

1 WP121A/11/11 © 2011 Programming Research Ltd

WHITE PAPER

HICPP, JSF++ and MISRA C++:
a study of rule overlaps and

effective compliance

By Wojciech Basalaj, Senior Technical Consultant

November 2011

Any organization wishing to adopt best practices for its C++ development needs to
consider the coding rules to prescribe in its Coding Standard. There are many publicly
available guidelines to use as a starting point, with the 3 most comprehensive being
High Integrity C++ (HICPP), Joint Strike Fighter Air Vehicle C++ (JSF++) and MISRA
C++. While there appear to be preferences in certain industries for following one of
these guidelines over all the others, the rationale is often only an emotive one.
This article aims to shed some light on overlaps between HICPP, JSF++ and MISRA
C++, with the intention of helping in the aforementioned coding standard formulation
process, as well as understanding the effort of complying with more than one off-the-
shelf coding standard, for example in cases where code is reused and different coding
standards are mandated contractually.

2 WP121A/11/11 © 2011 Programming Research Ltd

WHITE PAPER

Overlaps between C++ Coding Standards

A comparison of HICPP, JSF++ and MISRA C++

By Wojciech Basalaj, Senior Technical Consultant

Introduction

The principle of Coding Standards has long been an
emotive one among software developers, with
attitudes ranging from “why do we need such
restrictions?” to “how can we possibly operate
without such controls?”

Their primary objective is to prevent unwanted
behavior or misbehavior of software. Software
languages generally contain features that, in their
entirety, are rich beyond the needs of most software
practitioners. What this means is that most ordinary
developers are not expected to be expert in the full
language feature-set, and coding rules help to
protect them against areas of language danger or
misuse.

While the already well-publicized and documented
undefined behaviors of these languages are central
to any language protection, there are many other
types of vulnerability that require deep
understanding of language syntax and semantics.
Close analysis of the transformation from raw
source code to object and executable image is just
as important in achieving a high quality and robust
code base.

It is clear that the eradication of undefined behavior
problems from a code base during the development
cycle using a comprehensive set of rules (a coding
standard) will have a positive impact on the quality
and cost of the software developed. Prohibiting the
use of dangerous parts of the language and
dangerous practices, via an automatic enforcement
solution (static analysis tool) is the most effective
way to achieve this on current code and future
development practices.

In general terms, a coding standard’s effectiveness
can be measured by the degree of automatic
enforceability. Manual code inspection has been
proven to be ineffectual, costly, time consuming and
prone to human error. A key criteria of a coding
standard and any process certification that decrees
the use of one, is that the coding standard should be
enforced by an automated tool.

HICPP Background
The High Integrity C++ (HICPP) standard [9] was
first introduced in 2003 by Programming Research
and can be freely obtained from
www.codingstandard.com. It is based on topics
from C++ literature [1] [2] [3] [4] [5] [6] [7] alongside
best practices in C++ development. The standard
defines a set of rules for the production of high
quality C++ code. An explanation is provided for
each rule. Each rule shall be enforced unless a
formal deviation is recorded for which it outlines a
deviation process. The guiding principles of the
standard are maintenance, portability, readability
and safety and its aim is to arrive at high quality
source code by ascertaining that the code complies
with these principles. The standard adopts the view
that restrictions should be placed on the ISO C++
language [2] in order to limit the flexibility it allows.
This approach has the effect of minimizing problems
created either by compiler diversity, different
programming styles, or dangerous/confusing
aspects of the language. Different compilers may
implement only a subset of the ISO C++ standard or
interpret its meaning in a subtly different way that
can lead to porting and semantic errors. Without
applying good standards, programmers may write
code that is prone to bugs and/or difficult for
someone else to pick up and maintain.

JSF AV++ Background
The JSF AV++ coding standard [10] produced by
Lockheed Martin™ is intended to help programmers
develop code that conforms to safety critical
software principles, i.e. code that does not contain
defects that could lead to catastrophic failures
resulting in significant harm to individuals and/or
equipment.

Overall, the philosophy embodied by the rule set is
essentially an extension of C++’s philosophy with
respect to C constructs. That is, by providing “safer”
alternatives to “unsafe” facilities, known problems
with low-level features are avoided. In essence,
programs are written in a “safer” subset of a
superset. In general, the code produced should
exhibit the following important qualities:

WHITE PAPER

3 WP121A/11/11 © 2011 Programming Research Ltd

• have a consistent style,

• be portable to other architectures,

• be free of common types of errors, and be
understandable, and hence maintainable, by
different programmers.

The purpose is to define a C++ rule set to produce
code that is more correct, reliable, and maintainable.

Rules are required for Air Vehicle C++ development
and recommended for non-Air Vehicle C++
development and were designed to specifically
address unpredictable behavior:

• Restrict programmers to a better specified,
more analyzable, and easier to read (and write)
subset of C++

• Eliminate large groups of problems by attacking
their root causes (e.g. passing arrays between
functions as pointers)

• Ban features with behaviors that are not 100%
predictable (from a performance perspective)

The AV Coding Standard, although originally
intended for aviation/aerospace, is now more widely
adopted by a number of industries and promotes,
monitors and controls:

• Reliability: Executable code should consistently
fulfill all requirements in a predictable manner.

• Portability: Source code should be portable (i.e.
not compiler or linker dependent).

• Maintainability: Source code should be written in
a manner that is consistent, readable, simple in
design, and easy to debug.

• Testability: Source code should be written to
facilitate testability. Minimizing the following
characteristics for each software module will
facilitate a more testable and maintainable
module: code size, complexity and static path
count (number of paths through a piece of code)

• Reusability: The design of reusable components
is encouraged. Component reuse can eliminate
redundant development and test activities (i.e.
reduce costs).

• Extensibility: Requirements are expected to
evolve over the life of a product. (i.e.
perturbations in requirements may be managed
through local extensions rather than wholesale
modifications).

• Readability: Source code should be written in a
manner that is easy to read, understand and
comprehend.

MISRA C++ Background
The automotive industry has been using C for a
number of years but the requirements in

infotainment have necessitated the use of C++ to
gain greater flexibility and usability. MIRA decided
that this would need to be investigated with a
mission “to provide assistance to the automotive
industry in the creation and application of safe and
reliable software in vehicle systems”

During discussion on the viability of creating a safety
critical standard for C++ it was felt that this
committee should link with the thoughts of the
Automotive industry requirement as some of the
people on the MISRA C Committee were also
involved in the proposed committee all be it of a
different skill set (C++).

The MISRA C++™ guidelines [11] form a set of
restrictions and a safe subset of the C++ language
suitable for the development of safety critical
systems and other embedded applications. The
standard draws from established coding standards
such as MISRA C[8], Lockheed Martin’s Joint Strike
Fighter Air Vehicle C++ coding standard (JSF++)
and PRQA’s High-Integrity C++ coding standard
(HICPP), and is intended to contain a set of
guidelines and best practices understandable to a
wide audience. MISRA with a prime requirement for
safety critical use being predictability, aims to

• Promote best practice in automotive safety-
related systems engineering

• Develop guidance in specific technical areas
such as the C++ language, software readiness
for production and safety analysis

• Eliminate or mitigate unpredictability
o unspecified behavior – it is simply not

known what the program will do
o implementation dependent – different

behavior on different platforms
o unknown execution time
o unknown resource requirements

• Improve clarity for review and maintenance.

• Provide a consistent style across a program or
set of programs

• Avoid common programmer errors

• Incorporate good practice, particularly with
regard to ‘future proofing’.

Public input was sought and received as a means of
public review of the suggested guidelines.

4 WP121A/11/11 © 2011 Programming Research Ltd

Coding Standards Overlap

ALL

10%

HICPP/MISRA

6%

MISRA

22%

JSF

20%

JSF/MISRA

11%

HICPP/JSF

7%

HICPP

23%

Figure 1

The complete rule set spanning the HICPP, JSF++
and MISRA C++ coding standards contains 431

*

unique rules, which is considerably less than the
sum total of the rules standing at 663, due to
significant overlaps. As can be seen from Figure 1,
each coding standard contains nearly a half of that
unique rule set

*
, with approximately equal split

between rules unique to each coding standard, and
rules shared with at least one other standard. Just
45 rules (10%) appear in all coding standards;
further 106 rules appear in 2 coding standards
simultaneously.

The 45 common rules can be traced to shared
references:
ISO/IEC 14882:2003, Programming Languages -
C++ [2]
MISRA C:2004 [8]
Industrial Strength C++ [6]
Scott Meyers’ Effective C++ [3]
Bjarne Stroustrup’s The C++ Programming
Language [1]
and some rules that first appear in HICPP [9]

These probably constitute the absolute minimum
that any tailored C++ coding standard should
contain. An example of such a common rule is Item
21 of Effective C++ which advocates using const
whenever possible. Interestingly, all but one of these
common rules are amenable to static analysis, and
they are available in QA·C++ [12].

*
 Because granularity of rules varies among coding
standards, e.g. with 1 rule corresponding to a few in
another standard, this number is open to some

interpretation.
*
 HICPP slices are denoted with red

hue, JSF++ with yellow, and MISRA C++ with
chequered pattern

On the other end of the scale, the rules that appear
in only a single coding standard suffer from a few
drawbacks:

• these significantly outnumber the common rules,
which makes their selection and potential
enforcement time consuming

• a high proportion of the rules - 52% - cannot be
enforced with static analysis, and thus need to
be enforced through other means, e.g. manual
code review.

For example, a concept that is unique to MISRA
C++ is that of underlying types, which it inherits from
MISRA C:2004. HICPP is unique with its guidance
for the use of STL in Chapter 17. A rule that is
unique to JSF is Rule 103 which prescribes to apply
constraint checks to template arguments.

The rules that are shared between two coding
standards are not that numerous and are more
susceptible to static analysis – only 24% have to be
manually enforced. An example of a rule common to
JSF and MISRA C++ only is that arrays should not
be passed as parameters, to avoid the “array decay”
problem. HICPP and MISRA C++ have in common
that polymorphic member functions have to be
declared virtual explicitly in every derived class.
HICPP and JSF share that they allow public
derivation only.

Rule Enforcement
Coding standard rules may be impossible to enforce
statically for a number of reasons. Some rules are
documentation or process based rather than
dependent on source code, and as such cannot be
automated; good examples are MISRA C++ Rule 1-
0-2 ‘Multiple compilers shall only be used if they
have a common, defined interface’ and JSF++ Rule
218 ‘Compiler warning levels will be set in
compliance with project policies’. Moreover, coding
standards sometimes contain rules that are too
vague or high level to enforce automatically, e.g.
MISRA C++ Rule 15-0-1 ‘Exceptions should only be
used for error handling’ and JSF++ Rule 216
‘Programmers should not attempt to prematurely
optimize code’. It may be possible to enforce certain
aspects of such rules once the underlying intent is
clarified.

Further differences in enforceability typically occur
on the basis of a rule being considered mandatory
or advisory in a coding standard. The rationale of
classifying the rules as such is that non compliance
to a mandatory rule is typically considered to carry
more risk in terms of program correctness, as
opposed to breaking an advisory rule. HICPP

5 WP121A/11/11 © 2011 Programming Research Ltd

partitions its rule set into ‘Required’ and ‘Advisory’
rules; JSF++ contains ‘Shall’ and ‘Will’ rules which
are mandatory and ‘Should’ rules are advisory;
finally MISRA C++ takes a slightly different
approach with ‘Required’ and ‘Document’ rules
which are mandatory and with the remaining rules
being labeled as ‘Advisory’. Subsequently, we will
refer to the rules from either of these coding
standards as mandatory or advisory.

Table 1: Manual Enforcement

 mandatory advisory

HICPP 23% 53%

JSF++ 17% 47%

MISRA C++ 23% 6%

MISRA C++ B 20% 33%

As can be seen from Table 1 a higher proportion of
advisory rules can only be enforced manually than is
the case for mandatory rules. The third row of the
table suggests that MISRA C++ may have the
opposite trend; however, on closer inspection the
discrepancy is caused by classifying ‘Document’
rules as mandatory. The great majority of these
rules are process based and can only be enforced
manually. The final row of the table details
enforcement figures when ‘Document’ rules are
considered together with ‘Advisory’ rules, and it
follows the same trend as for HICPP and JSF++.

Rule Selection
Some organizations address the cost/benefit
considerations of adding extra rules to their coding
standard by segregating rules into severity levels.
Legacy or non-production code may only need to
adhere to the first tranche of rules. The next levels
are applicable only to new code or legacy code once
an ‘amnesty’ period is over. Each off-the-shelf
coding standard already supports this by
categorising rules into mandatory and advisory. This
can be refined further, using subjective judgment, or
better with objective techniques, like the
classifications based on rule overlaps and
automated enforcement.

We would recommend the classification based on
rule overlap between off-the-shelf coding standards
to be given the highest importance when
considering rules for inclusion in a tailored coding
standard, on the basis that following widely agreed
best practice is desirable. Thereafter, we see the
mandatory attribute and automatic enforcement as
equally important; hence mandatory, statically
enforceable rules are distinctly favored over

advisory and manually enforced rules, with the other
two combinations taking a middle ground.

Legacy Code Management
Key aspect in the adoption of a coding standard is
that it is introduced in an incremental fashion so as
not to adversely disrupt existing code and existing
practices, and to ensure the successful buy in of the
revised development environment and quality
processes. MISRA C++ ([11] Section 4.3.4) itself
recognizes and recommends that the requirements
of the standard are introduced in a progressive
manner and may take in the region of 1-2 years to
implement all aspects of the document

It is important to identify and differentiate between
different stages of code that will be subjected to a
coding standard. Applying a subset of the guidelines
to “legacy code” will ensure that progressive
improvement of existing code does not adversely
affect the quality and behavior, whilst applying a
more comprehensive set of rules to “new” code will
ensure the best conformance level. To achieve
effective compliance this process should be
supported by a static analysis tool directly, as
illustrated in Figure 2. Alternatively, organizations
with large bodies of existing code, can utilize a
“baselining” (legacy code management) technique
to ensure that all new code or changes to legacy
code conform to a full set of guidelines, whereas the
legacy or untouched code remains unaffected. Over
time as legacy code is maintained and reused, an
increasing proportion of code lines will be touched,
and hence made to comply with the full coding
standard. However, the key benefit is that this will
be done in a piecemeal and non-intrusive fashion.

Figure 3 shows in more detail how a baseline is
generated for the first version of the project source
and used for subsequent versions of the project. It
also shows a necessary management mode which a
quality supervisor can use to control the
suppressions that are allowed. They can choose to
remove suppressions for violations that are
perceived dangerous or add suppressions
corresponding to formal deviations to coding
standard rules. In this way, the system provides an
implementation for a formal deviation process which
is an important aspect of coding standard
enforcement.

6 WP121A/11/11 © 2011 Programming Research Ltd

Summary

We provided an overview of three popular C++
coding standards originating from different industries
and investigated their overlap. When tailoring a
coding standard for a given organization we
recommend to at least include all the common rules,
and also to favor mandatory and statically
enforceable rules over advisory or manually
enforced rules. Finally we suggested a “baselining”
approach to gradually introduce coding standard
enforcement into a development process,
accommodating legacy or 3

rd
 party code.

References

[1] Bjarne Stroustrup, “The C++ Programming Language”.
Addison-Wesley. 2000

[2] International Standard ISO/IEC 14882:2003
“Programming Language C++”

[3] Scott Meyers, “Effective C++”, Addison-Wesley. 1996

[4] Scott Meyers, “More Effective C++”, Addison-Wesley.
1996

[5] Scott Meyers, “Effective STL”, Addison-Wesley. 2001

[6] Mats Henricson, Erik Nyquist, Ellemtel Utvecklings AB,
“Industrial Strength C++”, Prentice Hall. 1997

[7] Herb Sutter, “Exceptional C++”, Addison-Wesley. 2000

[8] Motor Industry Research Association, “MISRA-C:2004
- Guidelines for the use of the C language in critical
systems”, ISBN 0 9524156 2 3, , October 2004

[9] Programming Research, “High Integrity C++ Coding
Standard Manual - Version 3.2”,
http://www.codingstandard.com, 2008

[10] Lockheed Martin, “Joint Strike Fighter Air Vehicle C++
Coding Standards For The System Development And
Demonstration Program”, Document Number 2RDU00001
Rev C, December 2005

[11] Motor Industry Research Association, “MISRA-
C++:2008 - Guidelines for the use of the C++ language in
critical systems, 2008

[12] Programming Research, “QA·C++ Static Source
Code Analyzer”, http://www.programmingresearch.com,
2009

Figure 2: Legacy Code versus New Code Rule Application

Figure 3: Baselining System Architecture

WHITE PAPER

7 WP121A/11/11 © 2011 Programming Research Ltd

Summary

We provided an overview of three popular C++
coding standards originating from different industries
and investigated their overlap. When tailoring a
coding standard for a given organization we
recommend to at least include all the common rules,
and also to favor mandatory and statically
enforceable rules over advisory or manually
enforced rules. Finally we suggested a “baselining”
approach to gradually introduce coding standard
enforcement into a development process,
accommodating legacy or 3

rd
 party code.

References

[1] Bjarne Stroustrup, “The C++ Programming Language”.
Addison-Wesley. 2000

[2] International Standard ISO/IEC 14882:2003
“Programming Language C++”

[3] Scott Meyers, “Effective C++”, Addison-Wesley. 1996

[4] Scott Meyers, “More Effective C++”, Addison-Wesley.
1996

[5] Scott Meyers, “Effective STL”, Addison-Wesley. 2001

[6] Mats Henricson, Erik Nyquist, Ellemtel Utvecklings AB,
“Industrial Strength C++”, Prentice Hall. 1997

[7] Herb Sutter, “Exceptional C++”, Addison-Wesley. 2000

[8] Motor Industry Research Association, “MISRA-C:2004
- Guidelines for the use of the C language in critical
systems”, ISBN 0 9524156 2 3, , October 2004

[9] Programming Research, “High Integrity C++ Coding
Standard Manual - Version 3.2”,
http://www.codingstandard.com, 2008

[10] Lockheed Martin, “Joint Strike Fighter Air Vehicle C++
Coding Standards For The System Development And
Demonstration Program”, Document Number 2RDU00001
Rev C, December 2005

[11] Motor Industry Research Association, “MISRA-
C++:2008 - Guidelines for the use of the C++ language in
critical systems, 2008

[12] Programming Research, “QA·C++ Static Source
Code Analyzer”, http://www.programmingresearch.com,
2009

Contact Us

Programming Research Ltd.
Mark House
9/11 Queens Road
Hersham
Surrey
KT12 5LU
United Kingdom

Tel: +44 1932 888 080
Fax: +44 1932 888 081
info@ProgrammingResearch.com
www.programmingresearch.com

All products or brand names are trademarks or registered
trademarks of their respective holders.

