
10

This article focuses on providing a methodology to make
the process of writing test cases easier for verifying mixed
analog digital designs. It explains the advantage of using
a scripting language together with a Hardware Description
Language (HDL) environment.

It shows a way to give the HDL engineers the possibility to
use constrained randomized test cases without having too
much knowledge about the implemented testbench.

Two possible scenarios for defining your test cases will be
demonstrated. One can be used for the traditional VHDL
testbench and another for the SystemVerilog (SV) Open
Verification Methodology (OVM) environment. For both
cases a scripting language will be used to write test cases.

At the end you will understand that with the mentioned
methodology also design engineers will fully benefit of
verifying their design.

Please note that within this article Tool command language
(TCL) is used as scripting language. The reason for using
TCL is, that Questasim is controlled by TCL and also has
some more built in TCL commands included. Nevertheless
this approach can be used with any scripts which are
supported by your simulation environment.

WAYS OF MAKING VERIFICATION EASIER
FOR HDL ENGINEERS
Nowadays designers are experienced in optimizing the
circuits for power, area and implementing the algorithm
effectively. Moreover, they can write very good VHDL
testbenches with advanced stimulus generation and file
I/O parsers, but they do not have the deep knowledge to
develop a constrained randomized configurable testbench
environment to verify all corner cases of the design.

Besides the designers you will find the verification
engineers who have deep knowledge of modern software
design and applying the newest techniques on today’s
higher verification languages like SV together with

the OVM libraries. They are able to generate constrained
randomized stimuli’s with automatic checkers, scoreboards,
analyzing all kinds of coverage models.

In most of the cases it is nearly impossible to distinguish
between design and verification engineers. In many
projects design engineers will do a basic verification of their
module on their own. Reasons can be lack of resources
or that the design engineer just wants to make a short
rough verification of his designed module by himself. In
order to avoid any misunderstanding during specification
or implementation of the design, the four eyes principle is
recommended. Meaning a different engineer should verify
the block generated by another design engineer.

It is important to emphasize that it is really strongly
recommended to make the verification process itself easy,
reusable and powerful as possible. In this way only a
limited amount of verification experts are needed who will
build up the testbench and provide a simple interface for
defining test cases in all variations. Such interfaces have
to be as simple as possible but also as strong as possible.
Furthermore, it should still be feasible to vary as much as
possible the parameters and use the randomizing feature
to catch all the corner cases. One common approach is to
use SV OVM language. This methodology already provides
easy test case definition by using OVM test files.

“The ovm_test class defines the test scenario for the
testbench specified in the test. The test class enables
configuration of the testbench and environment classes as
well as utilities for command-line test selection. […], if you
require configuration customization, use the configuration
override mechanism provided by the SystemVerilog OVM
Class Library. You can provide user-defined sequences in
a file or package, which is included or imported by the test
class.” (OVM SystemVerilog User Guide, 2009) P. 67/68

If the OVM environment is well structured you can generate
all possible test cases within your test file by simply
defining some of your parameters (e.g. Use the appropriate
sequence, correct register settings). In addition the

Use Scripting Language in Combination with the Verification
Testbench to Define Powerful Test Cases. by Franz Pammer, Infineon

11

modification of such test files can easily be done by the
design engineer. Depending on the setup you can define
pure randomized test cases in your test file or directed
test cases to verify dedicated use cases.

Several limitations should be pointed out with this approach.
First, for every new test case a compilation has to be done
before. Second, reusing a test file for other topics like test
engineering is nearly impossible. In addition, it may take
some time for design engineers to understand the process
of writing test cases by these test files.

With respect to the above mentioned barriers another
approach was developed. The idea is to use a scripting
language in combination with a testbench like SV OVM to
verify the AISC.

TCL VERIFICATION METHODOLOGY
TCL is used by many simulator tools (e.g. Questa, NC-
Sim) for controlling the simulators behavior. Normally TCL
is used in the simulators only to start/stop simulation and
generate some logging messages. Since TCL is a very
powerful language, you can generate whole test cases by
using TCL scripts. To this end the testbench only needs to
provide an interface to the TCL script to allow taking control
of the whole simulation flow. The interface usually will be
built up by the verification expert who has deep knowledge
of the testbench itself. Later, only the TCL script will be
implemented by the design engineers to develop the test
cases.

This methodology has many advantages which were
described here:

• Same TCL file can be used for both VHDL/Verilog
and SV OVM environment.
In cases where you have a VHDL/Verilog testbench
and in parallel a SystemVerilog OVM testbench.
You can use the same TCL files. You just have to
take care of the TCL interface

• If file is kept simply it can also be used for CV
(Component Verification) and TE (Test Engineering)
group as input source.

• Recompile is not needed.
If your simulator supports TCL you can simply try out
your test case line by line within your simulator. You do
not need to restart your simulation and change your test
case file and try it out again.

• Other tasks or scripts can be called during your test
execution

• Make debugging easier.
Simply think of analyzing some internal signals
immediately or do some calculations to check for
correctness. Temporary log signals to files during
debug session.

DESCRIPTION OF A TCL VHDL TESTBENCH
In traditional black box testing strategies the VHDL
Testbench is surrounding the Design Under Test (DUT).
The testbench controls all activities at the ports of the DUT.
It generates the stimulus and checks all the responds from
the DUT. The stimuli generation can be hard coded in some
VHDL behavioral files, or defined in some ASCII text files.
For reading in text files an extra file parser is needed which
interprets the commands in the text file. The file parser
will usually read in and execute the text file line-by-line. All
the used commands need to be defined in the parser. For
simple test cases this approach may fulfill all your needs. It
can become complicated if you want to use some variables
within your text file. You only have to let the files parsers
know how to interpret variables. It will get more and more
complicated if you want to do some math or use loops,
branches and other conditions within your text file. Thus
your VHDL parser will get more and more complex and
future adoptions will be nearly impossible.

To overcome these disadvantages of using ASCII text file
you can use simple TCL scripts. In scripting language you
already have a huge functionality (e.g. handling of variables,
loading another file, using if/while/loops). There is no need
to take care of these items.

Figure 1 on the following page gives you an overview how
such TCL scripts can be used within your environment.

Use Scripting Language in Combination with the Verification
Testbench to Define Powerful Test Cases. by Franz Pammer, Infineon

12

Figure 1 : Overview TCL VHDL Testbench

The TCL Command Interpreter (TCL-CIP) is the interface
between the TCL command scripts and the Register
Transfer Level (RTL) environment. It contains the libraries
& packages for procedure/variable definitions, file I/O
functionality etc. Basically it communicates via a well
defined VHDL TB peripheral or it may also directly take
control of some ports of the DUT or even some internal
signals would be possible. The commands and variables
which were defined in the CIP can be used in the TCL
scripts.

 Next is shown a short example how such an approach
would look like. First is illustrated the TCL-CIP. For simplif-
ied reasons in this place there will not be packages and
namespaces used, but also without using these techniques
you can fully benefit with this methodology.

The TCL-CIP basically consists of three files.

1.) Global Signal definitions and variables

Physical Environment Signals
set ENV_TEMPERATUR /analog_global_pack/
 temperature
set ENV_PRESSURE /analog_global_pack/pressure
set VBAT /analog_global_pack/vddd_global

Clock signals
set CLK_SYS /tb/dcore/clk

Clock period
set T_CLK_SYS “100ns”

Listing 1 : TCL Global Signals

2.) Tool specific procedure definition

As an example some procedures for the Questa simulator
were shown. Whenever the tool version will be changed
only this file needs to be modified.

#Source file of Questasim specific commands
proc run_proc { runtime } {
 run $runtime
}
Set an internal signal, by using the force command
proc set_signal_proc {netname value }{
 force –freeze $signal $value 0
}
Disable the force of an internal signal
proc noset_signal_proc {netname}{
 noforce $signal
}

Listing 2 : TCL Questa Procedures

13

3.) Low level procedure definition

Here all the above mentioned files were loaded together
with the procedure definition which can be called from the
TCL test cases.

File: cip_procedures.tcl
Load global signals
do $env (WORKAREA) /units/dcore/tcl/global_signals.tcl
do $env (WORKAREA) /bin/questa_procedures.tcl

set cmd_file $1.tcl; # This is the name of the
 test case file
set log_file $1.log; # Logging information will be
 written in that log file

proc log_test { logfileid logtxt }{
 puts $logfileid $logtxt
 echo $logtxt
}

LOG: Just a comment which is written to the
 transcript and to the file
proc LOG { args } {
 global Now
 global tb_g tb_g
 set args [join $args]
 set log “\# $args”
 log_test $tb_g(logfileid) $log
}
Simply delay the simulation by calling the
 run command
proc DL {time args}{
 …
 run_proc $time
}

Set a signal directly
proc SS { name args }{
 global Now
 global tb_g tb_g
 set log “$Now : SS $name $args”
 log_test $tb_g(logfileid) $log
 upvar $name $name
 set namex [set $name]

 set log [set_signal $namex [lindex $args 0]]
}
Cancle setting of a signal (NotSet)
proc NS { name args } {
 …
 set log “$Now : NS $name $args”
 log_test $tb_g(logfileid) $log
 set namex [set $name]
 noset_signal $namex
}

set tb_g(logfileid) [open $logfilename w 0777]
Check if command file exists
if {[file exists $cmd_file] == 0}{
 puts stderr “Cannot open [exec pwd]/$cmd_file
 exit
}
############## M A I N ##############
do $cmd_file ; # Call the test case

puts $tb_g(logfileid) “TEST CASE RESULT : $TEST_
RESULT”

Listing 3 : TCL Basic Procedures

Below shows how such a TCL test case could look like:

File: 001_BasicTest.tcl
LOG “Testcase: 000 Basic Test”
LOG “Author: MR.X”
SS MODE_A “01” ; # Set signal
DL 2500us ; # Delay for 2500us
LOG “Check power down signals”
for {set i 0} {$i < 10} {incr i 1} {
 CL PD_ADC ; # Check low
 CL PD_CPU
 DL 100us
}
NS MODE_A ; # Cancel the Set command
LOG “Check power down signals”
Wait until PD_MODE signal change to 1.
 If this does not happen within 1ms then go on and #
 generate an error

14

WT PD_MODE 1 1ms ; # Wait until PD_MODE
 goes to ‘1’ for 1ms
CH PD_ADC ; # Check High
CH PD_CPU
LOG “Test finished”

Listing 4 : TCL Test Case

A startup file is needed which will execute your test case.

File: startup.do
tcl_cip.tcl 001_BasicTest

Listing 5 : Startup File

The startup file is loaded with the vsim command.

vsim –c top_dut_tb-cfg.vhd –do startup.do

Listing 6: Simulator start command

DESCRIPTION OF A TCL SV OVM TESTBENCH
The same approach as mentioned for the TCL-VHDL
testbench can now be used also for the SV-OVM
environment. Only for the TLC-CIP interface some
adaptations are needed. Additionally within the OVM
environment you need to write an extra TCL Interface OVC.
This OVC reads via a virtual interface the commands from
the TCL-CIP and takes control over other Open Verification
Components (OVCs). Depending on the intention you can
add a great deal of flexibility to these TCL scripts:

• Define the basic configuration
• Define which parameters to be randomized
• Define border values of randomized parameters
• Start dedicated sequencer
• Force or read back some internal signals
• Do some basic settings of the DUT
• Save Functional Coverage of your SystemVerilog

Assertions (SVA)

If a SV OVM Testbench environment already exists new
TCL functionality can easily be added even without having
a TCL IF OVC. For the beginning it may be enough only to
be able to force some internal signals or to do some interim
calculation for other scripts.

Below you see an overview of how to connect your TCL
script to the OVM environment. The TCL IF – OVC can
be modeled in various ways. In our case it is built up like
a usual OVC. The monitor is observing the TCL virtual
interface for any activities. Whereas the driver will send
some responds to this interface. The communication to
the other OVCs can now be handled via ports or by using
the sequencer as a virtual sequencer and in this way we
can take control over all other sequencers within the OVM
environment.

CONCLUSION / SUMMARY
Using scripting languages like TCL can give some powerful
features for writing test cases. By using a generic TCL
interface these scripts can be used for various testbenches.
No matter which HDL (Hardware Description Language)
is used. Design engineers do not need to have much
verification expertise for verifying their designs. Due to
easier test case definition they also can do the basic
verification of their design on its own. Additionally if these
TCL scripts are structured well they also can be used for
other topics too. Think of using these scripts as input for
component verification to control the whole equipment.
Furthermore you can reuse it for test engineering to
configure the test setup. Therefore only the TCL-CIP needs
to be adapted.

Depending on the available resources and timeframe the
TCL functionality can be extended at any time. Extending
your TCL functionality will not have too much impact on
your existing testbench structure.

What I want to point out is that it is never too late
to implement scripting functionality to your test case
by using that approach.

15

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit
DUT Design Under Test
HDL Hardware Description Language
OVCs Open Verification Components
OVM Open Verification Methodology
RTL Register Transfer Level
SV SystemVerilog
SVA SystemVerilog Assertion
TCL Tool Command Language
TCL-CIP TCL Command Interpreter

REFERENCES

[1] OVM SystemVerilog User Guide,
Version 2.0.2, June 2009
[2] Questa® SV/AFV User’s Manual,
Software Version 6.5c, © 1991-2009
Mentor Graphics Corporation
[3] Brent Welch, Practical Programming
in TCL and TK, Prentice Hall

Figure 2 : Overview TCL SV OVM Testbench

Editor: Tom Fitzpatrick
Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters
8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777
Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

