
Ž .Journal of Algorithms 30, 1]18 1999
Article ID jagm.1998.0967, available online at http:rrwww.idealibrary.com on

General Balanced Trees

Arne Andersson*

Department of Computer Science, Lund Unï ersity, Lund S221 00 Sweden

Received November 26, 1990; revised July 16, 1998

We show that, in order to achieve efficient maintenance of a balanced binary
search tree, no shape restriction other than a logarithmic height is required. The
obtained class of trees, general balanced trees, may be maintained at a logarithmic
amortized cost with no balance information stored in the nodes. Thus, in the case
when amortized bounds are sufficient, there is no need for sophisticated balance
criteria.

The maintenance algorithms use partial rebuilding. This is important for certain
applications and has previously been used with weight-balanced trees. We show
that the amortized cost incurred by general balanced trees is lower than what has
been shown for weight-balanced trees. Q 1999 Academic Press

1. INTRODUCTION

One of the fundamental data structures in computer science is the
binary search tree. New methods to maintain data in search trees have
been developed and thoroughly analyzed all through the history of the
discipline. Attention has mainly been focused on trees with bounded
height or balanced trees. The reason for this is obvious since worst-case
access time is proportional to the height of a tree.

The traditional way to maintain balance at a low cost is by means of
some more or less sophisticated balance criterion. To illustrate the large
variation in the world of balance criteria some examples are given below.

< < Ž .We use T to denote the number of leaves weight of the tree T.

v w xAVL-trees, introduced by Adelson-Velskii and Landis 1 , are de-
fined by a balance criterion requiring the heights of the two subtrees of
each node to differ by at most 1. AVL-trees have a maximum height of

< <1.44 log T .

* E-mail: arne@dna.lth.se.

1

0196-6774r99 $30.00
Copyright Q 1999 by Academic Press

All rights of reproduction in any form reserved.

ARNE ANDERSSON2

v Symmetric binary B-trees, or SBB-trees, were introduced by Bayer
w x6 . The very same class of trees often occurs under the name red-black

w xtrees, due to Guibas and Sedgewick 14 . The edges in an SBB-tree are of
two types: horizontal and vertical. Two adjacent edges are never both
horizontal and the number of vertical edges on the path from the root to a
leaf is the same for all leaves. This criterion guarantees a maximum height

< <of 2 log T .
v Weight-balanced trees were introduced by Nievergelt and Reingold

w x20 . For each node in the tree, the ratio of the weights of its two subtrees
is restricted. Given a parameter a , 0 F a - 1r2, for each node ¨ in the

Ž .tree, the quotient between the weight of i.e., the number of leaves in ¨ ’s
smallest subtree and the weight of ¨ itself must be at least a . The

< < Ž Ž ..maximum height of a weight-balanced tree is log T rlog 1r 1 y a .
v w xa-balanced trees were introduced by Olivie 21 . These trees are

path-balanced. Given a parameter a , 0 - a - 1, for each node in the tree,
the quotient between the lengths of the shortest and longest outgoing

Ž < <.paths must be at least a . This guarantees a maximum height of log T ra .
v w xk-neighbor trees were introduced by Maurer et al. 18 . They are

unary]binary trees where all leaves have the same depth. The number of
binary nodes between two unary nodes at the same level is at least k. A

< < Ž Ž ..k-neighbor tree has a height of at most log T rlog 2 y 1r k q 1 .

For each of these classes of trees, computing the maximum height from
the balance criterion is a nontrivial exercise. Other examples of balanced

Ž . w x w xtrees are HB k -trees 12 , one-sided height-balanced trees 15, 16 , and
Ž . w xSBB k -trees 4 . Note that the splay trees, introduced by Sleator and

w xTarjan 24 , are not strictly balanced since the height of a splay tree T may
Ž < <.be Q T .

A natural question that arises from the study of balanced trees is
whether we really need to make a detour over those balance criteria when

Ž .the only thing we want mostly is a logarithmic height. The disadvantage
of using a sophisticated criterion is illustrated by the tree in Fig. 1. This
tree has the smallest possible height with respect to its weight; however,
according to the balance criteria mentioned above it is not well-balanced
at all.

In this article we show that, as long as we are concerned with the
amortized cost of maintenance, we can replace the criteria above by a
weak global criterion; we just have to specify the relation between the size
and the maximum height of the tree. Not only is the balance criterion
simple; the maintenance algorithms are also simple and they can be
implemented without keeping any balance information in the nodes.

GENERAL BALANCED TREES 3

FIG. 1. A well-balanced tree?

This class of trees, called general balanced trees, is maintained by partial
rebuilding. The method of partial rebuilding has been used by Overmars

w xand van Leeuwen 22, 23 to maintain weight-balanced trees. It can also be
w xused to maintain a modified version of a-balanced trees 3 . Partial

rebuilding is an attractive method in the sense that it is useful not only for
ordinary binary search trees, but also for more complicated data struc-

w xtures, such as multidimensional search trees 7 , where other balancing
methods do not work. Making a careful analysis we are able to show a
lower maintenance cost of general balanced trees than what has been
shown for weight-balanced trees. Thus, we improve the method of partial
rebuilding in terms of maintenance cost.

A preliminary version of this article is published in Proceedings of
w xWorkshop on Algorithms and Data Structures, WADS ’89, Ottawa 2 . An

independent article has also been presented by Galperin and Rivest at the
Fourth Annual ACM]SIAM Symposium on Discrete Algorithms, SODA

w x’93 13 .

2. PRELIMINARIES

In the following we do not distinguish between nodes and subtrees and
by the subtree ¨ we mean the subtree rooted at the node ¨ and by T we

Ž .mean the entire tree or the root of the tree . We deal with binary search
trees where each internal node contains one element and each leaf is
empty. The number of edges on the path from the root T to the node ¨ is
the depth of ¨ . The largest number of edges from a node ¨ to a leaf is the

Ž .height of ¨ , denoted h ¨ . The weight of ¨ equals the number of leaves in
< < Ž¨ and is denoted ¨ . Note that a tree containing n internal nodes or

.elements has a weight of n q 1.

ARNE ANDERSSON4

Let ¨ and ¨ denote node ¨ ’s highest and lowest subtrees, respectively,H L
ties are broken arbitrarily. As a measure of the shape of the subtree ¨ we

Ž .use the weight difference at ¨ , d ¨ , defined as

< < < <d ¨ s Max 0, ¨ y ¨ y 1 . 1Ž . Ž .Ž .H L

As the basic restructuring operation, our algorithms use a procedure for
rebuilding a tree to perfect balance, as defined below.

DEFINITION 1. A binary tree ¨ is perfectly balanced if and only if
Ž .d ¨ s 0 and both of ¨ ’s subtrees are perfectly balanced trees.

Ž . Ž < <.In the following we assume that rebuilding a sub tree ¨ takes O ¨
time. Examples of linear algorithms for balancing trees can be found in the

w xliterature 10, 11, 13, 17, 25 .
We also assume that updates are performed by adding or removing

nodes at the lowest level of the tree. For each node ¨ , an update below ¨
Ž . Ž .changes the value of d ¨ by at most 1. Hence, at least d ¨ updates have

been made in the subtree ¨ since the last time it was perfectly balanced.

3. MAIN RESULT

The main idea in maintaining a general balanced tree is to let the tree
u < <vtake any shape as long as its height does not exceed c log T for some

constant c) 1. When this criterion is violated, the height can be de-
creased by partial rebuilding at a low amortized cost. This is due to the
following observation on the shape of an unbalanced tree:

Ž . u < <vLEMMA 1. Let T be a binary tree, h T) c log T . Let ¨ be the lowest
Ž . Ž . Ž . u < <vnode on any of T ’s longest path s such that h ¨) c log ¨ . Then

1y1r c < <d ¨) 2 y 1 ¨ y 1. 2Ž . Ž . Ž .

Ž . u < <vProof. Since ¨ is the lowest node satisfying h ¨) c log ¨ we know
Ž . u < <vthat h ¨ F c log ¨ . Hence,H H

< < < <c log ¨ - h ¨ s h ¨ q 1 F c log ¨ q 1. 3Ž . Ž . Ž .u v H H

This gives that

< < < <c log ¨ - c log ¨ q 1,u v H
4Ž .

y1r c< < < <¨) 2 ¨ .H

GENERAL BALANCED TREES 5

< < < < < < Ž .From the fact that ¨ s ¨ y ¨ we can compute the value of d ¨ :L H

< < < < < <d ¨ s ¨ y ¨ y ¨ y 1Ž . Ž .H H

< < < <s 2 ¨ y ¨ y 1H

1y1r c < <) 2 y 1 ¨ y 1. 5Ž . Ž .

By a straightforward application of Lemma 1 we can maintain a bal-
anced tree efficiently during insertions.

THEOREM 1. If no deletions are made, a binary search tree T with
u < <vmaximum height c log T , c) 1, can be maintained at an amortized cost of

Ž < <.O log T per insertion. No balance information is needed in the nodes, only
one global integer is needed.

< <Proof. We let the global integer contain the value of T . During
insertion, we keep track of the depth of the insertion path. Whenever the

u < <vdepth of a new leaf exceeds c log T we back up along the path until we
Ž . u < <vfind the lowest node ¨ , h ¨) c log ¨ . We make a partial rebuilding

at ¨.
In order to locate the node ¨ , we need to keep track of the heights and

weights of the visited nodes as we follow the path upward. The weights are
computed by explicitly counting the nodes in all subtrees along the path.

Ž < <.The total cost of this counting is O ¨ .
Ž . u < <vAfter the rebuilding, h ¨ s log ¨ . This implies that the height of ¨ ,

and therefore also the height of T , does not exceed the height before the
Ž . u < <vinsertion. Hence, if h T F c log T held before the insertion, it will also

hold after. Since the height of an empty tree is zero, the height condition
holds by induction.

Ž < <.The cost of the rebalancing, including the cost of locating ¨ , is O ¨ .
Ž . Ž < <.According to Lemma 1, d ¨ has been changed V ¨ times since the last

time ¨ was involved in a rebuilding. Hence, by reserving a constant
amount of extra time each time the weight difference is changed at a node,
enough time will be saved to cover the cost of rebuilding. Since an update

Ž .affects the weight difference of O log n nodes, the amortized cost of
Ž .insertions will be O log n .

In order to handle deletions efficiently, we make a simple extension to
the algorithm above; when enough deletions have been made to cover the
cost, we rebuild the entire tree to perfect balance.

THEOREM 2. Gï en constants c) 1, and b) 0, a balanced tree T with
u < < vmaximum height c log T q b may be maintained without any balance

information stored in the nodes, using two global integers, at an amortized cost
Ž < <.of O log T per update.

ARNE ANDERSSON6

< <Proof. We let the two global integers contain T , the number of leaves
< < Ž .in T , and d T , the number of deletions made since the last time T was

globally rebuilt. Updates are performed in the following way:

v u Ž < < Ž ..vInsertion: If the depth of the new leaf exceeds c log T q d T we
Ž .back up along the insertion path until we find the lowest node ¨ , h ¨)

u < <vc log ¨ , where a partial rebuilding is made.
v

br cŽ . Ž . Ž . < <Deletion: d T increases by one. If d T G 2 y 1 T we rebuild
Ž .T to perfect balance and set d T s 0.

Ž .A deletion does not increase h T . Furthermore, after an insertion we
Ž . u Ž < < Ž ..vare guaranteed that h T F c log T q d T , provided that this relation

Ž . u Ž < < Ž ..vholds before the insertion. Hence, by induction, h T F c log T q d T .
Ž . Ž br c . < <Since d T - 2 y 1 T , we conclude that

br c< < < < < <h T F c log T q d T F c log 2 T s c log T q b . 6Ž . Ž . Ž . Ž .u vŽ . Ž .
Rebuildings are made on two occasions: when the number of deletions
gets too large and when the tree gets too high during insertion. The
amortized cost for the first type of rebuilding is constant for each deletion.
For the second case we use the same argument as in the proof of Theo-

Žrem 1. By reserving a constant time each time an update insertion or dele-
.tion changes the weight difference of a node, we save enough time to

cover partial rebuildings.

Since the trees maintained in Theorems 1 and 2 are allowed to take any
shape as long as their height is low enough, we call them general balanced

Ž .trees. We use the notation GB-trees or GB c -trees, where c is the height
Žconstant used in the theorems. The constant b in Theorem 2 is omitted in

.this notation.

Ž .EXAMPLES. Figure 2 shows a GB 1.2 -tree maintained as in the proof
of Theorem 2. We assume that two deletions have been made since the
last global rebuilding and that node U is being inserted. The path to U is

Ž . u Ž .v u Ž < < Ž ..vtoo long since h T s 6) 1.2 log 15 q 2 s 1.2 log T q d T . We
have to make a partial rebuilding at one of the nodes on that path. Making

Ž . u v u < <va depth-first search we find that h Q s 5) 1.2 log 10 s 1.2 log Q . A
partial rebuilding is made at Q and the insertion is completed. The
resulting tree is shown in Fig. 3.

4. ANALYSIS II: THE CONSTANT FACTOR

Above we proved our main result: a GB-tree can be maintained at
Ž .O log n amortized cost per update. In this section, we make a more

detailed study. The purpose of this study is to show a better constant factor

GENERAL BALANCED TREES 7

Ž .FIG. 2. A GB 1.2 -tree which requires rebalancing.

for GB-trees than what has previously been shown for weight-balanced
trees.

When analyzing the constant factor, by cost we mean the amount of
restructuring work needed per update. To be more precise, we let the cost
of a partial rebuilding equal the number of internal nodes involved. Thus,

< <the cost of a partial rebuilding at node ¨ is ¨ y 1. Other costs, such as

FIG. 3. The tree in Fig. 2 after a partial rebuilding.

ARNE ANDERSSON8

counting sizes of trees, creating new nodes or removing nodes, etc. are
ignored. The comparison with weight-balanced trees is made in Section 5.

Although this was not made in Theorem 2, the result of Lemma 1 allows
us to compute a constant factor, telling an upper bound on the amount of
rebalancing work spent per update. We chose to express this work in terms
of the number of internal nodes involved in a rebuilding. Thus, the cost of

< <a partial rebuilding at node ¨ is ¨ y 1. According to Lemma 1, when a
partial rebuilding is to be made at node ¨ , we have that

1y1r e < <d ¨) 2 y 1 ¨ y 1. 7Ž . Ž . Ž .
Thus, the amortized cost of changing the d-value of a node during an

Ž 1y1r e . u < <vupdate is 1r 2 y 1 . Since an update is made below at most c log T
u < <vnodes, the amortized cost per update in the entire tree is c log T r

Ž 1y1r e .2 y 1 .
The improved analysis is based on the fact that when a node becomes

unbalanced there is not only a difference in weight between its two
subtrees but also a certain imbalance at the lower levels of the tree.

Ž .In order to measure this imbalance we define a function s ¨ as
follows:

0, if ¨ is a leaf,
s ¨ s 8Ž . Ž .½ d ¨ q s ¨ q s ¨ , otherwise,Ž . Ž . Ž .H L

Ž .where d ¨ is defined as in the previous section. The imbalance along the
Ž .longest path from a node ¨ can be expressed using the function b ¨ ,

defined below:

0, if ¨ is a leaf,
b ¨ s 9Ž . Ž .½ d ¨ q b ¨ , otherwise.Ž . Ž .H

From the definitions it follows that

d ¨ F b ¨ F s ¨ . 10Ž . Ž . Ž . Ž .
Ž .Below, in Lemma 5, we compute the value of s ¨ when ¨ is about to be

rebuilt. In order to do that, we first show which configuration gives the
Ž .lowest possible value of b ¨ in Lemmas 3 and 4. We say that a node ¨

has minimal weight if decreasing its weight by one without changing its
Ž . u Ž < < .vheight would make it out of balance, i.e., if h ¨) c log ¨ y 1 .

LEMMA 2. If u has minimal or less weight and u has minimal or largerH
< < < <weight, then u y u G 0.H L

Proof. The conditions for the lemma give

< <h u) c log u y 1 11Ž . Ž . Ž .

GENERAL BALANCED TREES 9

and

< <h u F c log u . 12Ž . Ž .H H

Hence,

< < < <c log u y 1 - h u s h u q 1 F c log u q 1. 13Ž . Ž . Ž . Ž .H H

Due to the strict inequality, we can remove the ceilings. Hence,

< < < <c log u y 1 - c log u q 1. 14Ž . Ž .H

This gives that

< < y1r c < < < <u) 2 u y 1) u y 1 r2 15Ž . Ž . Ž .H

and hence

< < < < < < < < < < < <u y u s 2 u y u) 2 u y 1 r2 y u) y1. 16Ž . Ž .H L H

< < < <The lemma follows since u y u is an integer.H L

LEMMA 3. Let ¨ be a node that is about to be rebuilt during an insertion.
< <Furthermore, assume that ¨ is fixed. Then the smallest possible ¨alue of

Ž .b ¨ occurs when each descendant w / ¨ along the longest path from ¨
satisfies at least one of the following:

v w has minimal weight;
v < <w s 1.L

Proof. We prove the lemma by a contradiction. Assume that the
Ž .smallest value of b ¨ occurs only when there exists some nodes on ¨ ’s

longest path which does not satisfy either of the two statements above. Let
w be the highest such node and let u be the parent of w. That is, w is the
same node as u . The node u will either be ¨ itself, or it may haveH
minimal weight or an empty subtree.

Thus, u has minimal or less weight, w has more than minimal weight,
and w) 1.L

< <Consider moving a node from w to u . Since w) 1, there is a nodeL L L
that can be moved. After the move, w will have minimal or larger weight,
while u’s weight will be the same as before. The overall condition, that a
rebuilding is to be made at ¨ , is not affected by the move.

< < < <Lemma 2 implies that u y u G 0 after the move. This, in turn,H L
< < < <implies that u y u was at least 2 before the move. Thus, the moveH L

Ž . Ž .caused d u to decrease by at least 1, while d w has changed by at most
Ž . Ž .1. Altogether, the move will not cause b u , and hence b ¨ , to increase.

We can now continue moving nodes until w satisfies one of the two
conditions in the lemma. This gives the contradiction.

ARNE ANDERSSON10

LEMMA 4. For each node ¨ with an empty subtree or minimal weight the
following is true:

1y1r c < <d ¨) 2 y 1 ¨ y 3. 17Ž . Ž . Ž .

Ž . < <Proof. If ¨ has an empty subtree then we are done since d ¨ s ¨ y 1.
Otherwise, since ¨ has its smallest possible weight we have

< <h ¨) c log ¨ y 1 . 18Ž . Ž . Ž .

u < <v Ž .This and the fact that c log ¨ G h ¨ imply thatH H

< < < <c log ¨ q 1 G h ¨ q 1 s h ¨) c log ¨ y 1 . 19Ž . Ž . Ž . Ž .H H

Thus,

< < < <c log ¨ q 1) c log ¨ y 1 ,Ž .H

1r c < < < <2 ¨) ¨ y 1,H
20Ž .

< < y1r c < <¨) 2 ¨ y 1Ž .H

y1r c < <) 2 ¨ y 1.

From this it follows that

< < < < < <d ¨ s ¨ y ¨ y ¨ y 1Ž . Ž .H H

< < < <s 2 ¨ y ¨ y 1H

y1r c < < < <) 2 2 ¨ y 1 y ¨ y 1Ž .
1y1r c < <G 2 y 1 ¨ y 3. 21Ž . Ž .

Ž .Given the result of Lemmas 3 and 4 we can compute the value of s ¨
when ¨ is about to be rebuilt.

LEMMA 5. Let ¨ be a node where a rebuilding is to be made during an
insertion. Then

2 y 21r c

< < < <s ¨) ? ¨ y 1 y 3 c log ¨ . 22Ž . Ž . Ž .u v1r c2 y 1

Proof. Let ¨ be ¨ ’s dth descendant on the longest path from ¨ . Wed
have that

h ¨ q d s h ¨ , 23Ž . Ž . Ž .d

< <h ¨) c log ¨ , 24Ž . Ž .u v

GENERAL BALANCED TREES 11

and, for d G 1,

< <h ¨ F c log ¨ . 25Ž . Ž .d d

Ž . Ž . Ž .Combining Eqs. 23 , 24 , and 25 gives

< < < <c log ¨ q d G h ¨ q d s h ¨) c log ¨ ,Ž . Ž . u vd d

d r c < < < <2 ¨) ¨ ,d

< < yd r c < <¨) 2 ¨ . 26Ž .d

Assume, hypothetically, that ¨ has a minimal value of b. Combining
Ž .Lemmas 3 and 4 with Eq. 26 gives that, for every d G 1,

1y1r c yd r c < <d ¨) 2 y 1 2 ¨ y 3. 27Ž . Ž . Ž .d

For d s 0, the same inequality holds as shown by Lemma 1. Adding the
weight differences on ¨ ’s longest path gives

s ¨ G b ¨Ž . Ž .
u < <vc log ¨ y1

G d ¨Ž .Ý d
ds0

u < <v u < <vc log ¨ y1 c log ¨ y1
1y1r c yd r c < <) 2 y 1 2 ¨ y 3Ž . Ý Ý

ds0 ds0

1 y 2yu c log <¨ < v r c
1y1r c < < < <s 2 y 1 ? ¨ y 3 c log ¨Ž . u vy1r c1 y 2

2 y 21r c 1
< < < <G ? 1 y ¨ y 3 c log ¨u v1r c ž /< <¨2 y 1

2 y 21r c

< < < <s ? ¨ y 1 y 3 c log ¨ . 28Ž . Ž .u v1r c2 y 1

Ž .Note that the hypothesis on b ¨ is not required.

Finally, we are able to give an upper bound on the amount of restructur-
ing work needed to maintain a general balanced tree. In the analysis we
assume that the cost of rebuilding a subtree ¨ equals the number of

< <elements in ¨ , which is ¨ y 1.

< <THEOREM 3. Pro¨ided that the cost of rebuilding a subtree ¨ is ¨ y 1
u < <and that c) 1 and b) 0, a binary search tree T of height at most c log T

v ŽŽ 1r c .q b can be maintained at an amortized restructuring cost of 2 y 1 r
Ž 1r c.. < < Ž < <.2 y 2 c log T q o log T per update.

ARNE ANDERSSON12

Proof. We use the algorithm from Theorem 2. First, we note that the
Ž Ž .rebuildings made to compensate for deletions i.e., when d T becomes too

.large only require a constant amortized cost per deletion; the constant
depends on the relation between b and c. We ignore the cost for these

Ž .rebuildings since it is included in the o log n term in the amortized
update cost.

Ž .We associate the tree T with a potential function F T . The function F
Ž .is chosen such that each update before any rebuilding increases its value
ŽŽ 1r c .Ž 1r c.. < < Ž < <.by an amount that is at most 2 y 1 2 y 2 c log T q o log T .

Ž .Each rebuilding decreases F T by an amount that covers the cost of the
rebuilding. By showing that the potential is always positive or zero, we

ŽŽ 1r c . Žprove that the amortized cost of restructuring is at most 2 y 1 r 2 y
1r c.. < < Ž < <.2 c log T q o log T .
Before we give the potential function, we would like to make an addition

tot he definition of ¨ and ¨ from Section 2. Previously, we have onlyH L
used ¨ and ¨ in association with nodes that are about to be involved inH L
a partial rebuilding. In order to make our potential argument hold also for
nodes that are not about to be involved in a rebuilding, we let the potential
function look into the future. For each node ¨ , we let ¨ be that of ¨ ’sH
subtrees which is going to be highest the next time ¨ is involved in a
rebuilding, regardless of which subtree is currently the highest. If ¨ will
never be involved in any future rebuilding, or if both subtrees will have the
same height, we take ¨ as the right subtree. This definition implies thatH
we will not be able to compute the exact value of our potential function at
a certain moment. However, at each update, we can still compute upper
and lower bounds on the change in potential, which is enough for our
purposes. In particular, this definition implies that a partial rebuilding at
the node ¨ will not affect the values of w and w for any node w outsideL H
the subtree ¨ .

Ž .The potential F T is chosen as

21r c y 1 4 ? 22r c y 21r cŽ .
F T s s T q t T , 29Ž . Ž . Ž . Ž .1r c 21r c2 y 2 2 y 2Ž .

Ž .where the function t ¨ is chosen as

0, if ¨ is a leaf,¡
< <~ d ¨ ? c log ¨Ž . u vt ¨ s 30Ž . Ž .q t ¨ q t ¨ , otherwise.Ž . Ž .¢ H L< <¨

Ž .Note that, for a perfectly balanced tree, F T s 0. A single update causes
Ž . u < <v < <the value of t T to be changed by at most c log ¨ r ¨ for each ancestor

¨ of the inserted or deleted node. By definition of weight and height we

GENERAL BALANCED TREES 13

< < Ž .have that ¨ G h ¨ q 1, which implies that

< <c log ¨ c log h ¨ q 1Ž .u v Ž .
F . 31Ž .

< <¨ h ¨ q 1Ž .

Ž .Thus, the ancestor at height h causes an increase of t T by at most
u Ž .v Ž .c log h q 1 r h q 1 . Therefore, an update causes the following change

Ž .in t T :
u < < vc log T qbq1 c log h q 1Ž .

Dt ¨ FŽ . Ý hhs1

2 < <s O log c log Tu vŽ .
< <s o log T . 32Ž .Ž .
Ž .During an update the value of s T is changed by at most the number of

ancestors of the inserted or deleted node. The number of ancestors is at
u < < vmost c log T q b . Altogether we get an increase of F by

21r c y 1 4 ? 22r c y 21r cŽ .
DF T s Ds T q Dt TŽ . Ž . Ž .1r c 21r c2 y 2 2 y 2Ž .

21r c y 1
< < < <F c log T q o log T 33Ž .Ž .1r c2 y 2

per update.
It is left to show that the restructuring cost is covered by the potential

function F. Since the cost of rebuilding trees of constant size can be
Ž .included in the o log n term in the theorem, we may w.l.o.g. assume that

4 ? 21r c

< <¨) . 34Ž .1r c2 y 2

Ž . Ž .Using the value of d ¨ from Lemma 1 in the definition of t ¨ , it follows
that, when ¨ is about to be rebuilt,

< <d ¨ ? c ? log ¨Ž . u v
t ¨ GŽ .

< <¨
1r c < <2 y 2 c ? log ¨u v

< <) ¨ y 1 ?1r cž / < <¨2

1r c < <2 y 2 c ? log ¨u v
< <s ? c ? log ¨ y . 35Ž .u v1r c < <¨2

ARNE ANDERSSON14

Ž .After a rebuilding at the node ¨ , F ¨ s 0. Furthermore, for each node w
in T which is not part of the subtree ¨ , the values of w and w remainH L

Ž .unchanged after the rebuilding due to the redefinition made above .
Ž .Hence, Eq. 29 implies a decrease of T ’s potential such that

21r c y 1 4 ? 22r c y 21r cŽ .
DF T s F ¨ s s ¨ q t ¨ . 36Ž . Ž . Ž . Ž . Ž .1r c 21r c2 y 2 2 y 2Ž .

Ž . Ž . Ž .Taking s ¨ from Lemma 5 and t ¨ from Eq. 35 we get

21r c y 1 2 y 21r c

< < < <F ¨) ? ¨ y 1 y 3 c log ¨Ž . Ž . u v1r c 1r cž /2 y 2 2 y 1

2r c 1r c 1r c < <4 ? 2 y 2 2 y 2 c log ¨Ž . u v
< <q c log ¨ yu v2 1r cž /1r c < <¨22 y 2Ž .

21r c y 1
< < < <s ¨ y 1 y ? 3 c log ¨u v1r c2 y 2

1r c 2r c 1r c < <2 y 1 4 ? 2 y 2 c log ¨Ž . u v
< <q ? 4 c log ¨ y ?u v1r c 21r c < <¨2 y 2 2 y 2Ž .

21r c y 1 4 ? 22r c y 21r c 1Ž .
< < < <s ¨ y 1 q y ? ? c log ¨ . 37Ž .u v1r c 21r c < <ž /¨2 y 2 2 y 2Ž .
Ž . Ž . < <Equation 34 implies that the last term is positive. Hence DF T) ¨ y 1,

which implies that the decrease in potential covers the cost of rebuilding at
¨ . The proof follows from the fact that our potential function F is always
nonnegative.

5. A COMPARISON WITH WEIGHT-BALANCED TREES

As mentioned in the Introduction, the method of partial rebuilding is
useful not only for ordinary binary search trees, but also for more compli-
cated data structures, such as multidimensional search trees, where other
balancing methods do not work. Previously, the only classes of balanced
tree suitable for partial rebuilding have been the weight-balanced trees
w x w x19, 22, 23 and a modified version of a-balanced trees 3 . Since general
balanced trees are also maintained by partial rebuilding, it is natural to
compare the maintenance costs. Since a-balanced trees have the same
maintenance cost as weight-balanced trees, we exclude them from our
comparison.

GENERAL BALANCED TREES 15

In order to compare the structures we chose their balance criteria in
such a way that the maximum heights of the trees are the same. Given a
constant a , 0 - a - 1r2, each node ¨ in a weight-balanced tree has to
fulfill

< <¨ ’s smallest subtree
G a . 38Ž .

< <¨

The maximum height of the tree is

< <log T
. 39Ž .

log 1r 1 y aŽ .Ž .

u < <vA maximum height of c log T for weight-balanced trees is achieved by
choosing a s 1 y 2y1r c. When a node ¨ becomes out of balance, we have

w xthat 22

< < 1y1r c < <d ¨ G 1 y 2a ¨ y 1 s 2 y 1 ¨ y 1. 40Ž . Ž . Ž . Ž .

< <Thus, if the cost of rebuilding a subtree ¨ is ¨ y 1, the amortized cost of
Ž 1y1r c .an update is at most 1r 2 y 1 for each ancestor of the inserted or

u < <vdeleted node. Since an update is made below at most c log T nodes, the
u < <v Ž 1y1r camortized cost per update in the entire tree is at most c log T r 2

. Žy1 . A more detailed study of weight-balanced trees maintained by
w x.partial rebuilding can be found in the literature 22 . It should be noted

that this bound on maintaining weight-balanced trees is the same as the
first bound given for GB-trees at the beginning of Section 4.

Ž . Ž .If we compare the cost of GB c -trees Theorem 3 with the cost of
weight-balanced trees we get

cost of general balanced trees

cost of weight-balanced trees

1r c 1r c < < < <2 y 1 r 2 y 2 c log T q o log TŽ . Ž . u v Ž .
s 1y1r c< <c log T r 2 y 1Ž .u v

21r c y 1
1y1r cf ? 2 y 1Ž .1r c2 y 2

s 1 y 2y1r c

1
- . 41Ž .

2

Thus, the upper bound on the restructuring cost of maintaining balanced
trees by partial rebuilding has been reduced by a factor at least 2.

ARNE ANDERSSON16

6. APPLICATION TO MULTIDIMENSIONAL
SEARCH TREES

In cases when rotations are costly, such as when maintaining k-d-trees
w x7 , the method of partial rebuilding offers a powerful alternative. This has

w xbeen shown for weight-balanced trees 19, 22, 23 and the same asymptotic
bounds can be derived for general balanced trees. Also here we achieve
the advantage of less stored information and a lower constant factor. A

w xdetailed study of these matters has been made by Mark Overmars 22 . For
the sake of completeness, we just mention that if the cost of rebalancing a

Ž Ž < <..subtree ¨ is O P ¨ , the amortized cost of an update will be
ŽŽ Ž . . .O P n rn log n . For example, applied on k-d-trees, we get an amortized

Ž 2 .update cost of O log n .

7. CONCLUSIONS

Introducing general balanced trees, we have shown that there is no need
for sophisticated balance criteria in order to maintain balance efficiently.
The presented trees use a natural and attractive maintenance strategy;

w xrebalancing is not made until it is really needed. Baer and Schwab 5
made an attempt to use a global balance criterion and make restructurings
only when this criterion is violated. The amortized cost for their method is
Ž .Q n per operation. Therefore, they concluded that the best balancing

methods are the ones that involve the strictest balance criteria. Here we
have shown that, choosing carefully where to make rebuilding, a tree with
a global balance criterion can be efficiently maintained. By comparing
general balanced trees with weight-balanced trees, we have also shown
that a restricted balance criterion is not necessarily the best.

Another advantage of the general balanced trees is that they can be
easily maintained without any extra information stored in the nodes. As

w xshown by Brown 8, 9 , the explicitly stored balance information may in
some classes of balanced trees be eliminated by coding the information
through the location of empty pointers. However, the information is still
stored, although implicitly. The splay tree presented by Sleator and Tarjan
w x24 does not require any balance information stored in the nodes. How-

Ž .ever, the height of a splay tree is not guaranteed to be O log n . The
logarithmic cost for searching in a splay tree is amortized, while we obtain
a logarithmic worst-case cost.

In summary, the discovery of general balanced trees fills a gap in the
well-studied area of binary search trees, showing that what may be the
simplest balance criterion works surprisingly well. We believe that these

GENERAL BALANCED TREES 17

trees offer a competitive alternative to other balanced tree structures, both
from a theoretical and practical point of view.

Finally, we note an open problem: In this article we have given a better
upper bound on the constant factor for GB-trees than what has been
shown for weight-balanced trees. We conjecture that the constant factor is
indeed better for GB-trees and we leave it as an open problem to prove
this.

ACKNOWLEDGMENTS

Many thanks to Amir Ben-Amram for spotting two flaws in the proof of Theorem 3 and for
a large number of improving comments during the revising process.

The comments by Kerstin Andersson, Svante Carlsson, Johan Hastad, Thomas Ottmann,˚
and Ola Petersson have also improved the presentation of this work.

REFERENCES

1. G. M. Adelson-Velskii and E. M. Landis, An algorithm for the organization of informa-
Ž . Ž .tion, Dokl. Akad. Nauk SSSR 146 2 1962 , 1259]1262.

2. A. Andersson, Improving partial rebuilding by using simple balance criteria, in ‘‘Proc.
Workshop on Algorithms and Data Structures,’’ pp. 393]402, Springer-Verlag,
BerlinrNew York, 1989.

3. A. Andersson, Maintaining a-balanced trees by partial rebuilding, Internat. J. Comput.
Ž .Math. 38 1990 , 37]48.

4. A. Andersson, Ch. Icking, R. Klein, and Th. Ottmann, Binary search trees of almost
Ž .optimal height, Acta Inform. 28 1990 , 165]178.

Ž .5. J-L. Baer and B. Schwab, A comparison of tree-balancing algorithms, Comm. ACM 20 5
Ž .1977 , 322]330.

6. R. Bayer, Symmetric binary B-trees: Data structure and maintenance algorithms, Acta
Ž . Ž .Inform. 1 4 1972 , 290]306.

7. J. L. Bentley, Multidimensional binary search trees used for associative searching, Comm.
Ž . Ž .ACM 18 9 1975 , 509]517.

Ž .8. M. R. Brown, A storage scheme for height-balanced trees, Inform. Process. Lett. 7 5 ,
Ž .1978 , 231]232.

9. M. R. Brown, Addendum to ‘‘A storage scheme for height-balanced trees,’’ Inform.
Ž . Ž .Process. Lett. 8 3 1979 , 154]156.

10. H. Chang and S. S. Iynegar, Efficient algorithms to globally balance a binary search tree,
Ž . Ž .Comm. ACM 27 7 1984 , 695]702.

Ž . Ž .11. A. C. Day, Balancing a binary tree, Comput. J. 19 4 1976 , 360]361.
Ž . Ž .12. C. C. Foster, A generalization of AVL-trees, Comm. ACM, 16 8 1973 , 513]517.

13. I. Galperin and R. L. Rivest, Scapegoat trees, in ‘‘Proceedings of The Fourth Annual
ACM]SIAM Symposium on Discrete Algorithms, 1993,’’ p. 165]174.

14. L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, in ‘‘Proc.
19th Ann. IEEE Symp. on Foundations of Computer Science, 1978,’’ p. 8]21.

15. D. E. Knuth, ‘‘The Art of Computer Programming,’’ Vol. 3, ‘‘Sorting and Searching,’’
Ž .Addison-Wesley, Reading, MA, 1973. ISBN 0-201-03803-X.

ARNE ANDERSSON18

16. S. R. Kosaraju, Insertion and deletion in one-sided height-balanced trees, Comm. ACM,
Ž .21 1978 , 226]227.

17. W. A. Martin and D. N. Ness, Optimizing binary trees grown with a sorting algorithm,
Ž . Ž .Comm. ACM 15 2 1972 , 88]93.

18. H. A. Maurer, Th. Ottmann, and H. W. Six, Implementing dictionaries using binary trees
Ž . Ž .of very small height, Inform. Process. Lett. 5 1 1976 , 11]14.

19. K. Mehlhorn, ‘‘Data Structures and Algorithms 1: Sorting and Searching,’’ Springer-
Ž .Verlag, BerlinrNew York, 1984. ISBN 3-540-13302-X.

Ž .20. J. Nievergelt and E. M. Reingold, Binary trees of bounded balance, SIAM J. Comput. 2 1
Ž .1973 , 33]43.

21. H. J. Olivie, ‘‘A Study of Balanced Binary Trees and Balanced One-Two-Trees,’’ Ph.D.
thesis, Department of Mathematics, University of Antwerp, 1980.

22. M. H. Overmars, ‘‘The Design of Dynamic Data Structures,’’ Lecture Notes in Computer
Ž .Science, Vol. 156, Springer-Verlag, BerlinrNew York, 1983. ISBN 3-540-12330-X.

23. M. H. Overmars and J. van Leeuwen, Dynamic multi-dimensional data structures based
Ž .on quad- and k-d trees, Acta Inform. 17 1982 , 267]285.

24. D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, J. Assoc. Comput.
Ž . Ž .Mach. 32 3 1985 , 652]686.

25. Q. F. Stout and B. L. Warren, Tree rebalancing in optimal time and space, Comm. ACM
Ž . Ž .29 9 1986 , 902]908.

	1. INTRODUCTION
	FIG. 1.

	2. PRELIMINARIES
	3. MAIN RESULT
	4. ANALYSIS II: THE CONSTANT FACTOR
	FIG. 2.
	FIG. 3.

	5. A COMPARISON WITH WEIGHT-BALANCED TREES
	6. APPLICATION TO MULTIDIMENSIONAL SEARCH TREES
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

