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Abstract. Embedded domain specific languages have been shown to be useful in various
domains. One particular domain in which this approach has been applied is hardware de-
scription languages. In this paper, we present such a language embedded in C#, enabling
us to describe structurally large regular circuits in an intuitive way. These descriptions can
then be automatically used in simulators and verification tools. We show the versatility of
the approach by writing a hardware compiler for regular expressions in our language.

1 Introduction

Hardware Description Languages (HDLs) are programming languages used to describe a circuit
behaviorally, structurally or both. They usually work hand-in-hand with other tools like simulators,
which help a designer check that the description of a circuit works correctly. Although powerful
HDLs exist, most of them lack to provide tools for verifying properties of circuits.

SharpHDL is an HDL that allows circuit verification by providing a means for model-checking safety
properties. Safety properties can be defined in such a way that they state that some condition
is always true no matter what the situation is [6]. Being an embedded language, SharpHDL is
a meta language which allows a hardware designer to generate regular circuits. It is hosted in
the C# language, an object-oriented programming language (OOL) which is easy to use and
many documentation exist about it. The strong structure it is based upon makes SharpHDL easily
extendible and helps the user produce neat circuit descriptions.

In a nutshell, SharpHDL is an elegant and simple structural HDL embedded in C# which incorpo-
rates various tools including the possibility of communicating with SMV? and Verilog® applications.
This paper gives a brief introduction to SharpHDL syntax and highlights the various concepts com-
bined to develop this HDL.

2 SharpHDL

SharpHDL is an HDL embedded in C# so one can describe a circuit by writing a C# program.
Presently, it consists of three libraries:

! This work was presented in June 2004 to the Board of Studies of Information Technology at the University
of Malta as a Final Year Project for the B.Sc.(Hons.)L.T. degree programme, supervised by Dr. Gordon
Pace.

2 A standard model checker.

3 A standard HDL.
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1. SharpHDL, which is the core library. It provides functions to control the structure of circuits
as well as the necessary tools to build them, like wires and logic gates. Besides, it provides
functions for a circuit designed in SharpHDL to be converted to two formats:
— Verilog format which, given to a Verilog application, can be used to analyze and simulate
a particular circuit, produce circuit layout etc.
— SMV format which, given to the SMV application, checks a particular safety property for
a wire in the circuit.

2.1

implemented;

format from a relat

ively simple gate.

Syntax Overview

. LogicGates library where composite logic gates, such as Nand and Nor amongst others are

. GenericCircuits library, which caters for special structures that build a circuit in a regular

As an introduction to basic SharpHDL syntax let us consider the construction of a half-adder
circuit shown in figure 1.

InputA.

InputB

| |:: Carry

Fig.1. A HALF-ADDER CIRCUIT

A half-adder consists of two input wires and it outputs two wires: sum and carry. The sum result
is produced by applying a Xor operation over the two inputs; the carry result is produced by
applying an And operation. Following is the code needed to build this circuit.

using System;
using SharpHDL;
using LogicGates;

namespace Arithmetic {

//<1>
public class HalfAdder :

{

//<2>

public static CellInterface[] cell_interface

inPort ("HAL
inPort ("HAL
outPort ("HA
outPort ("HA

};

//<3>

Xor xor;

And and2;

//<4>
public HalfAdder()
{
xor = new Xor();
and2 = new And();
}

//<5>
public void gate_o(Wire
Wire

Logic

F_ADDER_A", 1),
F_ADDER_B", 1),
LF_ADDER_SUM", 1),
LF_ADDER_CARRY", 1)

inputA, Wire inputB,
sum, Wire carry)

{
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{
//<6>
connect (this, "HALF_ADDER_A", inputA);
connect (this, "HALF_ADDER_B", inputB);
connect (this, "HALF_ADDER_SUM", sum);
connect (this, "HALF_ADDER_CARRY", carry);
//<7>
xor.gate_o(inputA, inputB, sum);
and2.gate_o(inputA, inputB, carry);

}

}

The HalfAdder class is created by subclassing the SharpHDL Logic class < 1 >. The interface
to the circuit, which consist of input and output ports are declared using the CellInterface
mechanism < 2 >. Input ports are declared using the inPort method, which accepts a string for
the name of the port and an integer for its width. In this case, both inputs are one-bit so the width
of each port is 1. The output ports are declared using the method outPort which works the same
as inPort. Next, is the declaration of the two instances representing the gates that are needed to
build the half-adder: a Xor instance and an And instance < 3 >. Like the majority of C# classes,
the constructor of the HalfAdder is declared so that it can be invoked by the designer needing a
half-adder in his circuit < 4 >. Here we create a Xor and And instance by calling their respective
constructors.

Finally, we need to define the structure of the circuit we are designing. We do this in a function
accepting four wires: two representing the input wires and the other two representing the output
wires. We call this function gate o* < 5 >. The first thing to do in this method is to connect
the wires to the ports using method connect < 6 > which accepts three parameters: the gate the
port belongs to, the name of the port to which the wire is going to be connected to and the wire
variable itself. Finally, we define the structure of the circuit by calling the respective methods that
structurally define the Xor and And gate < 7 >. The first line invokes the method gate_o belonging
to the Xor class. This accepts three wires: the first two being the input wires and the third being
the output wire. The two input wires to the half adder and the wire sum are passed to this method.
The same is done for the And instance, but this time the two input wires and the carry wire is
passed to its gate_o method.

It is important to note the call to the SharpHDL and LogicGates library at the beginning. This
is necessary to be able to use the classes implemented in them. It is also a good idea to define a
gate method which although does the same operations as the gate_o method described, it accepts
three Wire objects and creates a new Wire object, calls the gate_o method and returns the newly
created Wire object. The method looks as follows:

public Wire gate(Wire inputA, Wire inputB, Wire sum)
{
Wire carry = new LogicWire();
this.gate_o(inputA, inputB, sum, carry);
return carry;

}

4 Tt is a convention of the SharpHDL libraries that every class representing a gate has a gate_o method
which use the provided input and output wires to describe the particular circuit structurally. SharpHDL
also provides the same method without the _o suffix. Such methods instantiate an output wire and
returns it. Nevertheless they perform the same operation.
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3 Generic Circuits

In this section we will discuss the various tools offered by the GenericCircuits library, which
caters for generic circuits: circuits with a special regular format built from a relatively simple
gate, and which we therefore refer to as higher-order circuits [6]. SharpHDL provides four different
generic circuits:

1. Map — Sometimes, we want to perform a particular operation on each element of a bunch of
signals. Instead of defining the operation for each signal, the generic circuit Map can be used.
Map accepts a component having one input port and one output port, and a list of wires. It
then constructs the circuit as shown in figure 2.

Input List

Map pate -caep -Gaep ..... *m

Output List

Fig. 2. MAP USING LOGIC COMPONENT GATE AND LIST OF WIRES INPUT.

SharpHDL also implements two other variations of Map. One variation accepts a two-input port
gate whilst another variation of Map accepts a three-input port gate.

2. Sequence — As its name suggests, a Sequence performs an operation sequentially over a set
of input wires. Therefore, it accepts a component having an equal number of input and output
ports, and a set of wires which can be accepted by such a component. Figure 3 illustrates the
general structure of a Sequence generic circuit.

Input List Sequence gate Output List
i o

Fig. 3. A SEQUENCE USING COMPONENT GATE AND THE LIST OF WIRES I, REPEATED FOR n TIMES. THE
OUTPUT IS THE LIST OF WIRES 0.

3. Row — The Row Generic Circuit resembles the combination of the Map and Sequence struc-
tures. It accepts a gate having two input ports and two output ports. Besides, it accepts a
separate wire and a list of wires. The circuit formed is illustrated in figure 4.

SharpHDL also implements two other variations of Row. One variation accepts a three-input
port gate whilst another variation of Row accepts a four-input port gate.

4. Tree — There are circuits that can be built recursively, and an example of such is the Tree
generic structure. The input to this structure is a logic component which takes two wires as
inputs and outputs a single wire. It also accepts a list of wire inputs. Basically, the Tree
structure builds a binary tree of the inputted component, as shown in Figure 5.
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Input List

— oo

l Rowgate l

Fig.4. A TYPICAL Row GENERIC CIRCUIT STRUCTURE

Output List

Input List of Wires

Output Wire
Fig.5. A TREE STRUCTURE USING 8 INPUT WIRES.

Organizing a set of gates of the same type in a tree structure instead of leaving them in linear
format, reduces the length of the circuit, such that applying an operator on n wires using a Tree
structure will have path of approximately logs n. On the other hand, if a circuit is generated
linearly, the length of the longest path is n — 1.

The major benefit of these type of circuits is that they reduce the number of lines of code needed
to construct a complex circuit, thus helping the user to generate more elegant code, making it more
understandable and in some cases building more efficient circuits as we have seen when using the
Tree structure. Generic circuits also increase code usability since a particular pattern can be used
for several components without having to rewrite any code.

4 Hardware Compilation

SharpHDL is a structural language and therefore it provides tools for specifying a circuit by specify-
ing the components to use and the connections between them. Another way of describing hardware
is by specifying the behavior of a circuit using synthesisable behavioral description languages. These
type of languages can be used to write a program and then transform the program to a circuit
with the same behavior. Such a process is better known as Hardware Compilation. SharpHDL
was used to embed a behavioral language which allows a user to build circuits describing Regular
Expressions®.

4.1 Regular Expressions Compilation

The language consists of five regular expression constructs:

® This example is totally taken from [5].
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Empty String, which is a string whose length is zero.

Signal Input, which is the input signal provided by the programmer of the regular expression. It
can either be an output from another existing circuit or an extra parameter to the definition
of a particular regular expression.

Sequential Composition, which provides for concatenation of two expressions.

Iteration, which provides for repetition of an expression for zero or more times. Repeating an
expression for zero times produces Empty String.

Non-Deterministic Choice, which provides for alternation.

4.2 Regular Expression Circuits

The circuits that are generated for these constructs after compilation have one input signal start
and two output signals, match and prefix as shown in figure 6. The circuit starts sampling the
signals when start is set to True. When the sequence of signals are part of the language being
represented by the expression, match outputs True. The output prefix indicates whether the
circuit is still active and the parsing of the regular expression has not yet failed. The different
constructs compile to a circuit with this structure which implements the necessary operation.

starl

prefix
—

match

Fig. 6. THE GENERAL STRUCTURE OF A REGULAR EXPRESSION CIRCUIT

Implementationwise, each construct is represented by a class which implements a compilation
method according to the circuit it has to produce. To build a regular expression circuit, we must
call the classes representing each part of the expression and then call the compile method. So, for
example, (¢ + C)* + (A.B) is expressed as:

RegularExpression example = new Choice(
new Loop(
new Choice(
new EmptyString(),
new Signallnput(new LogicWire("C"))
)
),
new SequentialComposition(
new SignalInput(new LogicWire("A")),
new Signallnput(new LogicWire("B"))
)
);
\\Output wires: prefix and match
OutputSignals output = new OutputSignals();

example.compile(new LogicWire(), output);

5 Model Checking

SharpHDL can also be used in circuit verification by allowing the user to produce an SMV descrip-
tion of a SharpHDL circuit so that, given to an SMV system, he could verify safety properties of
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the particular circuit. The safety property of a given circuit can be verified by using synchronous
observers. These are circuits which take the inputs and outputs of the circuit which needs to be
verified and decides whether at any time the stipulated property that the given circuit must hold
is violated [7].

5.1 Case Study: Verifying Adder Implementations

There are many applications where safety properties can be used. One such application is to check
that a particular implementation of a circuit is correctly built. This can be done if its output is
compared to the output of a text-book example implementation of the circuit, given that both
circuits are given the same input. An example is verifying that a carry-select adder, which is a
special type of adder, is correctly implemented and this is done by comparing it to the classical
ripple-carry adder. To verify that the former adder produces the correct result, the sum and carry
wires of both adders are passed to an observer which compares the outputs and produces True if
they are the same. The SMV definition of the whole circuit is given to an SMV application which
verifies that for any input, the circuit outputs True, implying that the implementation is correct.

5.2 Another Case Study: Comparing Two Regular Expressions

In section 4 the Regular Expression Language was embedded in SharpHDL. A clear advantage of
embedding languages is that the tools offered by the host language can be accessed by the embedded
language without any difficulty. Therefore, circuits created using the Regular Expression Language
can be verified. This can be illustrated by verifying that two expressions are equivalent.

An observing circuit Comparer can be constructed, which outputs True if the expressions are
equal, given that both expressions are fed the same start signal. Figure 7 displays the framework
of this circuit, which accepts two input expressions and outputs a signal wire. This circuit uses an
Equal gate to check the prefixes of the two circuits, and another one to check their matches. The
outputs from this gate are used as inputs to an And gate, since the equivalence property is followed
iff both outputs are True.

Observing the output wire of this circuit will produce an SMV report, which can be fed to an SMV
application for verification. So, given the described circuit, we can check the equivalence property
of the two expressions (ab+a)*a and a(ba+a)*.

Feeding these expressions to the Comparer object, we can observe and produce the equivalent SMV
for the whole circuit. When this code is verified by an SMV application, it confirms that the output
of the circuit is True for any situation, meaning that the expressions are equivalent.

6 Producing Verilog code using SharpHDL

The two standard HDLs are Verilog and VHDL. Both provide efficient tools for hardware descrip-
tion and simulation [2,4]. SharpHDL allows the user to generate a Verilog description of a circuit
in design.
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Fig. 7. CIRCUIT FOR COMPARING TWO EXPRESSIONS

A user may use the Verilog code for various reasons including that of simulating the circuit in
design using a Verilog simulator. SharpHDL does not include its own simulator since well-tested
simulators already exist. The Verilog code generation tool provided by SharpHDL gives the user
the chance to use the wide range of tools which exist for Verilog and therefore it is still offering
the necessary tools for simulation and analysis of circuit.

7 Related Works — Comparing SharpHDL

Besides Verilog and VHDL other powerful HDLs exist, amongst which there is Lava and JHDL,
both very similar to SharpHDL. This section will briefly describe these two languages and compare
them to SharpHDL.

7.1 Lava & SharpHDL

Lava [6] consists of an HDL embedded in the functional programming language Haskell. Although,
like SharpHDL, it is not possible to describe circuits in such a depth as the standard HDLs, the
descriptions are short and sweet. It also offers the facilities of connection patterns, which basically
are the generic circuits found in SharpHDL.

Lava is very elegant and simple and circuit descriptions are made using Haskell modules. Besides, it
provides tools to analyze and test circuits, including simulation and verification. Unlike SharpHDL,
Lava links and controls all the tools and therefore the user sees only one language.

7.2 JHDL & SharpHDL

JHDL [1] is an HDL embedded in the object-oriented programming language Java. It consists
of a set of necessary tools needed to design a circuit in an efficient and user-friendly manner.
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Besides providing a set of classes which help a user build an electronic circuit, it allows the user
to simulate and test a circuit in design. It also provides a rich CAD suite. Such tools enhance
the user-friendliness of the language, a lacking characteristic in SharpHDL. Nevertheless, one must
point out that given the strong structure SharpHDL is based on, these can be easily implemented.

Another important difference is that unlike SharpHDL, JHDL does not provide the possibility for
circuit verification. On the other hand, SharpHDL does not implement a simulator of its own.
Nevertheless, one must point out that a user can still simulate and analyze a circuit by generating
Verilog code for a particular SharpHDL circuit description and input it to a Verilog tool.

8 Further Work and Enhancements

In the preceding sections, we have illustrated how circuits can be described and used in SharpHDL.
Future work on SharpHDL will mainly focus on the following points:

— Placement FExtenstions and Description of Other Non-functional Circuit Proper-
ties. SharpHDL allows the structural description of any circuit, but it lacks to provide the user
the ability to specify placement information. Although automatic placement tools exist, study
has shown that user-specified placement information often improves the performance of Field
Programmable Gate Arrays (FPGAs). Therefore, it is important that an HDL should include
placement information which guides design tools to produce efficient designs.

Providing explicit coordinate information for every component in a large circuit, nevertheless,
can become very tedious. It is therefore ideal to provide the user with the ability to use relative
placement information, with high-level descriptions like Beside and Below. These descriptions
allow blocks to be placed relative to each other without the user providing the actual coordinates
8]

During the design phase, designers need to estimate other non-functional properties like area
and timing. Since most of these properties are controlled by information found in wires, detailed
information can be kept about wires. SharpHDL could be extended to accommodate such
information [3].

— Developing a Framework for Hardware Compilers. In [5], a uniform framework was
proposed within which behavioral languages can be developed, allowing them to be combined
together for simulation, synthesis and verification. This is done by embedding the languages in
Lava — a HDL embedded in Haskell.

This concept can also be applied in SharpHDL. We saw how a behavioral language that allows
the user to build circuits describing regular expressions was embedded in this language. To allow
more behavioral languages to be embedded and combined in this language, a framework similar
to the one proposed in [5] can be constructed. Such a framework will impose the functional and
non-functional rules, syntax and other methods that hardware compilers should implement.

9 Conclusions

Throughout this document, we have described how we managed to merge various concepts and
form a strong hardware description language. We have explored the idea of embedding an HDL
in an object-oriented programming language by not only embedding SharpHDL in C#, but we
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also used SharpHDL to embed another language which allows the user to build circuits describing
regular expressions.

To develop the latter language we used standard hardware compilation techniques, where the idea
was to write a program in a language and then transform the program to a circuit with the same
behavior such that hardware is directly generated from a program.

SharpHDL provides other tools than just a set of classes to design simple circuits. It also includes a
special library that constructs different complex circuits with a particular structure, called generic
circuits. This library is useful especially to write elegant and short descriptions of large circuits.

An important tool provided by SharpHDL is that of generating input to a model checking ap-
plication, which could allow verification of safety properties of a circuit. One useful application
of this tool is to verify implementations of circuits. It was also used in conjunction with Regular
Expression circuits and we were able to check the equivalence of two expressions.

Although SharpHDL does not implement simulation and analysis tools, it provides the user the
tool to generate Verilog descriptions which allows the user to make use of the standard well-tested
Verilog tools. At the end we managed to compare SharpHDL with Lava and JHDL and we saw
that it compares well with such strong HDLs.

The main motivation was to explore an HDL in an OOL that is elegant and simple. By combining
various concepts together we managed to develop a strongly-based HDL. We will be exploring the
extension of the language for more advanced techniques in the future.
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