Acknowledgement of High-Speed Inter-Chip USB Technical Contribution:

Jean Christophe Lawson jean-christophe.lawson@atmel.com Atmel Corporation
François Ennesser francois.ennesser@axalto.com Axalto
Robert Leydier robert.leydier@axalto.com Axalto
Jun Guo jun.guo@broadcom.com Broadcom Corp.
Kenneth Ma kma@broadcom.com Broadcom Corp.
Helder Silva hhsilva@chipidea.com Chipidea-Microelectronica, S.A
Morten Christiansen morten.christiansen@ericsson.com Ericsson AB
Ed Beeman ed.beeman@2010tech.com ITRI
Christian Schneckenburger christian.schneckenburger@infineon.com Infineon Technologies
Bruce Fleming bruce.fleming@intel.com Intel Corporation
Martin Furuhjelm mfuuruhjelm@lexar.com Lexar Media, Inc.
John Geldman jgeldman@lexar.com Lexar Media, Inc.
Dave Podsiadlo dave_podsiadlo@maximhq.com Maxim Integrated Products
Paul E. Berg pberg@mcci.com MCCI
Jason Oliver joliver@mcci.com MCCI
Joe Decuir joe@mcci.com MCCI
Scott Glenn scott.glenn@marvell.com Marvell Semiconductor Inc.
Cary Snyder cary_snyder@mentor.com Mentor Graphics
Richard Petrie richard.petrie@nokia.com Nokia Corporation
Chang Alan alan.chang@nxp.com NXP Semiconductors
Wenkai Du wenkai.du@nxp.com NXP Semiconductors
Reemeyer Shaun shaun.reemeyer@nxp.com NXP Semiconductors
Constantin Socol socol.constantin@nxp.com NXP Semiconductors
Avraham Shimor avraham.shimor@sandisk.com SanDisk Corporation
Mark Bohm mark.bohm@msmc.com SMSC
Morgan Monks morgan.monks@msmc.com SMSC
Donald Perkins donald.perkins@msmc.com SMSC
Serge Fruhauf serge.fruhauf@st.com STMicroelectronics
Saleem Mohammad saleem.mohammad@synopsys.com Synopsys, Inc
Eric Desmarchelier e-desmarchelier@ti.com Texas Instruments
Vuong Hung vuong.hung@ti.com Texas Instruments
Mark Paxson techadmin@usb.org USB-IF
Revision History

The 1.0 revision of the specification is intended for product design. Every attempt has been made to ensure a consistent and implementable specification. Implementations should ensure compliance with this revision.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>18 September 2007</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>

Universal Serial Bus Specification Supplement Copyright © 2007, Agere Systems, Inc., Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, NEC Corporation, NXP Semiconductors, All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN THIS SPECIFICATION. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.

All product names are trademarks, registered trademarks, or service marks of their respective owners.
Please send comments via electronic mail to techsup@usb.org
For industry information, refer to the USB Implementers Forum web page at http://www.usb.org
Table of Contents

1 Introduction ... 5
 1.1 General ... 5
 1.2 Objective of This Supplement .. 5
 1.3 Intended Audience ... 5
 1.4 Relevant Documents .. 6
 1.5 Acronyms and Terms .. 7

2 Significant Features ... 8
 2.1 HSIC & Standard USB comparison: ... 8

3 HSIC USB Signaling & Operation: .. 11
 3.1 Discovery: .. 11
 3.1.1 Power state is OFF: ... 11
 3.1.2 Power state is ON, but HSIC is not enabled .. 11
 3.1.3 Power state is ON, and HSIC is enabled. .. 11
 3.1.4 Power state is ON, HSIC is enabled, and Peripheral signals a CONNECT. 11
 3.2 Speed detection: ... 12
 3.3 Bus State Signaling .. 12
 3.4 Data Signaling: .. 13
 3.5 Bus Keepers in IDLE bus state: ... 13
 3.6 Hub Support and Mixed Interface Systems: .. 13

4 Electrical Specification: ... 16

Table of Figures

Figure 1 - Standard USB Host & Peripheral Example ..9
Figure 2 - HSIC USB Host & Peripheral Example ..10
Figure 3: Mixed Bus State and Data Transfer Signaling ..13
Figure 4 - HSIC Host & Mixed Interface Hub ..14
Figure 5 - Analog Host & Mixed Interface Hub ...14
Figure 6 - Host with Analog & HSIC interfaces ..15

Tables

Table 3-1: Bus State Signaling ..12
1 Introduction

1.1 General

USB is the ubiquitous peripherals interconnect of choice for a large number of computing and consumer applications. Many systems provide a comprehensive set of drivers to support all commonly available USB peripherals. This enables consumers to purchase and use USB peripherals without having to install a new driver, thus strengthening the popularity of USB. In addition, there are a large number of suppliers of USB silicon, so costs are normally very low for product manufacturers of USB hosts and peripherals.

As a result of this popularity, it is becoming increasingly attractive to use USB as a chip-to-chip interconnect within a product (without use of external cables or connectors). However, because USB was designed to enable hot-plugging and unplugging of peripherals over cables up to 5 meters in length, there are certain power and implementation issues that are not attractive for many chip-to-chip interconnect solutions.

To better meet the needs of a USB chip-to-chip interconnect, this specification defines a High-Speed Inter-Chip USB supplement to the USB2.0 specification. HSIC accomplishes this by removing the analog transceivers, thus reducing complexity, cost, and manufacturing risk.

1.2 Objective of This Supplement

This supplement provides all of the technical information required to implement a High-Speed Inter-Chip USB solution when used in conjunction with the USB 2.0 Specification.

1.3 Intended Audience

Developers and Systems Architects of High-Speed Inter-Chip interfaces that have a maximum circuit trace length of 10cm are the intended audience for this document.
1.4 Relevant Documents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>[USB]</td>
<td>In the context of this document, this specifically refers to the following parts of the USB 2.0 Specification package:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The original USB 2.0 specification released on April 27, 2000</td>
<td>www.usb.org/</td>
</tr>
<tr>
<td></td>
<td>• Errata to the USB 2.0 specification as of December 7, 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pull-up/pull-down Resistors Engineering Change Notice to the USB 2.0 specification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errata to the USB 2.0 specification as of May 28, 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interface Association Descriptor Engineering Change Notice to the USB 2.0 specification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unicode Engineering Change Notice to the USB 2.0 specification as of February 21, 2005</td>
<td></td>
</tr>
</tbody>
</table>
1.5 Acronyms and Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR</td>
<td>Double Data Rate: Describes a signaling technique where data is transferred on both the rising and falling edges of a reference clock (STROBE for HSIC).</td>
</tr>
<tr>
<td>HSIC</td>
<td>High Speed Inter-Chip: Used in reference to the 2-signal data/strobe signals defined by this specification</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>Standard Description of 1.2V CMOS Logic Devices (Normal Range of Operations), as described in JESD76-2</td>
</tr>
<tr>
<td>Strobe-period</td>
<td>The unit of time from a STROBE rising edge until the next periodic STROBE rising edge (or falling edge to falling edge).</td>
</tr>
</tbody>
</table>

Other acronyms and terms used in this specification are defined in the core specification [USB].
2 Significant Features

HSIC is a 2-signal (strobe, data) source synchronous serial interface which uses 240MHz DDR signaling to provide High-Speed 480Mbps USB transfers which are 100% host driver compatible with traditional USB cable-connected topologies. Full-Speed (FS) and Low-Speed (LS) USB transfers are not directly supported by the HSIC interface (a HSIC enabled hub can provide FS and LS support, as well as IC_USB support).

Major feature and performance highlights are as follows:

- High-Speed 480Mbps data rate only
- Source-synchronous serial interface
- No power consumed unless a transfer is in progress
- Maximum trace length of 10cm
- No hot Plug-n-Play support, no hot removal/attach
- Signals driven at 1.2V standard LVCMOS levels
- Designed for low-power applications
- No high-speed chirp protocol, the HSIC interface is always operated at high-speed

2.1 HSIC & Standard USB comparison:

HSIC is an interface that has been designed to replace a standard USB PHY and USB Cable with an interface that is optimized for circuit board layouts. Figure 1 shows a standard USB implementation of a USB Host and a USB peripheral, Figure 2 shows a similar implementation with an HSIC interface.
Figure 1 - Standard USB Host & Peripheral Example
Figure 2 - HSIC USB Host & Peripheral Example

Note: Link* could be UTML, UTMHi, ULPi, etc et cetera
3 HSIC USB Signaling & Operation:

An HSIC interface consists of two signals, a bi-directional data strobe signal (STROBE) and a bi-directional DDR data signal (DATA) that is synchronous to the (STROBE) signal of the transmitter. HSIC utilizes the tiered star topology of the USB 2.0 specification; therefore the interface is a point to point connection between a downstream facing host/hub port and an upstream facing peripheral port. The data that is transferred includes sync, bit stuffing, EOP and NRZI encoding to ensure that the packet lengths, turn around times, interpacket gaps, etc... are as identical as possible between HSIC and standard USB 2.0 signaling. This enables a single host to drive standard USB and HSIC USB interfaces without any modifications to the internal logic structure of the host.

There are several different types of HSIC signaling; bus state signaling and data signaling are used for standard USB data and control signaling. The peripheral discovery signaling occurs after power has been applied and is utilized for determining peripheral and host availability.

3.1 Discovery:

In order to support various IC power sequences, the HSIC interface is structured so that a host or a peripheral can be powered in any order.

3.1.1 Power state is OFF:

USB host, hub and peripherals must be constructed in such a way to ensure that the STROBE and DATA signals do not float to an undetermined value, or a false connect may be detected. An example implementation to prevent this floating condition from occurring is to incorporate a clamping diode on both STROBE and DATA.

3.1.2 Power state is ON, but HSIC is not enabled.

- Downstream facing host or hub HSIC interface:
 - Must assert bus keepers on both STROBE and DATA to provide a logic ‘0’ state
- Upstream facing peripheral or hub HSIC interface:
 - Will not assert any signaling (passive or active).

3.1.3 Power state is ON, and HSIC is enabled.

- Downstream facing host or hub HSIC interface:
 - Must present a USB IDLE bus state, and will monitor the STROBE and DATA lines for a CONNECT bus state.
- Upstream facing peripheral or hub HSIC interface:
 - Peripheral will monitor the STROBE and DATA lines for an IDLE bus state.

3.1.4 Power state is ON, HSIC is enabled, and Peripheral signals a CONNECT.

- Upstream facing peripheral or hub HSIC interface:
 - Upon detection of an IDLE bus state, must assert a CONNECT bus state.
- Downstream facing host or hub HSIC interface:
 - Upon detection of a CONNECT bus state, standard USB enumeration will commence.
3.2 Speed detection:
There are no provisions for a speed detection/selection mechanism in HSIC, the interface defaults to USB 2.0 High-Speed operation.

3.3 Bus State Signaling
The STROBE and DATA lines signal the bus states shown in Table 3-1 when there are no active data transfers in progress.

<table>
<thead>
<tr>
<th></th>
<th>STROBE</th>
<th>DATA</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE</td>
<td>Hi</td>
<td>Lo</td>
<td>1 or more Strobe-periods</td>
</tr>
<tr>
<td>CONNECT</td>
<td>Lo</td>
<td>Hi</td>
<td>2 Strobe-periods</td>
</tr>
<tr>
<td>RESUME</td>
<td>Lo</td>
<td>Hi</td>
<td>For time periods per USB 2.0 SPEC</td>
</tr>
<tr>
<td>SUSPEND</td>
<td>Hi</td>
<td>Lo</td>
<td>Per USB 2.0 SPEC</td>
</tr>
<tr>
<td>RESET</td>
<td>Lo</td>
<td>Lo</td>
<td>Per USB 2.0 SPEC</td>
</tr>
</tbody>
</table>

IDLE
(STROBE line high, DATA line low) for 1 or more Strobe-periods. Note: when transitioning from any non-IDLE bus state to an IDLE bus state, the transmitter must drive IDLE for 2 Strobe-periods.

CONNECT
(STROBE line low, DATA line high) for 2 Strobe-periods. Note: this is an event that only occurs after a peripheral detects an IDLE bus state for the first time, usually after power on reset (POR). At the end of signaling a CONNECT, the transmitter must drive IDLE for 2 Strobe-periods.

RESUME
(STROBE line low, DATA line high) to match current USB specification. Note: RESUME can be signaled by either a host or a peripheral, i.e. remote wake up.

SUSPEND
Identical to idle state, but the time period matches current USB specification.

RESET
(STROBE line low, DATA line low) to match current USB specification requirements.
3.4 Data Signaling:

Data is transferred when the STROBE and DATA lines transition from IDLE to END-OF-IDLE, which is defined as STROBE switching from high to low, while DATA is low. Data is transferred for the next strobe transition and all subsequent transitions of the STROBE line, until IDLE is again signaled.

3.5 Bus Keepers in IDLE bus state:

Bus keepers will be asserted by the downstream facing Host or Hub interface on the STROBE and DATA lines to maintain the bus IDLE state. These keepers must be disabled 1 Strobe-period after any non-IDLE bus state is detected, and must be enabled 1 Strobe-period after IDLE is detected.

3.6 Hub Support and Mixed Interface Systems:

HSIC interfaces can be combined with standard analog USB interfaces and Inter-Chip 1.0 interfaces. The figures below show several examples.
Figure 4 - HSIC Host & Mixed Interface Hub

Figure 5 - Analog Host & Mixed Interface Hub
Figure 6 - Host with Analog & HSIC interfaces
4 Electrical Specification:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSIC signaling Voltage</td>
<td>V_{DD}</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I/O Voltage input low</td>
<td>V_{IL}</td>
<td>-0.3</td>
<td></td>
<td>0.35 * V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I/O Voltage input high</td>
<td>V_{IH}</td>
<td>0.65 * V_{DD}</td>
<td></td>
<td>V_{DD} + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I/O Voltage output low</td>
<td>V_{OL}</td>
<td></td>
<td></td>
<td>0.25 * V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I/O Voltage output high</td>
<td>V_{OH}</td>
<td>0.75 * V_{DD}</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Pad Drive Strength</td>
<td>O_{D}</td>
<td>40</td>
<td></td>
<td>60</td>
<td>Ω</td>
<td>Controlled output impedance driver</td>
</tr>
<tr>
<td>I/O Weak keepers</td>
<td>I_{L}</td>
<td>20</td>
<td></td>
<td>70</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I/O Input Impedance</td>
<td>Z_{i}</td>
<td>100</td>
<td></td>
<td></td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Total Capacitive load</td>
<td>C_{L}</td>
<td>3</td>
<td>14</td>
<td></td>
<td>pF</td>
<td>Note 1</td>
</tr>
<tr>
<td>Characteristic Trace Impedance</td>
<td>T_{t}</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Circuit Board Trace Length</td>
<td>T_{L}</td>
<td></td>
<td>10</td>
<td></td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>Circuit Board Trace propagation skew</td>
<td>T_{S}</td>
<td></td>
<td>15</td>
<td></td>
<td>ps</td>
<td>Note 3</td>
</tr>
<tr>
<td>STROBE Frequency</td>
<td>F_{STROBE}</td>
<td>239.988</td>
<td>240</td>
<td>240.012</td>
<td>MHz</td>
<td>±500ppm Note 2</td>
</tr>
<tr>
<td>Slew Rate (rise and fall)</td>
<td>T_{sleew}</td>
<td>0.60 * V_{DD}</td>
<td>1.0</td>
<td>1.2</td>
<td>V/ns</td>
<td>Averaged from 30%-70% points Note 2</td>
</tr>
<tr>
<td>Receiver DATA Setup time (with respect to STROBE)</td>
<td>T_{s}</td>
<td>300</td>
<td></td>
<td></td>
<td>ps</td>
<td>Measured at the 50% point Note 2</td>
</tr>
<tr>
<td>Receiver DATA Hold time (with respect to STROBE)</td>
<td>T_{h}</td>
<td>300</td>
<td></td>
<td></td>
<td>ps</td>
<td>Measured at the 50% point Note 2</td>
</tr>
</tbody>
</table>

Note 1) Total Capacitive Load, C_L, includes device Input/Output capacitance, and capacitance of a 50ohm PCB trace with a length of 10cm.

Note 2) Jitter and duty cycle are not separately specified parameters, they are incorporated into the values in the table above.

Note 3) Maximum propagation delay skew in STROBE or DATA with respect to each other. The trace delay should be matched between STROBE and DATA to ensure that the signal timing is within specification limits at the receiver.