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Abstract

The paper reports a design methodology that allows FPGA
programming bitstreams to be generated in seconds starting
from a very high level circuit description. High speed bit-
stream generation and manipulation is particularly impor-
tant for reconfigurable computing systems that can not wait
for the typical run times incurred by conventional flows. The
preliminary version of this system can generate bitstreams
from HDL source 12 times faster than the conventional flow
and future work may offer significantly larger speed improve-
ments.

1 Introduction

This paper describes how two separate technologies have
been combined to produce a system suitable for producing
dynamically reconfigurable computing systems. The Lava
[2] hardware description language allows circuits to be
described using powerful features like higher order functions
and polymorphism and permits layout to be effectively cap-
tured at the HDL level using layout combinators [7][8][19].
However, Lava does not provide any feature for performing
routing. The JBits system contains a high speed router that
can take a totally placed design and generate a Xilinx FPGA
programming bitstream. The JBits system has been extended
to accepted the output of the totally placed circuits generated
by Lava and turn them into programming bitstreams. This
results in a complete flow from high level description all the
way to programming bitstream in seconds.

The high performance of this system allows run-time
reconfiguration to be captured at the language level e.g.
dynamic specialisation (constant propagation at the circuit
level) by partial evaluation (in Lava) [14]. This provides
much needed support for automating certain types of
dynamic reconfiguration required by custom computing
machines.

The ability to describe reconfigurable systems in a high
level without expending a huge amount of effort on tedious
layout greatly facilitates the development of custom comput-
ing machines. As specialised tools and techniques like those
presented in the paper mature we expect the process of
designing for custom computing machines to become less
painstakingly slow.

The paper motivates the need for the a high performance
HDL-based flow for reconfiguration. Then the Lava HDL is
used to illustrate how total layout can be expressed in a high
level manner resulting in a fully placed EDIF netlist. The next
stage describes the JBits system with a Lava/EDIF interface
which completes the routing and generates the bitstream. An
example of a design that fills a Xilinx Virtex™ XCV300 chip
is subjected to both the EDIF/JBits flow and the conventional
flow and the relative performance is evaluated.

2 Motivation

Xilinx already offers a mainstream back-end flow that
accepts EDIF as input and produces a configuration datast-
ream as output. Over the years, this flow has become increas-
ingly sophisticated, producing ever smaller and faster
circuits. It is worth pointing out that this work is in no way
intended to replace this back-end flow: there is simply no way
to compete. However, there are a number of areas lacking in
the mainstream flow, which are important for the develop-
ment of custom computing machines.

The main area lacking is support for partial configura-
tion. Currently, there is no way to produce the partial
configuration frames for the small changes required to
change circuit A into circuit B using the mainstream tools.
The mainstream tools are designed and optimised to produce
single static circuits.

The second area lacking is the ability to very quickly pro-
duce configurations given an EDIF netlist. Though the
mainstream tools have become increasingly faster, there is
still considerable overhead in producing the configurations. If
the dream of moving from a HDL to configuration in seconds
is to be achieved, it is clearly not going to involve a conven-
tional flow.

In order to make the construction of a replacement back-
end flow feasible, we restrict the type of EDIF accepted by
the flow. The EDIF must be fully mapped, that is can only
consist of the primitives encountered in the Virtex CLB,
which is shown in Figure 1. This means that EDIF primitives
such as LUT4, FD and MUXCY are permitted, whilst AND4
and the like will be rejected. The second restriction is that the
EDIF must be fully placed. Each primitive must have an asso-
ciated RLOC property that specifies its position.



Figure 1 The Virtex CLB

An example of the type of EDIF accepted by the tools is
shown in shown below:

(instance lut2_21330
(viewRef prim

(cellRef lut2 (libraryRef lava_virtex_lib)))
(property INIT (string "6"))
(property RLOC (string "R-24C24.S1")))

(instance xorcy_21331
(viewRef prim

(cellRef xorcy (libraryRef lava_virtex_lib)))
(property RLOC (string "R-24C24.S1")))

(instance muxcy_21332
(viewRef prim

(cellRef muxcy (libraryRef lava_virtex_lib)))
(property RLOC (string "R-24C24.S1"))

EDIF represents the hand-over point between the front-end
and the back-end tools. As discussed earlier, the intention is
to produce a run-time system, where Lava would initially
produce the EDIF, and then the new back-end flow would
produce the partial configurations required to implement this
EDIF, offering a high-level language interface to run-time
reconfiguration. As such, the back-end flow must produce the
configurations much quicker than the mainstream tools. In
the second stage of this project Lava will be modified to
directly call the JBits interface.

Previous back-end replacement tools include the Trianus
system that targeted the XC6200 series [9], and acted as a
replacement for the XACT Step 6000 back-end flow [16].
Trianus offered a total flow from specification in the HDL
Lola through to an XC6200 series configuration datastream.
Trianus was assisted in part by the open architecture of the
XC6200 series devices. To the best of our knowledge, no
other back end replacement flow has been designed for the
proprietary Virtex format.

3 Circuit Layout in Lava

This section provides a brief overview of the features availa-
ble in the Lava HDL for describing and totally laying out cir-
cuits which can then be used by the JBits system for bitstream
generation. Lava is embedded in the functional programming
language Haskell and all the Lava code presented is legal
Haskell code.

3.1 Lava Co-ordinates
Lava provides a set of primitive components that can be
instanced and placed on a Cartesian grid which has the origin
at the bottom left hand corner. When an EDIF netlist is pro-
duced Lava converts the Cartesian LUT-based co-ordinates
into the form expected by the Xilinx design tools (row and
column based on slices with the origin at the top right and
with multiple LUTs in a slice depending on the architecture).

The general version of Lava allows circuits to be
described with blocks which contain laid out components but
which do not have any relationship to each other. This is sup-
ported by using the HUSET attributes to identify distinct
coordinate spaces. The JBits back-end for Lava insists that all
circuit elements are in the same HUSET i.e. every cell is
placed relative to every other cell. Without this restriction the
JBits system would not have a fully placed design to work on.

3.2 Primitive Components
Lava provides a commonly used set of primitive components.
Most of these components have a Lava dimension of (1,1) i.e.
one unit wide and one unit high. Depending on the architec-
ture several components can reside at the same location e.g. a
LUT (look-up table), XORCY (a special XOR gate used to
implement the result of an addition quickly) and MUXCY (a
special high speed carry propagation multiplexor) can all
reside at the same location if they are appropriately wired
together (see Figure 1).

Some languages require every possible type of combina-
tional gate function to be uniquely named (with an entity and
component declaration in the case of VHDL). Lava provides
a more flexible way for specifying the behaviour of 1, 2, 3 and
4 input and one output combinational functions (i.e. those that
can be implemented in a single LUT). Since functions are
first class objects in Lava, the lut2 circuit is really a circuit
constructor (or higher order function) which takes a function
of two inputs and one output at the Lava/Haskell level and
returns a circuit of two inputs and one output which imple-
ments that function.

For example, assuming that we have defined the follow-
ing boolean function in Lava that computes the exclusive OR
function:

exor :: Bool -> Bool -> Bool
exor a b = a /= b



we can then define the Lava gate the performs the exor func-
tion by passing this function to the lut2 function:

xor2 :: (Bit, Bit) -> Bit
xor2 = lut2 exor

This is how all the combinational functions in Lava are
implemented. The Lava system exhaustively evaluates the
function which is passed as a parameter to compute its truth
table which is then transcribed into a 2-input LUT with an
appropriate initialisation attribute. The lut2 combinator has a
higher order type as show below i.e. (Bool -> Bool -> Bool)
represents the type of a function or circuit.

lut2 :: (Bool -> Bool -> Bool) ->
(Bit, Bit) -> Bit

Note that lut2 takes a curried boolean function (which allows
partial application) but returns a circuit that requires a tupled
input (to facilitate composition). A curried function is a func-
tion that is only supplied some of its arguments resulting in a
residual function of fewer parameters. For example, for the
function add x y = x + y, of type Int -> Int -> Int, the curried
function add 72 has type Int -> Int and is a function that takes
one argument and returns a result which is 72 plus this argu-
ment.

The lut1, lut3 and lut4 combinators work in a similar
manner. It is even possible to directly write in a function as
the first argument to lut2 using lambda expression which rep-
resent functions (or circuits) as expressions:

or2 :: (Bit, Bit) -> Bit
or2 = lut2 (\a b -> a || b)

defines a two-input OR-gate using a lambda expression of
two bound variables and the built in Haskell or-operator ||.
Here are some other circuits:

inv :: Bit -> Bit
inv i = lut1 not

and2 :: (Bit, Bit) -> Bit
and2 = lut2 (&&)

mux :: (Bit, (Bit, Bit)) -> Bit
mux = lut3 (\s a b -> if s then b else a)

This feature allows users to describe any 1 to 4 input and one
output combinational function using the full expressive
power of the language. The Lava system also provides com-
binators for realising larger combinational functions by com-
posing LUTs together and connecting them with fast
resources like the F5/F6 multiplexers available in Virtex.

3.3 Serial Composition
In the JBits variant of Lava one can not simply instance sev-
eral primitive gates and wire up their ports and get an imple-
mentation (like in VHDL). Doing this does not say anything

about how to lay the circuits out. One could attach attributes
to each primitive element specifying its Cartesian co-ordi-
nate. However, except for the simplest circuits, this is a very
tricky and error prone task. For circuits with recursive struc-
ture and layout it is almost impossible.

Instead of separating the concerns of composing behav-
iour (i.e. connecting ports together) and layout (calculating
Cartesian co-ordinates) Lava provides circuit combinators
that compose behaviour and layout. This design decision has
allowed us to capture many kind of complex layout patterns
which in turn allows us to totally lay out circuits for the JBits
phase.

As a specific example of a layout combinator consider
left to right serial composition, written as the infix operator >-
> whose type is shown below:

(>->) :: (a->b) -> (b->c) -> (a->c)
(>->) f g x = <definition omitted>

This combinator takes a circuit f, supplies it with its input x
and then connects its output to the input of circuit g. It also
records the layout tile needed for circuit f and circuit g and to
ensure that circuit f is laid out to the left of circuit g. The result
of circuit g is returned as the result of the composite serial
composition.

As a concrete example, consider the definition of a
NAND gate shown below:

nandGate :: (Bit, Bit) -> Bit
nandGate = and2 >-> inv

The serial composition combinator causes the output of the
AND-gate to be connected to the input of the invertor: note
the left to right information flow. Figure 2 illustrates the basic
tiles and how they are connected and laid out by the serial
composition combinator which causes its first circuit to be
laid out to the left of the second circuit. If this circuit were
implemented on a Virtex part the AND-gate would be real-
ised in one slice and the invertor in the slice immediately
adjacent on the right.

Figure 2 Serial Composition



3.4 Parallel Composition

Another very useful combinator is parallel composition
which allows us to compose two circuits that do not commu-
nicate so that they are laid out vertically. The type of the par-
allel composition combinator is shown below:

par :: [(a->b)] -> [a] -> [b]
par circuits inputs = ...

This type says that the par combinator takes a list of circuits
and another list of inputs and applies to inputs respectively to
the circuits. Furthermore, the circuits are laid out vertically.
An example of parallel composition is shown in Figure 3

Figure 3 Parallel composition combinator

3.5 Map

Yet another useful combinator is map which replicates a cir-
cuit vertically across an input bus:

maP :: (a -> b) -> [a] -> [b]

and this is illustrated in Figure 4. This combinator is spelt
with a capital ‘P’ at the end to avoid a name clash with the
Haskell prelude function ‘map’.

3.6 Four Sided Tiles

The tiles presented so far have horizontal information flow
and interfaces only on the left and right hand sides. Lava also
supports four sided tiles which allow information to flow hor-
izontally and vertically. Four sided circuits are understood to
be pair to pair circuits where each element of each pair
describes the signal on a particular face of the tile. For exam-
ple, the below combinator takes one tile and places it below
another tile, connecting them on their common face, as shown
in Figure 4. There is also a beside combinator.

Figure 4 The below combinator

The type of the below combinator is:

below :: (((a, b) -> (c, d)) -> -- circuit r
((d, e) -> f, g)) -> -- circuit s
((a, (b,e)) ->((c,f), g))) -- result

3.7 Rows and Columns

This below combinator composes just two tiles that agree on
the type on their interface. Another powerful combinator is
col, which will compose any number of tiles. The source for
this combinator is shown below and an illustrative diagram is
shown in Figure 5. There is also a row combinator.

col :: Int -> -- Number of tiles in column
((a, b) -> (c, a)) -> -- circuit to replicate
(a, [b]) -> -- Type of input for col
([c], a) -- Type of output for col

4 An Example: A Vertical Adder

To illustrate the idiomatic use of some of the combinators
presented in the previous section we present the definition of
a ripple carry adder. First, we present the definition of the
basic full adder circuit:

fullAdder :: (Bit, (Bit, Bit)) -> (Bit, Bit)
fullAdder (cin, (a,b))

= (sum, cout)



where
part_sum = xor2 (a, b)
sum = xorcy (part_sum, cin)
cout = muxcy (part_sum, (a, cin))

Figure 5 A column of 4-sided circuits

This description simply instances three primitive elements
that can jointly reside in one element of the FPGA. The xor2
gate performs the exclusive-OR function, the muxcy circuit
computes the carry, and the xorcy gate is a special exclusive-
OR gate for computing sums from a partial sum and a carry.

The shape of the tuples used in this circuit description is
important. The first element of the input tuple identifies the
input signal entering the bottom of the tile (in this case the
carry in). The second element of the input tuple identifies the
two bits to be added (which come in through the left hand side
of the tile). The first element of the result identifies the output
signal at appears on the right hand side of the tile (in this case
the sum) and the second element identifies the output signal
at the top of the tile (the carry output). This is illustrated in
Figure 6.

Figure 6 A Full Adder ready for use in a column

To make a ripple carry adder all we have to do is to compose
several of these full adders into a column of full adders:

adder :: Int -> ([bit], [bit]) -> ([bit], bit)
adder size (a, b) = col size fullAdder (zero, zip a b)

This description takes a pair of bit-vectors, zips them together
so corresponding bits are paired, and then supplies this to a
column of full adders (using zero as the carry input) and
returns a pair which contains the sum and the carry output. An
adder of a specific size is easily specified:

adder4 = adder 4

and the resulting circuit is shown in Figure 7 which also
shows the actual FPGA layout of a 16-bit adder produced
from Lava.

It is useful to have an adder that does not take a carry
input and which adds the carry output to the sum to accom-
modate bit growth. It is also useful to have an adder whose
size is determined by the length of the input bit-vectors and
there should be no requirement on the input bit-vectors to be
the same length. We call such an adder verticalAdder and we
also require that this adder to throw away the carry to produce
an output the same size as the inputs.

Figure 7 A 4-bit Adder and the actual layout of a 16-bit adder

5 Adder Trees

The experimental circuit that we shall use for analysing the
performance of the Lava/JBits system is an pipelined adder
tree laid out horizontally with no bit-growth which results in
a rectangular footprint.



We assume the availability of a layout combinator called
middle which composes and lays out three circuits as shown
in Figure 8.

Figure 8 The middle combinator

Using this combinator we can define a recursive tree combi-
nator which makes a tree of 2-input 1-output components
laid out as shown in Figure 9. The definition of tree is:

tree :: ((a,a) -> a) -> [a] -> a
tree circuit [x] = x
tree circuit [x, y] = circuit (x, y)
tree circuit input
= (middle (tree circuit) circuit (tree circuit)) (halveList input)

Figure 9 A recursive binary tree layout

and using this combinator we can make an adder tree:

adderTree = tree verticalAdder

Four instances of a tree that adds 96 inputs have been placed
on top of each other to totally pack a XCV300 Virtex FPGA.
This design uses every slice of the chip and every component
has a layout specified. The circuit that we actually use is a
slight variant of this version because we register each result
to produce a pipelined adder tree. This is the test circuit used
to evaluate the JBits flow.

6 JBits

JBits was first presented under the name XBI in [10]. JBits is
derived from earlier work, which targeted the XC6200™

series called the Java Environment for Reconfigurable Com-
puting or JERC [17]. JERC offered a programming API that
allowed manipulation of the low-level configuration bits
through a symbolic interface. Each programmable resource
on the XC6200 was assigned a human-friendly name, and
interaction was allowed in both directions: user programs
could both read and write through these human-friendly
names. JBits is a similar configuration API, which currently
targets all members of the Virtex family, from the XCV50 to
the XCV1000. Again, users are given human-friendly names
for each programmable resource on the Virtex device, and are
given full, unrestricted read and write access to all resources.

JBits began as basically a configuration opener, opening
up a proprietary data format. However, under a DARPA-
funded project, JBits has added much more functionality,
making it a truly useful tool for more than just low-level PIP
manipulation. The current functionality is shown in Figure
10.

Figure 10 The JBits flow

The BoardScope tool, which is similar to the old Web-
Scope tool for the XC6200 series, now targets Virtex. A
similar tool, ChipScope is now shipped as part of the main-
stream Xilinx tool distribution. BoardScope offers a variety
of ways of viewing the circuit, including a power view, show-
ing areas consuming the most power on the device.
BoardScope operates in a variety of ways, either using local
hardware, hardware that is connected via a network, or more
recently, by using the DeviceSimulator application [11].
DeviceSimulator performs a direct simulation of the hard-
ware based on the configuration settings, and can be used
when no hardware is available. In certain cases, the DeviceS-
imulator will actually be faster than using hardware directly,
since there is no need to perform a readback operation in the
simulator.

Since Virtex routing is so much more complex than the
XC6200 series, possibly the most important difference
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between JERC and JBits is the JRoute API [13]. JRoute
allows a designer to specify a route in terms of a source and
any number of sinks. These are both defined as symbolic pins
on the device, so for example a route could be requested
between the X output of slice 0 at row 23 column 50 to the F1
input of slice 1 at row 14 column 22. JRoute will then deter-
mine the PIP settings required to make this route, and will
either set the PIPs to actually make the route (run-time rout-
ing) or print out the PIP settings, allowing the designer to cut
and paste this code into their main application (design-time
routing). Routing accounts for the vast majority of program-
mable resources on the device: making these routes manually
would be tedious and be prone to errors.

Support for core generation has now been added to JBits
through the CoreTemplate. This allows designers to construct
circuits by generating a hierarchy finishing at low-level prim-
itives, implemented by manipulations to the configuration
directly. EDIF and XDL can also be output by cores adhering
to the CoreTemplate. Finally, the JRTR [12] API is an exten-
sion of the JBits API to take advantage of the partial
reconfiguration support provided by Virtex devices. This
interface provides a caching model that automatically tracks
changes to configuration data. As a result, only dirty frames
requiring reconfiguration are amalgamated into a partial con-
figuration packet. This is all transparent to the user.

The old view of JBits performing low-level manipula-
tions listed in a user's application is becoming increasing rare,
outside of the CLB at least. However, the fact that 'PIP-pok-
ing' is still permitted opens up whole areas of research from
evolvable hardware, to the application under consideration in
this paper, the construction of an entire back-end implemen-
tation flow

7 Parsing the input

In order to get the EDIF into a form that is more easily manip-
ulated, it is necessary to parse the input file, and produce a
series of symbol tables, storing the required instances for
example. The EDIF was parsed using the Antlr translator
generator [15], which constructs a full parser given a gram-
mar. Using this tool, it is simply a matter of hanging actions
off tokens, so for example when instances are encountered by
the parser, the relevant information such as the instance name
and type can be stored. This parsing is by far the most time-
consuming part of the replacement back-end flow.

8 Mapping

Mapping normally covers the mapping of arbitrary logic
components such as AND gates onto the architecture specific
components such as LUTs and the carry chain logic. Since the
EDIF accepted by the back-end replacement is fully mapped
EDIF, there is no real mapping to do. However, one task that
remains is to pack the logic into one specific area of the CLB.

The placement constraints that are applied only define which
CLB to pack the logic into, they don't actually specify which
of the two LUTs to use for example. Referring back to Figure
1, a logical LUT can be mapped either to the F or the G phys-
ical LUT. Normally, it doesn’t matter which of these physical
LUTs is used, if the logical LUT is simply being used as
memory or for logic implementation. Asymmetry arises
when the LUTs must interact with either the carry logic, or
the logic expansion multiplexor F5. In the case of F5, there is
an optional inversion on the select line, so theoretically, logic
could be placed in either LUT. In the case of the carry chain
however, the order of the LUTs is important, since the carry
out produced as a result of the addition in LUT F is rippled
upwards to contribute to the carry out produced as a result of
the addition in LUT G. Therefore, the order of packing is
important.

This is covered in the back-end flow by examining the
placement constraints on elements in the carry chain. When a
MUXCY component is found which feeds a MUXCY in a
different CLB, then it is clear that the first MUXCY must be
mapped to the area around the G LUT. This then means that
all logic that interacts with this MUXCY component such as
a LUT or an XORCY can also be mapped into the area around
the G LUT. This may then in turn constrain the register.

At the end of the map stage, a data structure is produced
which contains a fully mapped version of the Virtex device,
with all primitives assigned to a particular CLB locations.

9 Placement

Placement normally deals with placing mapped logic to spe-
cific CLBs on the device, in order to minimize routing con-
gestion. Since all components are already placed in the new
flow, placement is simplified to two tasks. Firstly, it is neces-
sary to convert the relative placement constraints to real loca-
tions on the device. This stage also deals with the mismatch
between RLOC coordinates, where (0,0) is the top left hand
corner, and JBits coordinates where (0,0) is the bottom left
hand corner (the same as Lava). Since all RLOCs are relative
to an origin, it is necessary to place this origin in a position
such that all the logic will fit on the device.

The second task is to actually instantiate the components.
In reality, in an FPGA, the components all exist already in sil-
icon. So ins tant ia t ion is real ly more a mat ter of
parameterising the fabric of the FPGA. For example, no
action is needed to instantiate an XORCY: they are really
there. In the case of a LUT, some paramterisation is required,
in order to tell the fabric that the LUT is really to be used as
a LUT, not a RAM or a shift register, and also to define the
initialisation value of the LUT. This is a very simple task.



10 Routing

Routing normally deals with determining the interconnection
of primitives on the device. In the case of an FPGA, this will
define the settings of the various PIPs on the device making
up the nets. Normally this is the most time consuming part of
the implementation flow.

Rather like placement, often nets defined in the EDIF do
not actually need routing, since they already exist on the
device. For example, the net connecting the two MUXCY
components in the same CLB is always there w

her it is used or not. Similarly, some nets simply reduce
to the setting of internal multiplexors, and do not require an
explicit route to be determined. For example, in order to con-
nect the output of the F LUT to the D input of the FD, the
multiplexors marked by P and Q in figure 1 must be set
accordingly.

Some nets however do require the routing structure of
the FPGA to be used, and this is achieved using the JRoute
API. When end-points are encountered which are in different
CLBs, a call to JRoute is needed, and this is achieved by find-
ing the pin at the source of the net (an example would be the
XQ output of slice 0 at a certain location) and then finding all
the pins at the destination (an example would be the F1 input
of slice 1 at a certain location). JRoute is then called, and will
set the programmable resources required to implement that
specific net. If JRoute cannot find a route, this will be
reported back to the user.

11 Bitstream Generation

In the mainstream back-end flow, the output is produced by
the bitgen utility. bitgen does not produce partial configura-
tions (which is one of the major reasons why this replacement
flow is required). In the replacement flow, the PartialRecon-
figuration API of JBits is used, to construct a partial configu-
ration packet. The PartialReconfiguration API is also very
fast, as unlike bitgen, it does not perform any DRCs.

12 An Example

This section describes an example circuit which is fully spec-
ified and laid out in Lava and then JBits is used to perform the
routing and bitstream generation. This illustrates a rapid flow
from a HDL description all the way to a bitstream file.

12.1 The Example Circuit
The example circuit that we use is chosen to occupy just
about every cell of a XCV300 FPGA which can realise cir-
cuits of up to 300,300 gates. By packing the design so tightly
into the FPGA we are able to stretch the capability of the
routes in both JBits and in the Xilinx tools.

The example test circuit we chose was a stack of four
adder trees as shown earlier. Each adder tree is laid out hori-

zontally with enough adders for the width of the device (96).
Each adder tree is a quarter of the height of the device and we
use four of them to fully occupy the FPGA. It is important to
note that although this is a regular design with much repeti-
tion, our system in no way is dependent on regularity. The
Lava/JBits flow works just as well for heterogeneous circuits.

After mapping with the Xilinx tools the adder tree design
occupies 3,040 slices (98% utilisation) and uses 6,080 flip-
flops (98% utilisation) and 4,032 LUTs (65% utilisation).

As a result, 329,086 lines of a 9.5MB EDIF are produced
consisting of 24,402 instances and 24,338 nets.

12.2 Instantiating components
As mentioned previously, instantiating components is more a
matter of parameterising the instances which exist on the
actual FPGA. To instantiate a LUT component in slice 0 at
position (23,10) in the F LUT, the following JBits calls will
be made:
jBits.set(23,10,RAM.DUAL_MODE[0],RAM.OFF[0]);
jBits.set(23,10,RAM.RAM_32_X_1[0],RAM.OFF[0]);
jBits.set(23,10,RAM.LUT_MODE[0],RAM.ON[0]);
jBits.set(23,10,RAM.F_LUT_RAM[0],RAM.OFF[0]);
jBits.set(23,10,RAM.F_LUT_SHIFTER[0],RAM.OFF[0]);
jBits.set(23,10,LUT.F[0],LUT4init);

To clarify, constants such as RAM.DUAL_MODE[0] refer to
the programmable resource which defines whether the LUTs
are to be used as dual-ported RAM. Constants such as
RAM.OFF[0] mean that this option is not selected.

12.3 Making the link between internal components
An example of a net linking internal components is shown
below:
(net (net lava_bit7338 (joined

(portRef o (instanceRef lut2_7338))
(portRef s (instanceRef muxcy_7340))
(portRef li (instanceRef xorcy_7339))))

Referring back to Figure 1, it can be seen the output of the
LUT already feeds the li input of the XORCY component, and
hence no further configuration is needed. In the case of the s
input of the MUXCY, the multiplexor shown marked by O in
Figure 1 must be configured so a link is made between the F
LUT and the select input of the mux. This is done by the fol-
lowing JBits code fragment.

jBits.set(23,10,XCarrySelect.XCarrySelect[0],XCar-
rySelect.LUT_CONTROL[0]);

12.4 Making the link between external components

In order to make the link between the external components,
the JRoute API is used. As described previously, JRoute
requires pins to be defined for the source and sinks of the nets,
which comprise of the coordinates of the pin and a constant
defining which pin for example S0_YQ refers to the output of



the slice 0 Y flip-flop. Once the design has been fully placed,
this is a simple look-up operation.

An example of a net requiring a connection through the rout-
ing matrix is shown below together with the JBits calls made
by JRoute to implement this connection.

(net lava_bit2250 (joined

(portRef q (instanceRef fd_2250))

(portRef i1 (instanceRef lut2_2282))

)

)

jbits.set(36, 18, S1G2.S1G2, S1G2.SINGLE_SOUTH22);

jbits.set(36, 18, OutMuxToSin-

gle.OUT7_TO_SINGLE_SOUTH22, OutMuxToSingle.ON);

jbits.set(36, 18, OUT7.OUT7, OUT7.S0_XQ);

In certain cases, a combination of both external and internal
routing is required. An example is a net that goes into the ci
input of the MUXCY component and the F1 input of the F
LUT. This requires the net sinking on the F1 pin be steered
through the multiplexor marked with R inFigure 1, after the
external connection has been made between the source and
the F1 pin.

13 Performance

The back-end flow has been profiled on a 600 MHz PIII
NT4SP4 system, 1Gb physical memory, using the 329,086
line EDIF circuit described previously. The target device is
an XCV300-BG432. The results are shown in Table 1.

The size of the partial configuration frame produced is
218,980 bytes. This is to be expected, as the design fills the
entire device. The difference can be explained by the slightly
different sequence of configuration instructions issued by the
PartialConfiguration API and bitgen. Using version
3.1.02i of the Xilinx design tools this same fully placed netlist
took 1080 second to transform from EDIF input to bitfile gen-

eration. For this example the JBits part of our flow performs
12 times faster than the conventional flow.

Most of the time is spent parsing the input file. In the next
stage of the project we will change the back-end of Lava to
directly call the JBits API rather than generate an intermedi-
ate file. This will greatly speed up both the Lava netlist
elaboration and the JBits phase resulting in roughly a 50
times speed-up.

In order to verify the correctness of the circuit, currently
this is done by a manual inspection of the resources being set.
A number of more robust opportunities exist for testing.
Firstly, the device simulator could be used, though currently
it is impossible to stimulate inputs. Secondly, a prototype
EDIFout flow is provided as part of JBits. EDIFout will pro-
duce an EDIF netlist given a configuration bitstream,
allowing the bitstream to be effectively simulated in a main-
stream simulator. This would allow the circuit constructed to
be thoroughly exercised by simulation.

Perhaps the most interesting and powerful verification
route lies in the formal verification described previously [18].
Under this scheme, two EDIF netlists can be compared, and
the differences determined by performing a formal verifica-
tion. Essentially, the netlists are reduced to a series of logical
propositions. These propositions can then be tested for logical
equivalence by a proposition prover. An EDIF netlist could
be pushed through the back-end flow, producing a configura-
tion bitstream, which is then converted back to EDIF using
the EDIFout utility. If the two netlists could be formally ver-
ified to be equivalent, this would prove correctness of both
the back-end flow and the EDIFout utility.

14 Limitations and Further Work

The treatment of external inputs and outputs is fairly naïve
implementation. Each input and output signal is assigned its
own IOB and nets that use these as either sources or sinks are
routed to the appropriate IOB. The IOBs are assigned in the
order they are encountered in the original EDIF. In practice,
either locked pin locations should be specified in the EDIF,
or the pin locations specified in a side file such as the User
Constraints File (.ucf) used in the mainstream Xilinx flow.

Currently the back-end flow does not process Block-
RAMs or the different standards supported by the IOBs.
Support for both these features has recently been added to
JBits, and work is currently underway to provide support for
both features in the back-end flow.

Once the Lava back-end can call the JBits interface
directly we expect to increase the performance of this system
from 12x to 50x faster than the conventional flow.

Should the programming bitstream format be further
modified to facilitate finer grain reconfiguration then this
flow provides the capability to very quickly reconfigure fil-
ters (by modifying data in memories used to perform
distributed serial arithmetic).

Table 1

Activity Time

Parse EDIF, construct symbol tables and
make JBits and JRoute objects

62.8s

Make JBits JRoute objects 7.23 s

Map 4.6 s

Route and implement instances 15.4 s

Generate a partial configuration as a byte
array

94 ms

Generate a partial configuration as a file 47 ms

Total 90.25 s



The development of the EDIF interface to the JBits
system allows front ends other than Lava to be used. Many
designers will be more familiar with systems JHDL (a Java
based structural HDL) [1] or exotic languages like Pebble [6]
or the use of VHDL [5] containing layout attributes either
through generic INITs or by attributes Several synthesis
flows support this form of entry for VHDL including Synplic-
ity’s Synplify system, Synopsys Design Compiler, Leonardo
Spectrum and Xilinx’s XST. However every cell has to be
placed at the HDL level before the synthesised EDIF netlist
can be submitted to the JBits system.

For many applications a bitstream design rule check
phase will be required to ensure the integrity of the imple-
mented netlist. This process could also be used to estimate
timing information.

15 Summary and Conclusions

In summary we have reported preliminary work describing
the integration of two experimental research systems to pro-
duce a complete flow from HDL to bitstream which performs
quickly enough to service many kinds of custom computing
applications. This is made possible by (i) using an HDL
which has a very high speed layout engine that performs rapid
elaboration into EDIF and (ii) a system that can map a fully
placed EDIF netlist into a bitstream.

Clearly this flow is not a general one since it is not
always convenient or possible to fully lay out a circuit. How-
ever we conclude that there are many circumstances where it
is useful e.g. in virtual hardware systems where sub-compo-
nents are swapped into and out of the device from specific
locations or when an FPGA has to be fully reconfigured in
sequence. In such circumstances an HDL to bitstream system
that operates 50 times faster than a conventional flow can
make the difference between viable run-time reconfiguration
or an unfeasibly slow operation.
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