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Translating XUML Models to pycca

1. Intr oduction

This paper presents a set of techniques to aid in manually translating an Executable UML (XUML)
domain model into a "C" based implementation using pycca . |Pycca| is a language processing
program that supports a domain specific language where data structures, state machines, opera-
tions and an initial instance population may be defined. In pycca, algorithmic processing is speci-
fied in the "C" programming language. Pycca transfor ms the domain specific language into "C"
source and header files that are the implementation of the domain and may then be passed to a
"C" compiler for code generation. Pycca does not generate any code per se, rather it generates
initialized data structures that interface to the software architecture and packages the "C" action
code, order ing the resulting output to match the requirements of a "C" compiler. Pycca targets
the |Single Threaded Software Architecture|(STSA) that was designed for small, embedded con-
trol systems.

The primar y pur pose of pycca in the translation wor kflow is to handle the detailed and
tedious generation of data structures, numer ic encoding of state and event numbers and to order
the output code file properly to satisfy the "C" compiler. This is a significant portion of what an
automated model compiler does. How ever, to translate from the implementation independent
logic of an XUML model into pycca does require manual steps directing how the implementation
technology is to be applied. The steps in the translation wor kflow can be generally described as:

(1) Inspect the XUML model for the specifics of how the action code operates on the class
data.

(2) Select implementation representations for class attributes and for relationship traversal
infor mation.

(3) Specify any state models in the corresponding pycca syntax.

(4) Translate operation and state action language statements into the corresponding "C" code
that matches the chosen data structures.

1.1. Scope

This document is limited to techniques of translating XUML models into a "C" based implementa-
tion using pycca. This document assumes that you have a complete XUML domain model as a
star ting point. There is no discussion here about XUML or how to create XUML models. Read-
ers are referred to the large set of XUML books and documents that are |available|.

1.2. Background

An XUML model consists of three projections of the problem space:

(1) A class model expressed as a normalized relational data schema.

(2) A life cycle model expressed as a set of interacting Moore type state models.

(3) A processing model expressed as data flow diagrams or as action language1.

There are two fundamental choices related to how data operations are perfor med when translat-
ing to a statically typed language such as "C".

(1) Build a run-time engine that can emulate the behavior of the relational operations inherent
in the actions so that operations can be independent of class type.

(2) Build specific code sequences for the var ious relational operations that perfor m the opera-
tion on a data structure that is specific to the class being operated on.

1 Examples in this document use the SMALL action language syntax.
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When translating to pycca, we are doing the latter. Each relational operation implicit in the
actions of the XUML model is transfor med into data structure specific code sequences that
account for static nature of the typing system of "C". For example, if we wish to do a blind select
on a class (i.e. selecting a subset of instances of a class based on a boolean expression involv-
ing the class attribute values), in a statically typed language we must emit different code for each
distinct class and attribute expression being used for selection. Fortunately, most models perfor m
selections on only a small number of possible attribute expressions and since the scale of appli-
cations targeted here is small, the possibility of emitting a large amount of essentially logically
equivalent code is not of great concern. If that were a possibility, it would argue for using a run-
time engine so that the space costs could be amortized over the entire application code base.

Since we are choosing to emit specific code sequences that are tied to a data structure, the
first decisions must be to determine exactly how to represent a class from the Class Model as a
"C" data structure. That is accomplished by examining both the class model and the processing
model to determine what the code must do. In relational algebra, the operations are independent
of the relation heading. In statically type languages, the relational operations are translated in the
data structure specific code sequences. It is roughly analogous to the translation done by lan-
guage compilers where the programming language attributes type to var iables but treats opera-
tions as polymorphic and assembly language where memory is typeless and it is the operations
that have type.

1.3. Basic Translation Workflow

The basic wor kflow descr ibed here for translating an XUML model is:

(1) Perfor m an introspection of the model to determine the execution character istics.

(2) Define the class data structures for the model.

(3) Encode the state models.

(4) Translate the data flow diagrams or action language to "C" code.

(5) Construct an initial instance population.

(6) Construct the bridges between domains.

Each of these areas is discussed below.

2. Model Introspection

Tr aditionally, a model compiler’s operation is directed by color ing or, using the more modern ter m,
mar king. Mar king is the process of providing particular hints to the model compiler about the way
in which the domain operates. Model compilers can deduce much of the behavior on their own by
analyzing the model actions. For example, a model compiler is able to determine if a given class
attr ibute is updated by examining all the actions of a domain and noting which attributes are writ-
ten.

When perfor ming the domain translation manually, it is up to the human translator to per-
form a similar set of model examinations to determine exactly what operations are perfor med on
the class data. The following sections describe what infor mation needs to be accumulated. Once
the introspection is accomplished, then the data structure that represents the class may be cho-
sen.

2.1. Attrib ute Operations

In this section we examine the introspection necessary to identify basic class operations. It is
convenient to categorize attr ibutes as:

Base attributes
descr ibe some abstracted property of the real wor ld entity which the class represents.
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Referential attributes
are those used to implement relationships and relationship traversal.

Or thogonal to this classification, an attribute may be used as an identifier.

2.2. Identifier s

The domain class model is fundamentally a relational data model where the classes represent
relation var iables. Relation var iables have one or more non-empty attribute sets which constitute
an identifier for the tuples of the relation. When translating to a software architecture that holds
all the domain data in memory2, it is convenient and conventional to use the address of the
instance data area as its identifier. The address is certainly unique and is convenient and effi-
cient from an implementation point of view. Given that we use the address of the instance in
memor y is its primar y means of identification, then the goal is to eliminate the storage for identify-
ing attributes and use the instance address as the sole means of identification of the instance.
Using the instance address as an identifier also implies that the addresses will be the primar y
way in which relationship infor mation is stored and that pointer value dereferencing will be the pri-
mar y means of navigating a relationship.

However, there are a couple of considerations that must be taken into account.

(1) It is generally considered an analysis error for the value of an identifying attribute to be
modified anytime after the instance has been related to another instance across some
relationship. Conceptually, relationships are composed by placing the values of the identi-
fying attributes of the referenced instance into the referential attributes of the referr ing
instance. Changing an identifying attribute value in a referenced instance by directly
updating the attribute would then destroy the relationship reference. In a database based
architecture, this situation could be handled by having the database management system
cascade the update of the identifying attribute to change the values of those attributes
that reference it. In minimal software architectures, this facility is not usually available.
Domain models that arbitrar ily update the value of an identifying attribute must be
rejected.

(2) It sometimes the case that an identifying attribute is read and its value is used as a
parameter to an algorithm. In this case, the attribute may not be eliminated and its value
must be maintained. Fortunately, this is not a frequently occurring situation.

2.3. Referential Attributes

Referential attributes have values that match the value of some identifying attribute in another
instance. Since we are replacing identifying attributes with the address of the instance in mem-
or y, then referential attributes are also replaced with corresponding address values. We will dis-
cuss how instance addresses are used to implement relationships below.

It is also possible to find that model actions read a referential attribute and use that value in
an algorithmic fashion. In this case, the preferred method of access to the attribute is to follow the
relationship back to the base identifying attribute. It is possible that this means traversing multiple
references until the base attribute value is located. Note also that this is an implied traversal of
the relationship and must be accounted for as described below.

2 As contrasted to a software architecture that uses a Database Management System (DBMS) as a data storage
and management component.
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2.3.1. Attrib ute Access

All actions must be examined and every attr ibute must be marked as to whether or not it is read
and/or updated. Updating is the most important, but any attr ibutes that are not read can be elimi-
nated. If base attributes are not used in a some fashion, then this indicates an analysis error.

2.3.2. Relationship Traversal

On the class model, relationships are considered bidirectional, i.e. it is possible to traverse the
relationship along a path in either direction. In practice, most relationships in a class model are
not traversed by the action language in both directions. This fact has a significant influence on
the way in which the relationship infor mation is stored. So part of the required model introspec-
tion is to determine which relationships are traversed and in what direction the traversal takes
place. It is not necessarily an analysis error that a given relationship is not traversed by the action
language. It is possible, e.g. for generalization relationships, for the relationship to exist to distin-
guish differ ing behavior of classes.

Note also that relationship traversal may be explicit or implicit. It is explicit if the traversal if
found directly in an action. It is implicit if, as mentioned above , that a relationship must be tra-
versed in order to obtain the value of an attribute that also serves as a referential attribute. In the
case of dispatching a polymorphic event, there is an implicit traversal of the relationship by the
software architecture to map the polymorphic event into an event of the currently referenced sub-
type.

2.3.3. Instance Selection

It is necessary to deter mine if a class instances are selected by means of their attribute values
rather than by means of relationship traversal. This occurs when an action contains statements
of the for m

<class name>(<attr expr>) 3

where:

<class name>
is the name of a domain class

<attr expr>
is an expression involving the attributes of the class, e.g.

Dog(Name = "Fido")

Several cases arise:

(1) If there are no such statements of this for m for a class, then the class is accessed only by
relationship traversal. This may provide options for how the class instances may be
stored.

(2) If such selections are perfor med by domain operations, then it may be possible to use
direct indices into the class instance storage array as an exter nal identifier and thereby
simplify the search to being an array indexing operation.

(3) If the class selection is perfor med frequently and/or the class contains a large number of
instances, then it may be necessar y to keep some for m of an index to speed the access,
e.g. a hash of the attributes upon which the selection depends.

3 Or in BridgePoint Action Language, select one <var name> from instances of <class name> where ...
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2.4. Model Dynamics

It is important to also mark the domain model according to the dynamic behavior of the classes.
Classes instance counts and relationships that do not var y in time are candidates for much sim-
pler data structures than their dynamic counterpar ts. In this section we discuss the introspection
required to account for the domain dynamics.

2.4.1. Instance Dynamics

A class should be marked to indicate if any action creates an instance of the class. Instance may
be created either synchronously by direct request or asynchronously be sending a creation event.
Either method results in a class that has a dynamic number of instances of the lifetime of the
domain’s execution.

For classes that have static instance populations, i.e. there are no instances created by an
action, there are two other ways that the class may be classified:

(1) If there is only a single instance of the class, then many aspects of dealing with the class
are simplified. For example, any relationship traversal that passes through or terminates
at a singleton class need not be actually traversed in code since there is only one possi-
ble result.

(2) Static class populations for which all the attributes of the class are only read, i.e. there are
no attributes of the class that are updated, and which do not have an associated state
machine are candidates for placing in constant var iables. Linkers usually place constants
in read-only memory and such memory is usually in greater supply than read-write mem-
or y for the types of systems under consideration here.

2.4.2. Relationship Dynamics

Relationships where link and unlink statements appear in some action are dynamic. It is usually
the case that a class whose instance population is dynamic also has dynamic relationships. Any
relationship that is dynamic must be so marked as this can have significant impact on the type of
storage used for the relationship.

2.4.3. Current State Variable Considerations

Any class that has an associated state model, has an implied instance var iable to hold the current
state. This means that stateful classes cannot be stored in read-only memory.

3. Data Structures

After examining the domain actions for all the operations they perfor m, pycca classes can be
defined that represent the classes of the domain model. Pycca arranges for each attribute to
become a member of a "C" structure. The instances of the class are held in an array. Pycca
uses the Single Threaded Software Architecture, STSA, and in that architecture there is no use of
a system heap. Thus all class instances are stored in an array type var iable that is sized for the
worst case number of class instances. In this section, we deter mine how to use the model intro-
spection to determine the pycca class definition.

3.1. Attrib ute Stora ge

After examining how the attributes of the classes are accessed, the following steps are used to
define the attributes to pycca.

(1) Eliminate attr ibutes that are not accessed.

(2) Eliminate referential attributes.

(3) Eliminate identifying attributes where possible.
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(4) Map base attributes to an appropriate implementation type. The domain will have defined
a set of data types for the attributes. These data types should be aliased to appropriate
types in "C".

(5) Eliminate any dependent attributes as these will be obtained at run-time. The action
associated with a dependent attribute is packaged into an instance operation.

3.2. Relationship Stora ge

Designing storage structures for relationships is generally more complicated than for base
attr ibutes. Each bidirectional XUML relationships can be factored into two or more unidirectional
paths. A path represents a single relationship traversal in a given direction as it is found in an
action. In this section we show how this decomposition wor ks and how to represent it in pycca.
There are several cases that must be considered:

(1) Singular paths for one-to-one relationships.

(2) One-to-many static paths.

(3) One-to-many dynamic paths.

(4) Associative relationships.

(5) Generalization relationships.

The strategy is to have str ucture members of a class that hold one or more pointers to the related
instances. Generally, we wish to allocate pointers to support relationship navigation in all direc-
tions that are used by the action code. Note however this involves a space/speed trade off. By
supplying pointers in both directions we are consuming memory (most probably RAM memory)
for the pointer storage rather than perfor ming a search on the instance array for the related
instances.

For example, consider the case of a one-to-one relationship that is traversed in both direc-
tions. Allocating pointer memory in both structures appears as follows.

A Instance
•••

•••

B Instance
•••

•••

Figure 1. Relationship Traversal in Both Directions

In this case, we could have chosen to store only one pointer, say from A to B. With that choice,
the traversal from A to B involves the usual pointer indirection. To traverse the relationship from B
to A requires that all instances of A be examined to find the one whose stored relationship pointer
value matches that of the B instance from which the traversal originates. This arrangement saves
the storage of a pointer value, but makes the traversal of the relationship from B to A more costly
in terms of execution speed since we must search the instances of A for a pointer value match.
Usually, the trade off is made in favor of speed, i.e. if the relationship is traversed in both direc-
tions, then pointers are stored in both class instances. How ever, there can be cases where mem-
or y is dear enough and the frequency of the traversal low enough that a search of the instances is
an attractive option. This option is available for all the possible relationship cardinalities, but in the
discussion below we always assume that memory will be used to store the relationship infor ma-
tion required for any traversal direction found in the action code.
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3.2.1. Singular Path

The figure below shows two classes, A and B, that participate in a one-to-one relationship, R1. In
the class model, one class is chosen to contain the referential attribute. That choice is arbitrar y
except for the case where one side is conditional and the other is unconditional and in that case,
the class on the conditional side of the relationship is given the referential attribute.

When considering how to store the relationship infor mation for this situation, the relationship
can be decomposed into two paths, one from A to B and the other from B to A. If any action code
traverses relationship R1 from A to B, then the "C" structure representing A needs to contain a
member that is a pointer to the structure representing B. Similar ly, if actions traverse the relation-
ship in the direction of B to A, then the "C" structure for B will need a member that points to an A.
In either case, if there is no action that traverses a relationship path in a particular direction, then
no structure member corresponding to that direction need be defined. This is one reason that
relationship traversal is carefully tracked.

A
R1

B

decomposes to

A B
R1: A->B

R1: B->A

Figure 2. Decomposition of One-to-one Relationship

In pycca, the singular reference to another class is accomplished via the reference statement.
So the definition of class A would include a statement:

class A
•••
reference R1 -> B
•••

end

This would cause pycca to emit a "C" structure definition of the for m:

struct A {
•••
struct B *R1 ;
•••

} ;

The conditionality of such a relationship path can be indicated with the NULL value. If the rela-
tionship is unconditional, then an appropriate assertion can be included in the code before the
value of the R1 member is used.

3.2.2. Static Multiple Path

Relationships in the class model that are one-to-many are for malized by placing referential
attr ibutes in the class on the many side that refer to identifying attributes for the class on the sin-
gle side. Such a relationship can be decomposed into two paths as shown in the figure below.
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A
R2

B

decomposes to

A B
R2: A->B

R2: B->A

Figure 3. Decomposition of One-to-man y Relationship

So we must consider the storage of each path separately. As usual, paths that are not actually
traversed by action code need not have any storage structure allocated to them.

The path from the many side to the singular side (i.e. from B to A in the above example) is
quite easy. It is the same type of singular reference as we saw in the last section and all the
same description applies.

The more difficult path is when we must traverse from the one to the many side. Such tra-
versals yield, at least conceptually, a set of instances. In this section, we discuss data structures
that are useful when the relationship is static in nature. The next section discusses data struc-
tures that are more appropriate when the relationship is dynamic.

The figure below shows the structure for storing relationship infor mation for a one-to-many
path where the relationship is static over time.

A B1

B2

B3

Figure 4. One-to-man y Static Relationship Path Stora ge

The strategy is to define a structure member in A that is a pointer to an array of pointers each
member of which in turn points to an instance of B. The array constitutes a representation of the
set of B instances to which A is related. Since the relationship is static, the size of the pointer
array is fixed by the initial instance population. The number of elements in the array of pointers
will, in general, be different for each distinct instance of A. There are two ways in deter mine at
run time how many elements are in the pointer array.

(1) The last element of the pointer array may be set to NULL to indicate that there are no
more elements in the array.

(2) The count of elements may be stored as a structure member in A.

7 May 2011 8 1.2



Translating XUML Models to pycca

Pycca supports both types of one-to-many relationship storage using a var iation on the reference
syntax. Reference statements of the for m:

class A
•••
reference R2 ->> B
•••

end

or

class A
•••
reference R2 ->>n B
•••

end

result in pointer arrays that are terminated by a NULLvalue. Reference statements of the for m:

class A
•••
reference R2 ->>c B
•••

end

cause an additional structure member to be defined in A that is initialized to contain the number of
elements of the instance pointer array, as in:

struct A {
•••
struct B *const*const R2 ;
unsigned R2__count ;
•••

} ;

The choice of which manner to deal with the pointer array is deter mined by the operations on the
set of related instances.

(1) A NULL ter minated array is more convenient when the related instances set is primar ily
the target of some iteration. When the usual operation is to examine each related
instance and then perfor m some operation on it, then NULL ter mination is somewhat eas-
ier to manage in the iteration loop.

(2) The counted array is more flexible. It can be used for iteration at the expense of an extra
variable. In one particular case, the counted array is super ior. This case arises when the
related instances are identified by both a referential attribute referr ing to the one side of
the relationships and an independent attribute that is unique only within the context pro-
vided by the referential attribute. In this arrangement, statements to select across the
relationship can be resolved by an array indexing operations. For example, consider the
following class model fragment.
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A

* Id
•••

B

* A_Id (R1)
* B_Id

•••

R1

Figure 5. Class Model Fragment

If the values of B_Id can be encoded in small non-negative integers that are unique only
in the context of a given A_Id , then a select operation across the relationship containing
a where clause that restricts the selection to a particular B_Id can be coded as an array
indexing operation on the counted pointer array. The count value can be used to insure
that the array indexing operation is valid for the set of related instances. This affords
instance selection that can be achieved in constant time rather than one that would be on
the order of the number of related instances or worse the total number of instances of
class B.

3.2.3. Dynamic Multiple Path

For the situation where there is a one-to-many relationship path that is dynamic, i.e. the relation-
ship is the target of link and unlink operations, the storage alternatives discussed above for
static relationship paths are not suitable. The set of instances related to a particular instance
must be held in read/write memory since the set is modified during the running of the application.

Pycca provides two alter native storage strategies for dynamic one-to-many relationship
paths:

(1) A fixed sized array of pointers to the referenced class instances is allocated as a structure
member of the referr ing class. Any initial instances of the relationship are initialized and
the remaining array slots are set to NULL. The action code can then manage the NULL
valued slots by assigning instance pointer values on a link operation and assigning the
NULL value on an unlink operation. This strategy is effective if an upper bound can be
set on the number of related instances and if the set of referenced instances is approxi-
mately the same across all the instances of the referr ing class.

(2) A doubly-linked list of referenced instances is for med. The head of the list is allocated as
a member of the referr ing class (A in this example) and a set of linked list pointers is allo-
cated as a member of the referenced class. Pycca provides functions to add and remove
instances from the list as a means of implementing link and unlink operations. This
strategy is useful for tracking an arbitrar y number of referenced instances at the expense
of allocating the memory to hold the doubly-linked list pointer values.

To allocate a fixed size array for dynamic links, pycca uses the syntax:

class A
•••
reference R2 -ddd>> B
•••

end

where ddd is a set of decimal digits. For example, a class definition of:
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class A
•••
reference R2 -20>> B
•••

end

will result in pycca defining a structure for A that contains:

struct A {
•••
struct B *R2[20] ;
•••

} ;

Action code can then manage the R2 array using NULL values to indicate available array ele-
ments and non-NULLvalues that are instance pointers.

A fixed sized pointer array as given above does not wor k well when the upper bound of the
related instance set size is either not easily determined or var ies considerable between instances.
For this case, pycca supports a doubly-linked list approach to storing a one-to-many relationship.

A1
•••

B1
•••

B2
•••

Figure 6. One-to-man y Path as a Doub ly L inked List

The figure above shows the pointer addressing when two instances of B are related to an
instance of A. The use of linked lists is indicated to pycca by a var iation of the reference state-
ment syntax of the for m:

class A
•••
reference R2 ->>l B
•••

end

When pycca encounters this construct, it arranges for a list head to be placed in the structure for
the referr ing class and a set of link pointers to be placed in the structure of the referenced class.

struct A {
•••
rlink_t R2 ;
•••

} ;

struct B {
•••
rlink_t R2__links ;
•••

} ;

Any instances of B referenced by an instance of A in the initial instance population are threaded
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together on the list that originates in A. The "C" data type, rlink_t , defines the two pointers of
the doubly linked list. Pycca provides macros and underlying functions to add and remove items
from the list, test if the list is empty and iterate across the list.

Note that it is possible for referenced class instances to be resident on multiple linked lists at
the same time. To suppor t this, the link pointer values are the address of the rlink_t -typed
member within the class data structure of the referenced class. This means that the pointer val-
ues contained in rlink_t are not references to the beginning of the instance data. Pycca pro-
vides macros to convert the rlink_t pointer values to pointers to the beginning of the instance
str ucture and this conversion is required before class attributes can be accessed.

3.2.4. Associative Relationships

Associative relationship are those relationships where a distinct class, known as the associative
class, contains the referential attributes of the relationship. The associative class contains
attr ibutes to refer to the identifiers of two other participating classes (which are not necessarily
distinct). Associative relationships may occur in all permutations of cardinality. The archetypal
example is a many-to-many relationship since an associative class is required in this case to cor-
relate all the relationship instances. The figure below shows a many-to-many relationship in
Shlaer-Mellor graphical notation.

X
R3

Y

A

Figure 7. A Many-to-Man y Relationship Graphic

In this figure, A is the associative class for R3 and holds attributes that refer to an identifier of both
X and Y, the participating classes. An associative relationship can always be decomposed into
two ordinar y relationships of a fixed pattern. The figure below shows a drawing of this decompo-
sition.

X A Y
R3-X

R3 Y

R3-Y

R3X

Figure 8. Decomposition of an Associative Relationship

In this figure, the associative class, A, has a singleton path to both participating classes, X and Y,
i.e. R3-X and R3-Y, respectively. Note that the reference from A to both X and Y is unconditional,
and this implies that if an instance of A exists it must refer to both an X and a Y and there are as
many instances of A as there are instances of the relationship, R3. The relationship paths from
the participants to A are derived from the model relationship. The cardinality of the path from X to
A is the same cardinality as it appears on the Y side of the original model graphic. This is indi-
cated by the Y annotation on the R3 labeled path from X to A in the above drawing. Similarly, the
cardinality of the path from Y to A matches that of the X side in the model graphic. Note the swap
that has happened in the decomposition as the role of A is expanded. This is a result of the
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unconditionality of the path from A to either participant. Thus in the decomposition, X has the
same cardinality with respect to A as it did with Y in the modeled relationship because A always
has a single, unconditional reference to an instance of Y. A corresponding statement can be
made with respect to Y.

There are two considerations for defining the storage required to hold an associative rela-
tionship. Under certain conditions, all storage for A can be eliminated. If the associative class is
used strictly for correlation purposes, i.e. if the associative class contains only attributes that ref-
erence the participating classes and does not have an associated state model, then storage for
the associative class need not be defined and one of the one-to-many relationship path strategies
discussed above can be used.

It is frequently the case that an associative class has other base attributes, par ticipates in
other relationships that require navigating to the associative class or it has a state model. In
these cases the storage for the associative class must be defined and the above techniques for
one-to-one and one-to-many relationship paths are then applied between the associative class
and each of its participant classes. As an example, consider a many-to-many associative rela-
tionship where the associative class also holds some base attribute. The following pycca defini-
tions of the classes could be used if the relationship is static.

class A
•••
reference R3_X -> X
reference R3_Y -> Y
•••

end
class X

•••
reference R3 ->> A
•••

end
class Y

•••
reference R3 ->> A
•••

end

3.2.5. Generalization Relationships

In XUML, a generalization relationship completely partitions a supertype class into a set of dis-
joint subtype classes. The referential attributes are contained in the subtype classes and uncon-
ditionally refer to an instance of the supertype. For each instance of the supertype, there must be
exactly one related instance from among all the instances of all the subtype classes. The figure
below show a simple generalization relationship diagrammatically.
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Super

Sub1 Sub2

R4

Figure 9. Generalization Relationship Diagram

Pycca supports two different techniques to define the relationship storage for generalization rela-
tionships. The techniques described here apply to generalization relationships where there is tra-
versal of the relationship from the supertype to the subtype. In this case, we must be able to
deter mine the type of the currently related subtype so that the traversal from a supertype instance
to a subtype class to which it is not currently related can be determined to be the empty set. For
the simple case where the generalization relationship is only traversed from the subtype to the
super type, a simple singular reference definition in the subtype is sufficient. However, when the
relationship is traversed from the supertype to the subtype, we may choose the supertype to con-
tain either a reference to its related subtype or that the subtype be included in the structure defini-
tion of the supertype class as a "C" union.

Generalizations Implemented b y a Reference

Pycca uses constructs of the for m,

class Super
•••
subtype R4 reference

Sub1
Sub2

end
•••

end

to define the storage in the Super class for the R4 traversal by reference pointers. This is trans-
lated into two str ucture members,

struct Super {
•••
SubtypeCode R9__code ;
MechInstance R9 ;
•••

} ;

The R9__code member holds an integer encoding of the type of the subtype. The R9 member
holds the actual subtype instance pointer value. Note that the value of the R9 member should
never be NULL.

Generalizations Implemented as a Union

Pycca uses constructs of the for m,
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class Super
•••
subtype R4 union

Sub1
Sub2

end
•••

end

to define a generalization relationship that is implemented by containing the subtypes as a union
member of the supertype data structure. This structure translates into:

struct Super {
•••
SubtypeCode R9__code ;
union {

struct Sub1 R4_Sub1 ;
struct Sub2 R4_Sub2 ;

} R4 ;
•••

} ;

The subtype code field remains the same as with references, how ever, now the memory associ-
ated with the subtype instances is contained in a union that is actually a member of the supertype
data structure. The advantage of the union construct is that the storage required for a reference
pointer is no longer necessary. The disadvantage is that the memory allocated to every instance
of the supertype to accommodate the union is the largest of any union member. Thus subtypes
that var y greatly in size have the potential to waste memory. Also note that if a given class is a
subtype of two distinct generalization relationships (a.k.a. a multiple inheritance situation), then
the union storage strategy may not be used for both generalization relationships. It is possible to
have one generalization stored as a union and the other by reference. This is, for tunately, an
uncommon situation.

4. State Model

There is no significant transfor mation required to specify state models to pycca. The Moore type
state machines used in XUML are directly supported. All the event types of XUML are also
directly supported by STSA. The pycca manual describes the syntax that must be used. The
process of translating a state model into pycca is quite mechanical.

5. Code Translation

After all the class data structures have been determined, it is then possible to translate actions
into "C" code sequences. In this section, we consider "C" constructs that will be used. Funda-
mentally, we show mappings from action language to "C" statements.

Pycca provides a large number of "C" preprocessor macros to help interface to the software
architecture and to hide the naming conventions pycca uses for symbols that it defines. It is
impor tant to use the preprocessor macros where possible. Coding to the underlying symbol
names and architecture interfaces will make the resulting domain code fragile with respect to
changes in both pycca or the software architecture.

5.1. Instance Variables

Instance var iables are declared by using the ClassRefVar() macro.

ClassRefVar(A, anA) ;

If the class has a constant population, then the reference must be declared as constant,
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ClassConstRefVar(A, anA) ;

There are other var iations of macros for sets of references, constant sets, etc.

5.2. Attrib ute Access

Instance operations and state actions always have an implicit var iable named, self . Self is a
constant pointer to the instance for which the operation or state action is intended. Note self is
not defined as a parameter to instance operations or states in the pycca source. The software
architecture arranges for the value of self to be passed correctly to state actions. How ever,
when an action invokes an instance-based operation, it must supply the first argument that will be
treated as the value of self . This is a requirement of the "C" language. It is possible, of course,
to have instance references that are obtained by navigating relationships or by direct selection
from classes.

Conventional base attributes can be accessed as structure members of self . For exam-
ple, the pycca class declaration:

class A
•••
attribute (int color)
•••

end

means that in an instance-based context that the color attribute could be updated by,

self->color = 27 ;

5.3. Event Generation

Generating events is a common action activity. Pycca provide a set of macros to make it conve-
nient. It is necessary to specify when the event is generated to whether or not it is self or non-self
directed.

5.3.1. Delayed Events

Pycca also supplies macros that are directly useful for generating delayed events. One use of
delayed events is noteworthy. Sometimes it is necessary to divide a long running state action into
smaller parts to reduce the response latency of the system. This involves arbitrar ily limiting the
computation of a state action and then generating an event to continue it. It is desired to gener-
ate a non-self directed event so that other events in the queue can be dispatched before the long
running action is resumed. The preferred means of doing this is to generate a delayed event to
self that has a zero time. This event will be immediately dispatched as a non-self directed
ev ent.

5.3.2. Event Parameters

The macros pycca provides for event generation are most convenient when there are no parame-
ters to the event. If an event has parameters, then a three step process is necessary to generate
the event.

(1) Obtain an event control block.

(2) Set the values of the event parameters.

(3) Post the event control block.

The pycca reference manual has detailed instructions.

7 May 2011 16 1.2



Translating XUML Models to pycca

5.4. Relationship Navigation

For each of the means of storing relationship infor mation discussed above , there is a correspond-
ing manner in which the relationship can be navigated. In this section we discuss the "C" code
that is used to navigate relationships. The details of the code will depend upon the exact manner
in which the relationship reference pointers have been stored.

5.4.1. Singular Navigation

Pycca class definitions of the for m,

class A
•••
reference R1 -> B
•••

end

yield "C" structure definitions that have members named the same as the reference. This allows
easy access to instance reference for the relationship.

ClassRefVar(B, b) = self->R1 ;

Note that pycca does not know about relationship conditionality. If the relationship between A and
B is conditional, then it is possible that the value of the R1 member is NULL. In this case, the
standard assert() macro is useful.

assert(self->R1 != NULL) ;
ClassRefVar(B, b) = self->R1 ;

That conditionality can also be tested as in:

if (self->R1) {
ClassRefVar(B, b) = self->R1 ;
// Do something with b

}

5.4.2. Multiple Static Navigation

Classes that have one-to-many relationship storage most frequently use the references for itera-
tion on the set of related instances. Here we consider such relationships that are static. The next
section considers the dynamic one-to-many paths.

For those classes with NULL ter minated multiple reference storage, the iteration construct is:

for (ClassRefConstSetVar(B, bSet) = a->R2 ; *bSet ; ++bSet) {
ClassRefVar(B, thisB) = *bSet ;
// Do some something to this related B instance.

}

For those classes with a counted set of related instances, the iteration construct is:

ClassRefConstSetVar(B, bSet) = a->R2 ;
ClassRefConstSetVar(B, bEnd) = bSet + a->RefCountMember(R2) ;
for ( ; bSet != bEnd ; ++bSet) {

ClassRefVar(B, thisB) = *bSet ;
// Do some something to this related B instance.

}

Here the loop termination is based not on the value pointed to by the iterator but rather the value
of the iterator relative to the end of the reference pointer array.
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5.4.3. Multiple Dynamic Navigation

The corresponding iteration constructs for dynamic multiple relationship storage must also take
into account the two ways that the storage is managed.

For counted dynamic multiple relationship storage, the iteration construction is:

ClassRefSetVar(B, bSet) = a->R2 ;
ClassRefSetVar(B, bEnd) = bSet + COUNTOF(a->R2) ;
for ( ; bSet != bEnd ; ++bSet) {

if (*bSet) {
ClassRefVar(B, thisB) = *bSet ;
// Do some something to this related B instance.

}
}

There are two noteworthy points here. Because the number of elements in the reference storage
array is a constant, we can determine the number of elements using the COUNTOF()macro. Also
since any given element of the reference storage array may be NULL, we must test to make sure
that we can dereference the pointer to the instance.

When the multiple dynamic relationship path is stored as a linked list, pycca provides a macro for
the iteration pattern.

rlink_t *link ;
PYCCA_forAllLinkedInst(a, R2, link) {

ClassRefVar(B, thisB) = PYCCA_linkToInstRef(link, B, R2) ;
// Do some something to this related B instance.

}

In this case, a pointer to the links is ranged over all the instances on the relationship chain. Note
that the link var iable is not an instance reference, but rather is a link reference. This is necessary
so that a given instance can be on several linked list chains at the same time using the same
linked list code for access. So it is necessar y to up cast the link value to the instance reference
pointer before we can operate on the instance directly.

5.4.4. Associative Navigation

Since associative relationships decompose into two ordinar y relationships, the iteration construct
for associative navigation must combine the the two. Here we show iteration across a many-to-
many relationship using static counted multiple reference storage. Similar constructs can be used
when the one-to-many aspect is stored in other ways. So traversing from an instance of X to a
set of instances of Y via an association class, A, is coded as:

ClassRefConstSetVar(A, assocSet) = x->R3 ;
ClassRefConstSetVar(A, assocEnd) = assocSet + x->RefCountMember(R3) ;
for ( ; assocSet != assocEnd ; ++assocSet) {

ClassRefVar(A, thisA) = *assocSet ;
ClassRefVar(Y, thisY) = thisA->R3_Y ;
// Do some something to this related Y instance.

}

This code shows the combination of the traversal to the associative instances which then have a
singular reference to the related Y instance.

5.4.5. Super type Generalization Navigation

The "C" code required to navigate a generalization relationship depends, naturally enough, upon
whether or not the subtypes are stored in a union or the supertype contains a pointer reference to
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a subtype. How ever, in both cases it is necessary to be able to deter mine if a navigation from the
super type class to a subtype class is in fact the empty set. This translates into requiring a test to
deter mine if the currently related instance is of the proper class type. So action language of the
form,

self->R4[Sub1] > ˜s1 | None? !isEmpty, !isNotEmpty
!isNotEmpty: 27 > ˜ s1.Temp

must include a test of the for m,

if (PYCCA_isSubtypeRelated(self, Super, R4, Sub1)) {
// Here we are currently related to a Sub1.

}

to insure that we are currently related to the subtype that is the target of the relationship naviga-
tion.

Continuing with this example, if the subtype is stored in a union in the supertype, the above
action language expression would be translated as:

if (PYCCA_isSubtypeRelated(self, Super, R4, Sub1)) {
ClassRefVar(Sub1, s1) = PYCCA_unionSubtype(self, R4, Sub1) ;
s1->Temp = 27 ;

}

If the generalization relationship storage was chosen to be by reference, then the appropriate
translation is:

if (PYCCA_isSubtypeRelated(self, Super, R4, Sub1)) {
ClassRefVar(Sub1, s1) = PYCCA_referenceSubtype(self, R4, Sub1) ;
s1->Temp = 27 ;

}

5.4.6. Subtype Generalization Navigation

Navigation from a subtype instance to a supertype is much simpler since, by definition, the rela-
tionship path from a subtype instance to a supertype instance is unconditional. Of course, the
"C" code sequence depends upon whether or not the subtype is stored in a union in the super-
type. The simple case is when the subtype instances are stored separately and contain a refer-
ence to the supertype. In this case,

42 > sub1 -> R4[Super].Volume

translates to

sub1->R4->Volume = 42 ;

When a union is involved, then some pycca macros are useful.

ClassRefVar(Super, s) = PYCCA_unionSupertype(sub1, Super, R4) ;
s->Volume = 42 ;

5.5. Class Instances Iteration

STSA requires that all class instances4 be stored in a dedicated, fixed-sized, memory pool that is
specific to the class. That memory pool is declared as an array var iable. Consequently, it is rela-
tively easy to iterate across the instance array for a par ticular class. Usually, it is sufficient to sim-
ply iterate over the instances of the class in the order in which they are stored in the class array.

4 Except subtype instances that are stored in a union member of a supertype.
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For example, a class based operation that increments the Count attribute of all instance of a class
might be translated to:

class operation
incrCount(

int cnt)
{

ThisClassRefVar(iter) ;
PYCCA_forAllInstOfThisClass(iter) {

iter->Count += cnt ;
}

}

5.5.1. Selecting an Arbitrar y Instance

Because instances are allocated in simple arrays, that fact can be used for selecting instances
based on the value of attributes. Action language statements of the for m:

Dog(Age > 5)

select the set of Dog instances where the Age attribute is greater than 5. This is accomplished by
sequentially iterating over the array elements for a class and checking if there is a match on one
or more attribute values. Pycca provides macros to support the iteration. It is useful to distin-
guish between an static population and a dynamic one. For a static class population, there is no
need to test if the instance slot is in use, since by definition all elements in the class storage array
for a static population are used.

ClassRefVar(Dog, d) ;
PYCCA_forAllInst(d, Dog) {

if (d->Age > 5) {
// Do something with old dogs.

}
}

For a dynamic population, another test is required to insure that the values held in the instance
str ucture members are indeed valid.

ClassRefVar(Dog, d) ;
PYCCA_forAllInst(d, Dog) {

if (IsInstInUse(d) && d->Age > 5) {
// Do something with old dogs.

}
}

5.5.2. Selecting an Instance b y Identifier

When selecting an instance by the values of attributes that constitute a class identifier, at most
one instance will be found. Action language of the for m,

Dog(Name = "Fido") | generate Run

will generate at most one event to the instance of Dog where Dog.Name equals Fido. Pycca pro-
vides macros to do the iteration across the instance storage pool. Again, the distinction between
static and dynamic populations is made. For static populations the translation is:
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ClassRefVar(Dog, d) ;
PYCCA_selectOneStaticInstWhere(d, Dog, strcmp(d->Name, "Fido") == 0) ;
if (d != EndStorage(Dog)) {

PYCCA_generate(d, Dog, Start, self) ;
}

There is a corresponding macro for dynamic instances.

ClassRefVar(Dog, d) ;
PYCCA_selectOneInstWhere(d, Dog, strcmp(d->Name, "Fido") == 0) ;
if (d != EndStorage(Dog)) {

PYCCA_generate(d, Dog, Start, self) ;
}

In both cases note the test of the iteration var iable against the value of the end of the class stor-
age array. This insures that a Dog of the given name is actually found. Otherwise, the iteration
variable is left at the end of the storage array, which, in usual "C" iterator style, is actually one past
the end of the last element of the class array. Thus, EndStorage(Dog) is a valid address, but may
not be dereferenced.

5.5.3. Arra y Indices as Identifiers

As we have already discussed, our primar y means of identifying instances is by the address of
the instance in memory. This is convenient and generates simple code since the pointer can be
dereferenced to obtain the values of attributes. How ever, pointer values should not be passed
outside of a domain. To do so ser iously breaks the encapsulation of the domain and allows code
exter nal to the domain to perfor m dangerous operations. Yet it is still sometimes necessary to
arrange for exter nal code to refer to some type of identifier of an instance. If the choice of how
the exter nal code identifies an instance is arbitrar y, then the array index of the instance in its stor-
age array is a convenient exter nal identifier. The pointer to the instance value is then easily and
inexpensively computed inside of the domain where the location of the class storage array is
known.

5.5.4. Instance Sets from Relationships

Many times action language statements navigate one or more relationships to obtain a set of
instances which are then subjected to some further processing. For example the action language
statement,

self -> R1 -> R3 | generate Start

specifies that the set of instances obtained by navigating across R1 and R3 all have the Start
ev ent generated to them. Assuming that R1 and R3 are one-to-many relationship paths, one way
to translate this would be to accumulate, in some manner, the instance set and then iterate across
the set generating the Start event to each instance in the set. However, it is not necessary actu-
ally to accumulate the set of instance reference pointer values. The iteration can be nested
downward so that we consider each referenced instance one at at time. Assuming that R1 and
R3 are stored as a NULL ter minated static relationship path, the the following code will accom-
plish the intent of the action language without accumulating the related instances as a set.

for (ClassRefSetVar(B, bSet) = self->R1 ; *bSet ; ++bSet) {
ClassRefVar(B, aB) = *bSet ;
for (ClassRefSetVar(C, cSet) = aB->R3 ; *cSet ; ++cSet) {

PYCCA_generate(Start, C, *cSet, self) ;
}

}

It is often the case that relationship navigation can be nested in this or a similar fashion so that
the intended operation can be perfor med on each instance as it is obtained rather than trying to
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accumulate the instance set implied by the relationship navigation then then iterating through the
accumulated set.

5.6. Relationship Dynamics

In this section we consider how to translate action code that uses the link and unlink operations
to for m and dissolve relationships between instances. This is a run time operation. For binary
relationships, relationship dynamics are specified by statements of the for m,

(instA, instB) | link R1

and of the for m

(instA, instB) | unlink R1

5.6.1. Singular Relationships Dynamics

For singular relationships, the linking operation is accomplished by simply storing a pointer value
into the appropriate structure member. Unlinking is accomplished by stor ing a NULLvalue. Thus,
linking would appear as,

instA->R1 = instB ;
instB->R1 = instA ;

and unlinking is simply,

instA->R1 = NULL ;
instB->R1 = NULL ;

Note that for mally in the action language both participating instances must be supplied. In keep-
ing with our strategy of not allocating storage for relationships that are not actually traversed by
the action code, under some circumstances one of the instances may not be required. In this
case, the action code that determined the unused instance may not have to be included in the
translation. If the unused instance is not referenced elsewhere in the action, it is possible to elimi-
nate all the code associated with finding it.

It is also common for unlink operations to be eventually followed by a corresponding link
operation. In these cases, it is not necessary to set a reference pointer to NULL if in subsequent
statements it will be set to a new value. If the setting to NULL is to be optimized away, some care
must be taken that there are no code paths where it will not be set to a new value. Note that most
moder n compilers can also diagnose this situation. If a second assignment is made to a var iable
and between the two assignments the value of the var iable was not used, most compiler optimiz-
ers will eliminate the first assignment. So the safe coding practice is to include the assignment to
NULL ev en if it appears redundant and let the compiler handle the optimization. If the "C" com-
piler is not that capable, the you can choose to make the optimization manually.

5.6.2. Multiple Relationships Dynamics

The code sequences required for link and unlink operations on multiple dynamic relationship legs
are dependent upon the choices made for the relationship storage. In the example below, we
assume A and B participate in a one-to-many relationship from A (1) to B (M) and that relation-
ship storage is allocated for both paths.

For counted storage, pycca provides the PYCCA_relateToMany() and PYCCA_unrelate-
FromMany() macros. Then, action code such as,

(instA, instB) | link R2

is translated as,
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instB->R2 = instA ;
ClassRefSetVar(B, bSet) ;
PYCCA_relateToMany(bSet, instA, R2, instB) ;
assert(bSet < instA->R2 + COUNTOF(instA->R2)) ;

The assertion in the last statement checks that a slot in the relationship storage array was actu-
ally found. The corresponding unlink code is,

instB->R2 = NULL ;
ClassRefSetVar(B, bSet) ;
PYCCA_unrelateFromMany(bSet, instA, R2, instB) ;
assert(bSet < instA->R2 + COUNTOF(instA->R2)) ;

The assertion in this case checks that we indeed found the reference to instB in the relationship
storage array.

For linked list storage, pycca provides the PYCCA_linkToMany() and PYCCA_unlinkFrom-
Many() macros. In this case, the link operation is similar,

instB->R2 = instA ;
PYCCA_linkToMany(instA, R2, instB) ;

as is the corresponding unlink operation.

instB->R2 = NULL ;
PYCCA_unlinkFromMany(instB, R2) ;

Note that in the case of the above unlink operation it is not necessary to supply the instance refer-
ence from the one side of the relationship. This is because of the way that doubly linked, circular
lists operate. To remove an item from such a linked list requires only the reference to the item
being removed.

5.6.3. Associative Relationships Dynamics

Dynamic associative relationships must deal not only with the participating instances but also with
the associative class. In general, linking an associative relationship implies allocating an instance
of the associative class and, correspondingly, unlinking will free the associative class instance.
Often actions involve unlinking one relationship instance and linking a new one to a different
instance. In those cases, the associative class instance may be reused. In this section we will
consider several var iations on the linking and unlinking of an associative relationship. In the
examples, we will assume that A is the associative class of a many-to-many relationship, R3, with
par ticipating classes X and Y. We also assume that the X and Y classes have one-to-many linked
list type of relationship storage for the associative class. So we assume the class definitions are:

7 May 2011 23 1.2



Translating XUML Models to pycca

class A
•••
reference R3_X -> X
reference R3_Y -> Y
•••

end
class X

•••
reference R3_X ->>l A
•••

end
class Y

•••
reference R3_Y ->>l A
•••

end

Associative Relationship Linking

For actions that create an instance of an associative relationship, it is necessar y to allocate an
instance of the associative class. Consider the action code,

(instX, instY) | link R3 >> A

which would be translated into,

ClassRefVar(A, a) = PYCCA_newInstance(A) ;
a->R3_X = instX ;
a->R3_Y = instY ;
PYCCA_linkToMany(instX, R3_X, a) ;
PYCCA_linkToMany(instY, R3_Y, a) ;

Here, a new instance of the associative class is allocated. The unconditional singular references
from the associative class to the participating classes are assigned. Finally, the associative
instance is placed on the linked lists of the participating classes.

Associative Relationship Unlinking

Unlinking is is just the inverse of the linking processing. The action language,

(instX, instY) | unlink R3 << A(a)

would be translated into,

PYCCA_unlinkFromMany(a, R3_X) ;
PYCCA_unlinkFromMany(a, R3_Y) ;
PYCCA_destroyInstance(a) ;

Associative Class Reuse

One other common case is to unlink one instance and immediately link to another instance. For
this case, the action code,

(instX1, instY) | unlink R3 << A(a)
(instX2, instY) | link R3 >> A

can be translated as,
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PYCCA_unlinkFromMany(a, R3_X) ;
a->R3_X = instX2 ;
PYCCA_linkToMany(instX2, R3_X, a) ;

This code sequence optimizes away the superfluous unlink operation of instY from the R3_Y link-
age and as well as the assignment of instY into the R3_Y member of the associative class. Note
that this optimization is correct only in the case were there are no branches in the flow of control
between the link and unlink actions. There are two other things to be aware of:

(1) If the associative class has a state model, then the current state of the associative class
must be considered. An unlink followed by a link operation will need to reset the current
state to some initial state, presumable a default initial state for the state machine. This is
in keeping with the idea that the unlink operation deallocates the associative class
instance and the link operation allocates a new one.

(2) The associative class may have other descriptive attr ibutes whose values need to be set.
These new values would be given in the action language statement and code must be
generated to install the new values into the newly linked associative class instance.

5.6.4. Subtype Migration

To migrate a subtype to a different type is a two step process. First, the subtype code must be
changed to the value for the new type. Second, the reference pointer or union member must be
adjusted for the new type.

When using references pointers for the generalization, typically, the current instance is deleted
and a instance of the new type is allocated. The reference to the new instance is then stored into
the subtype member of the supertype data structure.

// Migrate Sub1 to Sub2 by reference.
PYCCA_destroyInstance(self->R4) ;
ClassRefVar(Sub2, s2) = PYCCA_newInstance(Sub2) ;
PYCCA_relateSubtypeByRef(self, Super, R4, s2, Sub2) ;

When a union is used to hold the generalization, pycca provides a macro to help with the initial-
ization of the union subtype member.

// Migrate Sub1 to Sub2 by union.
PYCCA_migrateSubtype(self, Super, R4, Sub2) ;
PYCCA_initUnionInstance(self, R4, Sub2) ;

5.7. Class and Instance Based Operations

Class and instance based operations pose no special translation difficulties as these constructs
have a direct representation in pycca syntax. Macros are provided to hide the naming conven-
tions. Class operations should be invoked using ClassOp() or ThisClassOp() . Instance
operations use the corresponding macros, InstOp() or ThisClassInstOp() . Note that
because of limitation in "C", it is necessary to supply explicitly the self instance reference when
invoking an instance based operation.

5.8. External Operations

Exter nal operations also present no special difficulties in translation. Pycca syntax explicitly sup-
por ts defining exter nal operations. Note that you may include code in the exter nal operation defi-
nition, but that code is not part of the output of the translation. It may be useful to include code to
define precisely the expected behavior of the exter nal operation. Also, some additional tooling
may be able to make use of any code found in the exter nal operation definition.
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6. Populating a Domain

Once a domain is translated, the next step is to supply an initial instance population. A domain is
much like an automaton and requires that the initial conditions be specified before it can function.
Pycca supplies two way to define instances. One is useful for singular instances and the other is
useful for specifying multiple instances in a tabular arrangement. It is best to keep instance popu-
lations in a separate file. You may wish to have sev eral different populations for testing and final
deployment. Keeping the populations in separate files makes it easier to deal with those parts
that can change, e.g. the population itself.

7. Bridging Domains

The last step in assembling a set of domains into an application is to construct the bridges
between the domains. Bridges are small pieces of glue code whose primar y responsibility is to
translate from the semantics of one domain into the semantics of another domain.

In XUML, the domain chart show the dependencies of one domain on another. This is
sometimes stated as the flow of requirements between domains. The lines on the domain chart
show the assumptions that one domain makes on services supplied to it by another domain. It is
easy to confuse the lines in a domain chart to be some type of flow of control. During the course
of analysis, those requirement dependencies are realized by actual transfer of control and data.
From the point of view of a domain and in pycca ter ms, it supplies services via its domain opera-
tions and makes demands on other domains via its exter nal operations5. It is impor tant to under-
stand that the semantics of the domain operations and exter nal operations of a domain are in the
semantic terms of the domain, without reference to whatever other domain may supply a needed
ser vice. At some point in time, the exter nal operations required by one domain must be matched
against the services supplied by some other domain and there must be some translation between
the semantic terms of the two different subject matters. When analysis of multiple domains is
proceeding simultaneously, some care must be taken to insure that the serviced needed by one
domain can indeed be supplied. This is where the usual maxim of,

analyze from the top down and build from the bottom up

der ives. By analyzing from the top down, the service requirements and interface needs of a
domain can be established prior to the analysis of the domain providing those services. By build-
ing from the bottom up, needed services are put in place and more easily tested without having to
constr uct elaborate service stubs that simulate complicated behavior.

An example is in order. Consider two domains, one controlling a chemical reaction process
and another responsible for gathering all the data from sensors. Controlling a chemical reaction
in a vessel will require knowledge of the temperature. The reaction management domain dele-
gates acquiring the temperature info to the process sensor domain. When the temperature is
needed, the reaction management domain will invoke an exter nal operation of the for m:

external operation
get_vessel_temp(

VesselIdType vessel_id)
: ( VesselTempType)

Thus the service request from the reaction management domain is in terms that are consistent
with its subject matter, i.e. given a reaction vessel, tell me the temperature of it.

5 In some quarters of XUML, there is discussion of so called implicit bridging. This is a concept similar in many
ways to aspect oriented programming wherein the interaction with exter nal domains would be specified outside of the do-
main model itself. While an interesting concept, it is not one that pycca attempts to implement. Hence in this discussion,
all exter nal interactions appear explicitly in the actions of the domain.
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The process sensor domain provides services to obtain all the data in the plant and convert
it to meaningful engineering units. It provides a service,

domain operation
get_sensor_input(

SensorIdType sensor_id)
: ( InputValueType)

Again the semantics of the service are in the semantic terms of the provider of the service.

Clear ly, the exter nal operation signature of the reaction management domain does not
exactly match the domain operation signature of the process sensor domain. The bridge
between the domains must provide the semantic mapping. The process sensor domain does not
know anything about reactor vessels and the reaction management domain does not know any-
thing about sensors. The bridge is required to translate a vessel_id into a sensor_id , invoke
the get_sensor_input() domain operations and convert the returned value from InputVal-
ueType to VesselTempType .

Before we can figure out how to map a vessel_id to a sensor_id , we need to determine
how the vessel and sensors are to be identified outside of the domain boundary. Inside the
domain, we use a pointer to the instance as its identifier. This is as we discussed above and is
the basis for storage strategies that make relationship traversal convenient and efficient. How-
ev er, passing pointers outside of the domain is definitely a bad idea. Passing a pointer to a piece
of data that was purposely declared static to prevent any access to it is a serious breach of
encapsulation. For tunately, there is a convenient exter nal identifier for a class. Since all
instances of a class are held in a storage pool and that storage pool is in fact a "C" array, the
index of an instance into its storage array is a convenient identifier of the instance. An array index
is easily converted back into an instance pointer inside the domain and easily computed so it can
be handed off outside of the domain. So when a domain gets an instance identifier on input it is a
simple matter to compute the instance pointer by the following C / pycca idiom:

assert(vessel_id < COUNTOF(BeginStorage(VESSEL))) ;
ClassRefVar(VESSEL, vessel) = BeginStorage(VESSEL) + vessel_id ;

The assert() makes sure we don’t index outside of the array boundar ies and under many cir-
cumstances a run time test of the value of vessel_id is warranted. Since pointer arithmetic in
"C" is scaled by the size of the object pointed to, the simple addition of the index value to the base
address of the class storage computes the instance pointer value. Analogously, the difference
between an instance pointer and the base address computes an array index that is useful as an
identifier of the instance outside of the class.

VesselIdType vessel_id = vessel - BeginStorage(VESSEL) ;

Again, the implicit scaling of address arithmetic wor ks its magic and does exactly what we want.

So, having established the index of an instance into its storage array as an appropr iate and
convenient way to identify the instance outside of the domain boundaries, we now need to know
what identifier values make sense for a domain. Since pycca knows all the infor mation we need,
it can supply the necessary values. When pycca is invoked with the -ids or -datapor tal option, it
places in the generated header file a set of preprocessor defines that encode the classes,
instances, attr ibute and events of the domain into the integer numbers that we will need for the
br idging between domains. This leads us to bridge code that might appear as follows.
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#include "rvm.h"
#include "psm.h"

VesselTempType
eop_rvm_get_vessel_temp(

VesselIdType vessel_id)
{

static SensorIdType const tempSensorMap[RVM_VESSEL_INST_COUNT] = {
PSM_SENSOR_VESSEL_A_TEMP_INST_ID,
PSM_SENSOR_VESSEL_B_TEMP_INST_ID,
PSM_SENSOR_VESSEL_C_TEMP_INST_ID,

} ;

assert(vessel_id < COUNTOF(vesselSensorMap)) ;
return psm_get_sensor_input(tempSensorMap[vessel_id]) ;

}

Here we assume that rvm.h is the generated header file for the Reactor Vessel Management
domain and that psm.h is the generated header file for the Process Sensor Management domain.
We fur ther assume that the instance population of rvm consists of three vessel: A, B, and C.
Correspondingly, psm defines temperature sensors for vessels A, B and C. The preprocessor
symbols, RVM_VESSEL_INST_COUNT, PSM_SENSOR_VESSEL_A_TEMP_INST_ID ,
PSM_SENSOR_VESSEL_B_TEMP_INST_ID and PSM_SENSOR_VESSEL_C_TEMP_INST_ID
are supplied by pycca . The bridge is then a simple mapping of vessel_id to sensor_id by
indexing into an array and supplying the resulting value to psm_get_sensor_input() . Here
we assume that the return values are the same type or at least types that can be implicitly con-
verted by "C".

Not all bridging is a simple as this example. Sometimes the bridge will map identifiers to
function pointers and it may be necessar y to invoke domain operations by pointer rather than by
name. Other bridges may be dynamic, depending upon the dynamic nature of the counter part
instances. In these cases it is necessary to manage the mapping array at run time. Despite
these complications, the basic concept of mapping some for m of instance identifier to its counter
par t in another domain solves most of the bridging problems. This simple example also illustrates
the importance of developing the initial instance population of a domain before constr ucting the
br idges as the bridge contents usually depend heavily on the instance identifiers are associated
with the initial instance population.
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