Extending SuperSpeed USB to Higher Performance Applications – 10Gbps SuperSpeed USB

Brad Saunders, Architect/Strategist, I/O Initiatives, Intel Corporation
Bob Dunstan, USB 3.1 Lead Architect, Intel Corporation

HSTS004
Agenda

• Motivation and Goals
• Architectural Approach
• Technical Details
• Industry Timeline and Compliance
Agenda

- Motivation and Goals
- Architectural Approach
- Technical Details
- Industry Timeline and Compliance
Motivation for SuperSpeed USB @ 10Gbps

• SuperSpeed USB 3.0 @ 5Gbps is enabling new usages
 – Compelling video display – 1080p/60fps
 – High-performance storage – 450MB/sec SSDs
 – USB docking – multi-function hubs

• Usage assessment indicates increase in bandwidth needed to dramatically improve USB experience
 – Display + storage + other functions collectively can saturate a 5Gbps SuperSpeed USB link
 – SSD and hybrid HDD storage on track to break 500MB/sec within three years

• Technical analyses indicated that a doubling of data rate “within” the existing ecosystem is feasible
Use Cases for SuperSpeed USB @ 10Gbps

• Support attach of much higher performance peripherals
 – A/V Display beyond 1080p and multi-displays
 – SSD, RAID HDD or Hybrid HDD
• Blazing fast data sync
• Enable multi-function, single port connections
 – SuperSpeed Hubs with fatter system pipe supporting multiple SuperSpeed downstream devices
 – Display Dock enabling mix of SuperSpeed-based A/V, webcam, storage, etc. over a single connection
Goals/Objectives Given to the Team

• Double the delivered bandwidth
 – Both on the link and through the topology

• Preserve/improve power efficiency
 – For a given workload, match or improve upon power consumed for the USB aspects of data transfer

• No OS driver software changes required
 – Just works by default
 – Driver enhancements would allow devices to take advantage of new capabilities (e.g. 750 MB/s ISOC)

• Consider inclusion of more design guidance
 – Increase implementation consistency and success

• Consider system interaction factors (EMI/RFI, etc.)
Agenda

- Motivation and Goals
- Architectural Approach
- Technical Details
- Industry Timeline and Compliance
General Approach

• More than double SuperSpeed USB bandwidth by adding a 10Gbps data rate and improving data encoding
 – Enable across existing USB connectors with full backward compatibility
 ▪ Normalize requirements based on 1m cable usage
 – Auto configuration of data rates, graceful fall back as needed
 – Enhance hub definition to address rate matching and optimize upstream channel utilization
 – Achieve power efficiency better than 5Gbps SuperSpeed from a workload perspective

• No anticipated changes to be required in software stack because xHC comprehends bandwidth scaling

• Update compliance plans/specs

• Develop additional design guidance/specs to aid successful platform and device implementation
Functional Update Highlights

- **SuperSpeed USB Communication Layers**

- **Multiple Ins, new speed TP and new traffic type classes**

- **Link speed training and error performance enhancements**

- **New data rate and encoding for 10Gbps operation, and new LFPS-based messaging**

- **New store and forward model/buffering and upstream traffic optimization**
Agenda

• Motivation and Goals
• Architectural Approach
• Technical Details
• Industry Timeline and Compliance
Terminology

Enhanced SuperSpeed System

USB Host
- USB Connector(s)
- USB 2.0 Bus
- Composite cable

USB Hub Device
- USB 2.0 Hub
- Enhanced SuperSpeed Hub
- Enhanced SuperSpeed Bus

USB Peripheral Device
- Enhanced SuperSpeed Function
- USB 2.0 Function
Updates for Cables and Connectors

- Continued use of existing mechanical interface
 - Backward-compatible connectors
- New channel budget for 10Gbps (Gen2) signaling
 - The mated cable assembly insertion loss is budgeted to be ≤6dB @ 5 GHz
 - Targeted for 1 meter cables, not 3 meter cables
 - Longer than 1 meter may require an active cable
 - Both raw cable and connector performance need to improve to achieve this
- EMI/RFI performance improvement required
 - Improved shielding and grounding, defined EMI contact zones
- Reference Footprint Pad Stack-ups for PCB designs defined to ensure good high-speed signal performance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Finished hole radius</td>
<td>0.35</td>
</tr>
<tr>
<td>b</td>
<td>Annular ring radius</td>
<td>0.50</td>
</tr>
<tr>
<td>R</td>
<td>Antipad radius to center</td>
<td>0.75</td>
</tr>
<tr>
<td>P</td>
<td>Antipad center to center distance</td>
<td>2.00 (Std-A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75 (Std-B)</td>
</tr>
</tbody>
</table>
New Compliance Methodology for Cables and Connectors

- A new compliance methodology will be used for the certifying USB 3.1 cable assembly performance
 - Will use reference PHYs for the host and device
 - Metrics include:
 - Insertion loss fit at Nyquist frequency (ILfitatNq)
 - Integrated multi-reflection (IMR)
 - Integrated crosstalk (IXT)

New compliance methodology aids in avoiding margin loss or the failing of assemblies that would otherwise function properly
Updates for Physical Layer

• More than doubled the useable bandwidth
 – 10Gbps signaling rate \(\rightarrow \) Twice as many bits per second
 – 128b/132b line code \(\rightarrow \) ~20% better use of those bits

• New channel definition: ~equal allocation for both host and device
 – 20dB overall channel budget split between host, cable and device

• Reference transmitter and reference receiver are defined

TX w/3 taps

RX w/7 CTLE boost settings and a 1-tap DFE

• Updated Jitter budget model and tolerance requirements
 – PLL bandwidth raised to 7.5MHz
Repeaters

- 10Gbps compliance testing environment will be built around a revised loss budget
 - Cable assembly includes the mated pairs at both ends
- May need a repeater if your host or device loss exceeds 7dB at 5GHz

- Requirements for on-board re-timing repeaters are being defined – will be released Q4’13 in Appendix E
Updates for Link Layer

• Minimal LTSSM change
 – Added speed negotiation as part of Polling sub-state

• Link Speed training
 – Defined LFPS Based PWM Message
 – LBPM used for port capability announcement and negotiation

• Retained SuperSpeed USB packet structure
• Two credit classes: Type 1 (control/periodic), Type 2 (async)
• Ensured equivalent or better error rates
 – Frame markers – single symbol error tolerant
 – Data packet header – length field single-bit error tolerant
Link Performance Summary

<table>
<thead>
<tr>
<th></th>
<th>5Gbps</th>
<th>10Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line code</td>
<td>8b/10b</td>
<td>128b/132b</td>
</tr>
<tr>
<td>Bandwidth encoding overhead</td>
<td>20%</td>
<td>3%</td>
</tr>
<tr>
<td>Random BER</td>
<td>1e-12</td>
<td></td>
</tr>
<tr>
<td>Probability of Recovery entry due to single-bit error</td>
<td>5.7e-15</td>
<td>0</td>
</tr>
<tr>
<td>Probability of Recovery entry due to single/multi-bit error</td>
<td>>5.7e-15</td>
<td>1.8e-22</td>
</tr>
</tbody>
</table>

- Error performance improves with 128b/132b code and 4-bit sync header
 - Compliments SuperSpeed USB’s strong packet framing to achieve single-bit error not going to Recovery
 - Preserves the link layer architecture with minimum change
- LFPS-based start-up speed negotiation protocol minimizes the initialization latency while offering maximum flexibility for port configuration
Updates for Protocol Layer

• Added support for multiple INs
 – Used by hubs to maximize throughput in mixed speed topology
 – Defined arbitration rules for multiple in-flight INs

• Expanded header definition
 – Added transaction type field
 – Extended the use of the Route String field on return packet to include Data Packet Weight for device to host packets

• Defined new priority rules for TPs and periodic/async DPs

• Doubled maximum isochronous bandwidth

• Deprecated features
 – Num HP, Link Speed fields in configuration LMPs
 – Bus Interval Adjustment (BIA) Message

• Added Precision Time Management to USB 3.0
 – Precisely measure link delay time
Updates for Hub

• Defined new store and forward model for data packets
• Maximized use of upstream link
 – Multiple in-flight INs
 – Reordering of data packets
• Enabled fair share of bandwidth to devices regardless of position in topology
 – Weighted fair share round robin arbitration
• Defined two link credit classes to ensure smooth flow of link/connection management TPs and periodic traffic
• Increased buffering requirements
• Updated upstream and downstream port state machines
Enhanced SuperSpeed Hub Architecture

- **Upstream Controller**
 - \(\downarrow\) Buffers and routes packets being received from the upstream link
 - \(\uparrow\) Arbitrates packets waiting to be transmitted on the upstream link

- **Downstream Controller**
 - \(\uparrow\) Buffers and routes packets being received from the downstream link
 - \(\downarrow\) Buffers and arbitrates packets waiting to be transmitted on the downstream link

- **Hub Controller**
 - Responsible for host-to-hub communication
Enhanced SuperSpeed Hub Arbitration

- TPs prioritized over DPs – both upstream and downstream
- Periodic DPs prioritized over Asynchronous DPs – both upstream and downstream
- Weighted Sum Round Robin Algorithm
 - Upstream DPs carry summed weight
 - 16 bit weight field using bits in the previously reserved RouteString space
- Arbitration decisions occur close to the end of current packet transmission

All devices get approx. same bandwidth
xHC Design Updates

• Link Speed Device Notification TP
 – Sent by the device after it enters the Address State
 – xHC matches the Link Speed Notification to closest Speed ID
 ▪ Updates Slot Context
 – xHC uses the new Speed to adjust its scheduling algorithm to the device
 – Software can optionally enable Link Speed Device Notification Events

• Enable xHC to schedule 10Gbps SuperSpeed USB devices to maximize bus utilization
 – Support multiple INs for devices operating at 10Gbps
 – Take advantage of additional bandwidth
USB 3.1 PIPE Updates

- PIPE 4.2 with USB 3.1 updates based on 0.9 rev USB 3.1 specification available or review

- USB 3.1 updates use same signals as PCI Express* 3.0
 PIPE 128/130 support with two additional header bits
 - TxDataValid, RxDataValid
 - TxStartBlock, RxStartBlock
 - TxSyncHeader[3:0], RxSyncHeader[3:0]
 - Header error detection/reporting handled by controller
 - Polarity detection handled by controller

- PIPE 4.3 with USB 3.1 comments and updates for 1.0 planned release Q3/Q4 2013
Agenda

- Motivation and Goals
- Architectural Approach
- Technical Details
- Industry Timeline and Compliance
Specification Timeline

Specification Development
- **Jan**: Initial Product Development
- **Q3**: Initial Silicon Development
- **Q4**: Compliance Development

Compliance Development
- **Feb**: Industry Review #1
- **May**: Industry Review #2

Initial Silicon Development
- **Q3**: Initial Product Development

Initial Product Development
- **Q4**: Final Release

Technically comprehensive
- **0.7 Draft**
- **0.9 Draft**
- **1.0 Final**
- **Final Release Candidate**

Next DevCons:
- **October 1-2, 2013** in Dublin, Ireland
- **December 10-11, 2013** in Asia
USB 3.1 Compliance

• 10Gbps Hosts/Devices will be tested for:
 – Compliance at the USB 2.0 speeds supported
 – Compliance to 5Gbps SuperSpeed USB requirements
 – Compliance to new 10Gbps SuperSpeed USB requirements

• USB 3.1 Compliance Requirements
 – Interoperability testing will be updated to include support for USB 3.1 hosts/devices
 – Updated framework tests
 – New link layer tests
 – New electrical tests for the physical layer
 – New cable and connector tests
 ▪ Includes USB Power Delivery (USB PD) requirements
USB 3.1 Compliance Timeline

<table>
<thead>
<tr>
<th>Version</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Test Assertions</td>
</tr>
<tr>
<td>0.7</td>
<td>Test Assertions + Test Descriptions</td>
</tr>
<tr>
<td></td>
<td>Test Specification</td>
</tr>
<tr>
<td>0.9</td>
<td>Tests coded and Test Specification updated</td>
</tr>
<tr>
<td></td>
<td>Begin testing at PIL</td>
</tr>
<tr>
<td>0.95</td>
<td>Beta tool release</td>
</tr>
<tr>
<td></td>
<td>Ready to certify products</td>
</tr>
<tr>
<td>1.0</td>
<td>Final tool release</td>
</tr>
<tr>
<td></td>
<td>Release to ITLs</td>
</tr>
</tbody>
</table>

Timeline:

- **Q1 2013:** Test Assertions
- **Q2 2013:** Test Descriptions
- **Q3 2014:** Product Integration Lab (PIL) Testing
- **Q4 2014:** Test Tool Development
- **Q1 2015:** Test Tool Refinement
- **Q2 2015:** First USB-IF workshop
- **Q3 2015:** ITL rollout
- **Q4 2015:** 1.0 Compliance Spec Release
Summary

• Trends in USB storage, display and docking applications with be driving demand for increased USB data bandwidth
• USB 3.1 will deliver a compelling performance boost within the existing USB cable and connector ecosystem

• Engage in USB 3.1 development
 – The spec and more information available at: http://usb.org/developers/ssusb/
• Attend USB 3.1 Developer’s Days
 – Oct 1/2 in Dublin, Ireland and Dec 10/11 in Asia (tentative) http://www.usb.org/developers/events/USB_3_1_DD/
Q&A
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright ©2013 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations.

Demand could be different from Intel's expectations due to factors including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most recent reports on Form 10-Q, Form 10-K and earnings release.