
Pointer Swizzling at Page Fault Time: E�ciently and CompatiblySupporting Huge Address Spaces on Standard Hardware �Paul R. Wilson and Sheetal V. KakkadDepartment of Computer SciencesUniversity of TexasAustin, Texas 78712-1188wilson@cs.utexas.edu: : : I could be bounded in a nut-shell, andcount myself king of in�nite space: : :| W. Shakespeare, Hamlet, II:iiAbstractPointer swizzling at page fault time is a noveladdress translation mechanism that exploits conven-tional address translation hardware. It can supporthuge address spaces e�ciently without long hardwareaddresses; such large address spaces are attractive forpersistent object stores, distributed shared memories,and shared address space operating systems. Thisswizzling scheme can be used to provide data com-patibility across machines with di�erent word sizes,and even to provide binary code compatibility acrossmachines with di�erent hardware address sizes.Pointers are translated (\swizzled") froma long for-mat to a shorter hardware-supported format at pagefault time. No extra hardware is required, and no con-tinual software overhead is incurred by presence checksor indirection of pointers. This pagewise technique ex-ploits temporal and spatial locality in much the sameway as a normal virtual memory; this gives it manydesirable performance characteristics, especially giventhe trend toward larger main memories. It is easyto implement using common compilers and operatingsystems.1 Huge Address SpacesIt is often desirable to support a larger virtual mem-ory address space than the word size of the available�Proc. 1992 Int'l. Workshop on Object Orientationin Operating Systems, Paris, France, Sept. 24-25, 1992,pp. 364{377. (IEEE Press.)

hardware can specify directly. Applications of largeaddress spaces include distributed shared memories(e.g., [Li86]) operating systems with a single sharedaddress space (e.g., [CLLBH92]), and persistent objectstores (e.g., [ABC+83, DSZ90]). Distributed sharedmemories provide a single address space for appli-cations that span multiple machines, shared addressspace operating systems provide a single addressingmodel for all processes on one or more machines, andpersistent object stores provide sharable, recoverableheap storage to eliminate the use of �les for most pur-poses.A common feature of these systems is the empha-sis on simplifying programming by preserving pointersemantics|that is, object identity. The programmer'sdefault view of data is of a heap of objects connectedby pointers. Programs may traverse pointers freely,and complex data structures may be passed by refer-ence.It most current systems (without large shared ad-dress spaces) it is often necessary to write routinesto atten data structures into a low-level linear formand reconstruct them later, in order to communicatethem from one machine to another, or to make themrecoverable in the case of a crash, or to save themon disk so that they can be operated on later, per-haps by a di�erent program. This tedious and error-prone coding is a large software development problemin conventional systems. (The explicitly programmedconversions typically lose most type information, aswell as pointer semantics; they bypass type systems,leaving data structure consistency entirely up to theprogrammer.)Shared and persistent memory systems avoid muchof this di�culty, but they themselves pose challengesfor system implementors. One problem in implement-ing such large memories is that it involves addressing ahuge number of objects, potentially more than can be1



speci�ed by the hardware's address bits. Schemes forsupporting large virtual addresses on normal hardware(e.g., LOOM [Kae81, Sta82], E [WD92], and Mneme[Mos90]) typically incur signi�cant overhead.Two approaches are commonly used to implementlarge address spaces in software. One is to indirectpointers through an object table, and translate largeidenti�ers into object table o�sets when objects arebrought into memory. Untranslated identi�ers (forwhich there isn't a corresponding table entry) maybe agged and translated into o�sets lazily.The other main approach is pointer swizzling.Rather than using an indirection through a table,long-format pointers are converted to actual hardwaresupported addresses in an incremental fashion.In a conventional pointer swizzling scheme, a per-sistent pointer is converted into a virtual memory ad-dress only when the running program tries to use it;this entails bringing the object into the transient mem-ory address space. This may involve checking eachpointer at each use, to see if it is an actual address.White and Dewitt refer to this as swizzling on dis-covery [WD92]; it is also possible to swizzle all ofthe pointers in an object at once, the �rst time it istouched [Mos90]. In either case, pointer �elds or ob-jects must be checked very frequently to see if they'vebeen swizzled yet, so that unswizzled pointers can beswizzled before being traversed.We would like to avoid these costs, so that pro-grams that do not access persistent data do not paythe freight, and so that programs that access persis-tent objects (or pages) many times do not incur addi-tional checking costs at every access. Ideally, we wouldlike this mechanism to operate e�ciently on standardhardware, rather than requiring an exotic \object-oriented" hardware memory hierarchy such as thatof the MUSHROOM project [WWH87] or capability-based addressing schemes (e.g., [Lev84], [Ros91].).For simplicity, much of this paper is cast in termsof persistent memories, because our current implemen-tation focus is on persistent object stores. The paperis actually about address space implementation moregenerally, however; the ideas are equally applicable tooperating systems and distributed shared memories.(We sometimes refer to conventional hardware-supported virtual memory as transient memory, dis-tinguishing it from a larger, persistent memory. Con-ventional virtual memories are transient in that anaddress space ceases to exist when the (heavyweight)process it belongs to terminates. Persistent memories,like �le systems, may outlive the processes that create

them.1.)2 Address Translation at Page-FaultTimeOur approach is to fault pages into conventional vir-tual memory on demand, translating long persistent-memory addresses into normal hardware-supportedaddresses at page-fault time [Wil91].2 This strategyexploits locality of reference in much the same wayas a normal virtual memory; we believe this pagewiseapproach is increasingly attractive as main memoriesgrow larger. (As the number of instructions executedbetween page faults goes up, the cost of address trans-lation can be amortized across more useful programwork.) In contrast, software schemes involving pres-ence checks and indirections do not scale as nicely|most of their address translation cost is tied directlyto the rate of program execution.Any incremental faulting scheme must somehow de-tect references to objects in persistent memory, so thatthey can be copied into virtual memory before beingoperated on. We choose to use existing virtual mem-ory hardware's pagewise access protection capabilityfor this. This allows the checks to occur in parallel, aspart of the normal functioning of the virtual memorysystem, and avoids continual overhead in software.Our approach is analogous to that of Appel, El-lis, and Li's incremental garbage collection scheme[AEL88]. Their system copies live (reachable) objectsincrementally from \fromspace" to \tospace," to sepa-rate them from garbage objects3; ours relocates pagesof objects from persistent memory transient memoryso that they may be directly addressed. Still, the basicprinciples of operation are the same.To simplify the explanation of this technique wewill assume for the moment that objects in virtualmemory are the same size and shape (memory layout)as persistent-memory objects. Later we will explainhow mismatches between representations (e.g., one-1This terminology is appropriate in terms of our addresstranslation scheme as well|long addresses conceptually endureover time, but they may be mapped in changing (transient)ways to di�erent virtual memory addresses.2A similar approach (developed independently) appears tobe used in ObjectStore [LLOW91], a commercial product fromObject Design, Inc. Few details of their scheme are available,however.3In a copying garbage collector, unreachable (garbage) dataobjects are reclaimed implicitly|rather than �nding the gar-bage, the live (reachable) objects are moved (copied) intoanother area of memory (tospace), and the obsolete area(fromspace) is then reclaimed in its entirety.



vs. two-word pointer �elds) can be handled.Our scheme relocates objects into transient memorysomewhat sooner than a straightforward (software-only) pointer swizzling scheme. This allows us to pre-serve one essential constraint|the running program isnever allowed to encounter any pointers into persistentmemory. Any pages that contain persistent pointersmust be access-protected. If the program attempts toaccess a page that may contain persistent pointers, atrap handler is invoked; it translates all of the per-sistent pointers in that page into transient pointers,relocating their referents as needed; the page is thenun-protected and the program may safely resume.Rather than relocating particular objects referredto by pointers in the faulted-on page (as the Appel,Ellis and Li garbage collector does), our scheme relo-cates whole pages those objects are located in.4 Thisreduces the size of tables required to hold mappingsbetween transient and persistent addresses|only thepage numbers must be recorded, not individual ob-jects. (It also comports well with page faulting|webelieve it is desirable to bring objects into memory awhole page at a time anyway; caching pages is usu-ally more attractive than object faulting when mainmemories are not small [Sta82, Wil91, WD92].)
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iii ) After traversing pointer from page A' and touching page B'Figure 1: Incremental faulting and pointer swizzlingFigure 1 illustrates this mechanism. The top part ofthe �gure shows some data objects in pages of the per-sistent store, with persistent-format (i.e., long) point-ers between them. When a program is given access to4Thanks to Ralph Johnson for this; our original conceptionadhered too slavishly to the Appel-Ellis-Li model and relocatedindividual objects. Johnson had devised a somewhat similarscheme, from which we got the idea to relocate whole pagesinstead. (Johnson, personal communication 1989.)

the persistent store, any pages it holds \entry point-ers" into must be relocated into virtual memory andaccess-protected. This allows the entry pointers to betranslated into machine format so that the programcan begin execution. The second part of the �gureshows this state, with page A appearing in virtualmemory as page A0.When the program attempts to access such a page(in this case, A0), the access-protection handler trans-lates all of the pointers in the page into the desiredformat. For all of the pointers to be translated, itmust be known where in memory the referred-to ob-jects will reside. That is, if the program accesses pageA0, and page A0 contains a pointer into page B, pageB must be relocated into transient memory (as B0).This allows persistent pointers from page A0 into pageB to be translated into absolute virtual memory ad-dresses (in B0), so that page A0 can be made accessibleto the program. We simply treat each pointer in thefaulted-on page the same way we treated the entrypointer. This process repeats whenever a pointer intoa protected page is traversed, advancing the pagewise\read barrier" of protection one step ahead of the pro-gram's actual access patterns.Relocation of pages thus occurs in a sort of \wave-front" just ahead of the running program, insulatingit from untranslated pointers. Pointers can be derefer-enced in the usual way, i.e., in a single machine instruc-tion, with no extra overhead except at page faults.3 Moving Data LazilyNote that since the pages are access-protected atrelocation time, we can simply reserve the space andnote the mapping, without actually copying their con-tents into transient memory. The actual data canbe moved more lazily, when the program �rst at-tempts to touch the page. The recording of persistent-to-transient page mappings thus runs \one pointerahead" of the program's access patterns, but themovement of actual data into the persistent store isjust as lazy as with a normal, demand-paged virtualmemory. Since reserved-but-untouched pages are ac-cess protected anyway, they needn't have any storagebehind them at all|not even swap disk. Establishinga persistent-to-transient page mapping amounts to apromise that we'll put a page there if and only if it'sneeded.



4 Handling the Pointer Size MismatchSince the contents of a page need not be translatedat the time it is relocated, but only if it is accessed andits pointers are translated to the normal hardware-supported size, object formats in persistent memorymay be di�erent form those in transient memory. Themain requirement is that a persistent page full of ob-jects �t into a transient page of memory once theyhave had their formats translated. It is also necessaryto be able to derive objects' eventual locations in tran-sient pages from their locations in persistent pages.The most straightforward possibility is making ev-ery pointer in persistent memory be twice the size ofa transient memory pointer, e.g., use a �eld size of 64bits. When a pointer is swizzled into a 32-bit nativepointer, it only uses half the �eld. This is not a bigcost for a statically typed language like C++, becausemost �elds are not pointers.5 The space cost is usuallyonly ten to twenty percent.5 Avoiding Exhaustion of Virtual Ad-dress SpaceA potential problem with the basic scheme is thatthe transient memory could �ll up with relocatedpages that are used for a while, and then not usedagain for a long time. These pages could �ll up thevirtual memory, causing excessive paging. This is ac-tually not much of a problem, because the process ofswizzling (address translation) is nearly orthogonal toissues of levels in the storage hierarchy|an inactivepage can still be paged out to backing disk. (It maybe paged to a swap area temporarily, or it may beunswizzled and evicted back to the persistent store.)The real problem, then, is not the exhaustion ofhardware memory, but the exhaustion of the hardware-supported virtual address space. This is not just aproblem for programs that actually touch millions ofpages, because touching one page may cause the re-serving of several pages of the address space so thataddresses can be translated. In the worst case, a pagecontains nothing but pointers, causing the reservingof as many pages as there are pointers|in our current5Our original implementation for Scheme (a dialect of Lisp)used a somewhat di�erent approach, because most objects'�elds must be large enough to hold pointers. In that implemen-tation, all �elds were twice as big in the persistent store [Wil91],and persistent pages were twice as big as normal virtual mem-ory pages. This avoided wasting transient memory space (at acost in persistent data density) while allowing simple conversionfrom persistent addresses to virtual memory addresses.

system, about 500 times as many pages may be re-served as are actually touched. While this is unlikelyfor most programs, it is conceivable and in fact rathernear-fetched|pages holding multiway tree nodes mayapproximate the worst case.To avoid using up the virtual address space, we havetwo strategies. (Neither is currently implemented,however|we currently have no applications requiringthem, but expect to in the future.) The �rst strategyis to reduce the e�ective page size, and slow the rateof address space use. This strategy may not be en-tirely e�ective, so we have also devised an algorithmfor reclaiming virtual address space incrementally andreusing it.5.1 Reducing the E�ective Page SizeLarge page sizes are a potential problem for ourscheme, because large pages may have a high \fanout", i.e., hold pointers to many other pages. Wecan reduce the e�ective page size by only using partof each virtual address page when allocating objectswith large numbers of pointers. For example, if weonly use one fourth of each 4KB page, we reduce thefan-out by a factor of four. A naive implementation ofthis strategy would be very wasteful, of course, so it isdesirable to avoid using actual RAM and disk storagesparsely.A better strategy is to only use a fraction of eachvirtual page, but arrange the fragments in a com-plementary pattern so that several virtual pages canshare a physical (RAM or disk) page. Suppose wewanted to implement 1KB fragments of 4KB pages;we could map four virtual pages to a single physicalpage, and use a di�erent quarter of each virtual pagefor data. While the physical page as a whole wouldhave four aliases (virtual page numbers), the nonover-lapping pattern of allocation would ensure that no ob-ject (or cache block) was actually aliased.(To avoid fragmenting memory mappings and de-creasing virtual memory performance, an entire rangeof pages could be aliased by four virtual memory ad-dress ranges, e.g., using themmap() system call avail-able in most modern versions of UNIX.)This solution is not entirely satisfactory, for tworeasons. First, it does not deal with objects whosesize is comparable to a page or larger. Second, whileit wastes little or no physical storage, it does decreasethe e�ectiveness of translation lookaside bu�ers|eachpartially-used virtual page requires its own virtual-to-physical page mapping in the virtual memory system.While it defers the exhaustion of the address spacein the sense of delaying the discovery and swizzling



of pointers, it actually increases total address spaceusage (in the long run) by decreasing the usable sizeof each virtual page.This strategy is therefore most attractive for smallpointer-rich objects expected to be used in ways thatcreate high-fanout pages. In particular, it should beuseful for the nodes of trees used as large, sparselysearched indices.5.2 Address Space ReuseThe easy way to deal with the exhaustion of theaddress space is simply to occasionally evict all of thepages from virtual memory, throw away the existingmappings, and then begin faulting pages in again inthe normal way.6 Pages that are no longer in usewill not be faulted in again, but the current workingset will be restored quickly. This incurs unnecessaryand bursty tra�c between the transient and persistentstores, however.To avoid this, we take advantage of the fact thataddress translation and data caching are essentiallyorthogonal. We don't really have to write pages out toreclaim the corresponding pages of the virtual addressspace. Evicting pages from local (virtual memory)storage is easy; clean pages can simply be discarded,and dirty pages can be unswizzled and written backto the persistent store.Rather than actually writing everything out, then,we can simply invalidate and incrementally rebuild thevirtual memory mappings. That is, we \pretend" towrite out all of the data, but we leave it cached lo-cally, and actually just access-protect the pages. Wecan then incrementally fault on them to build a newset of mappings. If a page is faulted on and it is stillin local storage (RAM or disk), so much the better|its pointers can simply be reswizzled according to thecurrent mappings, in much the same way as when thepage was originally faulted in. The \obsolete" map-pings could be consulted, and could even be re-usedin many cases. (If a page is not dirty, i.e., writtento since it was faulted into transient memory, then itcontains no pointers into pages that it did not previ-ously contain pointers into. Low-fanout pages shouldthus have their referred-to pages recorded at swizzlingtime.)6Note that we can't just evict a page from the virtual addressspace, because we do not keep track of pointer assignments|any page that in the virtual address space must be assumed tohave pointers into it from other pages in the address space. Wetherefore cannot reuse that page we rebuild the mappings|wehave to traverse the graph of pointers and rebuild the mappingsto �nd out which pages are reclaimable.

Reclamation of pages can begin after the programhas run a while, to recreate or revalidate all the map-pings of its current \working set." Candidates forreclamation are pages that have not been referencedsince the mass invalidation, and which are not directlyreachable from pages that have been. The reclamationpolicy should probably favor evicting pages that areonly directly reachable from pages that haven't beentouched for a long time. To increase e�ciency in sys-tems where page fault traps are expensive, the (tran-sient) virtual memory system's recency informationmight be consulted, and the most recently-touchedpages could be assumed to be part of the currentworking set. These pages would have their addressesrecomputed or revalidated immediately, (rather thanbeing access-protected) to avoid most of the urry ofaccess protection faults immediately after the mass in-validation.6 Objects that Cross Page BoundariesOne potential hitch in our scheme is that pages thatif an object crosses page boundaries in the persistentstore, the corresponding pages must be adjacent in thetransient virtual memory as well. (If an object strad-dling a page boundary is not relocated as a contigu-ous object, indexing to access its �elds will not workproperly.) Lazy copying is particularly helpful here;address space must be reserved for the whole object,but there needn't actually be any physical (RAM ordisk) memory used for untouched pages.To support this, the language implementationmustsomehow support operations that �nd object bound-aries, and/or maintain \crossing maps" to tell whichpages hold part of an object continued from a previouspage. These requirements are not much di�erent fromthose of garbage collected systems that must performpagewise (or \cardwise") operations [AEL88,WM89b]within the heap; there is no major di�culty support-ing such operations e�ciently for languages like Lispor ML. Slightly conservative versions of these schemeswill work well for languages with derived pointers and(limited) pointer arithmetic, in much the same waythat conservative garbage collectors operate with lan-guages like C [BW88]. The main modi�cations are tothe allocation and deallocation routines, which mustprovide headers and/or groupings and/or alignmentrestrictions to allow objects to be identi�ed.Large objects still pose a potential problem for oursystem, in terms of exhaustion of the hardware ad-dress space. If a page is touched, and it holds pointersto several large (multi-page) objects, space must be



reserved for all of those objects' pages, even if theyare never touched. Programs that deal with manyvery large objects may therefore bene�t from a largerhardware address space, to decrease the frequency ofaddress space reuse. While we don't think that this isa serious problem for most programs on most comput-ers, it is worth considering. As the following sectionshows, we can integrate machines which require largehardware addresses with those that don't, and allowthe sharing of most data between them.7 CompatibilityWe see pointer swizzling at page fault time as partof a general purpose reconciliation layer that can beused to structure systems very exibly at little perfor-mance cost [Wil91]. It can be used to support dataformats that allow exible sharing of data across ma-chines with di�erent word sizes, and even to supportbinary code compatibility within families of machinesthat have di�erent address sizes. These capabilitiesonly require very slight changes to existing programsand/or compilers.Naturally, any program that actually requires ahuge at address space cannot be run on the 32-bitmachines, for example, programs that need at arrayindexing into multiple gigabyte arrays, or programswhose locality is very bad on the gigabyte scale. Theseprograms are likely to require high-end processors any-way, and be executed on the larger machines. Byand large, however, most programs and data couldbe shared across di�erent-sized machines.(We don't claim to have a panacea|the problemsof data sharing are di�cult and deep in the generalcase. On the other hand, the trend toward standardnumeric formats and byte addressing is encouraging.32-bit integers, 64-bit IEEE oats, and swizzled point-ers would support a much higher \greatest commondi-visor" than the currently ubiquitous streams of bytes.)7.1 Address Size-Independent Data For-matsFor compatibility across di�erent machines, it maybe desirable to have a single data format that canbe used, irrespective of the address word size of themachine operating on the data. This is particularlyattractive for a shared persistent store or a distributedvirtual memory.By using pointer swizzling to adjust pointer sizes, itis easy to accomplish this. When pages are transferredfrom one machine to another, it is only necessary to

translate the pointers in a page into the native formatof the receiving machine.Pointer swizzling only requires that it be easy to�nd the pointers in a page, and that it be easy to con-vert a large persistent pointer into the hardware sup-ported format. This is done by translating a the highorder bits (page number) to the shorter bit patternof the transient page number, and adjusting the low-order bits that represent the o�set within the page.The simplest way of ensuring this ability is to havethe persistent data format be the same as the tran-sient format, so that the o�set part of a pointer doesnot change at all.This can be done for multiple pointer sizes by sim-ply leaving enough room for the largest hardware-supported pointer size, whether it is needed on allmachines or not. So a 64-bit �eld can be used on 64-bit machines, and also on 32-bit machines|but onlyhalf of the �eld is used for transient pointers on 32-bit machines. (As mentioned above, the other half ofthe �eld goes to waste, but this space cost is relativelysmall.)This is similar to the approach used in the Com-mandos [MG89] operating system, where object iden-ti�ers are used on disk, but they are swizzled to actualpointers in memory. Commandos does not use page-fault time swizzling, however, and incurs overhead inchecking for unswizzled pointers. (Using object identi-�ers rather than persistent addresses also makes trans-lations more expensive.)7.2 Binary Code Compatibility AcrossHardware Address SizesNot only is it possible to de�ne compatible data for-mats that can be used by programs running on hard-ware with di�erent address sizes, it is even possible tode�ne instruction set architectures (ISA's) so that thesame compiled code can run on machines with di�erentword sizes.For architecture families like the current MIPS pro-cessors (i.e., 32-bit R3000 and 64-bit R4000) or theIBM/Apple/Motorola PowerPC, a few instructionsadded to the 32-bit machine can provide an addressingmode that can be reconciled with 64-bit addressing, byusing pointer swizzling. In each of these families, the64-bit instruction set architecture is a superset of the32-bit ISA. The same register designations are used,but on the 64-bit machine the registers are twice aslong. (Backward compatibility is ensured by de�ningmost opcodes in such a way that on the 64-bit machinethey operate on a 64-bit register, but the e�ect on thelow-order 32 bits is the same as the operation on the



smaller machine's 32-bit registers. Any program com-piled for the 32-bit ISA still runs on the 64-bit ISA,because it doesn't depend on the values in the upperhalves of registers. Some new opcodes are added aswell, such as 64-bit loads and stores.)As described previously, data objects can be laidout in a compatible way, with a 64-bit pointer �eld,only half of which is used on 32-bit machines. It isonly necessary to de�ne the 64-bit machines' opcodeson the 32-bit machines to \do the right thing" for theactual hardware address size. The opcodes for 64-bitloads and stores on the 32-bit machines should do 32-bit loads and stores. (Equally important, the loads andstores should use 32-bit register values for addressing.)The strategy here is to use the 64-bit opcodes as\compatibility opcodes," which use whatever hard-ware address size is best on a particular machine.That is, they become 64-bits-if-you've-got-them op-codes. For compatibility with existing compilers andlibraries, code compiled to use 32-bit addressing on32-bit machines (using the plain 32-bit opcodes) willwork on either machine, in the normal way. Code com-piled to run on 32-bit machines using pointer swizzlingwill use 64-bit opcodes instead, to load 32-bit valuesusing 32-bit addresses. The pointer swizzling schemewill ensure that any pointer �eld the processor can seewill in fact have a 32-bit pointer in the relevant half ofthe word. But the same opcodes actually mean 64-bitloads and stores on 64-bit machines, and the pointerswizzling scheme will ensure that those �elds do hold64-bit addresses on those machines.It's not actually quite this simple, because of thepossibility of performing pointer arithmetic on theseaddresses. All that is necessary, though, is to use therelevant arithmetic opcodes in the same way as loadand store opcodes.7One of the great attractions of this scheme is thatit is not actually necessary to use any new operations.A slight change to opcode decoding will do the trick;64-bit instruction opcodes, which currently trap as il-legal instructions on a 32-bit machine, should insteaddo the equivalent operation, but using 32-bit address-ing and registers. This should not break any exist-ing 32-bit code, and requires no change to the 64-bitarchitecture.87In some architecture families, 32-bit machines will never at-tempt to actuallydo 64-bit operations, so the 64-bit opcodes canbe used as pseudonyms for 32-bit operations. In other families,the same opcodes are used anyway. Either way, those opcodese�ectively become \compatibility mode" address arithmetic in-structions, which do the right thing on either architecture.8Thanks to Rich Oehler and Keith Diefendor� for point-ing out a aw in an earlier version of this compatibility modescheme, and suggesting details of this one.

The implications for compilers are that a \compat-ibility mode" back end can easily be implemented byslightly modifying existing back ends. The instructionset should be limited to instructions available on both64-bit and 32-bit versions of the architecture|that is,it should be limited to the 32-bit ISA|except whendealing with addresses. 64-bit �elds should be usedfor addresses, including stack-allocated variables, and64-bit opcodes should be emitted to operate on them.The resulting code should also work on 32-bit archi-tectures, with pointer swizzling at run time.While the above scheme would provide maximumperformance by simply aliasing existing operationswith new opcodes, another variation could providecompatibility on an installed base of 32-bit machines.Many machines provide for the fast trapping of unim-plemented opcodes, so that they can be emulated insoftware. This trapping could be used to emulatethe compatibility opcodes, rather than actually hav-ing a new opcode. On 32-bit machines, 64-bit opcodeswould trap to routines that simply executed the corre-sponding 32-bit instructions. While less e�cient thanhardware aliasing, this would still allow the genera-tion of compatible binaries using 64-bit opcodes ascompatibility opcodes.97.3 Using Existing Languages and Com-pilersWhile pointer swizzling at page fault time is obvi-ously applicable to languages like Lisp and Smalltalk,which use tagged pointers, it can also be used forstrongly-typed languages such as Modula-3, ML, and(with slight restrictions) C or C++.10 The successof conservative garbage collectors shows that most Cprograms require little or no modi�cation to meet thenecessary constraints.11 Some compiler optimizationsmay mutilate pointers beyond recognition, but thereare ways around this.129In marketing terms, this would allow the distribution ofcompatible binaries that would run on the installed base, witha two-level upgrade strategy. A cheap upgrade would consistof swapping the CPU chip for a pin-compatible chip with theopcode aliases in hardware. A more expensive upgrade wouldbe a full-blown 64-bit CPU.10The main restriction is the avoidance of untagged unionsholding pointers in the variant part. Another is the avoid-ance of storing intermediate values from pointer arithmetic ex-pressions, without retaining an actual pointer to the object[BW88, Boe91].11Untagged unions are not very attractive in C++, becauseof its object-oriented features, and most pointer arithmetic thatbreaks garbage collection (or pointer swizzling) relies on un-portable assumptions anyway.12The easy way is to forgo certain advanced optimizations,as is done by several systems that use C as an intermedi-



It is only necessary for heap allocation routines toensure that data objects within heap pages can berecognized, and that the pointers to and within thoseobjects can be found. The techniques for this are wellunderstood, having been developed for the purpose ofgarbage collecting statically-typed languages.It is even possible to do pointer swizzling for pro-grams compiled with standard o�-the-shelf compilers.It is only necessary to treat the stack conservatively,as is done by garbage collectors developed for o�-the-shelf compilers [BW88, Bar88, Det90, WH91, Det92].Any bit pattern within the stack which could rep-resent a pointer must be conservatively assumed tobe a pointer. The pointed-to page is then \pinned"in the transient address space, because the pagecan't be relocated without invalidating the (possible)pointer. This does not require the page to actually re-main in transient memory|just that its persistent-to-transient mapping (for a particular transient memory)not be changed.13Interestingly, it is possible to cast pointers to inte-gers, and back to pointers again, without breaking thepointer swizzling system. If pointer casting to an inte-ger is implemented as an unswizzling into the persis-tent address bit pattern, and if casting an integer intoa pointer swizzles it according to the prevailing pagemappings, then all is well.14 This requires the use ofan integer long enough to hold the persistent form ofthe address, which is probably �ne if only a 64-bit ad-dress space is required. It can break copying garbagecollectors, however; in this respect, the requirementsof the swizzling system are actually weaker than thoseof a copy collector.7.4 Linking to Existing BinariesBecause pointer swizzling at page fault time re-quires no changes to objects' data formats or the codethat manipulates them, it allows swizzled and unswiz-ate language|but this incurs a small performance penalty. Abetter technique in the long term is to ensure that compilersdon't violate the invariants unnecessarily [Boe91], or that theyrecord clarifying information when they do [DMH92, WH91,BMBC91]; we believe compilers should retain this kind of in-formation anyway, to support \de-optimizing" in source-leveldebuggers (e.g., [HCU92]).13It is not di�cult to swap a page from one machine's addressspace to another's, and back. The page's mappings (to transientpages) do not change in either space, but when a page is trans-ferred, the pointers in it are unswizzled from the source spacerepresentation and reswizzled into the destination space repre-sentation. It might be possible to make other format changes atthe same time, such as endianness reversal when dealing withdi�erent machine architectures.14Thanks to David Chase for suggesting this implementation.

zled objects to be used in the same programs, with afew restrictions on how they may interact. Persistenceis a property of individual objects, not of classes|a persistent object is simply one that is allocated onthe persistent heap rather than the conventional (tran-sient) heap.We have found this to be extremely convenient inthe process of developing our persistent store|we canintermix conventional C++ code and persistent C++code, even linking to existing binaries. It is not nec-essary to recompile libraries, for example, as long astransient objects are not expected to persist or sur-vive across crashes. Transient objects may hold point-ers to persistent objects, and vice versa, as long asthey follow a few simple rules [SKW92]. (Naturally,more alternatives are possible if the source is available.In that case, it can be run through a precompiler torecord object layouts, and linked with our heap allo-cator; this allows all objects to be made persistent, ifdesired.)8 Truly Enormous Address SpacesIn the scheme described above, the size of pointer�elds is determined primarily by the size of hardware-supported virtual addresses. (We currently use a 64-bit �eld because it is large enough to hold either a32-bit or a 64-bit address.) The size of persistent ad-dresses can be arbitrarily large, however; we believe itwill be desirable to have 96 or 128-bit addressing inthe future. This is easy to do with pointer swizzlingat page fault time.15To support enormous address spaces, it is only nec-essary that the persistent object format be able tohold the maximum-sized pointers. The uniform 64-bit transient pointer �elds can still be supported, butpages may take up more space in persistent memorythan in a processor's virtual memory|that is, the sizeof a page may change when it is swizzled. Variable-sized persistent pages complicate page lookup, becausethey complicate the mapping of conceptual pages todisk blocks. We do not believe that this is a seriousproblem in the long run, however, because of currenttrends in the evolution of �le systems|namely blockmobility and compressed storage.Block mobility is increasingly important, as in thecase of log structured �le systems|that is, the loca-tion of a block may change over time to maximizee�ective write bandwidth [RO91] and possibly adapt15Our attitude toward address space might be summed up as\crunch all you want|we'll make more."



to observed patterns of disk usage to reduce read la-tencies [Gri89, Wil91].Compressed storage is likely to become increasinglyimportant, whether at the level of �le storage or aspart of the virtual memory system [AL91,Wil91]. Theproblems of variable-sized units of storage are thuslikely to be solved anyway, for entirely di�erent rea-sons. Compressed storage is attractive for reducingstorage costs, and for reducing average latency (bystoring more data in fast memory and/or decreas-ing communication costs). If compression is used,long persistent addresses should typically take up con-siderably less space than the in-memory format|presumably, the actual information content will notbe much higher despite the very horizontal pointerformat.While such compressed storage techniques are be-yond the scope of this paper (but see [WLM91,Wil91]), we would like to make one observation aboutwhy these problems are not as di�cult as they mayseem at �rst glance: it is not necessary to store thecompressed pages contiguously. Pages only need to becontiguous and \the right size" when they are madeaccessible to a program, so that hardware addressingworks correctly. When stored in compressed format,they may be broken into smaller blocks to reduce frag-mentation problems.9 Related WorkWhile there are quite a few persistent storage sys-tems (see, e.g., [DSZ90]), to the best of our knowl-edge only one uses virtual memory techniques to al-low pointer swizzling at page fault time (avoiding con-tinual runtime overhead) and supports a very largeaddress space. That is ObjectStore, a commerciallyavailable system [LLOW91] from Object Design, Inc.Their system was designed independently of ours, andapparently predates it. We believe that it operates bysimilar means, but no details have been published.Our scheme also bears some resemblance to theMoby address space designed and implemented byRichard Greenblatt at Lisp Machines Incorporated.Moby used pagewise relocation, but exploited thetagged architecture of the Lisp machine to swizzlepointers one at a time, rather than translating all ofthe pointers in a page with a single page protectionfault. A similar scheme (designed and implementedby Bob Courts) was later used on the TI Explorer.Apparently, no papers were ever published about ei-

ther of these systems.16At a higher level of abstraction, pointer swizzling atpage fault time is really a compression of the streamof addresses going by on the address bus (and alsothose within the pagewise wavefront around it). It istherefore philosophically akin to dynamic base registercaching [FP91], but entirely di�erent in its implemen-tation. Our scheme incrementally constructs a com-pression table (mapping long persistent page numbersto short transient ones), which is rebuilt when its al-phabet is exhausted (that is, when the transient pagenumbers are used up).The pagewise wavefront of compression mappings isa purely pagewise analogue of Baker's \read barrier"technique for traversing objects in incremental tracinggarbage collection [Bak78, Bak92, Wil92]. Our page-wise read barrier is an variation of Appel, Ellis, andLi's incremental garbage collection algorithm, whichuses a pagewise wavefront with objectwise relocation.10 DiscussionPage-fault-time swizzling is essentially a RISC ad-dressing scheme, exploiting the common cases of pro-grams' memory referencing behavior, i.e., mostly re-peated touches to a subset of all pages; it providesextremely high performance in the usual case|withno impact on cycle time|and traps to software in theunusual cases. Ironically, it could have been used atany time in the last twenty or thirty years, to avoidthe hardware and software woes of segmented archi-tectures.It can be argued that while it would have been avery good idea in the past, it will soon be unneces-sary because 64-bit hardware addressing will becomeubiquitous over the next few years. We think that it'sstill an excellent idea, for several reasons: the largeinstalled base of narrow machines, the possibility thatnarrow machines may become necessary again if hard-ware trends change, and the likelihood that even 64bits will not be enough. (We also think it's simply theright way to look at memory, freeing the notion of apointer from its realization as a hardware address.)The current trend toward 64-bit architectures maywell be irreversible, and not as expensive as it mightseem at �rst glance, because most of the costs of a chipare not directly proportional to address width. Still,we believe our scheme to be valuable even in a worlddominated by 64-bit machines.16Thanks to David Moon, Richard Greenblatt, George Car-rette, and Doug Johnson for information about these systems.



32-bit machines will be manufactured for quite awhile, if only for palmtop computers and embeddedapplications.17 Their small address spaces should notprevent them from sharing a truly global address spacewith their larger cousins, perhaps over infrared linkswithin a building, or via a cellular telephone network.Pointer swizzling can extend also the life of 64-bit ar-chitectures inde�nitely, even if many bits are stolenfrom the address words and devoted to bit addressing,processor ID's, type tags, and so on.As a reconciliation layer, swizzling can allow an in-de�nite number of machines (say, all the computersin the world) to share an inde�nitely large addressspace, without each having to map potentially sharedpages into the same place in each hardware-supportedaddress space. And even the lowly embedded 32-bitsingle-chip computers of the coming decade should beable to share data with the largest 64-bit computeservers. And if current trends change toward lower-density, higher-speed materials (e.g., GaAs or Joseph-son junctions), word size may again become critical,and we can provide a graceful \downgrade" path.In [CLLBH92], Chase et al. argue that 64-bit com-puters eliminate the need to play tricks with addressspaces, either in the conventional way of interpretingaddresses di�erently for each process, or by pointerswizzling. They point out that even if storage is usedat a rate of 100 megabytes per second, it will take sev-eral thousand years to use up a 64-bit address space|264 is 16 billion billion, and that's a very large number.While we agree that a single global address spaceis very desirable, and greatly simpli�es the design ofsophisticated systems, we don't believe that 64 bitsis enough in the long run, or that the global ad-dress space should be equated with conventional vir-tual memory addressing. (We also disagree with thecontention that pointer swizzling interferes with shar-ing and protection; di�erent protection domains on anode can share data pages|and swizzling mappings|while using di�erent virtual memory protections forthe swizzled pages.)We believe it is possible, and even likely that 64 bitaddress spaces will be exhausted in the foreseeable fu-ture. Eventually, computers will encompass multime-dia systems, and (for example) high-de�nition digitalvideo data may be mapped into memory. HDTV infor-mation rates will be tremendous|consider megapixelsper frame, in color, at tens of frames per second|and100 MB per second ceases to seem all that unusual.17The recent introduction of new \subnotebook" computersbased on 16-bit CPUs suggests that it will be quite a whilebefore 64-bit machines take over the entire market. Even 16-bitmachines could be supported with our scheme.

Even with compression, a relatively small number ofcameras could achieve that rate of data capture. (Wealso believe that the uncompressed image should bemapped into memory, even if the actual storage is incompressed form.) A single locally-networked site maytherefore capture hundreds of megabytes of raw dataper second; an international network of several thou-sands such sites could exhaust a 64-bit address spacein a single year.We also believe that it may be desirable to adopta no-reuse policy toward virtual addresses|that is,when an object is deallocated, its (long, conceptual)address should not be reused. Just as [CLLBH92] ad-vocates the separation of addressing from protection,we advocate the separation of addressing and protec-tion from storage. Reusing memory should not neces-sarily entail reusing part of the global address space,even within a single thread of computation.This separation of concerns could have several ben-e�ts. One would be that debugging long-lived pro-cesses would be much easier, because distinct objectswould have distinct addresses over time|an addresswould not be reused for a new object. (This wouldbe especially desirable in the context of a time-traveldebugging system [WM89a, FB88, TA90].)Along with this ability to distinguish distinct ob-jects over time comes the possibility of detecting mostuses of dangling pointers. If empty virtual pages arenot reused, they can simply be access protected andhave their storage reclaimed. An attempt to derefer-ence a stale pointer will then cause an access protec-tion fault, rather than silently operating on a com-pletely di�erent object.18Many other uses of enormous address spaces arepossible, and the cheap availability of inde�nitely largespaces will probably encourage the development ofmany more. We are particularly interested in thelazy construction of large memory-mapped data struc-tures, whose incremental materialization is triggeredby access-protection faults. (For example, programsmight see an area of address space as a gigabyte ar-ray, but the elements of the array would be computedon an as-needed basis, triggered by actual memoryreferencing.)18This will not detect all uses of dangling pointers, becausethe page cannot be access protecteduntil it is completely empty.We believe that the clustered births and deaths of objects[Hay91] will frequently cause entire pages to become empty,however; small pages and/or sub-page protections would alsomake this more e�ective.



11 Current Status and Future WorkOur initial prototype persistent store for Scheme[Wil91] lacked recovery features and a body of data-intensive programs to truly stress it, so was littlemore than an existence proof, showing that it is pos-sible (and, in fact, easy) to perform address trans-lation at page fault time. (Performance problemswith our (bytecoded) Scheme system also preventedus from precisely measuring the overheads of pointerswizzling|the swizzling cost were too low comparedto the overhead of interpretation.)We have recently constructed a new, highly-portable persistent store for C++, called Texas[SKW92]. The current implementation, running onunmodi�ed ULTRIX, incurs unnecessary costs due todi�culties in avoiding allocating backing store andbypassing �le system caching. Despite these aws,we have run a few benchmarks that suggest that ourpointer swizzling techniques perform well.19
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Figure 2: Small OO1 database traversal timesFigure 2 shows the results of running a simplebenchmark with our persistent store, and with non-persistent C++. (In both cases, the test system is aDECstation 5000/200 with 16MB main memory. Thevirtual memory system and �le caches were ushed todisk by reading and writing unrelated data before thestart of the benchmark.)The plots show the time taken to perform each of10 iterations of the \traversal" component of the OO1benchmark [Cat91], using the standard smallOO1 testdatabase. The database consists of 20,000 \part" ob-jects, representing parts in a hypothetical engineer-ing database application. The parts are indexed by19We are currently implementing several improvements; thesewill be reported in [SKW92], including with details of our newlog-structured storage manager and its e�ects on checkpointingcosts.

part number, with the index implemented as an AVLtree20. Each part object also has pointers to severalother parts that it is conceptually \connected" to, anda pointer to a set object that holds backpointers to ob-jects that are connected to it. There is locality in theconnections, based on mostly nearby part numbers,and some randomness as well.The standard benchmark searches the databaseseveral times in the following way: a part numberis selected at random, and then its connections toother parts are traversed recursively to �nd three otherparts. This traversal continues transitively for sevenlevels (with a branching factor of three), touching atotal of 3280 connected parts.The graph shows the times to perform successivetraversals, each starting from a di�erent randomly-selected part and tracing out its connections.Our persistent C++ system (Texas) outperformsnon-persistent C++ in most of these early iterations,which should not be possible, but this is apparently anartifact of the fetch policy used in the underlying �lesystem. (We fetch faulted-on pages from the persistentstore, which is implemented as �le data. C++ simplyfaults them in from virtual memory as 4KB pages.)
iteration

se
co

nd
s 

pe
r 

it
er

at
io

n

0

0.05

0.1

0.15

0.2

0 25 50 75 100 125 150 175 200

C++

Texas

HotFigure 3: More iterations traversing small databaseFigure 3 shows what happens when more iterationsof the benchmark are performed. Both C++ andTexas approach the same speed as the virtual memory\warms up", i.e., as more and more pages have beenfaulted into main memory. This is to be expected,since Texas incurs little or no overhead except at pagefault time. Following White and Dewitt [WD92], wealso show the \hot" traversal time, traversing only20We used the standard AVLMap template (parameterized)class from the Free Software Foundation's GNU C++ library.Only the calls to new() were changed, so that objects wouldbe allocated on the persistent heap



pages that are already in memory by repeating pre-vious iterations.
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Figure 4: OO1 Large database traversal timesFigure 4 shows the same kind of traversal performedagainst the large OO1 database (including 200,000part objects), which will not �t in memory [Cat91].The startup e�ects of �lesystem fetching quickly di-minish, and the performance of both systems is domi-nated by virtual memory paging costs. After the �rst30 iterations or so, the performance of Texas is about93% of the performance of C++. Again, the hot timeswere essentially identical, at about 19ms. This indi-cates that the time overhead of our system is nearlyzero in a large main memory, at least when addressspace reuse is not necessary during the execution of aprogram.We should stress that the above measurements arevery preliminary|they are the �rst measurementswe've made, of an unoptimized, untuned system. Still,they suggest that pointer swizzling at page fault timewill be quite e�cient for many applications, and inparticular that it is competitive with a conventionalvirtual memory.ConclusionsPointer swizzling at page fault time can supportenormous address spaces on standard hardware, us-ing only commonly available compilers and operatingsytem features. We believe it can be an importantpart of a radical and long-overdue reorganization ofthe relationships between software and hardware, witha high-performance RISC approach to address trans-lation. Nonetheless, it is of immediate practical valuegiven existing hardware, operating systems and com-pilers, as a reconciliation layer between otherwise in-
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