
26 else

27 lockstate <= sl;

28 s2: if (anysw & codesw)
29 lockstate <= s3;

30 else if (anysw)

31 lockstate <= wrong;
32 else

33 lockstate <= s2;

34 s3: if (anysw & codesw)
35 lockstate <= unlock;
36 else if (anysw)

37 lockstate <= wrong;
38 else

39 lockstate <= s3;

40 wrong: lockstate <= wrong;
41 unlock: if (timeout)

42 lockstate <= s0;

43 else

44 lockstate <= unlock;
45 default: lockstate <= 3'bx;
46 endcase

47 end

48 always @ (lockstate)

Describing Finite-State Machines 259

49 begin

50 case (lockstate)

51 s0: selsw = 0;

52 sl: selsw=1;

53 s2: selsw = 2;

54 s3: selsw = 3;

55 wrong: selsw = 0;

56 unlock: selsw = 0;

57 default: selsw = 2'bx;

58 endcase

59 end

60 assign locked = (lockstate == unlock) ? 0: 1;
61 assign alarm = (lockstate == wrong) ? 0: 1;
62 assign entimer = (lockstate == unlock) ? 1: 0;

63 endmodule

Listing 8.13 Verilog source description of combination lock FSM.

In common with the previous example, this FSM is of the Moore type; therefore, the
always sequential block starting at line 10 describes the state register and next-state
behaviour only.

The output logic is captured by the combinational always block situated in lines 48—59
inclusive, and the continuous assignments on lines 60—62. The 3-bit state register Lockstate
is declared in line 9 and the six used states are assigned ascending numbers by means of a local
parameter starting in line 6.

The two unused states are exploited as don’t-care states by means of the default branches
in lines 45 and 57 of the source shown in Listing 8.13.

All of the used states, with the exception of state wrong, make use of the if...else
statement to describe the state transition logic defined by the state diagram of Figure 8.36. For
example, the next-state behaviour for state sl is repeated below:

sl : if (anysw & codesw)
lockstate <= s2;
else if (anysw)
lockstate <= wrong;
else
lockstate <= sl;

The first condition to be tested is the expression anysw & code sw; this will be true (logic 1) if
both anysw and codesw are at logic 1. If this is the case, then the state of the FSM is moved to
s2. If the first condition is false, then this leaves the possibility of either input being high or both
inputs being low. The structure of the logic means that code swcannot be high if anyswislow,
soitisonly necessary to test the state of anysw to see whether an incorrect key was pressed and,
hence, move to the alarm state.

260

Describing Combinational and Sequential Logic using Verilog HDL

Ifnokeys are pressed, then the FSM state remains the same, i.e. in this case s1. This is achieved
by means of the final, and optional, else part of the above statement.

The complete combination lock system block diagram, shown in Figure 8.34, is described by
the Verilog source given in Listing 8.14.

o U1

10
11
12

13
14

15
16
17

18
19
20

21
22
23

24
25
26
27
28
29
30
31
32

33
34
35

module comblock (input clock, clear,
input [7:0] switches,
output alarm, locked,
output sA, SB, sC, sD, SE, SF, SG);

wire mux out, anysw, codesw,
allsw, entimer, timeout;

wire [1:0] selsw;

//4-to-1 multiplexor

assign mux out = selsw == 0? switches][0] :
(selsw == 17? switches[1] :
(selsw == 27? switches[2] :
(selsw == 37? switches[3] : 1'b0)));

//AND gate for all switches
assign allsw = &switches;

edgedet detl (.edge in(mux out),
.detected (codesw),
.clock(clock));

edgedet det2(.edge in(allsw),
.detected (anysw) ,
.clock(clock));

Timer tl(.Clock(clock),
.Start (entimer),
.Timeout (timeout)) ;

lockfsm controller(.clock(clock),
.reset (clear),
.codesw (codesw) ,
.anysw(anysw),
.selsw(selsw),
.locked (locked),
.alarm(alarm),
.entimer (entimer),
.timeout (timeout)) ;

segdisp sgl (.locked(locked),
.alarm(alarm),
.SA(SA),

Describing Finite-State Machines 261

36 .SB(SB),
37 .sC(sC),
38 .SD(SD),
39 .SE(SE),
40 .SF(SF),
41 .SG(SG)) ;

42 endmodule

Listing 8.14 Verilog source description of complete combination lock system.

The comblock module comprises instantiations of the modules discussed previously, along
with two continuous assignments, situated in lines 9 and 14, to implement the four-to-one
multiplexer and the eight-input AND gate respectively.

Simulation of the combination lock system is achieved with the use of a Verilog test module
named test comblock, shownin Listing 8.15.

1 “timescale l1ms / 1ms
module test comblock();

N

// Inputs
reg clock;
reg clear;
reg([7:0] switches;

oy U1 W W

// Outputs
wire alarm;
wire locked;
0 wire SA, SB, SC, SD, SE, SF, SG;

= o 0 J

11 // Instantiate the combination lock
12 comblock UUT (

13 .clock(clock),

14 .clear (clear),

15 .switches (switches),

16 .alarm(alarm),

17 .locked (locked),

18 .SA(SA), .SB(SB), .SC(SC),

19 .SD(SD), .SE(SE), .SF(SF), . SG(SG)
20)

21 initial

22 begin

23 clock =1'b0;

24 forever

25 #50 clock = ~clock;
26 end

27 initial
28 begin
29 clear = 1'bl;

262 Describing Combinational and Sequential Logic using Verilog HDL

30 switches =8'p11111111;

31 repeat (3) @ (negedge clock);
32 clear = 1'b0;

33 repeat (3) @ (negedge clock);
34 switches[0] = 1'b0;

35 repeat (2) @ (negedge clock) ;
36 switches[0] = 1'bl;

37 repeat (3) @ (negedge clock) ;
38 switches[1l] = 1'b0;

39 repeat (2) @ (negedge clock) ;
40 switches[1l] = 1'bl;

41 repeat (3) @ (negedge clock) ;
42 switches[2] =1'b0;

43 repeat (2) @ (negedge clock) ;
44 switches[2] = 1'bl;

45 repeat (3) @ (negedge clock) ;
46 switches[3] = 1'b0;

47 repeat (2) @ (negedge clock) ;
48 switches[3] = 1'bl;

49 repeat (400) @ (negedge clock); //wait for timeout
50 clear = 1'bl;

51 repeat (4) @ (negedge clock);
52 clear = 1'b0;

53 repeat (3) @ (negedge clock) ;
54 switches[0] = 1'b0;

55 repeat (2) @ (negedge clock);
56 switches[0] = 1'bl;

57 repeat (3) @ (negedge clock);
58 switches[5] = 1'b0;

59 repeat (2) @ (negedge clock);
60 switches[5] = 1'bl;

61 repeat (3) @ (negedge clock) ;
62 switches[2] = 1'b0;

63 repeat (2) @ (negedge clock);

Describing Finite-State Machines 263

64 switches[2] = 1'bl;

65 repeat (3) @ (negedge clock) ;
66 switches[3] = 1'b0;

67 repeat (2) @ (negedge clock);
68 switches[3] = 1'bl;

69 repeat (4) @ (negedge clock) ;
70 clear =1"'b1;

71 repeat (4) @ (negedge clock) ;

72 Sstop;
73 end
74 endmodule

Listing 8.15 Verilog source description of combination lock system test module.

The test-module generates a 10 Hz clock using an initial sequential block starting at
line 21.

@ 0ms |500ms |1.0s |1.55 |2.0s |2.55 |3.0s |3.5$
I T A T N T T T O A A A A

test_comblock.clear

test_comblock.clock

test_comblock.alarm

test_comblock.locked |
test_comblock.switches[0] L
test_comblock.switches[1] L
test_comblock.switches[2] L
test_comblock.switches[3] L
test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]
test_comblock.switches[7:0] FF [FE] FF [FD] FF [FB[FF [F7]

test_comblock.UUT.allsw

test_comblock.UUT.anysw

N
m
m
m
i

test_comblock.UUT.codesw
test_comblock.UUT.mux_out
1

test_comblock.UUT.selsw[1:0] 0 [
test_comblock.UUT.entimer |

test_comblock.UUT.timeout
lockstate[2:0] s0 | s1 | s2 | s3 | unlock
test_comblock.UUT.11.q[8:0] 0 [1] 2] 3 4] 9 6] 7[8] 9l10[11]12

Figure 8.37 Combination lock simulation showing: (a) application of correct switch sequence; (b)
automatic locking feature; (c) incorrect key input sequence.

264

Describing Combinational and Sequential Logic using Verilog HDL

(b)

L ‘3\2'05\ L ‘3\2'25\ L ‘3\2'4\8 L ‘3\2'6\5 L ‘3\2'88\ !

test_comblock.clear

test_comblock.clock

| S) Sy [S Sy

test_comblock.alarm

test_comblock.locked

test_comblock.switches[0]

test_comblock.switches[1]

test_comblock.switches[2]

test_comblock.switches[3]

test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]

test_comblock.switches[7:0]

FE

test_comblock.UUT.allsw

test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out

selsw[1:0]

test_comblock.UUT.entimer

test_comblock.UUT.timeout

1

lockstate[2:0]

unlock [

test_comblock.UUT.t1.q[8:0]

205] 296 | 297 | 298] 299 300 0 [o [o [o [0

test_comblock.clear

test_comblock.clock

test_comblock.alarm

test_comblock.locked

test_comblock.switches[0]

test_comblock.switches[1]

test_comblock.switches[2]

test_comblock.switches[3]

test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]

test_comblock.switches[7:0]

FE FF

test_comblock.UUT.allsw

test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out

selsw[1:0]

test_comblock.UUT.entimer

test_comblock.UUT.timeout

lockstate[2:0]

s0 alarm [s0

test_comblock.UUT.t1.q[8:0]

Figure 8.37 (Continued).

References 265

Assecond initial block, starting at line 27, exercises the combination lock by applying the
correct sequence of switch inputs in order to reach the un1ock state. This is followed by a40 s
delay, implemented using a repeat loop, to allow observation of the automatic lock feature.
Finally, after resetting the system, an incorrect sequence of switches is applied in order to verify
the operation of the alarm state.

Figure 8.37a—c shows a selection of simulation waveforms obtained as a result of running the
test-module simulation.

REFERENCES

1. Ciletti MD. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL. New Jersey: Prentice
Hall, 1999.

2. Ciletti MD. Advanced Digital Design with the Verilog HDL. New Jersey: Pearson Education, 2003
(Appendix I — Verilog-2001).

3. Wakerly JF. Digital Design: Principles and Practices, 4th edition. New Jersey: Pearson Education,
2006 (Metastability and Synchronization, Section 8.9).

9

Asynchronous Finite-State
Machines

9.1 INTRODUCTION

Most FSM systems are synchronous; that is, they make use of a clock to move from one state to
the next. Using a clock to control the synchronous movement between one state and the next
allows the FSM logic time to settle before the next transition and, hence, overcomes some logic
delay problems that may arise. For thisreason, synchronous systems are, by far, the most popular
in digital electronics; and most HDLs used to define them are optimized for synchronous system
design.

However, there is another kind of FSM, one that does not use a clock to instigate a
transition between states. This is knows as the asynchronous FSM. In an asynchronous
FSM, the transition between states is controlled by the event inputs, so that the FSM does
not need to wait for a clock signal input. For this reason, asynchronous FSM are sometimes
called ‘event-driven” FSMs.

A typical event FSM is shown in Figure 9.1. In this FSM, the transition from state s0 to s1 will
take place when input s is logic 1 AND input c is logic 0. On reaching state s1, the FSM will
remain in this state until the input ¢ goes to logic 1, at which point it will move to state s2. Here, it
will remain until input ¢ goes to logic 0 to move to state s3, before returning to state sO when input
s goes to logic 0.

In this example, the FSM will only change state when there is a change of input variable;
hence, the event nature of the system.

Sometimes, itis desired to change state when there is no input signal change (as has been seen
in clocked driven systems).

In Figure 9.2, the transition between s3 and sO does not have an input term along the
transitional line. This implies that when the FSM reaches state s3 (when input x became logic 1)
the FSM will move to sO. The time taken for the FSM to move to sO, when it reaches state s3, will
be determined by the propagation delay of the event logic used in the system. This will be as fast
as the logic technology used to implement the design.

An important feature with event-driven FSM systems is that when the FSM is in a stable state
(perhaps waiting for an input event to move to the next state) the power drain is very low in

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

268 Asynchronous Finite-State Machines

:
I

Event Block diagram of an event
FSM FSM showing inputs s and
¢, and outputs Pand L.

%

Li—»
AB AB
00 10
s/c
The state diagram of the
/s FSM. Note that there is no
clock input.
AB AB
01 11

Figure 9.1 Example of an asynchronous FSM.

CMOS circuits, since there is no repetitive clock to consume power. This allows asynchronous
(event) systems to be low power, while also being very fast. This latter point is due to the fact that
the event FSM will move to the next state as soon as the relevant event input changes, and is only
limited by the propagation delay for its event-driven logic.

AB AB
00 10
m
/m
AB AB
01 11

Figure 9.2 Transition without an input event.

Development of Event-Driven Logic 269

9.2 DEVELOPMENT OF EVENT-DRIVEN LOGIC

From the previous section it is clear that an event state diagram can be developed in much the
same way as a clocked driven state diagram. However, whilst with a clocked FSM, the
implementation (synthesis) will make use of some type of flip-flop (D type, T type, or JK
type), the event-driven system needs to make use of memory elements that do not require a clock
input. This implies that perhaps SR latches are required. But in practice these latches may, in
some cases, need multiple set (s) and multiple reset (r) inputs. What follows is the development
of a set of equations that can be used to implement a general ‘event-driven’ cell for each
particular application.

Consider Figure 9.3. This shows the block diagram for the proposed event cell. This cell has a
‘turn-on set’ input to set the cell output to logic 1, a ‘turn-off set’ to turn the cell output to logic O,
and a hold term input, derived from the cell output to hold the cell either in its set, or rest state.

In order to develop the logic equations for the event cell a table of required states for each input
conditionisrequired. Thisis shownin Table 9.1. In this table, the ‘turn-on set’ input is denoted as
s, the ‘turn-off set’ is denoted as r, the current state of the cell outputis Q,,, and the next state of the
cell outputis 9, 1. The two inputs s and r, together with the current output state, are shown as a
binary sequence. This defines all possible states for the cell. What is now required is to fill in the
required state condition for each O, state.

e Inrow 1, s =r=0, and the cell is currently reset. Since our event cell is to remain in whatever
state it happens to be in, when s = r =0, then Q,,.1 = Q,, = 0.

e Inrow?2,s=r=0,butthe cellis currently set. Therefore, 0, ,; = 1,since the cell mustremain
in the set state.

e Inrow3,s=0butr= 1, implying areset condition for the event cell. Since the cell in this row
is currently reset, then Q,,+; = 0 as well.

e Inrow 4, s = 0, r = 1 as before, but the cell is currently set, so the required action is that
QOn+1 = 0to reset the cell.

Basic Event (Asynchronous) Cell

There can be a number of individual turn-on
inputs and a number of individual turn-off
inputs to the cell

Turn-on
set .
Event Output of cell
| -
Turn-off > cell -
set
Hold term

Figure 9.3 The event cell.

270 Asynchronous Finite-State Machines

Table 9.1 State table for the event cell.”

Row s r On 0,+1 event

1 0 0 0 No change

2 0 0 1 No change

3 0 1 0 Reinforced turn off
4 0 1 1 Turn off

5 1 0 0 Turn on

6 1 0 1 Reinforced turn on
7 1 1 0 Not allowed

8 1 1 1 Not allowed

“Q, is the present state; Q,,, | is the next state of Q. Each row corresponds to a possible
particular condition or state of the event cell. This can be used to determine the
‘characteristic equation’ for the event cell.

e Moving torow 5, s = 1 and r = 0. The cell is currently reset; thus, 0,1 = 1 to set the cell.

e Inrow 6, s =1 and r= 0 as before, and the cell is currently set; therefore, O,,+; = 1 tohold the
cell in its set state.

e Inrows7and8,boths=1andr=1.Thisisnota very practical condition for the cell, since it
implies that the cell inputs are ambiguous (i.e. set the cell and reset the cell at the same time!).
Clearly, this is impossible. Here, our own common sense will prevail, and both rows 7 and 8
are defined as ‘not allowed’ states. What is meant here is that it is rather hoped that the input
conditions defined by rows 7 and 8 ‘won’t” happen. This is usually referred to as ‘don’t care’
states. It is important that the ‘don’t care’ does not happen, and this will be assumed in the
design of asynchronous systems that use the corresponding equations being developed here.
The input conditions s = 1 and r = 1 will not be allowed to occur. This is not too difficult to
ensure, so one marks out the row 7 and 8 O, outputs with x.

Table 9.2 illustrates the completed table.
Now, an equation for Q,.1 can be developed from this table in terms of s, r, and Q,;:

Oni1 = /8/rQn +5/r/Qn + 5/rQn + 57Qy + 57/ QOn
= /s/rQ, +s/r+sr
= /S/rQ11+S.

Table 9.2 Completed state table for the event cell.

s r O Qn+l

0 0 0 0 No change

0 0 1 1 No change

0 1 0 0 Reinforced reset
0 1 1 0 Turn off (reset)
1 0 0 1 Turn on (set)

1 0 1 1 Reinforced set

1 1 0 X Don’t care

1 1 1 X Don’t care

Development of Event-Driven Logic 271

Applying the auxiliary rule and rearranging results in the following sequential equation:

Qn+] :s+Qn/r-

The sequential equation produced here represents the ‘characteristic equation’ for the event cell.
Notice that in line 3 the ‘don’t care’ terms s/r + sr have been reduced to the term s.
The sequential equation can be stated as:

The new output state for the event cell is equal to the condition of the set input s or the current
state of the cell Q, and the inverse of the reset input 7.

This can be easily proved, as shown below, by defining initial states for s, 7, and Q,, using the
sequential equation to predict the new output Q,,, ;. Note that, in these equations, the r termis /7,
sor=0means/r=1,and r = 1 means /r = 0.
Lets=1,r=0, Q,=0.Then Q,,1 =140 -1
= 1; i.e. cell sets (output changes from 0 to 1).
Lets=0,r=0, Q,=1.Then Q.1 =0+1-1=1;
cell remains set (output remains at logic 1).
Lets=0,r=1, Q0,=1.Then Q,;; =0+1-0=0;
cell is reset (output changes from 1 to 0).
Lets=0,r=0, Q,=0.Then Q,,,; =0+0 - 1=0;
cell remains reset (output remains at logic 0).

As it stands, the sequential equation is rather limited because it caters for only a single input s
term and a single input 7 term. In real event-driven systems there may be a requirement for
multiple set and multiple reset terms so that the cell can be set and reset under different
conditions. But these will be OR terms, since the state diagram is sequential and can only

deal with one set and one reset condition at a time. So the sequential equation can be modified by
introducing the possibility of multiple set inputs as:

Sum of set inputs Z s =s;+ 5 +---+s,, where s, is the final set input term.

Sum of reset inputs Z r=r +r,+---+r, where r, is the final rest input term.

Thus, the sequential equation becomes:

Qn+l = ZSQ+Qn . Z/}’Q. (91)

This is the final form of the sequential equation used to define the event cell. Itis referred to as the
NAND sequential equation [1].

Note that there is a corresponding equation called the NOR sequential equation that is
defined as

Oni1 =D _so+0u) - Y /ro. (9.2)

Equations 9.1 and 9.2 are reproduced from Page 19 in Chapter 1 ‘Basic Concepts in Logic Design’, from ‘Problems
and Solutions in Logic Design’ by Zissos, D. by permission of Oxford University Press.

272 Asynchronous Finite-State Machines

Single turn-on input

Single turn- /r Qn+1
off iinl>®‘
r
Qn

Figure 9.4 Basic event cell.

But it is not used much these days. You may like to try to see how this NOR sequential equation is
obtained from the sequential equation. (Hint: AND (3 rg + > /ro) withthe > 5o and expand.)
Equation (9.1) can be described for an event cell A as

A= Z(turn-on sets of A) - A + Z /(turn-off sets of A)
and Equation (9.2) as

A= (Z(turn-on set of A) +A) - Z /(turn-off sets of A).

Both these equations were used in the book Problems and Solutions in Logic Design by D. Zissos
[1] (chapter 1: ‘Basic concepts in logic design’) and are repeated here by permission of Oxford
University Press.
The next stage is to show how the sequential equation can be used to synthesize an event FSM.
This will be followed by an example of how to design an event-driven FSM from a specification.
Returning to the sequential equation, Equation (9.1), a circuit can be produced. This is shown
in Figure 9.4.

Qn+1:s+Qn'/r'

This is the equation defining the circuit of Figure 9.4. This can be converted into NAND form by
applying De Morgan’s rule to obtain:

Onir = /(/s-/(Qu-[7))- (9:3)

This is where the ‘NAND’ sequential equation name comes from. The event cell circuit is shown
in Figure 9.5.

Either type can be used in practice, although with PLD and FPGA devices the AND/OR
arrangement fits best.

9.3 USING THE SEQUENTIAL EQUATION TO SYNTHESIZE AN EVENT
FINITE-STATE MACHINE

The event state diagram shown in Figure 9.6 will be used to synthesize an event system. The
design process for event state diagrams will be dealt with later. The system is essentially able to
determine a O to 1 transition on the ¢ input.

Using the Sequential Equation to Synthesize an Event Finite-State Machine 273

Set
input s [}

Reset

1
—E Ir

>O» /Qn+1

Qn Hold term

Figure 9.5 Event cell circuit.

In this system there are three inputs: st, ¢, and sp. There is a single output P that is logic 1 in
state s3. Note that there are two event cells in this state diagram: event cell A and event cell B.
These form the secondary state variables.

When the operator asserts input st, the system moves from state sO to s1, where it waits for the
input ¢ (the incoming pulse) to become logic O (if c is logic O in state sO, then the FSM will simply
move through s1 to s2). When the FSM reaches s2 the system waits for ¢ going high. In this way,

——p{ st
— P » Block Diagram of the
Event System
System
—Psp
AB AB
00 10
st
sp /c
The State Diagram
AB AB

01 11

Figure 9.6 The basic event-driven system.

274 Asynchronous Finite-State Machines

the event-driven system is able to catch the positive-going transition on input c. The P output will
remain high until the sp input is asserted. In this way, the P output acts as a memory of the
transition event on c.

When the operator asserts input sp, the FSM will move back to state s0.

This system can be left unattended, since it will indicate the ¢ O to 1 transition, and asserting sp
will allow the operator to return the system to its initial state again. Note that the system can be
reset to sO via its reset input as well (not shown).

First, the turn-on set of conditions to set the A event cell must be determined.

The Y 54 is found by looking for the state where A, goes from Oto 1. Thisis state s0, forA,, = 0
instate s0,and A, = linstate sl. Thereis an input along the transitional line between s and s1,
so this input st is included in the turn on set for A,,. Therefore:

ZSA =50 - st+sl - st (9.4)

Thereasonwhy sl - stisneededis because the input st muststill be logic 1 (active) when the FSM
reaches state s1 to ensure that it will remain in this state.
Now:

> sa= /Ay [By-st+ Ay [By-st= /Ay [By+Ay-[By)-st=/By-st

due to the application of the logical adjacency rule. Note: this has effectively led to the removal
of the A,, term in the equation for the turn-on set for event cell 4,,.

Now, looking for the turn-off condition, this occurs in state s2 when A,, is changing from 1 to 0.
Therefore:

ZrA:sZ-c—FsS-c, (9.3)

since the cinput must be held true in state s3 to ensure that the event cell hold reset. In terms of the
state variables:

ZrA:A,,Bn~c+/A,1-B,,-c:(A,, “B,+ /A, -B,) -c=B, -c.

The A,, term is removed by the logical adjacency rule to leave the B,, and ¢ terms. This results in
the turn-off term

ZrA:Bn - C.

The complete sequential equation can now be written thus:

Apy1 = ZSA +A, - Z/VA

Api1 = /By - st+A, - /(By - ¢).

This represents the required behaviour for the event cell A. It is the sequential equation for the
event cell A originally called the NAND sequential equation by Professor D. Zissos in his book
Problems and Solutions in Logic Design [1].

Using the Sequential Equation to Synthesize an Event Finite-State Machine 275

The sequential equation for the event cell B can be obtained in the same way:

Bn+l :ZSB+Bn ' Z/rB-

The turn-on set for B is

ZSB =sl - fc+82:/c=A,/B, - Jc+A, B, Jc=A, - /c (9.6)

Note here that the application of the logical adjacency rule has removed the B, term in the same
way that the A, term in the turn on set equation for A was dropped.
The turn-off set for B is

Y /5 =/(s3-sp+50-5p)=/(/Au-By-sp+ /Ay~ [Bu-5p) = /(/Au-sP). (9.7)

Likewise, the B, term is dropped using the logical adjacency rule. So now the logic to specify the
behaviour of the event cells is complete.
The complete sequential equation for cell B is thus

Bui=» sg+Bu- Y [r5.=Ay-[c+ By [(/Ay-sp).

The two sequential equations

An+l :ZSA +An'Z/rA:/BII'St+A11'/(Bn'C)
Bt :ZSB+Bn'Z/rB.:An'/C+Bn'/(/A11'Sp)

represent the behavioural logic for the two event cells.
The final equation is the output equation for the signal P. This, like clock-driven systems, is
based on the state, in this case state s3:

P=s3=/A,-B,.

Note that in the) s4 set the /A, state variable has disappeared and in the 3 /r4 set the A,, terms
have disappeared.
Likewise, the /B,, and B,, terms have disappeared from the respective Y sgand > /rp sets.

9.3.1 Short-cut Rule

This is always going to be the case since the logical adjacency rule will always be applied to the
state variable for the cell.

Thus, itis possible to apply a short-cut where in the event cell X the turn-on set) _ s, will have
the /x term removed, and in the turn-off set > /r, the x term will be removed as a result of
applying the logical adjacency rule in Equations (9.4)—(9.7).

276 Asynchronous Finite-State Machines

This allows the equations to be written thus:
ZSA =s0-st= /A, /B, -st= /B, st

i.e. drop the /A state variable in the O to 1 term. This means you do not need to write down the
second term s1 - st in Equation (9.4).

ZrA:sZ-c:A”Bn~c:Bn-c;

i.e. drop the A state variable in the 1 to O term. This means you do not need to write down the
second term s3 - ¢ in Equation (9.5).

ZSB =sl-/c=A,/B,-Jc=A," /c;
i.e. drop the /B state variable in the O to 1 term. The s2 - ¢ term is not required in Equation (9.6).

Z/rB = /s3-sp=/(/An.By - sp) = [(/An - sP);

i.e. drop the B state variable in the 1 to 0 term and you do not need to write down the term s0 - spin
Equation (9.7).

This provides arapid way to obtain the sequential equations direct from the state diagram. The
easiest way to remember this rule is to simply ‘drop’ the state variable term in the equation for
that state variable. Therefore, in the equation for A, drop the /A state variable in the > s, 0 to 1
transition term. In the equation for B, drop the A state variable in the Y r4 1 to O transition term.
From now on, the short-cut rule will be applied.

Having established the equations, they can now be implemented using a PLD or FPGA.

9.4 IMPLEMENTING THE DESIGN USING SUM OF PRODUCT AS USED
IN A PROGRAMMABLE LOGIC DEVICE

To do this the NAND part of the equations might want to be replaced to turn them into sum of
product terms:

Any1 = ZSA “'An'Z/”A :/Bn'St+Alz/(Bn 'C)
Bui = sp+By Y [r5=Ay-[c+ By [(/As-sp).

In the equation for A, 1, for example, the term /(B,, - ¢) can be converted using De Morgan’s
rule. The De Morgan rule used here is

/(X ¥) == /X + /¥
to produce

/(B,-¢) == /B,+ /c.

Development of an Event Version of the Single-Pulse Generator 277

This results in

An+1 = ZSA +An 'Z/I’A = /B,, -St+An . (/Bn+/C)
= /B, -st+A,-/B,+A,/c.

And for the term /(/A,, - sp), using De Morgan’s rule results in A,, + /sp. The final equation is
Bii =Y sg+Bi-Y [r=Ay, [c+ By [(JAy-sp) =Ay- [c+ By (Ay+ /sp)

and
Bt =A, '/C+Aan +/San

Using these two sequential equations, the final event cell circuits can be synthesized.

9.4.1 Dropping the Present State n and Next State n + 1 Notation

Up to now the sequential equations used have been of the form:

Anci =Y sa+An- > 1,

where A, is the next state of the event cell. However, it could be written as

A:ZSA +A'Z/7‘A,

where A on the left is taken to be the next state and A on the right the present state of the event
cell. This is, in effect, a recursive equation.

This notation will be used from now on. This can be clearly seen in Figure 9.7, where the
outputs A and B are fed back to inputs. Figure 9.7 illustrates the final circuit for the system. This
could be synthesized using a PLD device such as the 22V 10.

9.5 DEVELOPMENT OF AN EVENT VERSION OF THE SINGLE-PULSE
GENERATOR WITH MEMORY FINITE-STATE MACHINE

The clock-driven single-pulse generator circuit that was developed in Chapter 1 when dealing
with synchronous (clock-driven) systems will now be revisited. This time it will be developed as
an event-driven system.

In the clocked version, use was made of a system clock to control the timing of the single pulse
produced when the input p was asserted. However, in an event version, there is no system clock,
so an input (named the ¢ input) will be used for that purpose (it can also be used to set the pulse
duration). The event-driven system will make use of this input as an event input that happens to
be changing state at a regular interval, but it will be seen by the event system as ‘an event’ input.

Figure 9.8 illustrates the final system. Looking at the state diagram, it can be seen that the
system starts when input s is asserted, but the FSM will not move from state s until both sislogic

278 Asynchronous Finite-State Machines

st
/B ——)
B_____|
A output
c /C
/A P
A) output
/C
A —— B output
sp [: /Sp

‘ > /B output

Event cells and output for the system

Figure 9.7 Final circuit for the system.

Event
System

AB AB
_ . 00 10
A= ZsA+A IZrA

_ . -/
B= ZsB+B/ZrB s/c

Equations:

A=/B-s/c+ A/(B/c) /s ¢
=/Bs/c+ A/B+ A-c

B=A-c+ B//A/s)
=Ac+AB+Bs

P=s2=AB
AB AB
L=s2+s3=B 01 11

Figure 9.8 Event-driven single-pulse system with memory showing block diagram, state diagram and
equations.

Development of an Event Version of the Single-Pulse Generator 279

1 andthe c inputis at logic 0. The reason for this is that the transition of ¢ from 0 to 1 is to be used
to assert the outputs P and L to logic 1 (beginning of the output pulse).

Therefore, when the FSM moves from state sOto s1 it waits in s1 for the c input to goto logic 1,
then moves to state s2 where P and L are made logic 1. This will happen on the 0 to 1 transition of
the ¢ input. The FSM will remain in state s2 until the c input again drops to logic 0, and the FSM
will move to state s3 where the output P will resume its logic O state while the output L remains at
logic 1.

At this point, the FSM will remain in state s3 until the input s reverts back to logic 0, ready for
the next single-pulse generation. This will also cancel the output L. In this design, the output Lis
being used as a pulse indicator, since the pulse duration is dependant upon the width of the ¢ pulse
and may not be seen by the user.

In this system, the actual width of the P output pulse can be controlled by the logic 1 period of
the ¢ input.

Turning to the equations, the two-event cell equations can be obtained in the same way as in
the previous example, by first obtaining the turn-on set and then the turn-off set for each
equation, then inserting them into the sequential equations. However, a little thought shows
that each sequential equation can be written down directly using the short-cut method, more or
less as has been done in Figure 9.8:

A:ZSA—FA-Z/rAZSO-s/c+A-/(52~/c):/B-s-/c+A-/(B-/c)
B=> ss+B-Y [rp.=sl-c+B-/(s3-/s)=A-c+B-/(/A-/s)

with outputs
P=s2=A-B

and

L=s2+s3=A-B+ /A-B=B.

The two-event cell equations can now be converted so that they can be implemented with sum of
product logic (typically found in PLD devices):

A= /Bs/c+A-/B+A-c
B=Ac+B-A+B-s
P=A-B

L=B.

The circuitisillustrated in Figure 9.9. Notice the Reset line (thick line) to initialize the event cells
to zero. This is essential in order to ensure that the system is reset to state sO. In operation, this
Resetline will be atlogic 1. During resetit will be atlogic 0, thus clearing both event cells to zero.
Clearly, the reset line is ANDed with the turn-on/turn-off logic of the event cells:

A = (/Bs/c+A/B+ Ac) - Reset
B=(Ac+AB+ B -s) - Reset.

280 Asynchronous Finite-State Machines

L

/C
=g -
:)_é}Aevent cell
) P Output

O

c A

=

c

A_l_ B event cell
L output
s >

%>®_/B

Reset

Figure 9.9 Circuit for the event-driven FSM system.

For clarity, the Reset input line will be left out of the event cell equations, but remember to add
itin when implementing each design, otherwise the circuit will not simulate, since it will not be
able to initialize. At this stage the reader might like to revisit Figure 9.7 and add a reset
connection to allow this circuit to reset to state s0.

9.6 ANOTHER EVENT FINITE-STATE MACHINE DESIGN
FROM SPECIFICATION THROUGH TO SIMULATION

In this next example, an event FSM will be developed from its written specification through to a
Verilog HDL description of the FSM (as described in Chapter 6). This is then simulated using the
SyncadTM simulator system.

Theideahereistoillustrate how a complete design can be implemented. Later, the Verilog file
could be used to program a PLD device and, hence, realize the design in physical hardware.

9.6.1 Important Note!
Since the Verilog behavioural level is not optimized for an event-driven system, as yet, the

Verilog description is at the Boolean equation level. This is fine for our purposes, since it will
provide a one-to-one correspondence with the system equations. Itis also possible to implement

Another Event Finite-State Machine Design 281

the event-driven system using the gate level direct. The Boolean equation level, however, is
useful for quick simulation and verification. On the other hand, simulating in terms of the logic
gates allows the designer to experiment with different gate delay values to ensure that the circuits
will not maloperate due to violation of the 33.3% gate tolerance rule (see Section 9.12.3 and
Reference [1] for details).

9.6.2 A Motor Controller with Fault Current Monitoring

This is an event-based FSM used to control a motor. An external device (possibly based on a
Hall-effect transducer) is used to monitor the motor current. This will be set so that normal start
current is allowed, but if the motor current exceeds some defined limit a fault signal will be sent
to the FSM to switch off the motor and light up a fault LED indicator. The details of the Hall-
effect fault circuitry and the power circuit to switch the motor on and off are excluded from the
diagram of Figure 9.10a.

Figure 9.10b shows the state diagram for the FSM controller. The motor can be switched on by
asserting input st, and off by disasserting input st. If a fault is encountered by the Fault Detection
Unit its output signal ms will go high thus causing the FSM to move into state s2 where the motor
will be switched off and the Fault indicator L turned on (an active-low signal). The system will
remain in s2 until the start input st is disasserted to move the FSM into state s3 turning off the
Fault indicator LED L. The FSM can return to its initial state sO on reaching state s3 if input 7 is
logic 0.

N L
Current Sensor
Fault
Detection 4—'
Unit
(a) Block Diagram
ms M
FSM
st >
L—>
t_> /st

(b) State Diagram

ms+t

AB
1

Figure 9.10 The block diagram and state diagram for the motor controller.

282 Asynchronous Finite-State Machines

The system can be tested in the absence of a fault by pressing the testinput z. Note that 7 = 1 will
hold the FSM in state s3. The equations for the event cells can now be developed:

A:ZSA —I—A'Z/rA
=s0-st+A-/(sl-/st+s2-/st)
=/B-st+A-/(/B-/st+B-/st)
=/B-st+A-//st
=/B-st+A-st

B:ZSB—I—B'Z/rB
=sl-(ms+1t)+B-/(s3-/1)
=A-ms+A-t+B-/(/A- /1)
=A-ms+A-t+A-B+B-t

M=sl=A-/B and L=/s2=/(A-B)=/A+ /B.

The schematic diagram of the design is illustrated in Figure 9.11. This has the test input included
so that the system can be tested in the absence of a fault input.

/B

st

T [:/A
m | L

L Output

AL

» TJ

Reset

Figure 9.11 Schematic circuit diagram for the FSM controller.

Another Event Finite-State Machine Design 283

Althoughitis not necessary to draw a circuit diagram, it is useful to see the circuit of the FSM.
Note that the essential interface buffering between the low-voltage FSM circuit and the high-
voltage motor circuit is not shown.

This design can be developed as a Verilog module and this is illustrated in Listing 9.1.

L1777 7707 7777777777777 777777777777777777
module fsm(rst,st,ms,t,M,L,A,B);

output M, L, A,B;

input rst, st,sp,ms, t;

assign
A = (~Bé&st | A&st) &rst,
B = (A&ms | A&t | A&B | B.t) &rst,

M = A&~B,
endmodule

L1770 77 077777707777 77777777777777777777
Listing 9.1 FSM module.

Note that the module inputs and outputs are defined outside of the parentheses, as was usual in
older style Verilog modules. This is still supported in later versions of the Verolog compiler
tools. Chapter 6 shows the more recent way to define the inputs and outputs.

In the Verilog file, the event equations have been implemented using an assign with blocking
statements. The equations also cater for the test z input to test the system in the absence of a fault.

The Verilog code in Listing 9.2 is a test bench that is used to test the design. A test bench
provides an instance of the FSM, along with a set of test signals to be used in the simulation in
order to verify the design.

module test;
reg st,ms, t,rst;

fsmuut (rst,st,ms,t,M,L,A,B);

initial
begin
$dumpfile ("motflt.vcd"); // to get a printout of waveforms.
$dumpvars;
rst=0;
st=0;

ms=0;

t=0;
// Note it is important to ensure signals change in
// proper sequence. Also to ensure ms and sp are

284 Asynchronous Finite-State Machines

// mutually exclusive.

/) —— remove reset
#20 rst=1;

- move to sl
#20 st=1;

J)——m e stay in sl

Y move to s0
#20 st=0;

/) move to sl again
#20 st=1;

. move to s2
#20 ms=1;

[/=—mmm
#30 ms=0;

. move to s3
#20 st=0;

A move back to s0
#20 st=0;

J)———m move to sl
#20 st=1;

/) stay in sl

Y move to s2
#20 t=1;

A move to s3
#20 st=0;

Y move to s0

e end of tests.

$stop (60); // stop the simulation.
end
endmodule

Listing 9.2 Test-bench module.

The FSM module is very simple and, apart from the input and output defines, consists of only
an assign block. The event cells are defined individually within this block, together with the
output equations.

The test bench module is also seen to be quite simple. One point to note is that the signals
must change one at a time, and with a time delay. This is mandatory, since the event cells can
respond to potential static 1 or 0 hazards (glitches). This will be a necessary requirement with
all event-driven designs.

Finally, Figure 9.12 illustrates the timing waveforms from the simulation.

Comparing this with the test bench module sequence, it can be seen that the state diagram has
been traversed twice: once with a fault signal and next with a test signal.

The Hover Mower Finite-State Machine 285

Ons ‘SOns ‘100ns 150ns ‘ZOOns ‘250ns
frrrrrerrrrrrrrrrrrrrrrrrl

|

test.st

test.ms

test.t

L

test.rst

test.M

test.L

=

| |

Figure 9.12 Verilog simulation of the design.

test.A

Note that, in the case of a fault, the transition from s2 to s3 to sOis very fast and the s3 state is not
apparent in the simulation. In the case of the test, the FSM stops in state s3 until the ¢ input is
returned to its low state. In this way, the operator can test the complete state sequence
(particularly if the state variables are available as LED indicator outputs).

9.7 THE HOVER MOWER FINITE-STATE MACHINE

A hover-type lawnmower usually uses a mechanical interlock to prevent the motor from starting
unless the user presses a button before operating the on/off lever. By replacing the mechanical
mechanism with an electronic equivalent, the safety mechanism can be made easier to manu-
facture.

9.7.1 The Specification and a Possible Solution

Ahover lawnmower has a safety button sf that must be pressed before operating the start lever st.
When the safety button is pressed, an LED indicator P is lit; when the start lever st is operated
after this, the motor will turn on. The motor can be stopped by releasing the start lever. The safety
button sf must be pressed before the motor can be restarted with the start lever.

Ablock diagram with a suitable state diagram for the system are illustrated in Figure 9.13aand
b. The specification is a typical one that might be given as a specification for a product. Looking
at the original state diagram 1 in Figure 9.13b (with four states), it can be seen that a number of
safety features have been added. This was done during the development of the state diagram as
the true nature of the control sequence was revealed.

286 Asynchronous Finite-State Machines

(a)
St P LED indicat
—>» Mower — indicator
st Event
—>{ Controller M Motor output
——>
(b) AB AB AB
00 10 11
/sf /st + /sf
sf.st
A A
State Diagram 1 AB 0 1
01 State Diagram 2

Figure 9.13 (a) Block diagram of the mower FSM controller. (b) Two possible state-diagram solutions.

The state diagram controls the sequence of the controller by ensuring that only if the safety
button is pressed before the start lever is operated will the motor operate. The P LED will remain
on in sl if the start button is released. If the safety button is released in either states s1 or s2 the
FSM will move back to state s0.

Note that the FSM will return to s1 when the start lever st is released or the safety button is
released. This ensures that the operator’s hands are on both the safety button and the start leverin
order to start the motor. The operator must see the LED P turn on before the start lever can be used
to turn on the motor. Finally, note that the unused state s3 has been returned to sO. This ensures
that the system will fall into sO should a glitch cause it to get into this unused state.

Returning to Figure 9.13, state diagram 2 (with only two states) is an alternative solution,
where combinational logic is used on the inputs (along the transitional lines between sO and s1).
The logic equations can be deduced in the usual way:

A:ZSA+A-/ZrA

sO-st-sf+A-/(sl-(/st+ /sf))

st-sf+A-/(/st+ /sf)

st-sf+A-//(st-sf)
=st-sf+A-st-sf

P =50 -sf = sf.

The Hover Mower Finite-State Machine 287

st

sf wi

) o
er

A Y

l/

M output

a3

g5
w2 Inverter
D A

pBuffer p output

l/
Reset g6

Figure 9.14 Schematic circuit diagram of the mower FSM.

This latter equation can be seen by noting that the P indicator can be on in sO (Mealy output) and
also in s1 as a result of getting into sl via inputs sf - st.

M =sl = A.

This leads to more simplified logic requiring only three logic gates: two AND gates and one OR
gate. Buffers would, of course, be required for outputs P and M.

Figure 9.14 illustrates the circuit for the mower FSM of state diagram 2 in Figure 9.13.
Additional buffers have been added to provide appropriate power levels. In particular, the motor
output M would need to be connected to a relay (static or electromechanical) to isolate the FSM
from the mains electrical supply.

The FSM of state diagram 2 is implemented in Verilog using a gate-level module. This allows
individual gates to be given propagation delay values. This is shown in Listing 9.3.

module mowerfsm(st,sf,P,M,A, rst);

input st,sf, rst;
output P, M, A;
wire na,nb,wl,w2;

or #5 gl (A, wl,w2);
and #5 g2 (wl,sf,st,rst);
and #5 g3 (w2,A,st,sf, rst);

not #5 g5 (na,d);

buf #5 g6 (P, sf);

endmodule

Listing 9.3 Mower FSM module.

288 Asynchronous Finite-State Machines

The test bench module is illustrated in Listing 9.4.

module test;
reg rst, st, sf;
mowerfsm uut (st,sf,P,M,A, rst);

initial
begin
Sdumpfile ("mower.ved") ;
$dumpvars;

rst=0;
st=0;
sf=0;
#20 rst=1;
#20 sf=1;
#20
#20 st=1;
#20
#20 st=0;
#20
#20 st=1;
#20
#20 sf=0;
#20
#20 st=1;
#20
#20 st=0;
#10 $finish;

end

endmodule

Listing 9.4 Test-bench module.

Figure 9.15 illustrates the simulation of state diagram 2 in Figure 9.13. This follows the test-
bench sequence of Listing 9.4.

The simulation starts by activating the sf input. The P indicator turns on. This is followed
by the st input going high, which starts the mower motor. The start input is released and
the motor stops. It can be started again with the start input because the sf input is still
activated. The sf input is then deactivated (with the start input st still asserted) and the motor
turns off.

An Example with a Transition without any Input 289

50ns

100ns
[

150ns

200ns
[

250ns

Ons

test.rst J
test.st L

test.sf

test.P

test.M

test.A

Figure 9.15 Mower FSM simulation.

Returning to the problem again, and after a little thought, the control of the mower can be
reduced to a combinational one requiring

M = sf - st
P = sf.

This final solution is now obvious when seen, and perhaps you saw this at the beginning of this
example. This is effectively back to a mechanical switch design!

The original solution based on state diagram 1 in Figure 9.13 is correct but requires three
states and two event cells. The second attempt provides an equally working solution with
fewer states using state diagram 2 in Figure 9.13. Finally, the combinational solution
provides the simplest solution. It pays to look at the problems carefully to see whether
they can be simplified. The sequential nature of the specification can easily lead to this kind
of overdesign from the designer.

9.8 AN EXAMPLE WITH A TRANSITION WITHOUT ANY INPUT

Now consider the next example in Figure 9.16; in this example, the transition between s3 and sO
does not have any input.

290 Asynchronous Finite-State Machines

AB AB
00 10
m
sO s
A
/m
Y
o
s3 s2
AB AB

01 11

Figure 9.16 State diagram with no input along a transition.

Here are the equations for this example:

A:ZSA+A-Z/rA
=s0-m+A-/(s2-p)
=/B-m+A-/(B-p)
=/B-m+A/B+A/p.

The equation for B will be obtained by not using the short-cut rule:

B:ZquLB'Z/rB
=sl-/m+s2/m+B- /(s3+s0)
=A-/B-/m+A-B-/m+B-/(/A-B+ /A-/B)
=A-/m+B-/(/A)
—A-/m+B-A.

In the equation for B, the Y /r, termis (by the short-cut method) //s3 whichis //A because there

is no input term along the transitional line.
This example does not have any output (something that most FSMs would have), butitis only

an academic example.
Remember: add the reset input before trying to simulate the design.

Responding to a Microprocessor-Addressed Location 291

9.9 UNUSUAL EXAMPLE: RESPONDING TO A MICROPROCESSOR-
ADDRESSED LOCATION

Now here is an unusual example. Suppose one has an FSM-based event controller chip (PLD/
FPGA) that is required to synchronize with a microprocessor. A possible solution follows.

In the system shown in Figure 9.17, an address 380h is produced by the address decoding
logic. This might be implemented on the PLD/FPGA chip. The output of this is the signal 380h,
which is to be used to operate the FSM.

The FSM will respond to this signal when c is low by moving to its state s1, where it will wait
for ¢ to go high.

Atthis point the FSM will move to s2 to assert the ACK signal to signal to the microcontroller
that it has seen the 380h signal. The FSM will return to its initial state when the signal ¢ goes low
again via state s2 and s3. The signal c is derived from the system clock.

Note that this signal is used by the event FSM to control the return to initial state and thus
provide a clearly defined ACK pulse width. If this were not done, the width of ACK signal would
be dictated by the propagation time of the event logic only.

The state diagram is shown in Figure 9.18. Here, one can see the turn-on and turn-off terms,
derived from the address decoder and ¢ clock signals. This example shows how a simple event-
driven FSM can be used to provide a control action without having to add a lot of logic to the
system.

In a microprocessor system, the address decoding logic might well be already available; in a
microcontroller system the FPGA could provide the decoding logic as well as the FSM, although
it is using up a lot of I/O pins. The ACK signal, as implied in Figure 9.17, could be used to
cause an interrupt in the microprocessor system, thus avoiding the need to provide an input
port bit.

Microprocessor » 380h

AO [Addr, Address

Decoding

a9 Logic FSM

int ACK

A

c

T

Clock
As an event input

How address 380 hex is formed:
a9a8 ava6ab5a4 al3a2alal
11 1000 00O00O0
3 8 0

Figure 9.17 Block diagram of the basic address-activated system.

292 Asynchronous Finite-State Machines

AB AB
00 10
380h- /c
/ACK
sO
/c

AB AB
01 11

Figure 9.18 State diagram and equations for address-activated FSM.

This system will work correctly if the clock signal ¢ connection between the micro-
processor and the FSM is short to avoid lead delays. It is also assumed that the clock period
is much greater than the largest propagation delay in the FSM, so as to allow the FSM time
to settle.

The equations are

A:ZSA +AZ/FA
=50-380h-/c+A-/(s2-/c)
=/B-380h-/c+A-/(B-/c)

B:ZSB+B~Z/rB
=sl-c+B-/s3
=A-c+B-//A
=A-c+B-A

ACK =52
=A-B.

An Example that uses a Mealy Output 293
9.10 AN EXAMPLE THAT USES A MEALY OUTPUT

Sometimes it is useful to have an output that is a function of one or more inputs, but only in
particular states. You might remember that during the programmed learning sections a Mealy
FSM was defined as one in which some of the outside world inputs were fed into the outside
world decoder. This next example illustrates this.

9.10.1 Tank Water Level Control System with Solutions

In the example shown in Figure 9.19, a pump is used to fill the tank (by making P1 =1 and P2 =
0). The idea is to fill the tank so that the liquid level is between the level sensors Sh and SI.
When this is the case, the outlet flow from the tank is balanced by the inlet flow to the tank via the
pump.

If the liquid level falls below level sensor S1 (11 asserted), the pump is to be switched to high-
speed mode where P1 =0 and P2 = 1. This is important to avoid air locks in the outlet part of the
system.

Should the liquid level rise to level Sh (12 asserted), the pump is to switch off.

This system will work continuously to maintain the liquid level. It can, of course, be switched
on, or off via the relevant switches st and sp, which could be replaced with a single on/off switch
if desired.

Table 9.3 shows the relationship between the level sensor inputs 11 and 12, and the outputs to
the pump P1 and P2 can be constructed as illustrated below. Note that the last row of Table 9.3 is

Pump

Sh is High Level Sensor

Slis Low Level Sensor

Inlet —» () EE— |l

WP—’A
S Level 2.
Sl Level 1
—>
Tank Outlet
A 4
P1 P2 12 1
—»st
FSM
—>»{sp

Water Flow Control System

Figure 9.19 Block diagram of the FSM-based Mealy pump control system.

294 Asynchronous Finite-State Machines

Table 9.3 Relationship between level sensor inputs and outputs to the pump.

11 12 P1 P2 Comment

1 1 0 0 Pump off, as water is in danger of overflowing tank
1 0 1 0 Pump at normal speed; water between sensors

0 0 0 1 Pump at high speed; water below sensors.

0 1 0 0 Impossible situation; pump off

dictated by the practical arrangement of the system. Clearly, the water level cannot be at the high
setting in the tank and there be no water at the lower setting.

From this information, a state diagram can be developed that will meet the required
specification. Figure 9.20 illustrates the state diagram. In this design, the system resets in to
its idle state and waits for a start signal. Once obtained, the system moves into s1, the dormant
state. It will stay in this state while the water level is above the level 1 sensor. The level sensors
will now dictate when the system will move to s3. This will only occur if sensor 11 is zero, so the
P2 input can start the pump in high mode to pump water above the lower level sensor. Once in
state s3 the FSM will move between s3 and s2 to maintain the water level between the two level
Sensors.

Note that the system can be stopped at any time and the FSM will fall back to state sO. Note also
that the P2 output will be disabled in state s3 if stop is activated, thus preventing the pump speed
changing on a transition from s2 to s3 to s1 to s0. The water level would then fall to empty once
the system was turned off. If the tank is empty when the system is turned on, then the FSM will
move from s0 to s1, then straight to s3 to fill the tank to a level between 11 and 12.

AB
01
Pump
Lo-Speed
State
I
Dormant
Idle State State
sp+I2 Pump
Hi-Speed
State
AB
Note: If Stop switch is pressed the P2 11

output will not be active in state s3.

Figure 9.20 First attempt at a solution: four-state FSM with Mealy output.

An Example that uses a Mealy Output 295

This solution can now be developed into a practical system by assigning a set of secondary
state variables. In this example, possible assignments could be

s0=/A/B sl=A/B s2=/AB s3=AB
or perhaps
sO0=/A/B sl =/AB s2=A/B s3=AB.

Looking at this solution, one may wonder if it could be made simpler. In fact, looking at the
table of sensor inputs and pump outputs, there is a combinational equation that can be formed
using the level sensor inputs 11 and 12, and the two pump outputs P1 and P2. This is because the
physical liquid movement forms a natural sequence for the problem. Look back to Table 9.3 with
the impossible situation of 11 not active but 12 active, in which the pump should be held off. The
equations for P1 and P2 are

Pl=11-/12
P2 =/11-/12.

However, these on their own are not enough, since there is the start and stop switch inputs to
consider. Assuming that these two switches are push buttons, an event memory cell is needed to
allow the system to occupy the two states.

The final system s illustrated in Figure 9.21. Here, the system is only able to operate when itis
in state s1. In state sO it is disabled.

The two equations for P1 and P2 are only true when the FSM is in state s1. Therefore, the two
equations are written in the form

Pl=sl-/12-11
P2=sl-/12-/11.

st

P1=/12-11
P2=/12-/I

Sp

Note both P1 and P2 are Mealy outputs in state s1

Figure 9.21 Final solution: two-state FSM with Mealy outputs.

296 Asynchronous Finite-State Machines

To obtain the event cell (there is only one in this state diagram)

A:ZSA-‘FA'Z/VA.

Therefore:

A=s0-st+A-/(sl-sp).
Replacing sO and s1 with the secondary state variables gives
A=/A-st+A-/(A-sp)
The /Ain/A - stand the A in A - sp need to be dropped (short-cut method), leaving
A=st+A-/sp.
This is because when the /A term in /A - st is dropped the result is effectively 1 - st, since
JA-1=/A.

Inasimilar way,A - spis1 - A - spwhichis 1 - sp=sp. Therefore, the final set of equations for
this example is

A=st+A-/sp
Pl=A-11-/I2
P2=A-/11-/12.

Finally, before leaving this example, it is possible to reduce this particular problem to a
combinational logic circuit that does not require an event cell. This is possible owing to the
physical nature of the problem. The water in the tank creates a sequential operation for the water
level sensors.

Pl=11-/12-st- /sp
P2=/11-/12-st- /sp.

This is only possible if the design uses switches that remain open or closed when released. If the
system uses push switches that release when one leaves go of them, then the event cell is needed
to remember the switch action.

9.11 AN EXAMPLE USING A RELAY CIRCUIT

The event sequential equations can be used to implement a design using relay logic. This might
seem to be an outdated way to implement an FSM, but, in some cases, old-style electromecha-
nical relays might be a more preferred solution. Alternatively, semiconductor static relays could
beusedinplace of electromechanical relays. Both could be designed to operate at high voltage or
high current levels.

An Example using a Relay Circuit 297

In this next example, the design will be implement using logic gates and then relay logic.

Consider the following specification, which is very similar to the motor controller problem of
Section 9.6.

A motor can be started by pressing the start button st, provided the stop button sp is not
pressed. It can be stopped by pressing the stop button provided the start button is not
pressed. If the stop button is pressed while the start button is still pressed, then the motor
is to stop and an indicating LED turned on. The system can only leave this state and
return to its initial state via a manual reset-key-activated switch. The reset key switch can
also be used to deactivate the system regardless of the state of the start and stop
buttons.

The state diagram in Figure 9.22 is developed to implement the specification. In this state
diagram, the motor can be started by pressing the start button st thus moving the FSM to
state s1, but only if sp = 0. The motor can be stopped by pressing the stop button to move
the FSM back to state s0, provided st = 0. Pressing the stop button while the start button is
still pressed will cause the FSM to move to s2, which is an invariant state (from which the
FSM cannot leave without a system reset). The idea is to allow the reset input to move the
FSM back to state s0.

From this, a set of equations can be derived, resulting in

A= /Bst-/sp+AB+A/sp+A st
B=A-st-sp+B- /0.

AB AB
00 10
st-/sp
/M, /L M, /L

sp-/st

A—
| —Y
a

sO

st-sp

AB
11

Figure 9.22 Motor controller state diagram.

298 Asynchronous Finite-State Machines

st B —
Event Cell A
A
) M
output
B _|
L
output
A
sp /Sp
— st — L /B
A — Event Cell B
B
sp —
B

Reset

Figure 9.23 Logic circuit for the motor controller FSM.

Note, there is no turn-off term in the B equation, so the negated termis /0, which of course is 1.
The outputs are:

M=s1=A/B
L =52 =AB.

These equations are in a suitable form for implementing the design using either a PLD or relays.

A circuit schematic is drawn in Figure 9.23. This circuit uses AND/OR/NOT logic, so is
suitable to be implemented using a PLD device. Note thatan AND gate is needed in the feedback
loop for event cell B so that the reset can be used to reset the cell back to its zero state.

However, a little thought will reveal that such a circuit needs a 5 V power supply, and this
would need to be obtained from the mains supply via a transformer and rectifier circuit. The
transformer could be replaced with a mains resistor dropper and single diode and capacitor, but
this still requires these overheads.

An alternative design could be based upon electromechanical or static relays. These have the
advantage that they can be used with a very rough power supply direct from the mains (using
relays that can be operated at mains voltage of course). The relay circuitis obtained directly from
the sequential equations.

The circuit in Figure 9.24 is the final result. In this diagram, the relay contacts are shown with
the relays not operated. This circuit will use a simple half-wave rectifier in series with a suitable
capacitor to obtain a rough DC voltage for the relays A and B. The resistor across the capacitor
provides a discharge path when the supply is disconnected (by a reset for example).

Race Conditions in an Event Finite-State Machine 299

/B st /sp Live 240 V
N _— 5 a.c.
A B
| Relay A
/sp O Reset
St —_
Relay B
A st sp
o —o =O»
B —1
To Motor Contactor
B L indicator
¢ YA
4 N R=33K for
. 10 mA LED
Capacitor
Ayl

I
Neutral I—’\/\/\, |

Figure 9.24 Relay logic for the motor controller FSM.

The circles A and B represent the relay operating coils (or control input to static relays). The
diodes across each coil are needed to provide a path for relay current when the contacts open;
otherwise, the large EMF across the coils could damage the switch and relay contacts. These are
usually referred to as ‘catching diodes’.

Note: the reset switch is in series with the supply. This can reset both relays and turn off both
the motor and indicator LED.

Before moving on to look at more asynchronous (event-driven) examples, one needs to
consider the effects of race hazards in event-driven types of FSM.

9.12 RACE CONDITIONS IN AN EVENT FINITE-STATE MACHINE

In this section some of the problems that can occur in asynchronous (event) FSM systems will be
discussed, with suggestions on how they can be eliminated.
In an event FSM there are three types of potential race condition:

e race between primary inputs;
e race between secondary state variables (the event cells themselves);
e race between primary and secondary variables.

300 Asynchronous Finite-State Machines

This is particularly important, since one needs to be aware of potential problems that can occur in
event-driven systems in order to avoid making design errors. These are used with permission
from Oxford University Press from their publication Problems and Solutions in Logic Design [1].

9.12.1 Race between Primary Inputs

This is when two signals both happening at the same time on the same transition of a three-way
branch state are expected to cause the FSM to move to one particular state. Clearly, one cannot
guarantee that two (or more) input signals will change at the same time, since there are always
delays in the paths from two or more signals.

Note: to avoid this type of condition, do not try to look for more than one input changing at the
same time.

In the example of Figure 9.18 there are two signals 380h - /c along a transitional line, but in
this case the FSM was looking for the condition 380h AND /c, and in the next state ¢ was to be
seen to go high before a state change (it must have been low to get to this state). So, this is a
very different situation, where the inputs have a dictated sequence and cannot cause confusion
if they happen at the same time.

9.12.2 Race between Secondary State Variables

This is when the designer has not followed a unit distance coding for the secondary state
sequence (A, B, event cells for example). The use of a none unit distance coding can result in the
FSM falling into a state different to the one intended as a result of unequal propagation delays
between event cells.

Consider the earlier state diagram of Figure 9.18 with the following secondary state
assignment:

s0=/A/B, sl =AB, s2=A/B, s3=/AB.

If, in state sO, the 380h input is 1 and c is 0, with A changing to 1 before B, then the resulting
transition mightbe s0to s2,andin s2, since cis still logic 0, a further transition to s3. Since there is
no input along the transitional line between s3 and s0O, the FSM would move back to sO! This sort
of behaviour is unpredictable, since if it was B that changed first in state sO then the transitional
path could be s0 to s3, back to s0.

Remember, in an asynchronous (event-driven) FSM there is no synchronizing clock to
introduce a delay to allow signals to settle.

Solution: always use a unit distance code for asynchronous (event) FSM systems.

9.12.3 Race between Primary and Secondary Variables

The final race condition to look at is also the most complex. There are more details to be found in
Reference [1].

Essentially, as the heading suggests, this is a race between the primary (outside world)
inputs to the FSM and its event cell operation (secondary state variables). This is caused if

Wait-State Generator for a Microprocessor System 301

the propagation delay through to the primary input path to set the cell is greater than the
secondary delay path (cell output to cell input to cause the cell to set or clear). It can result in the
cell maloperating.

To prevent this kind of race from occurring, ensure that the primary delay Tp is less than the
secondary delay Ts at all times, i.e.

Tp < Ts.

More specifically:

TPmax < TSmin-

This leads to the identity defined in Reference [1], repeated here by permission of Oxford
University Press:

Tpmax/TSmin <1,

where Tpax is the maximum possible propagation delay for a primary input path and T's,y,;, is the
minimum possible delay for a secondary delay path (total gate delays between A and B outputs,
for example).

The event cell structure used in the asynchronous designs in this book (and, indeed, in the
Zissos book [1]) meet these requirements if the gate tolerances are within 33.3% of each other.
This is not difficult to achieve in modern integrated circuits, particularly PLD and FPGA
devices.

There is also a somewhat dated paper on gate tolerances in Reference [2] that is worth
studying.

9.13 WAIT-STATE GENERATOR FOR A MICROPROCESSOR SYSTEM

Some microprocessor systems have a feature that allows the processor to introduce ‘wait states’
into a particular memory cycle.

Figure 9.25 shows the basic input or output (I/O) cycle timing (simplified for this example, but
accurate in its sequence to produce a working design). In this example, it is assumed that each
memory or I/O cycle consists of four 7 states created by the system clock c. T1 is address setup
time, T2 read or write setup time, T3 a wait state to allow the data bus time to settle, and T4 used to
read or write data. In this figure, the event FSM controller monitors the chip enable signal ce,
which will go low when a slow I/O device is selected by the microprocessor software. This will
occur in the T1 timing slot for the particular I/O cycle. There are four T slots per I/O access.
During the T2 period of the clock, either the input/output write w or the input/output read r signal
lines will be taken low by the microprocessor.

During the T2 period, an output signal from the FSM (IORDY), which is a special input signal
to the microprocessor, can be taken low, and if the microprocessor detects this during the T2
period it will insert an additional T period Tw between T3 and T4.

This extra period is known as a wait state (Tw) and it effectively increases the T3 period used
to allow slow devices time to settle before the T4 period that is used to perform the data

302 Asynchronous Finite-State Machines

The microprocessor supplies the
address of the slow memory

Address | Address 1% Event
Decoding FSM
e Wait IORDY, The Event FSM controller must
State » generate the iordy signal and input
Controller it to the microprocessor at the right
point in its I/O cycle.
— l¢c
— 3w
—> r

T3 Tw T4 T

S N I s
o T Tt B
T

IORDY

A
Y.

1/0 Cycle

Timing waveforms showing how the iordy signal is generated from the ce and iow signals and the FSM

Figure 9.25 Showing the block diagram and memory/IO cycle timing.

transfer. In this way, a slow 1/O device can have its chip enable ce signal monitored by the FSM
controller and used to generate a wait state. To be sure, the particular microprocessor will need
to be consulted to find out how to activate a wait state, but this is usually available in the data
sheets for the microprocessor.

The purpose of the event FSM controller is to identify when to send the IORDY signal line low,
and when toreturnithigh again. In effect the event FSM is being used to detect the pointin the timing
diagram of Figure 9.25 at which to generate the IORDY signal to be sent to the microprocessor.

Using the timing diagram as a guide, the required state diagram can be developed as seen in
Figure 9.26. As can be seen from Figure 9.26, the state diagram follows the sequence by
detecting ce and either w or r going low in state sO to turn on the IORDY (active-low) signal in T2.
Then, it detects when the clock ¢ goes low in state s1 in order to identify when it goes high in state
s2 (to identify entry into T3 state). The FSM must then determine when the clock signal ¢ goes
low again, indicating the point at which IORDY must go high again.

Note that fast memory cycles will not activate the wait-state generator because those chip
select signals will not be connected into the wait-state event FSM controller.

Finally, Figure 9.27 illustrates the sequential equations and output equation for the system. This
example has illustrated how an event-driven FSM can be used to track points in a sequential
sequence of signals. This example could easily be adapted for a particular microprocessor.
However, one must determine the correct sequence from the microprocessor data sheet, since
different microprocessors use their own signals and sequences to control access to slower memory.

Wait-State Generator for a Microprocessor System

303

/C

AB
00

AB

/ce-(/r+/w) [/IORDY

s1

1. Wait for ce and w, 2.Ensure ce low

orce and r to go low (should be
then move on to s2

T1 T2 T3 Tw T4 T1

ce I_\A\ |
A\ 4
worr ,__

v
- | A

1/0 Cycle

)\

IORDY

<
<

Y.

3. In s2, wait for c to go high) i
4. In s3 wait for ¢ to go low again

Figure 9.26 The state diagram and how it was derived from the timing waveform.

/ce.(/r+/w)

00 10 11 01
Event Cell Equations:
A=ZsA+A-/2rA
A=/B/ce:(Ir+Iw) + A/B+ A-/C
B=ZsB+ B-/ZrB
B=A-/C + B/(/A-/C)
B=A/C+ AB+B-C
Output:
IORDY =s0 =/A/B

Figure 9.27 The sequential equations for the memory/IO FSM controller.

304 Asynchronous Finite-State Machines

9.14 DEVELOPMENT OF AN ASYNCHRONOUS FINITE-STATE MACHINE
FOR A CLOTHES SPINNER SYSTEM

Figure 9.28 illustrates the system. There is a spin motor to spin the clothes drum at high speed so
as to remove excess water from the clothes by centrifugal force. The water released from the
clothes into the drum is removed by the pump. There is a water level sensor to detect whether the
water level is too high before turning on the spin motor to avoid excess load on the latter.

The user loads wet clothes into the clothes drum and presses the start button st. This starts the
pump on release of the start button. When the water level is below the water level sensor, the spin
motor is started and a timer (not shown here) is started.

In due course, the timer times out and the system stops both the spin motor and the pump. A
done indicator is illuminated to indicate to the user that the spin cycle is complete. The user must
press the stop button sp before another spin cycle can commence. This system does not have a
sensor to test that the door is closed. You might like to add this to the system and modify the state
diagram to include this feature.

A suitable state diagram is illustrated in Figure 9.29. In this state diagram, on pressing the start
button a test is made to determine whether the water level is above or below the sensor on the
drum. If above the sensor, the FSM moves to s2 via sl and starts the pump.

Note, the pump can only start if the start button has been released. Once the water level has
dropped below the sensor, the FSM moves to s3 to turn on the spin motor, as well as start the
timer. Attime out, the FSM moves to s4 to turn off both spin motor and pump as well as turn on the
done indicator D. Note that the FSM cannot leave s4 via any transition. In fact, the stop input acts
as a reset input and can stop the system in any state.

Drum
Clothes Drum
Water A
Level v Water level
Sensor
- |
Pump
Spin
Motor Water outlet
f_* Time
Delay
v M [TS
tmol 3 Module
Event FSM
D| -
o - —» Done
A

I 1

Figure 9.28 Basic system showing a clothes spin system with FSM.

Development of an Asynchronous Finite-State Machine

305

ABC ABC Water level ABC

Wait for 000 Decideon 109 above sensor 101
start signal water level so turn on pump

water level
below sensor, ABC
turn on pump then 110
S0 move to
s3 to start
spin motor
Note: s5 needed
to keep to unit
distance code.

ABC
111

Spin motor
and pump on
till timeout Timeout so turn
off pump and spin motor
and turn on done indicator

Figure 9.29 State diagram of a possible solution for clothes spinning system.

A:ZSA“!‘A'/ZrA
=/B-/C-st+A-/(B-C-tmo)
=/B-/C-st+A-/B+A-/C+A- [tmo

B:ZSB+B'/Z}’B
=A-/C-[v+A-C-/v+B
=A-/v+B

C:ZSC+C-/ZVC

=A-/B-v+A-B+C
=A-v+A-B+C.

If, on starting the system, the water level in the drum is below the water level sensor, the FSM will

move fromsOtosl, to s5, then directly to s3. State s5 is needed to allow a unit distance code to be

used for the state machine; s5 is in fact a dummy state.
Note that there is no input along the transitional line connecting s5 to s3. This implies that

when the FSM moves into s5, it will immediately move on to state s3, the delay being that of the

propagation delay of the logic used to implement the event cells B then C.
The equations for the design are

306 Asynchronous Finite-State Machines

The outputs are

P=3s2-/st+83-/st+s5- /st
=A-C-/st+A-B- /st
M=s3=A-B-C TS=s5+s3=A-B D=s4=/A-B-C.

The stop input sp will be logically ANDed to each equation A, B, and Cto allow the FSM toreturn
to ABC = 000 when sp is made logic 0.

The Verilog module follows in Listing 9.5. In this module, the equation level is seen
commented out and replaced with a gate-level description.

[1777777 7077777777777 777777777777777777777777777777

// Spin motor and pump Asyhchronous FSM //
[1777777 7077777777777 777777777777777777777777777777
module smpfsm(st, sp,v, tmo,P,M,TS,D,A,B,C);

input st, sp, v, tmo;
output P,M,TS,D,A,B,C;
wire wl,w2,w3,wd,w5,w6,w7,w8,w9;
// equation level description. Used in Figure 9.31.
//assign
//A = (~B&~Cé&st | A&~B | A&~C | A&~tmo) &sp,
//B = (A&~v | B) &sp,
//C = (A&v | A&B | C) &sp,

// alternative gate level description Used in Figure 9.32.
// each gate has been given a delay of 5 time units.

or #5 gl (A, wl,w2,w3,wd);
and #5 g2 (wl,~B,~C,st,sp);
and #5 g3 (w2,~B,A, sp);

and #5 g4 (w3,~c,A, sp) ;

and #5 g5 (w4, ~tmo, A, sp) ;

or #5 g6 (B, w5,w8) ;
and #5 g7 (w5,A,~v,sp);
and #5 gl1 (w8,B, sp) ;

or #5 g8 (C,w6,w7,w9) ;
and #5 g9 (w6,A,v,sp);
and #5 gl10(w7,A,B, sp) ;
and #5 gl2 (w9, C, sp) ;

Development of an Asynchronous Finite-State Machine 307

P = A&C&~st | A&B&~sSt,
M = A&B&C,

TS = A&B,

D = ~A&B&C;

endmodule
[1717777 7777077777777 777777777777777777777777777

Listing 9.5 Verilog module for clothes spin FSM.

The test bench module is illustrated in Listing 9.6.

“timescale Ins / 10ps
module test;
reg st, sp, tmo, v;
smpfsm uut (st, sp,v, tmo, P,M,TS,D,A,B,C) ;
initial
begin
sp=0;
st=0;
v=0;
tmo=0;
/117177
#10 sp=1; // remove reset.
#10
#10 v=1; // water in drum.
#10
#10 st=1; //start system
#10 //should move to sl then s2.
#10 st=0;
#10 // starts pump to empty drum.
#10 // wait for drum empty.
#10 v=0; // signal that drum empty.
#10 // should move to s3 and turn on spin motor
#10
#10 //waiting for timer to stop spn motor.
#10 tmo=1; // signal to stop spin motor.
#10 // should have moved to s4.
#10 tmo=0;
#20 st=0; //return start to off state.
#10 sp=0; //stop system and return to s0.
#20
#20 sp=1; // release reset buton.

308 Asynchronous Finite-State Machines

#10 st=1; //start system with empty drum.
#20
#20 st=0;
#20 // should move to sl then s5 then s3.
#10 tmo=1; // time out. should move to s3.
#20 //waiting for user to press stop.

#10 $stop;

end

endmodule

Listing 9.6 Verilog test-bench module.

Finally, the simulation is shown in Figure 9.30 using the equation-level description. In the
simulation, the event cells A, B, and C appear to be changing state at the same time in some parts
of the simulation, but in fact the transitions are so fast that the actual transitions cannot be seen.
However, care must be taken to ensure that propagation timing satisfies the 33.3% rule discussed
in Section 9.12.3.

In Figure 9.31, the simulation using the gate-level description is seen. Here, each gate has
been given a delay value of 5 time-units so that the state transitions can be clearly seen. In

‘ ons ‘ 100ns ‘ 200ns ‘ 300ns
[| [[
test.sp J I_,

test.tmo |_| ,_
test.v

test.P ,_I
test.M ,—I

test.TS ,—I

test.D ,_
test.A

test.B

test.C

Figure 9.30 Simulation of a clothes spinner system using equation-level description.

Caution when using Two-Way Branches 309

‘ ons ‘ 100ns ‘ 200ns ‘ 300ns
N 1 Lol I

test.st

test.sp J
test.tmo
test.v

test.P

gL

Figure 9.31 Gate-level simulation of a clothes spin system.

Figure 9.31, the delays between the gates allow the state transitions to be seen clearly. For
example, the transitions between s1 (ABC = 100) and s2 (ABC = 101), and the transitions
between s1 (ABC = 100) to s5 (ABC = 110), then on to s3 (ABC = 111). The dashed lines help
to identify these transition points.

9.15 CAUTION WHEN USING TWO-WAY BRANCHES

In the state diagram of Figure 9.10 there is a two-way branch in state slwith /st along one
transitional line and ms 4 ¢ along the other. These inputs must be mutually exclusive, otherwise
the FSM could maloperate. If this cannot be guaranteed, then the design will need to be
changed so that the state diagram can only change from one state to the next on a single input
change.

Figure 9.32 illustrates a possible alternative design (without the test input 7). In this arrange-
ment, the FSM can move from s1 to s2 if either the start input st is returned to logic 0 and/or if
the fault input ms becomes logic 1. On reaching s2 from a fault, the motor is turned off and the
fault indicator L turned on (active-low). If the st input is now returned to logic 0, then the fault
indicator can be turned off but the FSM can only return to s0 if the fault input ms returns to its
logic 0 level.

310 Asynchronous Finite-State Machines

N L

Current Sensor
Fault
Detection 4—'
Unit

ms m

(a) Block Diagram

FSM

AB AB
00 10
st
(b) State Diagram
/ms
Modified state diagram to ms-+/st
eliminate the two-way
branch and potential for
circuit maloperation.
AB AB
01 11

Figure 9.32 Modified state diagram for the motor controller of Section 9.6.2.

The equations for A and B are

A:ZSA+A~Z/rA
=80-st+A-/(s2-/st)
=/B-st+A-/(B-/st)
=/B-st+A/B+A-st

B:ZSB+B'Z/VB
=sl-(ms+ /st)+B-/(s3-/ms)
=A-ms+A-/st+AB+ B-ms.

The output equations are the same as those for Figure 9.10.

Other examples using two-way branches in this chapter are as follows.

InSection9.10.1, Figure 9.20, there are two possible two-way branches: one in state s1 and the
otherin state s3. In each case there are different inputs along each transition path that could result
in maloperation; therefore, this design could fail. However, the alternative design in Figure 9.21
overcomes this problem.

InSection 9.11, Figure 9.22, there is a two-way branch in state s1. If input sp is logic 1 in state
s1,then the FSM can move to either sOif st =0, orto s2 if st = 1. If, however, inputs st and sp were

Caution when using Two-Way Branches 311

to change at the same time from logic 0 to logic 1 in state s0, then it is possible that the sequence
shown below could occur:

st sp
0 0 in state sO
0 1 sp reaches logic 1 before st; stay in sO while signals still changing
1 1 stay in state sO
or
st sp
0 0 in sO
1 0 st reaches logic 1 before sp; move s0 to s1
1 1 move to s2

The latter example appears to work correctly.

In general, however, changes in two or more input signals can result in circuit maloperation
due to propagation delays between input signal changes producing static or dynamic hazards.
The best way to handle this situation is to allow only one input to affect the FSM. Figure 9.33
shows how this could be done.

AB
00

st

sp

Only one input signal change allowed before a state transition

Figure 9.33 Modification to the state diagram of Figure 9.22 to avoid maloperation.

312 Asynchronous Finite-State Machines

This, of course is not what the original specification for this FSM was designed to do. In fact
the idea of trying to produce an event FSM to meet the specification in Figure 9.22 is not very
practical.

Designing an asynchronous FSM to work correctly under multiple changing inputs is not easy
and is beyond the scope of this book. Reference [3] is a good source that covers in detail and in a
formal manner how to develop complex asynchronous FSMs using both Huffman and Muller
circuits. In particular, the C gate is used to decouple the set terms and reset terms. This can reduce
the potential for static and dynamic hazards when two or more inputs are changing.

9.16 SUMMARY

This chapter has introduced the idea of asynchronous (event-driven) FSMs and how to design
them for implementation in devices such as PLD and FPGSs, as well as relay circuits. Also, the
simplest method to simulate the designs has been considered, using the Verilog HDL at the
equation and basic gate levels. This allows designs to be implemented directly at either
the equation or logic gate level, and avoids the problems that most HDL systems can introduce
at the behavioural level when implementing event-driven controllers. A number of simple FSM
designs have been considered, showing how the event FSM can be used. In addition, the
potential race problems associated with event-driven FSMs have been discussed, with ways
to avoid these conditions from happening.

REFERENCES

1. Zissos D, Duncan FG. Problems and solutions in logic design, 2nd edn. Oxford University Press,
1979.

2. Duncan FG, Zissos D. Gate tolerance in sequential circuits. Proc. IEE 1971;118(2):317-320.

3. Myers C. Asynchronous circuit design. John Wiley & Sons, Ltd, 2001.

10

Infroduction to Petri Nets

10.1 INTRODUCTION TO SIMPLE PETRI NETS

The Petri net is a state diagram that can be used to describe the behaviour of both sequential and
parallel systems. It was initially conceived by Karl Petri in the 1960s and has had a good
following of academics ever since. There is a website devoted to all things Petri at http://www.
informatik.unihamburg.de/TGI/PetriNets/.

Petri nets are often used as a tool to study the behaviour of parallel and concurrent systems (not
necessarily electrical). They have also been used to study parallel and concurrent programming
methods. In recent years, researchers have shown [1] how the Petri net can be used to develop and
synthesize electronic FSM systems, in a similar way to how synchronous and asynchronous
systems can be developed and synthesized. The main reason for employing Petri nets is the ability
to create parallel systems. The following method makes use of material with permission from [1].

Figure 10.1 illustrates a two-state diagram and its Petri net equivalent. In a Petri net, the ‘state’
is represented by a ‘placeholder’ and the ‘transitional lines’ between states are represented by
‘arcs’ that connect the placeholder (P1 and P2) to transition points (T1 and T2). The inputs along
the transitional lines of a state diagram are placed against the transition points along the
connecting arcs that link one placeholder to another in a Petri net.

The Petri net uses a memory element to represent each placeholder (rather like in a One Hot
state diagram — as illustrated in Figure 10.1). However, in Petri nets used to represent parallel
systems, there can be more than one active placeholder (whereas in a state diagram only one state
can be active at any one time). For this reason, a Petri net needs some way to show which of its
placeholders are active. This is done by using a ‘token’ to represent an active placeholder and by
placing a ‘dot’ in the placeholder that is active.

In Figure 10.1, placeholder P1 is active, since it has a token, and placeholder P2 is not active
and, hence, does not have a token.

A brief explanation of the behaviour of the Petri net in Figure 10.1 follows.

Initially, a token is in placeholder P1 (via initialization logic to be explained later). When the
input x becomes active (x = 1) the transition T1 will fire, and the token will move (following the

All Petri Net Equation generations are reproduced from ‘VHDL generation from hierarchical Petri net specifications
of parallel controllers’ by JM Fernandes, M Adamski and A J Proenca, (IEE Proceedings- Computers and Digital
Techniques, Vol.144, No.2 March 2007) with permission from IET.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

314 Infroduction to Petri Nets

State diagram using One Petri-Net
Hot method
T
P1 P2
x|

P/Q /P,Q
/x

s0-d=s1-/x+s0-/x P1-d=T2 + P1-/T1
s1-d=s0-x+s1-x P2:d=T1 + P2-/T2
P=s0 T1 =P1-x/P2
Q=s1 T2 = P2:/x-/P1

P=P1

Q=P2

More Complex Logic

Figure 10.1 Comparison between a state diagram and Petri net with respective equations.

arc path) to placeholder P2, where it will remain (because T2 isnot able to fire since x is still 1), as
illustrated in Figure 10.2.

It should be noted that transition T1 will only fire when x = 1 and a clock pulse occurs. Note
also that outputs P = 0 and Q = 1 in P2, so outputs are following a Moore-type model. When
x = 0 and the next clock pulse occurs, the token will pass back to P1, as shown in Figure 10.1.

The syntheses for this Petri net are based upon the equations shown in Figure 10.1. There are
three basic equation types:

e placeholder equations;
e transient equations;
e output equations.

The placeholder equations follow the same format as the sequential equations for an event-
driven state machine. This is best described in terms of the Petri net in Figure 10.1, shown in
Equation (10.1). The Petri-net equations define the input to a D-type flip-flop, hence the ‘P - &’
on the left-hand side.

Pl-d=T2+Pl-/TI. (10.1)
This is interpreted as: for P1 to get a token, T2 must have fired; or, to hold on to the token, a
token must be in P1 and T1 must not have fired.

For P2:
P2.d=T1+P2-/T2. (10.2)

Introduction to Simple Petri Nets 315

T

Ix

Figure 10.2 Token moved to P2 after T1 fired (x = 1).

The first term T1 on the right-hand side of Equation (10.1) for P1 is, in effect, a turn-on condition
for the placeholder P1. The product term P1 - T1 is a hold term for the placeholder.

The transition equations are made up of the conditions necessary for the transition to fire. In
the Petrinet of Figure 10.1 it can be seen that T1 will only fire if P1 has the token and P2 does not
have the token and the input x = 1,. Hence:

T1=Pl-x-/P2. (10.3)

In the same way:

T2=P2- /x- /PI. (10.4)

There is more to these rules when describing more complex Petri nets, which will be explained
later.

Since the placeholder equations of Equations (10.1) and (10.2) are equal to P1 - dand P2 - d
respectively, they define the D inputs to D-type flip-flops. This is illustrated in Figure 10.3.

In future examples, the distinction between the left-hand side of a placeholder equation Pn - d
will not be made and will take on the appearance of a recursive equation, as in

Pl =T2+Pl- /Tl
P2 =TI +P2- /T2.

This implies that the left-hand side is the input to the flip-flop. Reference [1] uses this approach.

Figure 10.3 illustrates the cycle of design from Petri net to equations, and finally synthesized
circuit. It implies that once a Petri net has been developed, the synthesization is a systematic
application of the rules.

Of course, a PLD device or FPGA could be used and the equations used directly, or the Petri
net could be written at the behavioural level in VeriLog HDL.

316 Infroduction to Petri Nets

Petri-Net T .
Equations:
P1.d=T2 + P1-/T1
P1 P2
T1 =P1-x/P2
T2
/x T2 = P2:/x-/P1
o Y=P2
Circuit

m

P2
/P1

clk

initialise

X /x
Note first flip-flop P1 is set

during inititalization since it
has the token.

Figure 10.3 Full cycle of design from Petri net to circuit.

In the circuit schematic of Figure 10.3, note the initialization arrangement. This is the same as
that used in the One Hot design of state machines. Also note the topological arrangement for the
gate logic. The flip-flop output P1 is connected back into the turn off and gate logic; and likewise
for the P2 flip-flop. This provides the hold term required to keep the placeholder active.

From this diagram, and the foregoing description of the equations, it can be seen that the flip-
flops provide memory for the placeholder element and that a set flip-flop is equivalent to a
placeholder with a token and a reset flip-flop is equivalent to a placeholder without a token.

The topological structure of the Petri net can be seen in Figure 10.4:

Pn = Tin + Pn - /Tout. (10.5)

Tin is the turn-on input, and the feedback from output Pn to the input of the AND gate forms the
hold term. The term Tin in Equation (10.5) is of the form:

Tin = input placeholder AND input enable AND NOT output placeholder.
Tout is the turn-off term, which is negated in Equation (10.5). When Tout becomes asserted high,

the /Tout input will go low so as to open the feedback hold term to allow the D flip-flop to reset
(Tin will not be active at this point).

Introduction to Simple Petri Nets 317

Tin _Turn on — Pn
D Q
[Tout
Turn off _
car Q
Pn hold
Clk
Tin Tout
Pin Pout

Figure 10.4 Basic topological structure of the Petri net.

Acloselook at Figure 10.4 shows that the gate logic of the AND and OR gates themselves with
the feedback loop would form an asynchronous event cell if the D flip-flop were removed. This is
illustrated in Figure 10.5. It can be seen that the Petri net can be synthesized as either a clocked or
unclocked (event-driven) system.

Note that if an unclocked (event-driven) system is to be designed, then the gate propagation
delays would need to be considered. This is similar to the effects on asynchronous (event-driven)
FSMs discussed in Chapter 9.

Pn = Tin + Pn-/Tout

Tin Turn on term
T

Turn off term Pn

[Tout

Hold

Tin Tout

Pin Pout

The Tin term equation is of the form:

Tin = input placeholder AND input enable AND NOT output placeholder

Figure 10.5 Asynchronous (event-driven) Petri net structure.

318 Infroduction to Petri Nets

In Petri nets:

e synchronous designs are clock driven with the D flip-flop elements;
e asynchronous designs are event driven with the D flip-flop elements removed.

There is much research work being carried out on asynchronous Petri nets at a number of
universities. You might wish to do a web search using the key words ‘Petri nets’ and ‘C gate’ to
obtain further information.

The remainder of this chapter will deal with synchronous clock-driven systems.

To consolidate the ideas discussed so far, a sequential Petri-net controller example will be
considered.

10.2 SIMPLE SEQUENTIAL EXAMPLE USING A PETRI NET

A sequential Petri-net controller example is illustrated in Figure 10.6. In this example, a pump P
canbe turned on by asserting sthigh to fire T1. After sensor v becomes high, T2 will fire to turn on
the motor. Pressing the stop button sp will cause T3 to fire and return the system to placeholder
P1, where both motor and pump are turned off.

The equations for this design are shown below, but you might want to cover them up and try to
produce them. The equations are illustrated in Figure 10.7, which shows the circuit diagram of
the system; initialization circuitry is also shown, with flip flop P1 being set while flip flops P2 and
P3 are cleared.

To make this system event driven, the D flip-flops can be removed and the feedback loops
completed from the OR gate outputs to the two input AND gates so as to form the event cells for
P1, P2, and P3.

Sequential Petri-net pump — spin motor problem

P1 T P2 T2 P3 T3

Produce the Petri-net equations for this controller.

Figure 10.6 Another sequential Petri net design.

Parallel Petri Nets 319

Equations for the design:

T1 =P1-st-/P2 P1=T3+P1-/T1
T2 = P2-v:/P3 P2 =T1 + P2:/T2
T3 = P3:sp-/st-/P1- P3=T2 + P3:/T3
P=P2 +P3
M= P3
P1 P2 P3
/T2 I:: /T3
DSETQ DSETQ
CLRQ CLRQ
T1 T2
P1 | /P2 V P2 /P3 V
/T1 /T2
st v
P3 sp initialize
/st
Clk

Figure 10.7 Circuit diagram of the Petri net design.

10.3 PARALLEL PETRI NETS

Up to this point, only sequential Petri nets have been considered. However, the main point of
using the Petri net is to allow parallel systems to be developed. Therefore, parallel Petri nets will
now be discussed.

A parallel Petri net will have parallel paths containing sequences. Figure 10.8 illustrates such
aPetrinet. In this Petri net there are three parallel paths between the T2 and TS5 transitions. P1 and
P2 form a sequential path. At T2, they ‘fork’ into three parallel paths. At TS these parallel paths
‘join’ to form a sequential path again.

When the tokenreaches P2 and the syn1 input becomes active (high), the token will transfer to
P3, P4, and P5, as illustrated in Figure 10.9. The system will now have three event cells (and D
flip-flops) set at the same time.

Suppose input p becomes active (high) butinput g is not yet active (high). The result will be as
shown in Figure 10.10. If, at this point, syn2 were to go active (high), then transition TS would
not fire because the token has not yet reached P7.

A requirement for a Petri net is that all the placeholders merging into a transition (P6, P4, and
P7 into T5) must have a token before the transition can fire.

Eventually, when input ¢ = 1, T4 will fire and the token in P5 will move to P7.

InFigure 10.11, all placeholders merging into TS5 have tokens; so, wheneversyn2 = 1, TS5 will
fire and the tokens will ‘join’ and P1 will obtain the token again.

320 Infroduction to Petri Nets

P3 P6
T2 T3 T5
Pt T P2 m
/X1 X1
P4 P
/X1 st X1
/X2 X2
/X3 X3 X2 |
P5 Ta P7
syni X 3: q X: : syn2
st —p
—» X1
syn1 —— |
syn2— | —» X2
p —»
qg —» - X3
Ck —
Figure 10.8 Petri net with parallel paths.
P3 P6
T2 T3 T5
P1 T P2 @—»I—»Q—»
X1 X1
P4 P
IX1 st xi
/X2 X2
/X3 X3 X2 —
P5 Ta P7
syni /XS: q X:3 syn2
St ——
— X1
syn1 ——p»!
Syn2 —— - - X2
p —¥»
q —» — X3
Ck — |

Figure 10.9 Tokens moved into three parallel paths (fork).

Parallel Petri Nets

321

P1 T1

P2

/X1 st x4
/X2 X2
/X3 X3 X2 —
P5 Ta P7
syni X3 q X3 syn2
st —p
—» X1
syn1 ——p»|
syn2 ——pp- > X2
p—®
Ck —

Figure 10.10 Inputp = 1, ¢ = 0 with P5, P6, and P4 active, but not P7.

The above discussion has described a mechanism in which sequential flow can become
parallel flow and merge back into sequential flow again. Most parallel systems behave in this
manner, and the Petri net can be used to model such behaviour. This has been one of the principle

uses for Petri nets in the past.

In the example illustrated in Figures 10.8—10.11, the transitions T2 and TS5 act as synchroniz-
ing points; synl (controlling the firing of T2) is used to synchronize the point of ‘fork’, and syn2
(controlling the firing of T5) is used to synchronize the point of ‘join’. So, in a hardware system,
the two signals synl and syn2 act as synchronizing points.

However, the Petri net is self-regulating, since all placeholders converging onto a transition
must have tokens before the transition can fire.

The equations will now be developed for this example.

First the placeholder terms:

Pl =T5+Pl- /Tl
P2=TI+P2- /T2
P3=T2+P3. /T3
P4 = T2 4 P4/T5

P5=T2+P5. /T4
P6 = T3 +P6 - /T5
P7 = T4 +P7 - /T5.

322 Infroduction to Petri Nets

T2 T3 T5
P1 T1 P2 %
/X1 X1
>©—|—><>—> P4 p

X1 st x4
/X2 X2
/X3 X3 X2 -

P5 Ta P7
syni X3 q X3 syn2
St ——
—» X1
syn1 ——p»
Syn2 —— > X2
p X
q — —m X3
Ck —]

Figure 10.11 TS5 can fire whenever input syn2 becomes active (high).

Now the transition terms:

T1 =Pl st- /P2
T2 =P2-synl - /P3- /P4. /P5.

Note here that for T2 to fire there must be a token in placeholder P2, signal syn1 must be active,
but none of the P3, P4, or P5 placeholders must be active.

T3=P3-p-/P6
T4=P5.q-/P7
T5 =P6-P4-P7-syn2- /P1.

Here, all parallel path placeholders merging onto TS musthave a token. The equations for T2 and
TS5 need to be noted.

Finally, the outputs can be written as

X1 =P2+P6
X2=P2+P4
X3 =P2+P7.

Parallel Petri Nets 323

Xand Y are outputs

Figure 10.12 Another parallel Petri net example.

10.3.1 Another Example of a Parallel Petri Net

Figure 10.12 illustrates another Petri net example. You might like to try to write down the
equations for this one and check the solution with the equations below. The results should be as
follows.

The placeholder terms are

Pl =TIl +Pl-/T2
P2 =T2+P2- /T3
P3=T3+P3. /T4
P4 =T4 + P4 /TI
P5 =TI +P5- /T5
P6 = T5 + P6 - /T6
P7 =T6 +P7- /T7
P8 = T7 + P8 - /T4.

The transitional terms are

Tl =P4-st- /P1- /P5

T2 =Pl -sl-/P2

T3 =P2- /P3 there is no input against the transitionT3
T4 =P3-P8- /st- /P4

T5=P5-s2- /P6

324 Infroduction to Petri Nets

T6 = P6 - /P7
T7 =P7- /P8.

The outputs are

X =Pl +P3+P4
Y = P5 4 Po6.

10.4 SYNCHRONIZING FLOW IN A PARALLEL PETRI NET

In the example in Section 10.3, use was made of synchronizing inputs synl and syn2 to
synchronize the flow from sequential to parallel, and from parallel to sequential. Sometimes,
however, there is aneed to synchronize between two separate Petri nets. Consider the example in
Figure 10.13.

This clearly cannot be done without having some shared communication. It is a classical
problem in parallel programming systems. However, in a parallel programming system, a share
variable might be considered appropriate. This is dangerous, since this variable could be written
to by either of the two parallel entities.

Synchronising two independent Petri-Nets

P1 P4
™ T4
P2 P5
T2 T5
P3 P6
T3 T6 m—

How to synchronize?

Figure 10.13 Synchronizing two independent Petri nets?

Synchronizing Flow in a Parallel Petri Net 325

10.4.1 Enabling and Disabling Arcs
In the Petri net there is a way to overcome this problem, using either

e an enabling arc, or
e adisabling arc.

Consider, first, the action of an enabling arc. As can be seen from Figure 10.14, the process
made up from P1 to P3 and the process made up from P4 to P6 are totally independent. However,
the dashed line from P2 to T5 indicates that there must be a token in P2 in order to enable T5.
However, TS must also have a token in P5 and its go signal must be active (high). So, the
condition for T5 to fire will be

T5=P2-P5-go- /P6 transition equation with enabling arc.

This arrangement ensures that both Petri nets are at a particular state in their sequence (P2 and
P5) before T5 can fire.

Use of an enabling arc

P1 P4
™ T4
T5 can only fire when
P2 P2 has a token AND
when P5 has atoken pg
and its input go high.
T2 T5 go
P3 P6
T3 TEC cm—

Figure 10.14 The enabling arc.

326 Infroduction to Petri Nets

Use of a disabling arc

P1 P4

L T4
T5 can only fire when

P2 does NOT have a
P2 token AND when P5
has a token and its P5

T2 T5 go

P3 P6

T3 TC e

Figure 10.15 Disabling arc to avoid progression at a certain point in the Petri net.

Now consider the disabling arc in the example of Figure 10.15. In this example, the Petri net
comprising P1 to P3 can stop the process in the other Petri net P4 to P6 if a token is in P2. This
would be represented by the equation

T5=/P2-go-P5- /P6.
Here, there must not be a token in P2, even if P5 has a token and input signal go = 1.

Now an example follows showing how these two ideas could be used in practice.

10.5 SYNCHRONIZATION OF TWO PETRI NETS USING ENABLING
AND DISABLING ARCS

In the example of Figure 10.16, the sequence of flow is forced to follow a set sequence:

1. Itis assumed that in this system the token will always arrive at P5 first, perhaps because of
external circumstances.

The token in P5 cannot move on to P6 until the arrival of a token in P2.

The token cannot move on from P2 to P3 because T2 is disabled by the disabling arc from P5.
As soon as the input signal go = 1, the token in P5 can move to P6.

This removes the disablement of T2 and the token in P2 can move on to P3.

Dok w

Control of a Shared Resource 327

Synchronizing using enabling and disabling arcs
P1 P4

T1

T5 can only fire when
P2 P2 has the token and

~~~~~~~
———————

T2 cannot fire if P5

has a token.
T2

P3

T3

Figure 10.16 Provision of priority to a particular sequencing of two independent Petri nets.

This example illustrates the idea of how the enabling and disabling arcs can be used to
check flow.

10.6 CONTROL OF A SHARED RESOURCE

Now consider the more practical example shown in Figure 10.17, which illustrates a system
in which two computers, computer A and computer B, share a common resource (e.g. a
printer) via a shared data bus. They are separated from the shared resource via tri-state
buffers that are controlled by signals EA and EB via a Petri-net controller. Inputs to the
Peri-net controller are ra and rb, which are sent by the respective computers. Computer A is
to have priority over computer B.

There are a number of ways in which this problem could be resolved, but the most elegant is
that shown in Figure 10.18. In this solution, two independent Petri nets have been used: one for
processing the ra signal from computer A and the other from computer B.

If computer A accesses its ra signal before computer B accesses its rb signal, then the token in
P1 will move to P2 and the disabling arc will disable T3 so that the arrival of a signal onrb will be
blocked.

In due course, computer Awill lower its ra signal and the token will move back to P1. If rb did
arrive during the time that computer A had access to the shared resource, then the token in P3 will
not move to P4 because T3 is disabled.



328 Infroduction to Petri Nets

Computer
A

Tri

EA State ¢
Petri Buffer
Net

» o Controller Tri
EB State
Buffer

Y

|

Y

Computer
B

Shared
Resource

Figure 10.17 Shared resource controller.

Note thatif computer Awants to access the shared resource again while computer B has access
to it, raising its ra signal will cause the token in P4 to move back to P3 and the token in P1 will

move to P2 as well. So, computer A has a priority over computer B.

Of course, if during the time that computer B has access to the shared resource there is no
access by computer A, then, when computer B has finished its access, lowering of rb will cause

the token to move back to P3.

P1 T P2

/ra Disabling

arc

N m e = A\

/rb+ra

P1=T2+P1/T1
P2 =T1 + P2./T2
T1=P1-ra/P2

T2 = P2-/ra-/P1

P3=T4 + P3./T3
P4 =T3 + P4./T4

T3 = P3-tb-/P2-/P4
T4 = P4-(/rb+ra)-/P3

EA =P2
EB = P4

Figure 10.18 A solution to the shared resources problem.



A Serial Receiver of Binary Data 329

|0ns |100ns 200ns 300ns
| | | | | | | | | | |

test.rst

test.pst

?

test.clk

test.ra

test.rb

test.EA

test.EB

test.P1

g

n R
Ll L

test.P2

test.P3

SO T

test.P4

test.T1

—]

test.T2

test T3 [ [
test T4 [ [ [ 1]

Figure 10.19 Simulation of the shared resource Petri net.

—1

jj

The equations for the Petri-net controller are given in Figure 10.18. In particular, note the
equation for T3 with its disabling placeholder /P2 term. T3 can only fire if there is a token in P3
and 1b is active high and there is not a token in P4 or P2.

At the start of the simulation (see Figure 10.19), P1 and P3 are active due to the initialization
with rst and pst inputs (see Verilog HDL code in shared resource folder of Chapter 10 on the
CDROM). Each input ra then rb is asserted in turn to simulate requests for access to the shared
resource. At the seventh clock pulse the rb input has become active; then rais active at the eighth
clock pulse (priority request from computer A). This results in computer A gaining access to the
shared resource from computer B. Computer A then completes its transaction and, sincerb is still
active, computer B regains access to the shared resource. In due course, rb returns to its low state
and the Petri net returns the token in P4 to P3 to relinquish computer B access to the shared
resource.

10.7 A SERIAL RECEIVER OF BINARY DATA

In Section 4.7, an asynchronous binary data receiver was developed using a state diagram
implemented with D-type flip-flops, together with a shift register, a divide-by-11 counter and a
data latch developed using the techniques in Appendix B.



330 Infroduction to Petri Nets

Serial Signal Protocol example

st start bit and sp1, and sp2 stop bits are the protocol bits
dO to d7 are the data bits (payload).

st | dO di [d2 |[d3 | d4 |d5 dé |d7 |[spl | sp2

Ok TIIITIIITIIITIIITIIITIIITIIITIIITIIITIIITIII
1

trrrr et

The Petri net controls the operation of the sample data
pulse clock RXCK that clocks the shift register (arrowed
every fourth pulse).

This ensures that the data are sampled near the middle of
the data bit area of the packet. Note that the 1-to-0
transition of the start bit st is used to synchronize the
receiver to the beginning of the data packet.

Figure 10.20 Arrangement of the data packet and protocol.

In this section, a similar design is described making use of a Petri-net controller. The design is
described in detail, so it can be studied without reference to the one in Chapter 4.

An asynchronous serial receiver is to be developed using a Petri net to allow binary data to be
received and converted into parallel data. The Petri net is a good way of implementing the serial
receiver, since use can be made of the enabling arc and the design can be implemented using a
single interconnected Petri net diagram.

As a reminder of the arrangement used in Chapter 4, the protocol and sample points are
illustrated in Figure 10.20. The asynchronous serial protocol is to be one start bit (active low),
followed by eight data bits, and two stop bits (11 bits in total). The incoming data need to be
shifted into a shift register, and it is important to ensure that this is done when the incoming data
have had time to settle. This can be achieved by using a clock that runs faster than the shift
register clock so that the point in time that the shift register data is clocked into the shift register is
around the middle of the available bit time interval.

In Figure 10.20, the bit time interval is around four clock periods, and at the second clock
pulse into the data cell the data at the shift register input are to be clocked into the shift
register (indicated by the arrowed clock pulse points). Thus, the shift register clock will be
four times slower than the main state machine clock clk. This will be increased in this Petri
net version.

Figure 10.21 illustrates a possible Petri-net-based block diagram for the system. In this
system, a Petri-net controller is used to control the operation of the system, which consists of an
11-stage shift register with parallel outputs to a data latch. Note that the data into the data latch
include only the data bits dO to d7 (QO to Q7), not the protocol bits st, sp1, and sp2. The Divide-
by-11 Counter (which could be either an asynchronous binary counter or a synchronous binary



A Serial Receiver of Binary Data 331

Parallel data out — to outside world
0Q0 0Q1 0Q2 0Q3 0Q4 0Q5 0Q6 0Q7 :i >_
Data Latch

d0 di d2 d3 d4 d5 d6 d7
QST Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 QSP1QSP2
Shift Register
clr Rx
A
R
—AAAN—Vee Recet
eceive
data in
Clear Shift Register Divide
& counter  ~
o By 11
counter
Start bit Receive  Receive Re?e“’e Shift
Pulse ¥ detection Register full  bit Register clock
Data laich] gt CDC rxf rxo RXCK
PD
clk Petri-Net Controller ed |«
—_— Error
DRY ERR ack en init detection
Data Errorin Acknowledge Enable e
Ready Received packet Device Initialise system (controlled by
data outside world device to recover

from error)

Figure 10.21 Block diagram for the asynchronous serial receiver system.

counter along the lines of those developed in Appendix B) is used to count the number of input
data bits received and produces an output rxf indicating to the Petri net that the shift register is
full. The shift register is clocked with the RXCK signal derived from the clk signal within the
Petri-net controller.

Should an error occur indicated by the ed signal, the error (ERR) output will be asserted high
and the system will wait for a reinitialization from some external device ready for the next
attempt at receiving a serial data packet. The control here would be via the external device using
the serial receive system. The overall system is very similar to the one developed in Chapter 4.

The system is started by the start bit going low, as seen by the serial data in line. Figure 10.22
shows the Petri net diagram developed for the system. This consists of two Petri net diagrams
connected by enabling arcs. The first one, comprising P1 to P35, is used to generate the shift
register clock rxck. The second, and main, Petri net diagram controls the operation of the system.
Both Petri nets are driven from the same clock clk.

Note the use of three enabling arcs. The first one, from PM2, is used to disable the first Petri net
viaits T1 firing transition until the main Petri net receives a start st data bit. The second enabling
arc, from P5, is used to prevent the main Petri net from moving on to PM3 until the first Petri net
has generated a shift-register clock pulse RXCK. Note, also, that an enabling arc is used to



332 Infroduction to Petri Nets

P2 P3 P4 P5
T2

~ /RXCK

Both Petri nets
driven by “./ERR
same clk.

rxf.ack

Petri net diagram for the receive serial data controller

Figure 10.22 Petri net diagram for the asynchronous serial system.

prevent TS from firing until the main Petri net moves to PM3; otherwise, there is a potential race
condition between TS and TM2.

Thus, the first Petri net can generate shift-register clock pulses at the correct time in the data
packet. Note that there are five clock pulses between each RXCK in this realization, rather than
the four as suggested in Figure 10.20. Thus, the system clock needs to be five times the required
baud rate.

In the main Petri net, the placeholder PM3 and its two transitions TM3 and TM7 test for the
shift-register full signal rxf. If low (shift register not full), then the main Petri net loops back
to PM2.

Note that while rxf = 0, PMS5 will not generate the PD signal (Mealy output). Also, TM5 can
fire on rxf = 0. In due course a full data packet of 11 bits will be received. At this point, the main
Petri net will move on to PM4 to check the ed signal. This signal should be high if st, sp1 and sp2
are received correctly. This being the case, the main Petri net will move on to PMS5, where it will
issue a PD signal (since rxf = 1 now) to latch the received data into the data latch ready to be
collected by the outside world.

The main Petri net will wait for an ack signal (since rxf = 1 now) from the outside world
(indicating that the data have been read) before returning the token to the PM1 placeholder and
resetting the shift register and 11-bit counter.

In this Petri net, use has been made of enabling arcs to synchronize the two Petri nets, and a
Mealy output for signal PD allows a common loop to be used under different conditions.



A Serial Receiver of Binary Data

333

10.7.1

10.7.2 Ouiput

Pl =T5 +PI
P2=TI+P2.
P3 = T2 + P3
P4=T3+P4.
P5 = T4 + P5

Equations for the First Petri Net

./T1 T1=PI
/T2 T2=P2-
/T3 T3=P3-
JTA T4 =P4
JT5 T5=P5
RXCK = P4.

10.7.3 Equations for the Main Petri Net

PM1 = TM8 + PM1 - /TM1

PM2 = TMS5 + TM1 + PM2
PM3 = TM2 + PM3 - /TM3
PM4 = TM3 + PM4 - /TM4
PMS5 = TM4 + TM7 + PM5

PM6 = TM6 + PM6

10.7.4 Oulputs

- /TM2

- /TM7

. JTM6

. JTMS - /TM8
CDC = /PM1 active low

-PM2 - /P2
/P3
/P4
. /P5
. PM3/P1.
TMI1 = PMI -
TM2 = PM2 -
TM3 = PM3
TM4 = PM4 -
TM5 = PM5
TM6 = PM4 -
TM7 = PM3
TM8 = PM5

PD = PM5 - rxf Mealy active high

ERR = PM6

active high.

/st /PM2
P5 - /PM3

-rxf - /PM4

ed - /PM5

- [rxf - /[PM2

Jed - /PM6

- /rxf - /PM5
-rxf - ack - /PM1.

The simulation of the Petri net for the receiverisillustrated in Figure 10.23. In this simulation,
a test-bench module has been developed so that all paths through the Petri net can be checked.
This has required manipulation of the rxf, ack, and ed signals that would normally be controlled

by the external controller. A study of the waveforms in Figure 10.23 shows the test paths.

Essentially, the simulation shows how the enabling arcs control the sequence of both the shift
clock generation produced by P1 to P5, and the main Petri net PM1 to PM6.
Further study of the waveforms reveals the sequence between RXCK pulses, as shown in
Figure 10.24. This indicates that, during the serial data receiving phase, a shift register pulse
occurs every seven FSM clock pulses. Therefore, for a baud rate of 1 x 10° bits per second, an
FSM clock of 7 MHz would be required.



334

Infroduction to Petri Nets

The action of the enabling arcs can be clearly seen in Figure 10.23. The simulation ends with

|ons |2Q0ns |4Q0ns |6Q0ns
S TN, o 1T PR

|8Q0ns
il

I1-Ous

test. rstlu

test.pst][ |

test.ed

test.rxf|

test.clk
test.st
1
—

test.ack

test.P1 ] 1 1 1 [1 1

test.P2 M il M M M

test.P3| Il Il 1 1 1

test.P4 M M Nl M M

test.P5 1 1 1 1 1

test.T1 1 1 1 1 I

test. T2 M il M M M

test. T3 Il Il I I I

test. T4 M M il M M

test. TS5 1 1 1 Il I

test.PM1

test.PM2| [ [ [ [ [
test.PM3| M M M M M

test.PM4,

test.PM5 M M M il M

test.PM6|

test. TM1

test.TM2 M M M M M

test. TM3

test. TM4

test. TM5 Il Il Il il 1

test. TM6

test.TM7 1 1 1 Il Il

test. TM8]

test.RXCK| M M il M M

test.CDC

test.PD

test.ERR

-

Figure 10.23 Simulation of the Petri net.

an error signal forcing the Petri net into PM6.

The complete Verilog HDL listing can be found on the CDROM in the Chapter 10 folder.
To develop the entire system, the shift register, divide-by-11 counter, the logic AND gate, and

data latch also need to be defined and connected together.

10.7.5 The Shift Register

This is an 11-bit device. See Figure B.12a and b in Appendix B for details.

10.7.6 Equations for the Shift Register

For a general shift register of m stages (number of D-type flip-flops)

0o - d = din
Qn'd:anl

the data in



A Serial Receiver of Binary Data 335

PM1 PM2 PM3 PM5 PM2 PM3..
Pl P2 P3 P4 P5 P1 P2 P3 P4  P5.

RXCK [ ] [_1

|: Seven FSM clock cycles ;|

There are seven FSM clock pulses for every rxclk

Therefore the baud rate = FSM clock frequency / 7

In PM2 T1 is enabled and the P1 to P4 cycle can commence.
At P5, TM2 is enabled and the main Petri net can move PM3, then
PM5 (rxf = 0) then back to PM2.

The RXCK is produced in P4.

This sequence can continue until rxf goes high (indicating the whole
data packet has been received) and the loop is broken. The Petri net
will then cycle to PM4 and if ed = 1 (no error) the data will be loaded

into the data latch (pd =1) ready for the user to access.

See Figure 10.23 for details

Figure 10.24 Details of Petri net sequence during data receive phase.

for all remaining flip flops where n = 1ton = m — 1, where m is the number of flip-flops in the
shift register.
From this, the equations for the 11-stage shift register are

Qg-d:rx
0, -d=Q, 1 forn=1tom—1 with m=11.

There is no need to gate the shift-register clock rxck, since it is controlled by the Petri-net
controller.

10.7.7 The Divide-by-11 Counter

This can be either a common asynchronous binary counter (ripple through) or a synchronous
type. See Appendix B, Section B.9.2 and Figure B.13a and b, for details.

10.7.8 The Data Latch

This is a standard design parallel data latch with eight D-type flip flops each having a data input
and data output and all clocked by the pulse data latch signal PD.

Parity detection logic could be added and would follow along the same lines as that used in
Chapter 4.



336 Infroduction to Petri Nets

10.8 SUMMARY

The use of Petri nets can provide a means by which parallel control can be realized in hardware.
This chapter has explored this area and shown how such systems could be developed and
implemented using an HDL. The use of enabling/disabling arcs can help to synchronize parallel
Petri net activities.

REFERENCE

1. Fernandes JM, Adamski M, Proeca AJ. VHDL generation from hierarchical Petri net specifications
of parallel controllers. IEE Proc Comput Digital Technol 1997; 144(2): 127-135.



Index

$readmemb — system function 237 Asynchronous serial receiver simulation 96, 365
$readmemh — system function 237 Asynchronous serial receiver state diagram 91
$signed() — system function 178 Asynchronous serial receiver with parity 92
$unsigned() — system function 178 Asynchronous serial receiver with parity state
@(event_expression) statement 220 diagram 95
Asynchronous serial transmitter 95

Active low output signals 14, 64, 65 Asynchronous serial transmitter
Address activated FSM control 291 simulation 99
Address activated FSM control state Asynchronous state diagrams without inputs along

diagram 292 transitions 290
always block 199 Asynchronous transmitter 95
Arithmetic right-shift (>>) 178 Asynchronous transmitter state diagram 98
Arrays of reg’s 231
assign parallel statement 148 Base (number) 169
Asynchronous FSM 267 Basic logic gate symbols 337

important note 280 begin..end block 199

Asynchronous FSM to relay circuit Behavioural Asynchronous (event) FSM

296, 299 development 379
Asynchronous FSM using more than two event Bi-directional port 178

cells 305 Binary counters using D type flip flops 355
Asynchronous Petri net structure 317 Binary counters using D type flip flops - generic
Asynchronous receiver block diagram 90, 94, parallel inputs equation 353, 354

331, 359 Binary counters using D type flip flops - with
Asynchronous receiver complete system parallel inputs 353, 354

simulation 358-365 Binary counters using T type flip flops 347, 349
Asynchronous receiver Protocol 89, 93 Binary counters using T type flip flops generic
Asynchronous reset 54, 58, 221 parallel inputs equation 352
Asynchronous serial receiver 88 Binary counters using T type flip flops with parallel
Asynchronous serial receiver block diagram inputs 353

90, 97, 359 Binary data serial transmitter 83

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4



388 Index

Binary sequence detector (4 bit) 136
Binary sequence detector (8 bit)
programmable 138-143
Bit-range 151
Bit-selection 156
Bit-wise logical operators 178
Blocking Assignment 206
Boolean 170
Boolean algebra laws 337
and rules 339
associative law 340
auxiliary law 341, 346
auxiliary law Proof 341
communicative law 340
consensus theorem 342
De Morgans theorem 343
De Morgans theorem - converting AND-OR
to NAND 345
De Morgans theorem - converting AND-OR
toNOR 345
distributive law 340
exclusive NOR 338
exclusive OR 338
logical adjacency rule 345, 346
orrules 339
Buses 150
Byte wide binary code detector 139, 140
Byte wide binary code detector simulation
142,143
Byte wide binary code detector state diagam 141

case..endcase statement 228
Case-equality 184,216
casex statement 249
Class C type FSM 6
Clock circuit for use with FSM systems 355
Clocked FSM 2
Clocked watchdog timer FSM 100
Clocked watchdog timer FSM simulation 102
Clocked watchdog timer FSM state diagram 101
Clothes spinner 304

block diagram 304

equations 305

gate level simulations 309

simulation using equations 308

state diagram 305

test bench module 307

verilog module 306
Combinational Logic (using sequential

block) 209

Comma separated event expression 203
Comments (Verilog) 150
Compilation 161
Compiler directive- timescale 159
Concatenation 180
Concatenation operator 184
Conditional operator (?:) 175
Continuous assignment 148
Controlling an Analogue to Digital Converter
(ADC) 26,33,73,111
Controlling a Digital to Analogue Converter
(DAC) 76,117
Counter design using don’t care states 355-357
D type flip flops  47-65
D type flip flop equations 47
0to 1 transitions 49
1 to O transitions with leaving terms
Rule 1 49,51
1 to O transitions without leaving terms 51
1to 1 transitions Rule 2 50, 51
D type flip flop two way branches Rule 3
50-53
Data acquisition system FSM 110
Data acquisition system FSM simulation 113
Data acquisition system FSM state diagram 112
Dataflow style 148
Dealing with unused states 69
Default assignment 210
default branch (case) 228
Define compiler directive 242
Delayed sequential assignment (#) 201
Delta delay 149
Detecting binary sequences without
memory 134
Dice game 79
Dice game simulation 82, 83
Dice game state diagram 81
Divide by 11 counter design 335, 362
Dynamic Memory Access (DMA) 127
Dynamic Memory Access (DMA) Block
Diagram 128, 129
Dynamic Memory Access FSM simulation 132
Dynamic Memory Access FSM state
diagram 130

endmodule 147

Equality operators (Verilog) 182
Eventcell 269

Event cell characteristic equation tests 271



Index 389

Event cell derivation 270

Eventdriven FSM (see Asynchronous FSM) 267

Event driven FSM to relay circuit 299

Event driven single pulse with memory FSM
277

Event driven single pulse with memory FSM
Circuit 278

Event driven state diagrams without inputs along
transitions 290

Event expression (Verilog) 202

Exclusive-OR 40, 92, 174, 338

Explicit association (Verilog) 153

External Timer Unit 23-26

forloop 160,214

foreverloop 200

Four-valued Logic 168

Gate-level module 172, 306

Handshaking mechanisms 23, 90, 98, 114,
117, 120, 133, 135, 291, 331

Hierarchical design (Verilog) 152

Hover Mower FSM 285

Hover Mower circuit 287

Hover Mower simulation 289

Hover Mower state diagram 286

Hover Mower Verilog code 287

if..elsestatement 210

Incomplete assignment 210

Inertial delay 172

Inferred latch 210

Infinite loop 204

inout port (read/write memory) 232
Instantiation (of modules) 152
integer 160
intial block 199,220

Literal values (Verilog) 169

Local parameters (localparam) 186
Logic Synthesis 146

Logical-AND 174

Mealy active low outputs
(with examples of use) 65,73, 74, 113,
116, 118, 120, 125, 126, 127, 131, 303

Mealy FSM (Verilog) 381

Mealy outputs effect of clock and other signal
delays 17

Mealy type FSM 4, 15, 241
Mealy type outputs 16, 295
Memory chip tester 123
Memory chip tester Block Diagram 124
Memory chip tester state diagram 125
Memory cycle (device) timing 28
Memory device control 29-34
Memory device control of chip select and
read 28-31
Memory device control of chip select and
write 28-31
Memory device controlled by an FSM 28
Memory Device waveforms 29
Meta-logical values (Verilog) 168
Microprocessor control for waveform
synthesiser 120
Microprocessor control of DMA system 132
module 147
Module header 147
Module instantiation statements 153
Module ports 147
Monitoring input for changes 35
Moore FSM (Verilog) 383
Moore type active low outputs 14
Moore type FSM 5, 241
Moore type outputs 5, 16, 314
Motor controller FSM with fault monitoring 281
circuit 282
simulation 285
diagram 281
verilog code 283
Multi way branches in state diagrams
Multi-bit ports 150
Multiply and Divide operators (Verilog) 176

61-63

Named sequential block 213
NAND sequential equations 271
negedge event qualifier 217
Non-Blocking Assignment 206
Null statement (;) 228

One Hot method  105-143

One Hot method - dealing with two way
branches 108

One Hot method - schematic circuit
arrangment 107

One Hot method to produce flip flop
equations 105-110

One hot single pulse detector

Operators (Verilog) 172

105, 106



390 Index

or event expression 202, 203
Override (a parameter default value) 229

Parallel statements (Verilog) 147

parameter 214

parameter to setsize 226

Parity detector 92

Parity for error detection 92

Petrinets 313

Petrinetarc’s 313

Petri net asynchronous receiver  329-335

Petri net asynchronous receiver petri net
diagram 332

Petri net asynchronous receiver example Details
of sequence 335

Petri net asynchronous receiver example
simulation 334

Petri net based asynchronous serial
receiver 329-336

Petri net circuits 316, 319

Petri net comparison with state diagram 314

Petri net diagram fork 319, 321

Petri net diagram join 319

Petri net disabling arcs 325, 326

Petri net enabling arcs 325

Petri net equations 314, 315

Petri net full cycle of design 316

Petri net outputs 316, 319, 322, 328, 333

Petri net parallel controllers 319-323

Petri net placeholder equations 314

Petri net placeholders 313

Petri net serial controllers 318

Petri net shared resource example 327

Petrinet shared resource example simulation 329

Petri net synchronisation between parallel
nets 324-327

Petri net Tokens 313,320

Petri net transition equations 314, 315

Petri net transition equations with disabling
arcs 326

Petri net transition equations with enabling
arcs 325

Petri net transitions 313

posedge event qualifier 217

Positional association 154

Primary and secondary signal gate tolerances 301

Primary inputs 8

Primary outputs 8

Primitive Gates 170

Propagation delays 170, 343

Race conditions in event FSM’s 299

Race conditions in event FSM’s - between primary
and secondary variables 299, 300

Race conditions in event FSM’s - between primary
inputs 299, 300

Race conditions in event FSM’s - between
secondary state variables 299, 300

Race conditions in event FSM’s - gate delay
tolerance 301

Raise-to-the-power operator (**) 217

Reduction NOR 175

reg 147,151

Register types (Verilog) 164

Relational operators (Verilog) 181

repeatloop 201

Replication operator 184

RTL (Register Transfer Level) 145

Rules (Module Port connectivity) 154

Samples per waveform 78

Sampling frequency 78

Scalability (using parameters) 226

Secondary state variables 11

Secondary state variables non unit distance
coding 11

Secondary state variables unitdistance coding 12

Sequential block 198

Sequential equation for relay
implementation 297

Sequential equations 271, 272

Sequential equations dropped terms 276

Sequential equations for PLD
implementation 272,276

Sequential equations logical adjacency
reduction 274, 346

Sequential equations NAND form 271, 272

Sequential equations NOR form 271, 272

Sequential equations short cut rule 275

Sequential statements(Verilog) 198

Serial Asynchronous protocol 89, 93

Serial transmitter 95

Serial transmitter simulation 99

Serial transmitter state diagram 98

Shared memory 114

Shared memory FSM Block Diagram 114

Shared memory FSM state diagram 115

Shift operators (Verilog) 175

Shift register(s) 357

Shift register eleven bit design 360, 361

Shift register empty detection 96, 362



Index 391

Shift register equations 88, 357

Shift register four bit with parallel inputs 358

Shift registers with parallel loading input
equations 357

Signal delay in logic gates 343, 344

signed qualifier (Verilog) 165

Simple binary up counter 349

Simple binary up counter simulation 352

Simulation cycles 149

Slings 10

State assignment (Verilog) 241

State maps for counter design 348, 355, 356

supplyO, supplyl nets 163

Synchronous FSM 2

Synchronous counter design  347-352

Synchronous reset 54, 8

System task - $stop 160

SystemC 146

SystemVerilog 146

T type equations 41-46

T type flip flops 40

Tank water level control final state diagram
solution 295

Tank water level control first state diagram
solution 294

Tank water level control system 293

Test-fixture 155

Test-module 155, 372

Timescale compiler directive 159, 170

Timing waveforms 162

Traditional FSM design 67

tri 164

Twisted ring counter design 356

Two way branches Caution in using 309

Two way branches in state diagrams Rule 3
50-53

Two’s complement 175

Unconnected port 154
Unsigned 176
Unused states (Verilog FSM) 244

Verilog - Extreme Simulator 367, 375,376
Verilog - simulators Tutorial 367
Verilog-2001 - simulators 161
Verilog-HDL 145, 367

VHDL 146

Wait state generator for microprocessor 301

Waveform generator 76

Waveform generator state diagram 77

Waveform synthesiser 116

Waveform synthesiser state diagram 118

Waveform synthesiser control via a C
program 120

Wildcard event expression 203

wire 147



Appendix B: Counting and
Shifting Circuit Techniques

This appendix contains a number of techniques to help in the development of synchronous
binary counters and shift registers. These are used in some of the designs covered in chapters
throughout the book.

B.1 BASIC UP AND DOWN SYNCHRONOUS BINARY COUNTER
DEVELOPMENT

The development of synchronous pure binary up/down counters can be mechanized to produce a
general n-stage pure binary counter. This can then be implemented directly using PLDs/
complex PLDs (CPLDs)/FPGA devices. To illustrate how this is achieved, a four-stage
down-counter is described below.

Table B.1 shows a down-counter with QO the least significant bit. This counter is to be
designed as a synchronous counter so all flip-flops will be clocked by the same clock edge. Also,
the flip-flops will be T flip-flops. Most CPLDs and FPGAs can support the T flip-flop, either
directly or by using D-type flip-flops with an exclusive OR input.

The equation for the T input of each flip flop can be obtained by inspection of Table B.1 and
entering a product term for every 0-to-1 and 1-to-0 transition required by each flip flop. For
example, from Table B.1 the equation for flip flop q0 - 7 will be

q0 -t =s15+5s14 4+ s13 +s12 +s11 +s10 + s9 + s8 4+ s7 + s6 + s5 + s4 4 s3
+82+sl+s0=1.

Each state where the T flip-flop is to change state (0 to 1 or 1 to 0) is entered into the equation.

This can then be written in terms of the Q0Q1Q2Q3 outputs, or simply entered into a Karaugh
map asillustrated in Figure B. 1. The state map of Figure B.1 can then be used to help to minimize
the flip-flop equations.

Since all cells will be filled with ones for the g0 - #equation (every cell whose term appears in
the qO - 7 equation), then the T input for flip-flop QO will be logic 1.

The equation for flip flop q1 - # will be

ql -t =514 4512 4510 + s8 + s6 + s4 4+ s2 + sO
:/QO

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4



348 Appendix B

Table B.1 A down-counter.

Q0 Ql Q2 Q3 State
1 1 1 1 s15
0 1 1 1 sl4
1 0 1 1 s13
0 0 1 1 s12
1 1 0 1 sl1
0 1 0 1 s10
1 0 0 1 s9
0 0 0 1 s8
1 1 1 0 s7
0 1 1 0 s6
1 0 1 0 s5
0 0 1 0 s4
1 1 0 0 s3
0 1 0 0 s2
1 0 0 0 sl
0 0 0 0 sO

QoQ1

Qa3 00 01 1 10

00 sO s2 s3 s

01 s8 s10 s s9

11 s12 s14 s15 s13

10 s4 s6 s7 s5

Karnaugh state map showing all states

Figure B.1 State map for the counter.



Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 349

from the state map. An inspection of the state map of Figure B.1 shows thatq1 -  must minimise
to/q0, since cells s14,s12, 510, s8, s6, s4, s2, and s0 all contain a 1. Following on in this manner,
g2 - tand q3 - f can be obtained thus:

g2 -t =512+ s8 + s4 +s0

=/Q0-/Ql
q3-t=s8+5s0

= /Q0-/Q1 - /Q2.

The patterns of equations follow in a general manner and can be expressed in the form
@rot=/QUx—1)- /Q(x—2) - /Q(x—3) ... /Qlx—x). (B.1)

Equation (B.1) describes the p terms for a down-counter implemented with T flip-flops. These
equations can be directly entered into a Verilog HDL file for each flip-flop.

An up-counter can be realized by replacing all the /g terms in Equation (B.1) with g terms as
shown in Equations (B.2) and (B.3):

gx-t=Q(x—1)-Q(x—=2)-Qx—3)-...-Q(x —x). (B.2)
Or, in general:
p=n
qn-1=[[Q(n—p) (B.3a)
p=1
with
qo-r=1. (B.3b)

For each flip-flop where II is the product (i.e. AND) of each output term. Note that TFF QO
has its 7 input at logic 1. This is not covered in Equation (B.3a).

These equations can be obtained directly from a Karnaugh state map similar to that shown in
Figure B.1, but counting in the opposite direction.

B.2 EXAMPLE FOR A 4-BIT SYNCHRONOUS UP-COUNTER
USING T-TYPE FLIP-FLOPS

The following example, illustrated in Figure B.2, is a design for a 4-bit up-counting synchronous
counter using the techniques described above.

The equations for each T flip flop are

q0-r =1
ql -+ =Q0
q2-t+=Q0-Ql

q3-t=0Q0-Ql - Q2.



350 Appendix B

4-bit synchronous binary counter

Clk >

reset_ ot Q0 Qi Q2 Q3

ﬁ— p *" a
T Each flip-flop in

the counter is
Clk connected up as
a T-type flip-flop.

CLR Q

D=Q"T Ais Exclusive OR

Figure B.2 Block diagram of the 4-bit synchronous binary counter.

This counter can be defined in Verilog HDL as illustrated below in the Verilog source file of
Listing B.1.

// Four bit counter design.
// Define the TFF.
module T FF (q,t,clk,rst);
output g;
input t,clk, rst;
reg gq; //gq output must be registered - remember?
always @ (posedge clk or negedge rst)
if (rst == 0)
q <=1'b0;
else
q <=t"qg; // TFF is made up with EX-OR gate.
endmodule

// Now define the counter.
module counter (Q0,Q1,02,03,clk,rst);

input clk, rst; //clk and rst are inputs.
output 00,Q1,02,03; // all g/s outputs.



Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 351

wire t0,tl,t2,t3; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T FF ££0(Q0,t0,clk, rst);

T FF ££1(Q1,t1l,clk,rst);

T FF £f2(02,t2,clk, rst);

T FF ££3(Q3,t3,clk,rst);

// now define the logic connected to each t input.

// we use an assign for this.

assign

t0=1'bl, // this is just following the technique
t1=0Q0, // for binary counter design.

t2=0Q0&Q1, // will generate AND gates..
t3=Q0&01&Q2;

endmodule // end of the module counter.

// Test Bench design to test the circuit under simulation.
module test;
reg clk, rst; // has two inputs which must be registers.
//wire no wires in this part of the design
// since counter is not connected to anything.
counter count (Q0,0Q1,02,03,clk, rst);
initial
begin
$dumpfile (“counterd.vcd”); // file waveforms. .
$dumpvars; //dump all values to the file.
rst=0; // initialise circuit with rst cleared.
clk=0; //set clk to normally low.
#10 rst=1; // after 10 time units raise rst to remove reset.
repeat (17)
#10 clk = ~clk; //change clk 17 times every 10 time units.
#20 $finish; //Finish the simulation after 20 time units.
end // end of test block.
endmodule // end of test module.

Listing B.1 The Verilog HDL file for the counter, with test bench.

The complete Verilog HDL source file with test-bench module for the counter is shown in
listing B.1. This contains the 7-type flip-flop definition (defined using the behavioural method).

This is followed by the counter definition, which makes use of four instances of the T flip-
flops and also uses an assign block to define the logic connections between the flip-flop
outputs and the T inputs of each flip-flop. Note: old-style input and output is used outside of
the module header.

Following on from this is the test-bench module. This contains an instance of the 4-bit counter
followed by the stimulus to test the counter. Note that there are two $ commands to save the
timing diagram of Figure B.3 so it can be saved to a Word document (for printout) The command
$dumpfile (“counter.vcd”) ; names the file to be created with the information. The com-
mand $dumpvars; simply dumps all variables to the file.



352 Appendix B

100ns 200ns 300ns 400ns

waco | [ [T

test.Q1

test.Q2

test.Q3

Figure B.3 Simulated 4-bit binary counter.

The file is saved as a ‘metafile’ and is illustrated in Figure B.3. The waveforms of Figure B.3
clearly show the binary counter sequence.

B.3 PARALLEL-LOADING COUNTERS: USING T FLIP-FLOPS

For a parallel loading counter implemented with cheaper PLDs, a synchronous parallel input
may be required if there is not an asynchronous preset and clear input to the flip-flops. This can be
done by using additional product terms in the gqx - 7 equations.

A general bit slice form with the additional inputs is shown in Equation (B.4) for a TFFx:

gx.t = ptermx - /load + px - /Qx - load 4+ /px - Qx - load. (B.4)

The load input is used to load the parallel data synchronously into the flip-flop. In this case, the
load input is active high.

In Equation (B.4), the product term ptermx - /load is the normal product term needed for the
counter and is true while the load input is not active. The term px - /Qx - load is the parallel input
term to set the flip-flop, and the term /px - Qx - load is the term to clear the flip-flop.



Using D Flip-Flops to Build Parallel-Loading Counters 353

|:ptermx
Diterm - /Qx - /load
load [E

D SET Q Qx

px-/Qx - load T
px
— CLR 6 /QX
/Qx _‘
L N /px - Qx - load
=
Qx

T = pterm-/load + px-/Qx-load + /px-Qx-load

Figure B.4 General structure of a single-flip flop for counting and parallel loading.

Figure B.4 shows a general structure of a single flip-flop. All other flip-flops follow the same
general structure. It is assumed here that the active state for the load input is high. Therefore,
during counting mode, load would be low (logic 0).

Equations (B.1), (B.2) and (B.4) may be used to produce parallel-loading up/down-counters
for many applications, including the address counters for FSMs that control memory.

Thus, it is possible to create not only sequential control of the access of memory, but also
random control by way of the parallel inputs.

B.4 USING D FLIP-FLOPS TO BUILD PARALLEL-LOADING COUNTERS
WITH CHEAP PROGRAMMABLE LOGIC DEVICES

The D flip-flop can be used in place of the T flip-flop to implement parallel-loading synchronous

counters that do not have preset or clear inputs. There are lots of cheaper PLDs that use only D

flip-flops and do not have asynchronous preset and clear, so the idea seems attractive.
Consider the circuit of Figure B.5. The bit slice equation for this general model is

qr-d=px-/l+pterm-I, (B.5)

where [ is the parallel loading input and /I the inverted parallel loading input. This defines the
general form for the equations for each flip-flop in the counter chain.



354 Appendix B

+5V

px

/1
) D> pwal™

pterm - | o
(} =

pterm 10K

/
Parallel loading input

+5V

Clk

Qx-d=px-/I+pterm-|

Figure B.5 General bit slice model for of a parallel-loading synchronous counter.

The individual product term pterm here will depend upon the sequence table. There is
no simple way to do this; therefore, the method is not as easy to implement as that using 7
flip-flops.

As an example, consider a simple three-stage synchronous binary up-counter.

B.5 SIMPLE BINARY UP-COUNTER: WITH PARALLEL INPUTS

To illustrate the form in which a physical circuit will take a simple three-stage parallel-loading
pure binary counter is illustrated in Figure B.6.

Looking at Figure B.6, the state sequence illustrates the binary sequence. The state map is
used to help simplify the pterms (shown here in their simplified form) and, finally, the full
equations for the D inputs of each flip-flop.

Note that, compared with the method for designing synchronous parallel-loading up/down-
counters using T flip-flops, this arrangement requires the development of each flip-flop pterm.
In general, there is no systematic way to do this other than to work out the logic for each flip-flop.

However, one advantage of using D flip-flops is that the count sequence is not restricted to
pure binary count sequences (i.e. one could develop unit distance code sequences, for example).

Of course, the counter could be developed from the Verilog HDL behavioural description
direct, and this would be the more usual way of doing it. The above method, however, gives an
insight into the Boolean equations involved in such counters.



Counter Design using Don’t Care States 355

Qo Q1 Q2 State
0 0 0 sO
1 0 0 s1
0 1 0 s2
1 1 0 s3
0 0 1 s4 State sequence
1 0 1 s5
0 1 1 s6
1 1 1 s7

Qo0 Q1

Q2 00 0t 11 10
0 sO s2 s3 s1 State map
1 s4 s6 s7 s5
q0 - d=/Q0
pterms ql-d=Q0-/Q1+/Q0- Q1

g2-d=Q2-/Q1+Q2-/Q0+/Q2-Q1-Q0

q0-d=p0-/I+(/QO) -/
Full equations with

gl -d+pl1-/I+(Q0-/Q1+/Q0-Q1) -/ parallel loading
inputs
g2-d+p2-/1+(Q2-/Q1+Q2-/Q0+/Q2-Q1-Q0) -/
Figure B.6 Illustrating the form of the equations for the three-stage pure binary synchronous counter
with parallel inputs.

B.6 CLOCK CIRCUIT TO DRIVE THE COUNTER (AND FINITE-STATE
MACHINES)

There are many circuit arrangements for crystal oscillators, but the one shown in Figure B.7 is a
common one that is often used. It is included for completeness.

The circuitin Figure B.7 provides overtone suppression via the two capacitors C1 and C2 with
values to keep the capacitive reactance small, as indicated in Figure B.7.

B.7 COUNTER DESIGN USING DON'’T CARE STATES

In some designs, use can be made of states that do not appear in the count sequence. This can lead
to a reduction in the number of gates used in the logic of the counter.

Consider the twisted ring counter, so called because it has each flip-flop connected in the form
of a ring, but with a twist in the connection between the last flip-flop and the first. Figure B.8
illustrates the state sequence and a design method using a state map to highlight the don’t care
states.



+5V

510
vV 10K
510 c2
|/
[\
Ci LDSETOEO
Y&
A _
CLRO

1] ]
|| 10K

Crystal
FO

+5V
Xc1 @ FO should tend towards 0
Xc2 @ FO proportional to 510 ohms

Figure B.7 Typical crystal oscillator circuit.

Qo Q1 Q2 Q3 State
0 0 0 0 sO
1 0 0 0 s1
1 1 0 0 s3
1 1 1 0 s7
1 1 1 1 s15 State sequence
0 1 1 1 s14
0 0 1 1 s12
0 0 0 1 s8
Q0 Q1
Q2 Q3 00 01 11 10
00 0 X s3 s1
State map with don’t care
01 s8 X X X terms (X) included.

11 s12 | s14 si5| X

10 [\ X X s7 X

(............

QO - d= sO + s1 +s3 +s7 + (don’t care terms) = /Q3
Q1-d =s1+s3+s7+s15 + (don’t care terms) = Q0
Q2 - d +s3+s7+s15 + s14 + (don't care terms) = Q1

Q3-d +s7+s15+s14 +s12 + (don’t care terms) = Q2

Figure B.8§ Twisted ring counter design making use of don’t care terms.



Shift Registers 357

The state sequence table in Figure B.8 shows the required sequence for the counter. From this
itisapparent that states s2, s4, s5, s6, 59,510, s11 and s13 are not part of the sequence, so these are
made don’t care terms (marked as X) in the state map.

From the state sequence table, and state map of Figure B.8, the equations for each flip-flop D
input (Qx - d) can be obtained, looking for O-to-1 and 1-to-1 transitions in each column of the
sequence table. The don’t care terms are then added to the end of each equation. Finally, the state
map is used to obtain the minimized equations.

For example, in equation QO - d, states s0, s1, s3 and s7 are combined with don’t care terms s2,
s4, s5 and s6 to obtain /Q3 (as highlighted by the dotted lines in Figure B.8). The other equations
are dealt with in a similar manner.

B.8 SHIFT REGISTERS

A special form of synchronous counter is the shift register. Quite often, a parallel-loading shift
register is required (see examples in Chapter 4). The bit slice form for each stage of the parallel-
loading shift register is obtained from Equations (B.6a) and (B.6b):

Q0 -d = din-1d + p0 - /Id (B.6a)
Qx-d=Q(x—1)-1d+px-/Id, (B.6b)

where in this case the active state for the load input 1d is low and din is data input.

Note that if serial input is to be zero, make din = 0. The shift register design is using D flip-
flops.

These equations could be used to create a four bit parallel loading counter thus:

QO0-d =din-1d+p0- /Id (B.7)
Ql-d=Q0-1d+pl-/id (B.8)
Q2-d=Ql-1d+p2-/1d (B.9)
Q3-d=Q2-1d+p3-/ld (B.10)
Sft_clk = clk - 1d (B.11)

In Equation (B.7), the first term is the serial data input. In Equations (B.8)—(B.10), the first term
denotes that the output of each flip-flop will connect into the input of the next (i.e. a standard
shift-register connection). In addition, Equation (B.11) defines the shift clock. This is disabled
during parallel loads.

Figure B.9 shows the four-state shift register developed from the Equations (B.7)—(B.11).
Note that, in practice, the equations would be converted into Verilog HDL code direct for
synthesization. The equations converted into Verilog HDL are:

Q0d = ding&ld | po&~1d;
Qld = Q0&1d | pl&~1d;
02d = 01&1d | p2&~1d;
Q3d = Q2&1d | p3&~1d;
Sft clk = clké&ld;



358 Appendix B

p0 p1
D SFTQ|—
cLlrRQ
din
Clk ED Sht_clk
D N~ /Ld
L

Four bit parallel loading shift register

Figure B.9 Four-stage shift register developed from Equations (B.7)—(B.11).

The above shift register, once converted into Verilog HDL code, can then be simulated for
correct operation. Figure B.10 shows such a simulation. The Verilog coding is available in the
Appendix B folder on the CDROM.

In Chapter 4, the asynchronous serial receiver system made use of a shift register to store the
incoming binary data and present them to a data latch. In addition, a divide-by-11 counter was
used to keep track of the number of binary bits received and alert the FSM when a complete
packet was received (receive shift-register full).

The details and Verilog code for the two modules are now described.

B.9 ASYNCHRONOUS RECEIVER DETAILS OF CHAPTER 4

Figure B.11 (whichis Figure4.21 repeated here for convenience) illustrates the different module
blocks needed to make up the complete receiver. Each module in this diagram and its Verilog
modules will be described below.

The associated test-bench modules and complete code for the asynchronous receiver are
available on the CDROM disk that is supplied with this book. The FSM is described in detail in
Section 4.7, with the state diagram Figure 4.22.



| Ons | 100ns | 200ns 300ns 400ns
R P T R
test.clk

testrst] |

test.p0

test.p1

test.p2

test.p3

test.Ild

test.din

test.Q0 [ ]
test.Q1 [ ]
test.Q2 |_|
test.Q3 ,_l |_|

Figure B.10 Simulation of a four-stage shift register with din = 0.

Paralle data out — to outside world

0 O
0Q0 0Q1 0Q2 0Q3 0Q4 OQ5 0Q6 OQ7
Data Latch :D_

d2 d3 d4 d5 d6 d7

EEEE R

QST Q0 Q1 @2 Q3 Q4 Q5 Q6 Q7 QSP1QSP2
Shift Register

clr X
A
R
—VV\—Vce Receive
data in
Clear Shift Register Divide
& counter ~
Uar By 11
Counter
Start bit Receive Receive Fl? ecieitv? Slhiﬂk
Pulse 'Y detection y Register full bit egister cloc
Datalarch gt cbc i o RXCK
PD
clk FSM ed ¢ _
EN— Error detection
DRY ERR ack en rst detection
Data Errorin Acknowledge Enable | .
ready received error device [nitialize system (controlled by outside
data world device to recover from error)

Figure B.11 Asynchronous receiver block diagram from Chapter 4.



360 Appendix B

B.9.1 The 11-Bit Shift Registers for the Asynchronous Receiver Module

This is an 11-bit shift register with a start bit, eight data bits (d0 to d7), and two stop bits (sp1 and
sp2).

The incoming data (din) connect to the sp2 flip-flop and are shifted into the sp1 flip-flop. The
last flip-flop in the shift register is the start-bit flip-flop, since this is the first data bit into the shift
register. This is illustrated in Figure B.12a.

(@)
QsP2  QsP1 Q7 Q6..Q5..Q2 Q1 Q0 QsT

=
5

b STl oL L [psgl L [55FT, 5 SETq b SETg L P sETg

CLRQ CLRQ CLRQ CLRQ CLRQ CLRQ CLRQ

Ik Clear

O—

(b)
ons |50ns |100ns |150ns |200ns |250ns |300ns
e e e b T

test.rst

test.clk

test.din | | | | |

test.QST

test.Q0

test.Q1

test.Q2

test.Q3

test.Q4

test.Q5

test.Q6

test.Q7 ,_l

test.QSP1 |

55&97

:

|
test.QSP2 [ [

Figure B.12 (a) The shift-registers circuit. (b) Simulation of the shift-register module.



Asynchronous Receiver Details of Chapter 4 361

The Verilog HDL code for the shift register is shown in Listing B.2.

// Define DFF
module D FF(q,d,clk,rst);
output g;
input d,clk, rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst==0)
g<=1'bo0;
else
a<=d;
endmodule

Listing B.2 Verilog module for the shift register.

Listing B.3 gives the module used to build the shift register.

// define shift register

// The shift register clock is rxclk which
// is controlled by the fsm.

// The protocol bits (st, spl, and sp2) are
// shifted into their own FF's.

module shifter(rst,clk,din,QST,Q0,01,02,03,04,05,Q06,Q7,QSP1,QSP2) ;
input clk, rst,din;
output OST,00,01,02,03,04,05,06,Q07,0SP1,QSP2;
wire dst,d0, d1, d2, 43, d4, d5, d6, d7, dspl, dsp2 ;

D FF gstd(QST,dst,clk,rst);

D FF q0d(Q0,d0, clk, rst);

D FF gld(Ql,dl,clk,rst);

D FF g2d(Q2,d2,clk,rst);

D FF q3d(Q3,d3,clk,rst);

D FF q4d(Q4,d4,clk,rst);

D FF g5d(Q5,d5,clk, rst);

D FF g6d(Q6,d6,clk,rst);

D FF q7d(Q7,d7,clk,rst);

D FF gspld(QSP1l,dspl, clk, rst);
D FF gsp2d(QSP2,dsp2,clk, rst);

assign

// note the way that the flip flops have been connected up.
dst= QO0,

d0 =0Q1,

dl =02,

dz2 = Q3,

d3 = 04,

d4 = Q5,

d5 = Q6,



362 Appendix B

de =Q7,

d7 = QSP1,

dspl = QSP2,

dsp2 = din;
endmodule

Listing B.3 Test-bench module for the shift register.

A simulation of the shift register, illustrated in Figure B.12b, indicates that it is working
correctly.

A study of the din waveform and the output from the shift register at around the 300 ns
point shows that the shift register has received the incoming data, together with the protocol
bits.

B.9.2 Divide-by-11 Counter

The counter uses a synchronous pure binary up-counting sequence that counts up to 11 (1101
binary) and then stops. Its outputis the RXF signal. This goes high when the eleventh clock pulse
is received.

Figure B.13a illustrates the divide-by-11 counter. This is made up of four 7T-type flip-
flops (shown here as D types with exclusive OR gate feedback in the circuit diagram). The

(a) stop

stop q2

stop ¢ —D_‘ﬂ
=

:°§;>L

|f CLRa CLRa CLR6 = CLRa
clk

rst

stop (

™S
I/

DSETQQ‘I( DSETQQZ( D ¥ gl Q3

RXF output (receive
register full rxf input to
FSM)
Divide by 11 counter with inhibit control

Figure B.13 (a) Schematic circuit diagram of the divide-by-11 counter with inhibit control. (b) The
divide-by-11 counter simulation.



Asynchronous Receiver Details of Chapter 4

363

—_
O
~

|0ns |50ns 100ns |150ns |200ns |250ns |300ns
Crr | e T T

test.rst

test.clk
test.Q0

test.Q1 | | | |
test.Q2

test.Q3 |

test.RXF

Divide by 11 counter showing details of counter outputs

|0ns |50ns |100ns |150ns |200ns |250ns |300ns
N [ A R

test.rst

test.clk
test.RXF

Divide by 11 counter showing only the terminal inputs and outputs
to the asynchronous receiver

Figure B.13 (Continued)

four-input NAND gate provides a stop control to inhibit the counter when the count value
reaches 11 (Q3Q2Q1Q0 = 1011). The reset input rst is used to reset the counter back to

Z€10.

The Verilog code for this module is illustrated in Listing B.4 (all variables in lower case).

// define TFF
// Needed for the divide by 11 asynchronous counter.
module T FF (q,t,clk,rst);
output g;
input t,clk, rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst ==0)
g<=1'b0;
else
g<=t"q;
endmodule

// Now define the counter.
module dividebyll (Q0,Q1,02,03,clk,rst,RXF);



364 Appendix B

input clk, rst; //clk and rst are inputs.
output RXF,00,01,02,03; // all g/s outputs.
wire tO,tl,t2,t3,stop; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T FF ££f0(Q0,t0,clk, rst);
T FF ££1(01,tl,clk,rst);
T FF ££2(Q2,t2,clk, rst);
T FF ££3(Q3,t3,clk,rst);

// now define the logic connected to each t input.

// use an assign for this.

assign

t0=1'bls&stop, // this is just following the technique
t1=Q0&stop, // for binary counter design.
t2=Q0&Ql&stop, // will generate AND gates. .
t3=00&Q1&Q2&stop,

stop = ~(Q0&Q1&~0Q2&Q3), // to detect 1lthe clock pulse.
RXF = ~stop;

endmodule // end of the module counter.

Listing B.4 Verilog module for the divide-by-11 counter.

Note that the simulation stops at the eleventh clock pulse due to the NAND gate. Thisisused to
raise the RXF signal via an inverter operation. The RXF (receive register full flag) is used to
inform the FSM that the receiver shift register is full. It is cleared by the FSM after transferring
the shift register data bits to the octal data latch.

The simulation of this module is illustrated in Figure B.13b.

B.9.3 Complete Simulation of the Asynchronous Receiver Module
of Chapter 4

The complete asynchronous receiver with FSM defined in Section 4.7 can now be simulated.
The complete Verilog code is contained on the CDROM.

The simulation of the asynchronous receiver is shown in Figure B.14. Here, the only signals
visible are those of the complete block, although the secondary state variables are also displayed
to show the FSM state sequence. The simulation starts by asserting en high, then the FSM section
(signals not seen here) controls the operation of the shift register, divide-by-11 counter, and
output data latch.

The data are presented to the user when signal DRY goes high and acknowledged by the user
bringing signal ack high. The FSM, inresponse, lowers DRY (and PD), and the user (optionally)
lowers ack to acknowledge the end of the transaction. Prior to loading received data into the data
latch its contents are unknown (or the last received).



Summary 365

|0ns |200ns |400ns |600ns |800ns |1 .Ous
L O O O v o vy

test.rst

test.clk

test.din

test.en

test.ack
test. DRY
test.ERR|

Il

test.A

test.B

test.C

test.D
test.0OQO
test.0Q1
test.0Q2
test.0Q3
test.0Q4
test.0Q5
test.0Q6
test.0Q7

L
H

Figure B.14 The complete asynchronous receiver simulation.

B.10 SUMMARY

This appendix has introduced simple ways to develop synchronous up and down pure binary
counters, with or without parallel-loading inputs that can be used in a PLD or FPGA device. It
has also described how parallel-loading shift registers can be developed and used.

These techniques may be used to develop Verilog HDL modules for use in some of the designs
covered in this book. Bit slice equations have been developed to allow counters and shift register
circuits to be constructed directly in equation form in Verilog HDL.

Finally, some of these ideas have been used in the development of an asynchronous serial
receiver, complete with their Verilog modules.



Appendix B: Counting and
Shifting Circuit Techniques

This appendix contains a number of techniques to help in the development of synchronous
binary counters and shift registers. These are used in some of the designs covered in chapters
throughout the book.

B.1 BASIC UP AND DOWN SYNCHRONOUS BINARY COUNTER
DEVELOPMENT

The development of synchronous pure binary up/down counters can be mechanized to produce a
general n-stage pure binary counter. This can then be implemented directly using PLDs/
complex PLDs (CPLDs)/FPGA devices. To illustrate how this is achieved, a four-stage
down-counter is described below.

Table B.1 shows a down-counter with QO the least significant bit. This counter is to be
designed as a synchronous counter so all flip-flops will be clocked by the same clock edge. Also,
the flip-flops will be T flip-flops. Most CPLDs and FPGAs can support the T flip-flop, either
directly or by using D-type flip-flops with an exclusive OR input.

The equation for the T input of each flip flop can be obtained by inspection of Table B.1 and
entering a product term for every 0-to-1 and 1-to-0 transition required by each flip flop. For
example, from Table B.1 the equation for flip flop q0 - 7 will be

q0 -t =s15+5s14 4+ s13 +s12 +s11 +s10 + s9 + s8 4+ s7 + s6 + s5 + s4 4 s3
+82+sl+s0=1.

Each state where the T flip-flop is to change state (0 to 1 or 1 to 0) is entered into the equation.

This can then be written in terms of the Q0Q1Q2Q3 outputs, or simply entered into a Karaugh
map asillustrated in Figure B. 1. The state map of Figure B.1 can then be used to help to minimize
the flip-flop equations.

Since all cells will be filled with ones for the g0 - #equation (every cell whose term appears in
the qO - 7 equation), then the T input for flip-flop QO will be logic 1.

The equation for flip flop q1 - # will be

ql -t =514 4512 4510 + s8 + s6 + s4 4+ s2 + sO
:/QO

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4



348 Appendix B

Table B.1 A down-counter.

Q0 Ql Q2 Q3 State
1 1 1 1 s15
0 1 1 1 sl4
1 0 1 1 s13
0 0 1 1 s12
1 1 0 1 sl1
0 1 0 1 s10
1 0 0 1 s9
0 0 0 1 s8
1 1 1 0 s7
0 1 1 0 s6
1 0 1 0 s5
0 0 1 0 s4
1 1 0 0 s3
0 1 0 0 s2
1 0 0 0 sl
0 0 0 0 sO

QoQ1

Qa3 00 01 1 10

00 sO s2 s3 s

01 s8 s10 s s9

11 s12 s14 s15 s13

10 s4 s6 s7 s5

Karnaugh state map showing all states

Figure B.1 State map for the counter.



Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 349

from the state map. An inspection of the state map of Figure B.1 shows thatq1 -  must minimise
to/q0, since cells s14,s12, 510, s8, s6, s4, s2, and s0 all contain a 1. Following on in this manner,
g2 - tand q3 - f can be obtained thus:

g2 -t =512+ s8 + s4 +s0

=/Q0-/Ql
q3-t=s8+5s0

= /Q0-/Q1 - /Q2.

The patterns of equations follow in a general manner and can be expressed in the form
@rot=/QUx—1)- /Q(x—2) - /Q(x—3) ... /Qlx—x). (B.1)

Equation (B.1) describes the p terms for a down-counter implemented with T flip-flops. These
equations can be directly entered into a Verilog HDL file for each flip-flop.

An up-counter can be realized by replacing all the /g terms in Equation (B.1) with g terms as
shown in Equations (B.2) and (B.3):

gx-t=Q(x—1)-Q(x—=2)-Qx—3)-...-Q(x —x). (B.2)
Or, in general:
p=n
qn-1=[[Q(n—p) (B.3a)
p=1
with
qo-r=1. (B.3b)

For each flip-flop where II is the product (i.e. AND) of each output term. Note that TFF QO
has its 7 input at logic 1. This is not covered in Equation (B.3a).

These equations can be obtained directly from a Karnaugh state map similar to that shown in
Figure B.1, but counting in the opposite direction.

B.2 EXAMPLE FOR A 4-BIT SYNCHRONOUS UP-COUNTER
USING T-TYPE FLIP-FLOPS

The following example, illustrated in Figure B.2, is a design for a 4-bit up-counting synchronous
counter using the techniques described above.

The equations for each T flip flop are

q0-r =1
ql -+ =Q0
q2-t+=Q0-Ql

q3-t=0Q0-Ql - Q2.



350 Appendix B

4-bit synchronous binary counter

Clk >

reset_ ot Q0 Qi Q2 Q3

ﬁ— p *" a
T Each flip-flop in

the counter is
Clk connected up as
a T-type flip-flop.

CLR Q

D=Q"T Ais Exclusive OR

Figure B.2 Block diagram of the 4-bit synchronous binary counter.

This counter can be defined in Verilog HDL as illustrated below in the Verilog source file of
Listing B.1.

// Four bit counter design.
// Define the TFF.
module T FF (q,t,clk,rst);
output g;
input t,clk, rst;
reg gq; //gq output must be registered - remember?
always @ (posedge clk or negedge rst)
if (rst == 0)
q <=1'b0;
else
q <=t"qg; // TFF is made up with EX-OR gate.
endmodule

// Now define the counter.
module counter (Q0,Q1,02,03,clk,rst);

input clk, rst; //clk and rst are inputs.
output 00,Q1,02,03; // all g/s outputs.



Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 351

wire t0,tl,t2,t3; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T FF ££0(Q0,t0,clk, rst);

T FF ££1(Q1,t1l,clk,rst);

T FF £f2(02,t2,clk, rst);

T FF ££3(Q3,t3,clk,rst);

// now define the logic connected to each t input.

// we use an assign for this.

assign

t0=1'bl, // this is just following the technique
t1=0Q0, // for binary counter design.

t2=0Q0&Q1, // will generate AND gates..
t3=Q0&01&Q2;

endmodule // end of the module counter.

// Test Bench design to test the circuit under simulation.
module test;
reg clk, rst; // has two inputs which must be registers.
//wire no wires in this part of the design
// since counter is not connected to anything.
counter count (Q0,0Q1,02,03,clk, rst);
initial
begin
$dumpfile (“counterd.vcd”); // file waveforms. .
$dumpvars; //dump all values to the file.
rst=0; // initialise circuit with rst cleared.
clk=0; //set clk to normally low.
#10 rst=1; // after 10 time units raise rst to remove reset.
repeat (17)
#10 clk = ~clk; //change clk 17 times every 10 time units.
#20 $finish; //Finish the simulation after 20 time units.
end // end of test block.
endmodule // end of test module.

Listing B.1 The Verilog HDL file for the counter, with test bench.

The complete Verilog HDL source file with test-bench module for the counter is shown in
listing B.1. This contains the 7-type flip-flop definition (defined using the behavioural method).

This is followed by the counter definition, which makes use of four instances of the T flip-
flops and also uses an assign block to define the logic connections between the flip-flop
outputs and the T inputs of each flip-flop. Note: old-style input and output is used outside of
the module header.

Following on from this is the test-bench module. This contains an instance of the 4-bit counter
followed by the stimulus to test the counter. Note that there are two $ commands to save the
timing diagram of Figure B.3 so it can be saved to a Word document (for printout) The command
$dumpfile (“counter.vcd”) ; names the file to be created with the information. The com-
mand $dumpvars; simply dumps all variables to the file.



352 Appendix B

100ns 200ns 300ns 400ns

waco | [ [T

test.Q1

test.Q2

test.Q3

Figure B.3 Simulated 4-bit binary counter.

The file is saved as a ‘metafile’ and is illustrated in Figure B.3. The waveforms of Figure B.3
clearly show the binary counter sequence.

B.3 PARALLEL-LOADING COUNTERS: USING T FLIP-FLOPS

For a parallel loading counter implemented with cheaper PLDs, a synchronous parallel input
may be required if there is not an asynchronous preset and clear input to the flip-flops. This can be
done by using additional product terms in the gqx - 7 equations.

A general bit slice form with the additional inputs is shown in Equation (B.4) for a TFFx:

gx.t = ptermx - /load + px - /Qx - load 4+ /px - Qx - load. (B.4)

The load input is used to load the parallel data synchronously into the flip-flop. In this case, the
load input is active high.

In Equation (B.4), the product term ptermx - /load is the normal product term needed for the
counter and is true while the load input is not active. The term px - /Qx - load is the parallel input
term to set the flip-flop, and the term /px - Qx - load is the term to clear the flip-flop.



Using D Flip-Flops to Build Parallel-Loading Counters 353

|:ptermx
Diterm - /Qx - /load
load [E

D SET Q Qx

px-/Qx - load T
px
— CLR 6 /QX
/Qx _‘
L N /px - Qx - load
=
Qx

T = pterm-/load + px-/Qx-load + /px-Qx-load

Figure B.4 General structure of a single-flip flop for counting and parallel loading.

Figure B.4 shows a general structure of a single flip-flop. All other flip-flops follow the same
general structure. It is assumed here that the active state for the load input is high. Therefore,
during counting mode, load would be low (logic 0).

Equations (B.1), (B.2) and (B.4) may be used to produce parallel-loading up/down-counters
for many applications, including the address counters for FSMs that control memory.

Thus, it is possible to create not only sequential control of the access of memory, but also
random control by way of the parallel inputs.

B.4 USING D FLIP-FLOPS TO BUILD PARALLEL-LOADING COUNTERS
WITH CHEAP PROGRAMMABLE LOGIC DEVICES

The D flip-flop can be used in place of the T flip-flop to implement parallel-loading synchronous

counters that do not have preset or clear inputs. There are lots of cheaper PLDs that use only D

flip-flops and do not have asynchronous preset and clear, so the idea seems attractive.
Consider the circuit of Figure B.5. The bit slice equation for this general model is

qr-d=px-/l+pterm-I, (B.5)

where [ is the parallel loading input and /I the inverted parallel loading input. This defines the
general form for the equations for each flip-flop in the counter chain.



354 Appendix B

+5V

px

/1
) D> pwal™

pterm - | o
(} =

pterm 10K

/
Parallel loading input

+5V

Clk

Qx-d=px-/I+pterm-|

Figure B.5 General bit slice model for of a parallel-loading synchronous counter.

The individual product term pterm here will depend upon the sequence table. There is
no simple way to do this; therefore, the method is not as easy to implement as that using 7
flip-flops.

As an example, consider a simple three-stage synchronous binary up-counter.

B.5 SIMPLE BINARY UP-COUNTER: WITH PARALLEL INPUTS

To illustrate the form in which a physical circuit will take a simple three-stage parallel-loading
pure binary counter is illustrated in Figure B.6.

Looking at Figure B.6, the state sequence illustrates the binary sequence. The state map is
used to help simplify the pterms (shown here in their simplified form) and, finally, the full
equations for the D inputs of each flip-flop.

Note that, compared with the method for designing synchronous parallel-loading up/down-
counters using T flip-flops, this arrangement requires the development of each flip-flop pterm.
In general, there is no systematic way to do this other than to work out the logic for each flip-flop.

However, one advantage of using D flip-flops is that the count sequence is not restricted to
pure binary count sequences (i.e. one could develop unit distance code sequences, for example).

Of course, the counter could be developed from the Verilog HDL behavioural description
direct, and this would be the more usual way of doing it. The above method, however, gives an
insight into the Boolean equations involved in such counters.



Counter Design using Don’t Care States 355

Qo Q1 Q2 State
0 0 0 sO
1 0 0 s1
0 1 0 s2
1 1 0 s3
0 0 1 s4 State sequence
1 0 1 s5
0 1 1 s6
1 1 1 s7

Qo0 Q1

Q2 00 0t 11 10
0 sO s2 s3 s1 State map
1 s4 s6 s7 s5
q0 - d=/Q0
pterms ql-d=Q0-/Q1+/Q0- Q1

g2-d=Q2-/Q1+Q2-/Q0+/Q2-Q1-Q0

q0-d=p0-/I+(/QO) -/
Full equations with

gl -d+pl1-/I+(Q0-/Q1+/Q0-Q1) -/ parallel loading
inputs
g2-d+p2-/1+(Q2-/Q1+Q2-/Q0+/Q2-Q1-Q0) -/
Figure B.6 Illustrating the form of the equations for the three-stage pure binary synchronous counter
with parallel inputs.

B.6 CLOCK CIRCUIT TO DRIVE THE COUNTER (AND FINITE-STATE
MACHINES)

There are many circuit arrangements for crystal oscillators, but the one shown in Figure B.7 is a
common one that is often used. It is included for completeness.

The circuitin Figure B.7 provides overtone suppression via the two capacitors C1 and C2 with
values to keep the capacitive reactance small, as indicated in Figure B.7.

B.7 COUNTER DESIGN USING DON'’T CARE STATES

In some designs, use can be made of states that do not appear in the count sequence. This can lead
to a reduction in the number of gates used in the logic of the counter.

Consider the twisted ring counter, so called because it has each flip-flop connected in the form
of a ring, but with a twist in the connection between the last flip-flop and the first. Figure B.8
illustrates the state sequence and a design method using a state map to highlight the don’t care
states.



+5V

510
vV 10K
510 c2
|/
[\
Ci LDSETOEO
Y&
A _
CLRO

1] ]
|| 10K

Crystal
FO

+5V
Xc1 @ FO should tend towards 0
Xc2 @ FO proportional to 510 ohms

Figure B.7 Typical crystal oscillator circuit.

Qo Q1 Q2 Q3 State
0 0 0 0 sO
1 0 0 0 s1
1 1 0 0 s3
1 1 1 0 s7
1 1 1 1 s15 State sequence
0 1 1 1 s14
0 0 1 1 s12
0 0 0 1 s8
Q0 Q1
Q2 Q3 00 01 11 10
00 0 X s3 s1
State map with don’t care
01 s8 X X X terms (X) included.

11 s12 | s14 si5| X

10 [\ X X s7 X

(............

QO - d= sO + s1 +s3 +s7 + (don’t care terms) = /Q3
Q1-d =s1+s3+s7+s15 + (don’t care terms) = Q0
Q2 - d +s3+s7+s15 + s14 + (don't care terms) = Q1

Q3-d +s7+s15+s14 +s12 + (don’t care terms) = Q2

Figure B.8§ Twisted ring counter design making use of don’t care terms.



Shift Registers 357

The state sequence table in Figure B.8 shows the required sequence for the counter. From this
itisapparent that states s2, s4, s5, s6, 59,510, s11 and s13 are not part of the sequence, so these are
made don’t care terms (marked as X) in the state map.

From the state sequence table, and state map of Figure B.8, the equations for each flip-flop D
input (Qx - d) can be obtained, looking for O-to-1 and 1-to-1 transitions in each column of the
sequence table. The don’t care terms are then added to the end of each equation. Finally, the state
map is used to obtain the minimized equations.

For example, in equation QO - d, states s0, s1, s3 and s7 are combined with don’t care terms s2,
s4, s5 and s6 to obtain /Q3 (as highlighted by the dotted lines in Figure B.8). The other equations
are dealt with in a similar manner.

B.8 SHIFT REGISTERS

A special form of synchronous counter is the shift register. Quite often, a parallel-loading shift
register is required (see examples in Chapter 4). The bit slice form for each stage of the parallel-
loading shift register is obtained from Equations (B.6a) and (B.6b):

Q0 -d = din-1d + p0 - /Id (B.6a)
Qx-d=Q(x—1)-1d+px-/Id, (B.6b)

where in this case the active state for the load input 1d is low and din is data input.

Note that if serial input is to be zero, make din = 0. The shift register design is using D flip-
flops.

These equations could be used to create a four bit parallel loading counter thus:

QO0-d =din-1d+p0- /Id (B.7)
Ql-d=Q0-1d+pl-/id (B.8)
Q2-d=Ql-1d+p2-/1d (B.9)
Q3-d=Q2-1d+p3-/ld (B.10)
Sft_clk = clk - 1d (B.11)

In Equation (B.7), the first term is the serial data input. In Equations (B.8)—(B.10), the first term
denotes that the output of each flip-flop will connect into the input of the next (i.e. a standard
shift-register connection). In addition, Equation (B.11) defines the shift clock. This is disabled
during parallel loads.

Figure B.9 shows the four-state shift register developed from the Equations (B.7)—(B.11).
Note that, in practice, the equations would be converted into Verilog HDL code direct for
synthesization. The equations converted into Verilog HDL are:

Q0d = ding&ld | po&~1d;
Qld = Q0&1d | pl&~1d;
02d = 01&1d | p2&~1d;
Q3d = Q2&1d | p3&~1d;
Sft clk = clké&ld;



358 Appendix B

p0 p1
D SFTQ|—
cLlrRQ
din
Clk ED Sht_clk
D N~ /Ld
L

Four bit parallel loading shift register

Figure B.9 Four-stage shift register developed from Equations (B.7)—(B.11).

The above shift register, once converted into Verilog HDL code, can then be simulated for
correct operation. Figure B.10 shows such a simulation. The Verilog coding is available in the
Appendix B folder on the CDROM.

In Chapter 4, the asynchronous serial receiver system made use of a shift register to store the
incoming binary data and present them to a data latch. In addition, a divide-by-11 counter was
used to keep track of the number of binary bits received and alert the FSM when a complete
packet was received (receive shift-register full).

The details and Verilog code for the two modules are now described.

B.9 ASYNCHRONOUS RECEIVER DETAILS OF CHAPTER 4

Figure B.11 (whichis Figure4.21 repeated here for convenience) illustrates the different module
blocks needed to make up the complete receiver. Each module in this diagram and its Verilog
modules will be described below.

The associated test-bench modules and complete code for the asynchronous receiver are
available on the CDROM disk that is supplied with this book. The FSM is described in detail in
Section 4.7, with the state diagram Figure 4.22.



| Ons | 100ns | 200ns 300ns 400ns
R P T R
test.clk

testrst] |

test.p0

test.p1

test.p2

test.p3

test.Ild

test.din

test.Q0 [ ]
test.Q1 [ ]
test.Q2 |_|
test.Q3 ,_l |_|

Figure B.10 Simulation of a four-stage shift register with din = 0.

Paralle data out — to outside world

0 O
0Q0 0Q1 0Q2 0Q3 0Q4 OQ5 0Q6 OQ7
Data Latch :D_

d2 d3 d4 d5 d6 d7

EEEE R

QST Q0 Q1 @2 Q3 Q4 Q5 Q6 Q7 QSP1QSP2
Shift Register

clr X
A
R
—VV\—Vce Receive
data in
Clear Shift Register Divide
& counter ~
Uar By 11
Counter
Start bit Receive Receive Fl? ecieitv? Slhiﬂk
Pulse 'Y detection y Register full bit egister cloc
Datalarch gt cbc i o RXCK
PD
clk FSM ed ¢ _
EN— Error detection
DRY ERR ack en rst detection
Data Errorin Acknowledge Enable | .
ready received error device [nitialize system (controlled by outside
data world device to recover from error)

Figure B.11 Asynchronous receiver block diagram from Chapter 4.



360 Appendix B

B.9.1 The 11-Bit Shift Registers for the Asynchronous Receiver Module

This is an 11-bit shift register with a start bit, eight data bits (d0 to d7), and two stop bits (sp1 and
sp2).

The incoming data (din) connect to the sp2 flip-flop and are shifted into the sp1 flip-flop. The
last flip-flop in the shift register is the start-bit flip-flop, since this is the first data bit into the shift
register. This is illustrated in Figure B.12a.

(@)
QsP2  QsP1 Q7 Q6..Q5..Q2 Q1 Q0 QsT

=
5

b STl oL L [psgl L [55FT, 5 SETq b SETg L P sETg

CLRQ CLRQ CLRQ CLRQ CLRQ CLRQ CLRQ

Ik Clear

O—

(b)
ons |50ns |100ns |150ns |200ns |250ns |300ns
e e e b T

test.rst

test.clk

test.din | | | | |

test.QST

test.Q0

test.Q1

test.Q2

test.Q3

test.Q4

test.Q5

test.Q6

test.Q7 ,_l

test.QSP1 |

55&97

:

|
test.QSP2 [ [

Figure B.12 (a) The shift-registers circuit. (b) Simulation of the shift-register module.



Asynchronous Receiver Details of Chapter 4 361

The Verilog HDL code for the shift register is shown in Listing B.2.

// Define DFF
module D FF(q,d,clk,rst);
output g;
input d,clk, rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst==0)
g<=1'bo0;
else
a<=d;
endmodule

Listing B.2 Verilog module for the shift register.

Listing B.3 gives the module used to build the shift register.

// define shift register

// The shift register clock is rxclk which
// is controlled by the fsm.

// The protocol bits (st, spl, and sp2) are
// shifted into their own FF's.

module shifter(rst,clk,din,QST,Q0,01,02,03,04,05,Q06,Q7,QSP1,QSP2) ;
input clk, rst,din;
output OST,00,01,02,03,04,05,06,Q07,0SP1,QSP2;
wire dst,d0, d1, d2, 43, d4, d5, d6, d7, dspl, dsp2 ;

D FF gstd(QST,dst,clk,rst);

D FF q0d(Q0,d0, clk, rst);

D FF gld(Ql,dl,clk,rst);

D FF g2d(Q2,d2,clk,rst);

D FF q3d(Q3,d3,clk,rst);

D FF q4d(Q4,d4,clk,rst);

D FF g5d(Q5,d5,clk, rst);

D FF g6d(Q6,d6,clk,rst);

D FF q7d(Q7,d7,clk,rst);

D FF gspld(QSP1l,dspl, clk, rst);
D FF gsp2d(QSP2,dsp2,clk, rst);

assign

// note the way that the flip flops have been connected up.
dst= QO0,

d0 =0Q1,

dl =02,

dz2 = Q3,

d3 = 04,

d4 = Q5,

d5 = Q6,



362 Appendix B

de =Q7,

d7 = QSP1,

dspl = QSP2,

dsp2 = din;
endmodule

Listing B.3 Test-bench module for the shift register.

A simulation of the shift register, illustrated in Figure B.12b, indicates that it is working
correctly.

A study of the din waveform and the output from the shift register at around the 300 ns
point shows that the shift register has received the incoming data, together with the protocol
bits.

B.9.2 Divide-by-11 Counter

The counter uses a synchronous pure binary up-counting sequence that counts up to 11 (1101
binary) and then stops. Its outputis the RXF signal. This goes high when the eleventh clock pulse
is received.

Figure B.13a illustrates the divide-by-11 counter. This is made up of four 7T-type flip-
flops (shown here as D types with exclusive OR gate feedback in the circuit diagram). The

(a) stop

stop q2

stop ¢ —D_‘ﬂ
=

:°§;>L

|f CLRa CLRa CLR6 = CLRa
clk

rst

stop (

™S
I/

DSETQQ‘I( DSETQQZ( D ¥ gl Q3

RXF output (receive
register full rxf input to
FSM)
Divide by 11 counter with inhibit control

Figure B.13 (a) Schematic circuit diagram of the divide-by-11 counter with inhibit control. (b) The
divide-by-11 counter simulation.



Asynchronous Receiver Details of Chapter 4

363

—_
O
~

|0ns |50ns 100ns |150ns |200ns |250ns |300ns
Crr | e T T

test.rst

test.clk
test.Q0

test.Q1 | | | |
test.Q2

test.Q3 |

test.RXF

Divide by 11 counter showing details of counter outputs

|0ns |50ns |100ns |150ns |200ns |250ns |300ns
N [ A R

test.rst

test.clk
test.RXF

Divide by 11 counter showing only the terminal inputs and outputs
to the asynchronous receiver

Figure B.13 (Continued)

four-input NAND gate provides a stop control to inhibit the counter when the count value
reaches 11 (Q3Q2Q1Q0 = 1011). The reset input rst is used to reset the counter back to

Z€10.

The Verilog code for this module is illustrated in Listing B.4 (all variables in lower case).

// define TFF
// Needed for the divide by 11 asynchronous counter.
module T FF (q,t,clk,rst);
output g;
input t,clk, rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst ==0)
g<=1'b0;
else
g<=t"q;
endmodule

// Now define the counter.
module dividebyll (Q0,Q1,02,03,clk,rst,RXF);



364 Appendix B

input clk, rst; //clk and rst are inputs.
output RXF,00,01,02,03; // all g/s outputs.
wire tO,tl,t2,t3,stop; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T FF ££f0(Q0,t0,clk, rst);
T FF ££1(01,tl,clk,rst);
T FF ££2(Q2,t2,clk, rst);
T FF ££3(Q3,t3,clk,rst);

// now define the logic connected to each t input.

// use an assign for this.

assign

t0=1'bls&stop, // this is just following the technique
t1=Q0&stop, // for binary counter design.
t2=Q0&Ql&stop, // will generate AND gates. .
t3=00&Q1&Q2&stop,

stop = ~(Q0&Q1&~0Q2&Q3), // to detect 1lthe clock pulse.
RXF = ~stop;

endmodule // end of the module counter.

Listing B.4 Verilog module for the divide-by-11 counter.

Note that the simulation stops at the eleventh clock pulse due to the NAND gate. Thisisused to
raise the RXF signal via an inverter operation. The RXF (receive register full flag) is used to
inform the FSM that the receiver shift register is full. It is cleared by the FSM after transferring
the shift register data bits to the octal data latch.

The simulation of this module is illustrated in Figure B.13b.

B.9.3 Complete Simulation of the Asynchronous Receiver Module
of Chapter 4

The complete asynchronous receiver with FSM defined in Section 4.7 can now be simulated.
The complete Verilog code is contained on the CDROM.

The simulation of the asynchronous receiver is shown in Figure B.14. Here, the only signals
visible are those of the complete block, although the secondary state variables are also displayed
to show the FSM state sequence. The simulation starts by asserting en high, then the FSM section
(signals not seen here) controls the operation of the shift register, divide-by-11 counter, and
output data latch.

The data are presented to the user when signal DRY goes high and acknowledged by the user
bringing signal ack high. The FSM, inresponse, lowers DRY (and PD), and the user (optionally)
lowers ack to acknowledge the end of the transaction. Prior to loading received data into the data
latch its contents are unknown (or the last received).



Summary 365

|0ns |200ns |400ns |600ns |800ns |1 .Ous
L O O O v o vy

test.rst

test.clk

test.din

test.en

test.ack
test. DRY
test.ERR|

Il

test.A

test.B

test.C

test.D
test.0OQO
test.0Q1
test.0Q2
test.0Q3
test.0Q4
test.0Q5
test.0Q6
test.0Q7

L
H

Figure B.14 The complete asynchronous receiver simulation.

B.10 SUMMARY

This appendix has introduced simple ways to develop synchronous up and down pure binary
counters, with or without parallel-loading inputs that can be used in a PLD or FPGA device. It
has also described how parallel-loading shift registers can be developed and used.

These techniques may be used to develop Verilog HDL modules for use in some of the designs
covered in this book. Bit slice equations have been developed to allow counters and shift register
circuits to be constructed directly in equation form in Verilog HDL.

Finally, some of these ideas have been used in the development of an asynchronous serial
receiver, complete with their Verilog modules.



Appendix C: Tutorial on the
Use of Verilog HDL to Simulate
a Finite-State Machine Design

C.1 INTRODUCTION

This appendix quickly describes an FSM model in Verilog code and then simulates it using
SynaptiCAD’s VeriLogger Extreme simulator. The code for the model, VeriLogger Extreme,
and the code for most of the examples in the book are contained on the CDROM provided with
the book.

A more detailed account of the Verilog HDL is provided in Chapters 68, where the language
is developed at a slower and more defined pace.

C.2 THE SINGLE PULSE WITH MEMORY SYNCHRONOUS FINITE-STATE
MACHINE DESIGN: USING VERILOG HDL TO SIMULATE

The design of a single-pulse generator with memory is outlined and then a Verilog HDL file is
created. This Verilog file will use the most basic of the Verilog methods so as to keep it simple.

C.2.1 Specification
Whenever input s is asserted high, a single pulse is to be generated at the output P. Signal s must
be returned low and then reasserted high again before another pulse can be generated. In

addition, a memory output L is to go high to indicate that a pulse has been generated; going
low again when the s input is returned to logic 0.

C.2.2 Block Diagram

Figure C.1 illustrates the block diagram of the system.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4



368 Appendix C

Input s ——»

Qutput P
Single-Pulse
Generator Output L
Clock with —
Memory
FSM

Figure C.1 Block diagram of the system.

C.2.3 State Diagram
A state diagram is implemented as illustrated in Figure C.2.
C.2.4 Equations from the State Diagram

The equations can be derived directly from the state diagram of Figure C.2, in this case using
D-type flip-flops:
A-d=s0-s5+sl
=/A/B-s+A/B
=/B-s+A/B
B-d=sl+s2+4s3"5s
A/B+AB+ /AB-s
=A+B-s.

The output equations are
P=s1=A/B and L=52+s3=B.

AB AB AB
00 10 11

/s

/s_|

Additional
dummy state

Figure C.2 State diagram of the system.



The Single Pulse with Memory Synchronous Finite-State 369

C.2.5 Translation info a Verilog Description
These equations can be translated into their Verilog form as shown below:

ad = ~B&s | A&~B,
bd = A | B&s,

P = A&~B,

L =B;

Here, the AND operator (+) is replaced with (&), the OR operator (+) replaced with (| ), and the
NOToperator (/) replaced with (~). Also, each equation ends with acomma (,) except for the last
equation which is ended with a semicolon (;). Finally, the whole equation set must be placed into
a continuous assignment thus:

assign

ad = ~B&s | A&~B,
bd = A | Bés,

P = A&~B,

L =B;

Now the Verilog HDL file will be created. To create a design using the equations justderived, a
Verilog HDL file using the data-flow mode of design will be created; that is, the Verilog HDL file
is developed using the predefined logic equations.

Alternative ways would be to develop the Verilog HDL file using the logic gates required to
build the design or to use a behavioral structure. These alternative methods are described in
Chapters 6-8.

In Verilog, a design is built up using one or more modules. A module can have one or more
inputs and one or more outputs that define its terminal properties. These can, in turn, be
connected together by wires.

In this example, the Verilog description is made up of three modules:

e the module that describes the behavior of the D type flip flop used in the design;

o the module that describes the FSM;

e the module that describes the tests to be carried out on the design (usually referred to as a ‘test
fixture’, or ‘test bench’, or ‘test module’).

The first module consists of a behavioural description of the D-type flip-flop used in the
design. Despite what has been said about the behavioural method, the D-type flip-flop is a
standard circuit element that will behave as expected. This D flip-flop is created as a module
called D_FF. It is illustrated in Listing C.1.

module D FF (output g, inputd, clk, rst);
regq;
always @ (posedge clk or negedge rst)
if (rst==0)
q<=1'b0;

g w N



370 Appendix C

6 else
7 q<=d;
8 endmodule

Listing C.1 The module to define the D-type flip-flop used in the design.

The behavioural description of the D-type flip-flop is a description of its terminal behavior.
The key words module and endmodule define the beginning and end of the module. D_FF is
its name, and the signals between the parentheses are the terminal signals of the flip-flop. In this
case, g is the output and d, clk, and rst are inputs. The keywords output and input are needed
to define the signal types. The line numbers are provided for reference purposes only; they are
not entered when creating this Verilog code.

The flip-flop output needs to remember its last (present) state, so is further declared as a
register using the keyword reg in line 2. Note that each of the lines 1, 2, 5, and 7 ends with a
semicolon.

In line 3, an always keyword is used to define the conditions under which lines 4 to 7 will
occur. Verilog is defining hardware, and each part of the hardware description needs to be able to
execute in parallel. Thus, the always keyword with @ is used to define the conditions under
which the assignments on lines 5 and 7 will occur. In this case, the conditions are either when
thereisalogic Otologic 1 transition on the clk signal (referred to as posedge), or there is alogic
1 to logic O transition on the rst signal (referred to as negedge).

In line 4, the conditions upon which of the two assignments on lines 5 and 7 will occur are
specified using the if and else keywords. Here, if the input signal rst is logic O, then the
assignment on line 5 will occur, i.e. g <=1"'Db0;, otherwise the assignment in line 7 (under
the else) will occur, i.e. g <=d; . Note the use of <= rather than =. This is preferred in a
sequential block (see Chapter 6 for details on why this is the case).

The assignmentinline5,i.e. g <=1"'b0;, assigns thelogic value O to the outputg. The 1 ' b0
is the way that Verilog defines a single binary bit to logic 0. Logic 1 would be 1 'b1. Hence, the
syntax is <number of bits>'"'b< binaryvalue, 0 or 1>.

The assignment in line 7, i.e. g <=d;, simply makes the g output equal to the input signal
value of d, this being the required behaviour for the D-type flip-flop.

Finally, line 8 defines the end of the module.

Thus, itis seen that the module D_FF defines the terminal behavior of a D-type flip-flop. If the
rst (reset) is taken low (negedge rst), then the if (rst == 0) will be true and the
assignment of line 5 will occur g<=1 "'Db0; to reset the flip-flop. Thereafter, 1f rst is taken
to logic 1 (reset removed from the rst input of the flip-flop), every time the clock input clk
receives alogic O to 1 transition (posedge c1k) the g output will take on the logic value of the d
input.

The behavioural methods to define logic circuits and systems are fully described in Chapters 6
and 7.

In the second module (shown in Listing C.2), called the FSM module, two instances of the
D_FF are created from the D_FF module, one called FFA in line 3 and the other FFB in line 4.
These are connected to the circuit of the single-pulse FSM; see signals inside the parentheses of
FFA and FFB.



The Single Pulse with Memory Synchronous Finite-State 371

1 module fsm(input S,clk, output?p,L,A,B);

2 wiread, bd;

3 D FFFFA(A,ad,clk,rst);
4 D FFFFB(B,bd,clk, rst);
5 assign

6 ad=~B&s | A&~B | A&~s,
7 bd=A| B&s,

8 P=A&~B,

9 L=B;

10 endmodule
Listing C.2 The FSM module.

Note that the terminal signals for the FSM are declared between the parentheses in line 1; they
are also defined as inputs and outputs. Note also that the flip-flop outputs A and B are defined here
as well. Each instance of the D flip-flop needs to be connected to external gates defined in the
assignment block so they need to be defined for each flip flop instance.

Inline 2, the signals ad and bd (the d inputs to each flip-flop) are defined as wires, since they are
internal to the FSM module. Lines 3 and 4 define instances of the two flip-flops, using the D_FF
name, followed by an instance name (FFA for flip-flop A and FFB for flip-flop B).

Note here that the A output is placed firstin the parameter list since it is a g output from the flip-
flop, the data d input is the ad, the clock input clk, and finally the reset input rst. Flip-flop B
follows in the same manner.

So, by defining the signals used by the D_FF as g, d, clk, and rstin the behavioral description of
the D flip-flop, these signals can then be connected up to the signals A, ad, clk and rst of the FFA,
and B, bd, clk and rst of the FFB used in the FSM. The order of these signals is important.

The logic equations follow in lines 6-9; note that this continuous assignment begins with a
Verilog keyword assign, which is needed so that the Verilog compiler can distinguish the
following logic equations.

Each line ends with a comma, except the last line 9, which should end with a semicolon, thus
defining the end of the continuous assignment. The assignments make use of the = (blocking
assignment), since the equations can take place in any order (see Chapter 6 for explanation).

Inline 10 the Verilog keyword endmodule is used to terminate the module that describes the
FSM.

Note that in earlier versions of Verilog the modules were defined as shown in Listing C.3.
Here, the inputs and outputs are defined after the module header in lines 2 and 3, rather than on
the module header in line 1. This is a minor difference, and some older versions of Verilog use
this arrangement and not the one shown in Listing C.2.

1 module fsm(s,clk, P,L,A,B); // signals here are not specified as
inputs or outputs.

2 inputs,clk; // inputs defined here, not in the header.

outputP,L,A,B; // outputs defined here, not in the header.

4 wire ad, bd;

w



372 Appendix C

5 D FFFFA(A,ad,clk, rst);
6 D _FFFFB(B,bd,clk, rst);

7 assign
8 ad=~Bé&s | A&~B | A&~s,
9 bd=A| B&s,

10 P=As&~B,

11 L=B;

12 endmodule

Listing C.3 Alternative ‘older’ way to define a module.

The two modules defined so far, DFF and FSM, are all that are required to define the FSM.
However, in order to test the FSM to ensure that it is correct and performs in the way intended in
the specification, a third module is required. This is the test-bench module.

C.3 TEST-BENCH MODULE AND ITS PURPOSE

Figure C.3 illustrates the arrangement of the test-bench module in relation to the FSM module,
from which it can be seen that the test-bench module provides test signals (outputs that are
registered) to the FSM module. These outputs from the test-bench module are used to test the
FSM by applying the signals s, rst, and clk in such a way as to test the operation of the state
diagram, and hence the FSM.

The test-bench sequence is created by observing the requirements of the state diagram and
applying the signals s, rst, and clk so that it can test for all conditions. It is the test-bench module
that will define the sequence of signals that will be applied to the FSM in order to verify that the
state diagram structure is followed correctly. Test-bench modules can be defined in amuch more
concise form than the one shown here, and you will learn about these in Chapters 6 and 7.

St
Output P
Single-Pulse
Generator Output L
. —
Clk with
Memory
Test FSM
Bench
Module
rst
rst J

Figure C.3 Connection of test-bench module to the FSM for testing.



Test-Bench Module and its Purpose 373

The test-bench module is shown in Listing C.4. This is a simplistic way to define the test-
bench module and is the easiest to understand. Chapters 6-—8 contain other ways to define these.

~ o O B>

O

11
12

13
14
15

16
17
18

19

20
21
22

23
24

25
26
27

//The Test Bench module.

module test;
regs,clk,rst;
fsmsingle pulse(s,clk,rst,P,L,A,B);

initial
begin
$dumpfile ("single pulse.vcd");
$dumpvars;
// initialise the inputs.
s=0;
rst=0;
clk=0; //clknormallylow.
//should stay in s0 since reset still on.
#10 clk=~clk;
#10 clk=~clk;
//release reset, should stay in sO.
#10 rst=1;
#10 clk=~clk;
#10 clk=~clk;
// set s to 1 tomove to sl.
#10 s=1;
#10 clk=~clk;
#10 clk=~clk;
// move to s2 on next clock pulse.
#10 clk=~clk;
#10 clk=~clk;
// andon to s3onnext clockpulse.
#10 clk=~clk;
#10 clk=~clk;
// should stay in s3 on next clock pulse
// since s still 1.
#10 clk=~clk;
#10 clk=~clk;
// let s=0 to allow fsm to return to s0
// on the next clock pulse.
s=0;
#10 clk=~clk;
#10 clk=~clk;
// go around the loop again using
// repeat loop with 4 clk pulses.



374 Appendix C

28 #10s=1;

29 repeat (8)

30 #10 clk=~clk;
// back to s3

31 #10 s=0;

32 #10 clk=~clk;

33 #10 clk=~clk;

// back to s0.

// finish the simulation.
34 #10 $finish;
35 end
36 endmodule

Listing C.4 The test-bench module.

The module of Listing C.4 starts at line 1 and is simply called test. It does not have, nor
indeed does it need, any input parameters apart from those in line 2, i.e. the signals to connect to
the FSM. These are s, clk, and rst and are defined as registers using the reg keyword. This is
because the signal values to be defined within the test module need to be remembered (stored in a
register type) during the test sequence.

The FSM module is instantiated in line 3, and given the name single pulse.

The signal assignment between the parentheses must follow the same order as that in the FSM
module definition.

What follows in lines 4-33 is the sequence of signal values to be applied to the inputs of the
FSMto test that the state sequence (and outputs) are correct. The sequence is obtained by looking
at the state diagram and applying signal values that allow the FSM to be completely tested. The
comment lines (beginning with //) indicate the test being carried out.

The state diagram (Figure C.2) and Listing C.3 should be studied to see how the test sequence
has been obtained from the state diagram.

The keyword initial in line 4, followed by begin in line 5, defines the start of an
initialization block that ends with the keyword end in line 35. There are more elaborate ways to
do this, and these are discussed in Chapters 6 and 7.

Inthe initial block, the logic level of the outputs s, rst, and clk are defined in lines 8, 9, and
10, all set to logic 0. In the case of the clock signal clk, this defines the clk to be initially at logic 0,
so that any clock pulses will be O to 1 transitions.

Inline 11, the clock signal clk is toggled to logic 1, theninline 12 itis toggled to logic 0 again.
This is how a clock pulse is produced. ~c1k simply inverts the logic level of the clk signal.

The purpose of the test in lines 11 and 12 is to ensure that with the reset rst = 0 the FSM will
remain in state sO (see state diagram in Figure C.2).

The rst signal is raised to logic 1 in line 13, but notice that the assignment is

#10 rst = 1;

The significance of the #10 is that it will delay the assignment 10 time-units before it will allow
rst to become logic 1. The actual delay value can be specified, but for now assume it to be 10 ns
into the simulation. So what has happened here is that the signals s, rst, and clk were assigned the



Test-Bench Module and its Purpose 375

value O at time O ns, then after 10 ns the signal rst was assigned the value 1. In this way, a sequence
of test signals can be applied sequentially to the FSM under test by changing signal levels after a
certain time interval. The clock pulse inlines 11 and 12 can now be seen to create a clock pulse of
10 ns duration.

Inlines 14 and 15, another clock pulse is produced (clk going 0 — 1 — 0); however, since s is
still at logic 0, the FSM should remain in state s0.

Inline 16, s is made equal to logic 1 and the FSM can now clock through from s0 to s3 on the
clock pulses produced in lines 17-24.

At line 23 and 24, the FSM should remain in s3, since s is still at logic 1.

Atline 25, s = 0 and the FSM can return to sO on the next clock pulses in lines 26 and 27.

Atline 28, s is again raised to logic 1, and in lines 29 and 30 a repeat block is used to cause
the FSM to step through states s0 to s3 to produce four clock pulses. This arrangement allows a
number of operations (in this case clock pulses) to be produced in a loop. In line 31 the input s is
cleared to 0. The next two clock assignments in lines 32 and 33 cause the FSM to move back to its
initial sO state. Finally, the simulation finishes at line 34 with the keyword $fini sh (this could be
replaced with $stop).

The whole Verilog file is compiled and simulated. If there are any errors in the design (these
could be syntax errors, i.e. spelling mistakes or errors in the design), then these need to be
eliminated and the process of compiling and simulation repeated.

Note that pressing the compile button (see Figure C.4) brings up a file-modified window.
Click ‘yes’ and then click the simulate button to resimulate after errors have been corrected.

This FSM has been simulated using the SynaptiCAD’s VeriLogger Extreme simulator.
Figure C.4 is a screenshot of the VeriLogger Extreme with the source Verilog code displayed
in the left-hand window and the waveforms of the simulation displayed in the right-hand
window.

#.-BugHunter Pro (running Yerilogger Extreme) =] B3
Fle Import/Export Edt Bus Parameterlbs Project Edtor Simulate Report Yiew Oprions Window Help

|lem@>=ad6 |®aa & [seach i R [ T e | T
| _uoun | ||[veritog Sz |G D oworry oo m | & pEfime =los 5] | S o [[elp

Srsmspwmy |
Project Herarchy Drecton | module D_FF(q. d.clk rst): =

output reg q:
input d, clk. rst:
alwvays @ (posedge clk or negedge rst)

= (O Simulated Model

[ test
(5 Signals if (rst == 0)
&2 Variabl q <=1'b0;
o = else

& single_pulse end:cvél—l?é

75 stimulus & Results (StimulusandResulks. btim)
simulation.log
=) () User Source Files
7 (o FSMSPUM.Y

module fsm{input S.,clk, rst., output P.L. A B):

wire ad., bd:

N = R T HEX
T e T e i e R s e el s e C:\SynaptiCAD\project \FSH1 sinxsin 4

PLI veriusertfs array loaded from =

Diagra andResults.b = | ==
-
/dd Signal [ Add Bus Delay [ setup [ Sagle +% = J = [o]>]

SynaptiCAD VHDL-Verilog simulator r
2roons|ssdnslions, Pore [o0n | [isone |, poonY, | o | il STeeHCAD VT Veriles siwistor
= i - sim> start_corba_nsg_punp
sim> rTun
Simulation finished via $finish(1)
— Simulation time: 0.0 = (CPU time: O
! sim> start_corba_nsg_punp
sim> exit
| S Process exited with code 0.
| —
0 U 5 N W _FI
‘ »
4 | r simulation log { waveperl log g‘ Breakpoints ,f Erors [ Grep ,f |
<« [ 2]
[  localhost: Connected Simulation Good | N2 | .0 Call0

Figure C.4 Screenshot of VeriLogger Extreme running under the BugHunter graphical debugger.



376 Appendix C
C.4 USING SYNAPTICAD’S VERILOGGER EXTREME SIMULATOR

Install SynaptiCAD’s VeriLogger Extreme Simulator located on the CDROM provided with the
book or on SynaptiCAD’s website at www.syncad.com. This installation is the evaluation
version of the program, which is capable of simulating small Verilog projects and displaying the
results. Youmay contact SynaptiCAD directly to purchase a full version (or student version) that
can simulate larger models and save the results files.

Run VeriLogger Extreme:

e Choose Start > SynaptiCAD > Simulation Debug > VeriLogger Extreme + BugHunter
menu to launch the simulator with the graphical debugger.

e Notice that the Help > BugHunter VeriLogger Manual menu launches a help program with
the full simulator instructions.

e Alsonotice that Help > Tutorials > Basic Verilog Simulation is a tutorial on how to use the
graphical interface and test-bench generation features of VeriLogger Extreme.

Create a project to store the list of files to be simulated:
e Choosethe Project > New Project menu to open the New Project Wizard dialog (Figure C.5).

e In the Project Name box, type in FSM1, then click the Finish button. This will create a
project file named FSM 1.hpj in the directory specified.

Copy or Create-&-Add the source file to the project:

e Either copy the source file, by right clicking on the User Source Files Folder and choosing
Copy HDL Files to Source File Folder from the context menu which will open a file dialog

New Project Wizard [ 7] |

Praject Mame: I Fami|

Project Directory: | 1\ SynaptiCADiproject) J

Project Location: | Y\ SynaptiCADprojectiFSM1Y

™| Transackion-based Test Bench Generation

Project Settings

Praject Language: I'u'erilog v[ {* Disable C++

{ TestBuilder Inteqration

Simulator I\-'erilugger Extreme 4

Cancel | Einish

Figure C.5 Project wizard screen.



USING SYNAPTICAD'S VERILOGGER EXTREME SIMULATOR 377

[AProject - FSM1.hpj

| Project Hierarchy
? (31 simulated Madel

775 Stimulus & Resulks (StimulusandResults, btim)

Add HOL Files to Source File Folder. .
Copy HOL Files to Source File Folder. ..

Figure C.6 Showing how to copy source file of Listings C.1-C.4 to project.

(Figure C.6) and then use the browse button in the dialog to find the FSMSPWM.v on the
CDROM.

e Orcreateafile called FSMSPWM.v by choosing the Editor > New HDL File menu option to
open an editor window. Type in your source code printed in this appendix and save the file.
Then add the file to the project by right clicking on the User Source Files Folder and choosing
Add HDL Files to Source File Folder from the context menu.

[{(z) D ooy o 00 @ | | pEfime  +ffas ]

Figure C.7 Tool bar to build and simulate the code.

Ons  (0ns (1005 |130ns  [200ns  (2A0ns
e e O O O

tost S

test ok

testrsf

lstP N N
test

testA

testB

Figure C.8 Verilog simulator output waveforms.




378 Appendix C

Build and simulate the code:

e First, build the project by pressing the yellow Build button on the simulation button bar or
selecting the Simulate > Build menu (Figure C.7).

e Building the project compiles the source files, fills the project window with the hierarchical
structure of the design, and sets watches on all the signals and variables in the top-level
component. A build will automatically be done each time the simulation is run, but having a
separate build button enables you to create the project tree without having to wait for a
simulation to run. After the build you are also able to set the top-level component for the
project and/or select additional signals to watch using the project tree context menus. Watch
signals are those listed in the Stimulus and Results diagram.

e Check the Report window to find any syntax errors found by the build.

e Next, start the simulator by pressing one of the green buttons on the Build and Simulate button
bar. Section 2.1 Build and Simulate in the on-line help explains the differences between the
types of single stepping and running.

e The simulated signals should appear in the Waveform window (Figure C.8).

e To produce waveforms with vertical transitions, first select the Options >Drawing Prefer-
ences menu to open a dialog, and then in the Edge Display section and check the Straight
radio button.

C.5 SUMMARY

This tutorial looks at only one of many ways in which to develop a Verilog description of an FSM
design. Other ways are discussed in Chapters 6-8. This tutorial also shows how you can use
SynaptiCAD’s VeriLogger Extreme simulator to verify your FSM design.

The design method is very easy to apply, with all the design information contained within the
state diagram. This information can then be ‘extracted’ via the equations in order to synthesize a
given design. The simulation of the circuit can then be used to confirm the design. The latest
version of the software used in this tutorial can be downloaded free from SynaptiCAD at http://
www.syncad.com. The version of VeriLogger Extreme may be updated from time to time, and a
more recent copy of the demo version can be down loaded from the above website.



Appendix D: Implementing
State Machines using Verilog
Behavioural Mode

D.1 INTRODUCTION

In Chapters 1-5, state machines have been implemented using the equations obtained from the
state diagram. This approach ensures that the logic for the state machine is under complete
control of the designer.

However, if the state machine is implemented using behavioural mode, the Verilog compiler
will optimize the design.

There is a very close relationship between the state diagram and the behavioural Verilog
description that allows a direct translation from the state diagram to the Verilog code.

D.2 THE SINGLE-PULSE/MULTIPLE-PULSE GENERATOR WITH MEMORY
FINITE-STATE MACHINE REVISITED

In this system there are two inputs: s to start the system and x to choose either single-pulse or
multiple-pulse mode. In single-pulse mode, the L ouputis used to indicate to the user thata single
pulse has been generated. In multiple-pulse mode, L is suppressed. Figure D.1 illustrates the
state diagram for this system.

Rather than derive the equations directly from the state diagram, a Verilog description can be
obtained directly from the state diagram of Figure D.1. This is illustrated in Listing D.1.

// Behavioural State Machine.
module pulsar (s, clk,rst,P,L,ab);
1 inputs,clk,rst;

2 output[1:0] ab,P,L;

3 reg[l:0] state, P, L;

4 parameter s0=2' b00, s1=2" b01, s2=2'bll, s3=2" b1l0;

// now define state sequence for FSM (from state diagram) .
5 always @ (posedge clk or negedge rst)
6 if (~rst)
state <=5s0;

~J

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4



380 Appendix D

8 else

9 case (state)

10 s0: if (s) state <=sl; else state <=s0;
11 sl: state <=1s2;

12 s2:1if (~x) state <=5s3; elsestate <=sl;
13 s3: if (~s) state <=s0; else state <=1s3;

14 endcase
// now define the outputs @ each state.

15 always @ (state)

16 case(state)

17 s0: begin P=1'" b0; L=1" b0; end

18 sl: begin P=1'Dbl;

19 L= (state==sl) & ~x; //mealy output.
20 end

21 s2:beginl= (state==s2) &~x; P=1"b0; end
22 s3:beginP=1"'b0; L= (state==s3) & ~x; end
23 endcase

24 assignab = state;

25 endmodule

Listing D.1  Verilog description of the state diagram.

A comparison between the state diagram of Figure D.1 and the state machine behaviour can
be made.

In Listing D.1, lines 5—14 define the state diagram sequence in terms of states and input
signals, and lines 15—-24 define the outputs in terms of each state. Both of these sets of lines are, of
course, happening at the same time (i.e. in parallel).

After declaring the module and its signals in lines 1 and 2, the inputs and outputs are
defined.

Outputs are defined in line 2. Note the 2-bit vector [1: 0] ab that will be used to show the
state of the FSM (Figure D.2). Line 3 defines the state vector [1: 0] state used to keep track of the

AB AB x| AB

/S

/S_|

AB
10

Additional
dummy state

Figure D.1 State diagram for the single pulse with memory FSM.



The Single-Pulse/Multiple-Pulse Generator with Memory 381

current state of the FSM, as well as the outputs P and L as register type. Line 4 defines the secondary
state variables for each state of the state diagram (Figure D.1). Note, these follow the binary values
defined for each state in Figure D.1.

Inline 5, an always statement defines the conditions under which the case statement (lines
9-14) will be used. Inline 6, the reset state is defined if rst transition is 1 to 0; otherwise the else
will allow the case statement block (lines 10—14) to occur.

The case statement defines the four possible states that the FSM can reside in, and the
conditions under which the state transitions occur. The case uses the present state to select one
of the four possible next states. Initially, after areset, state will be sO (2’ b00) atline 10and the i £
statement evaluates input s.

If input s is logic 1, then the next state will be s1; otherwise it will be s0.

On the next posedge of the clock signal the case statement will be activated again. If the
current state is s1, then at line 11 the next state will be s2.

Then, on the next posedge of clk, line 12 will ensure that the next state will be either s3 if
x = 0, orslifitislogic 1. In line 13, the test of input s will decide whether the FSM moves to sO
(s = 0) or remains in s3.

Thus, the state sequence is determined by the case statement and use of the i £ statement to
evaluate input conditions, or just define the next state if no input condition is needed.

The output conditions are defined in a separate case block using outputs for each state as
defined in the state diagram. Note that, in line 19, the Mealy output for L in state s1 is defined as

L= (state==sl) & ~x;

This ensures that L will be determined by the value of input x(x = 0) and conditional on being in
state s1, i.e. L =sl - /x as defined in the state diagram.

Thus, in this way, ouput L will only be logic 1 if the inputx = O and the FSMisinsl; otherwise
it is suppressed. Output P will be assigned a logic 1 value.

Other case conditions are defined in a similar manner and assigned the output values defined
in the state diagram of Figure D.1.

Comparing the behavioural statements from lines 5-14, and lines 15-25 with the state
diagram of Figure D.1, itis possible to see a strong relationship between the Verilog description
and the state diagram.

Using this approach allows an FSM design to be created without the need to define any
hardware logic. It is in fact a "terminal behaviour and sequence’ for the FSM.

Listing D.2 defines the test-bench module for the system. This follows along the lines of other
test-bench modules used elsewhere in the book.

// now define the test bench fixture. .
module test;
regs,clk,rst;
wire[1l:0] ab;
wirep, 1;
pulsaruut(s,clk,rst,p,1l,ab);
initial
begin

rst=0;

clk=0;

s=0;



382 Appendix D

x=0;

#10 clk=~clk;
#10 clk=~clk;
//stays in s0.
#10 rst=1;

#10 s=1;

#10 clk=~clk;
num; 10 clk=~clk;
// moves tosl.
#10 clk=~clk;
#10 clk=~clk;

// moves tos2.
#10 clk=~clk;
#10 clk=~clk;

// stays ins2.
#10 s=0;

#10 clk=~clk;
#10 clk=~clk;

// moves back to s0.
// nowmake x=1 toproducemultiple pulses.
#10 x=1;

#10s=1;

#10 clk=~clk;
#10 clk=~clk;

// move to sl

#10 clk=~clk;
#10 clk=~clk;

// move to s2

#10 clk=~clk;
#10 clk=~clk;

// move to sl again
#10 clk=~clk;
#10 clk=~clk;

// andback to sl
#10 clk=~clk;
#10 clk=~clk;

// s2 again

#10 clk=~clk;
#10 clk=~clk;
#10 x=0; //prepare to stopmultiple pulse mode.
#10 clk=~clk;
#10 clk=~clk;

// tos3.

#10 clk=~clk;
#10 clk=~clk;
#10 s=0;

#10 clk=~clk;
#10 clk=~clk;

// back tos0.

#10 $stop;



The Memory Tester Finite-State Machine in Section 5.6 383

end
endmodule

Listing D.2 The test-bench module.

Figure D.2 illustrates the simulation waveforms for the design. Note the vector ab defi-
ning the state of the FSM at each clock transition. Compare this with the state diagram of
Figure D.1.

You should follow the waveform sequence to determine the paths taken through the state
diagram sequence. Both modes are tested and seen to work:

with x = 0, the FSM is seen to produce a single output pulse;

with x = 1, the FSM produces a series of output pulses as it moves between s1 and s2, finally
returning to state sO when x = 0.

Ons ‘100ns ‘ZOOns ‘300ns
B

tests

test.clk

testx

testrst

testabl 0 [T13[ 2] 0 [T{3[1[3]1/3] 2 |0

testP

testL ‘L

Figure D.2 Simulation of the FSM using Listings D.1 and D.2.

D.3 THE MEMORY TESTER FINITE-STATE MACHINE IN SECTION 5.6

This example can be coded directly in Verilog as a behavioural description using the state
diagram of Figure 5.15. The listing is illustrated in Listing D.3.



384 Appendix D

module
memory tester state machine(clk,rst,st, fab, full,RC,P,CS,RD,WR,0K,
ERROR, abc) ;

inputclk, rst,st, fab, full;

output([3:0] abc, RC, P,CS,RD, WR,OK, ERROR;

reg(3:0] state, RC, P,CS,RD, WR,OK, ERROR;
// assign secondary state variable values (asused in Figure 5.15)
parameter s0=4' b0000, s1=4"b1000, s2=4’' 1010, s3=4" b0010,
s4=4'b0110, s5=4"b1110, s6=4"b1100, s7=4' b1101,
s8=4'b1001, s9=4'bl1l011, s10=4"b0100;

// the state machine sequence. .

always @ (posedge clk or negedge rst)

if (~rst)
state=s0;

else

case (state)
sO: if (st) state<=sl; else state <=s0;
sl: state <=s2;
s2: state <=1s3;
s3: state <=s4;
s4: state <=s5;
s5: state <=1s6;
s6: if (fab) state<=s7; elsestate <=1s10;
s7: state <=s8;
s8: if (full) state <=s9; else state <=s1;
s9: state <=s9;
s10: state <=s10;

endcase

// the outputs for each state.

always @ (state)
begin
{RC,P,CS,RD,WR,0K,ERROR} =7 b0011100;
case(state)
s0: beginassignRC=1’ b0;
P=0;
Cs=1;
RD=1;
WR=1;
OK=0;
ERROR=0;
end
sl: beginassignRC=1’bl;
CS=1"b0;
P=0; end
s2: begin WR=1’ b0; end
s3: begin C S=1’ b0;



The Memory Tester Finite-State Machine in Section 5.6

385

s4d:
s5:
s6:
s7:
s8:

s9:

s10
endcase

end

WR=1" bl; end
begin end
begin RD=1’ b0;end
begin end
begin RD=1’ bl; end
begin CS=1’'bl;
P=1"Dbl; end
beginOK=1' bl;
P=0; end
: begin ERROR=1’ bl; end

assignabc =state;
endmodule
module test;

reg st,clk, rst, fab, full;

wire|

3:0] abc;

memory tester state machine

uut (clk, rst, st, fab, full,RC, P,CS,RD,WR,0K, ERROR, abc) ;

initial
begin
rst=0;
clk=0;
st=0;
fab=0;
full=0;
#10 rst=1;
#10 st=1;
#10 repeat (14)

#10 clk=~clk;

#10 rst=0;
#10 rst=1;

#10 repeat (10)
#10 clk=~clk;
#10 fab=1;
#10 repeat (16)
#10 clk=~clk;
#10 clk=~clk;
//#10 rst=0;
//#10 rst=1;
#10 full=1;
#10 repeat (20)
#10 clk=~clk;
#10 $finish;

end
endmodule

Listing D.3 Behavioural description of memory tester from state diagram of Figure 5.15.



386 Appendix D

|Ons |100ns |200ns |300ns |400ns |500ns |600ns |700ns
L O O O O O o O O o o o o e o o o I O O O I |
test.st J

test.clk

test.rst J |_|

test.fab |

test.full |

test.abc | 0 [8|A[2[6]E|C|4] 0 [8|A|2[6] E |C|D|9|8|A2[6]E| C D|9] B

testRC| | L]
test.P H H
test.CS| | [] [

test.RD ] ] ]

test WR _|_| L] L]

test.OK [
test. ERROR [

Figure D.3 Simulation of the memory tester FSM of Listing D.3.

The simulation is shown in Figure D.3.

The abc vector illustrates the FSM states in terms of the secondary state variables allocated in
the state diagram of Figure 5.15. These were assigned to provide a unit distance code, and the
numbers shown in the simulation in Figure D.3 are the hexadecimal values.

The FSM is seen to move around the state diagram from state sO (0) through s1 (8), s2 (A), s3
(2), 54 (6),s5 (E), s6 (C), then s10 (4) the error state. The FSM is then reset back to state sO and
recycles around the state diagram to s8 (9) and on to s9 (B) the OK state.

The write cycle (8, A, 2) is followed by the read cycle (E, C), and againin (8, A, 2,6, E, C, D).

D.4 SUMMARY

The use of a behavioural description has the advantage of using the information in the state
diagram directly. It can be seen that there is a one-to-one correspondence between the state
diagram structure and the Verilog structure, and this shows how the state diagram method can
allow a realization of the design directly (via the behavioural method) or via the Boolean
equations.

Both methods, owing to their formal descriptions, are suitable for computer implementation.
This has been exploited in a number of programs developed at Northumbria University by
postgraduate students.



	Front Matter
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Index
	Appendix A
	Appendix B
	Appendix C
	Appendix D



