
< TECH FORUM > ESL/SYSTEMC20

Modeling embedded
systems using SystemC
extensions

There is a trend toward tighter interaction between embed-
ded hardware/software (HW/SW) systems and their ana-
log physical environment. This leads to systems in which
digital HW/SW is functionally interwoven with analog and
mixed-signal (AMS) blocks, as shown the communication
system in Figure 1. Examples of these embedded analog/
mixed signal (E-AMS) systems include cognitive radios,
sensor networks and systems for image sensing. A chal-
lenge to their development involves understanding the
interaction between HW/SW and AMS subsystems at the
architectural level. This requires some means of modeling
and simulating these interacting systems.

SystemC supports the refi nement of HW/SW systems to
RTL by providing a discrete-event (DE) simulation frame-
work. A methodology for the generalized modeling of com-
munication and synchronization that builds on this frame-
work is available using transaction level modeling (TLM)
techniques. However, the SystemC simulation kernel has
not been designed for the modeling and simulation of ana-
log, continuous-time systems and lacks a refi nement meth-
odology that describes analog behavior from the functional
level down to the implementation level.

System-level tools are often used for functional model-
ing and simulation. They may capture continuous-time be-
havior, but they do not target the design of E-AMS systems
at the architectural level. Hardware description languages
(HDLs) such as VHDL-AMS and Verilog-AMS target the
design of mixed-signal subsystems close to the imple-
mentation level, but have limited capabilities regarding
HW/SW co-design at high levels of abstraction. Existing co-
simulation solutions mixing SystemC and Verilog/VHDL-
AMS do not provide high enough simulation performance
and lack a seamless design refi nement fl ow for modeling
mixed discrete-event/continuous-time systems and HW/
SW systems at the architectural level.

In response to demand from the telecoms, automotive,
and semiconductor industries, SystemC AMS extensions

are being introduced, providing a uniform and standard-
ized methodology for modeling E-AMS systems. This paper
gives an overview of those extensions.

Use cases and requirements
The SystemC AMS extensions are designed to enhance the
HW/SW-oriented SystemC class library by providing a
framework for the functional modeling, architectural ex-
ploration, integration validation, and virtual prototyping of
E-AMS systems. Such use cases require a means for model-
ing and simulation that is more abstract than is available
from existing HDLs. At the same time, designers should
be able to model AMS components and their interactions
with HW/SW systems. The extensions provide a standard-

The Open SystemC Initiative (OSCI) is an independent, not-for-profi t
association composed of a broad range of organizations dedicated to
supporting and advancing SystemC as an open industry standard for
system-level modeling, design and verifi cation.

01 SC_MODULE(lp_filter_lsf)
 // Hierarchical models use SC_MODULE class
02 {
03 sca_tdf::sca_in<double> in;
 // Input/outputs in data flow MoC
04 sca_tdf::sca_out<double> out;
05 sca_lsf::sca_sub* sub1;
 // Subtractor
06 sca_lsf::sca_dot* dot1;
 // Differentiator
07 sca_lsf::sca_tdf_source* tdf2lsf1;
 // TDF -> LSF converter
08 sca_lsf::sca_tdf_sink* lsf2tdf1;
 // LSF -> TDF converter
09 sca_lsf::sca_signal in_lsf, sig, out_lsf;
 // LSF signals
10 lp_filter_lsf(sc_module_name, double fc=1.0e3)
 // Constructor with parameters
11 {
12 tdf2lsf1 = new sca_lsf::sca_source(“tdf2lsf1”);
 // TDF->LSF converter
13 tdf2lsf1->x(in);
 // Port/signal binding like SystemC
14 tdf2lsf1->y(in_lsf);
15 sub1 = new sca_lsf::sca_sub(“sub1”);
16 sub1->x1(in_lsf);
17 sub1->x2(sig);
18 sub1->y(out_lsf);
19 dot1 = new sca_lsf::sca_dot(“dot1”,1.0/(2.0*M_PI*fc));
 // M_PI=3.1415…
20 dot1->x(out_lsf);
21 dot1->y(sig);
22 lsf2tdf1 = new sca_lsf::sca_sink(“lsf2tdf1”);
 // LSF->TDF converter
23 lsf2tdf1->x(out_lsf);
24 lsf2tdf1->y(out);
25 }
26 };

EXAMPLE 1 LSF model of a low pass fi lter structure
with TDF converter modules

Source: OSCI

Open SystemC Initiative

eda0809p14-41.indd 20eda0809p14-41.indd 20 8/6/08 4:24:14 PM8/6/08 4:24:14 PM

21EDA Tech Forum September 2008

ized formalism for the modeling of AMS architectures that
bridges the gap between functional modeling frameworks
and the HDLs used for implementation.

To that end, we consider the following modeling formal-
isms:

Signal fl ow models describe AMS systems (such as control
systems or fi lter structures) at the functional and architec-
ture levels using block diagrams, assuming continuous time
and directed real-valued signals. For simulation, differential
and algebraic equations are solved numerically at appropri-
ate time steps. Therefore, simulation of signal fl ow models
is often a time-consuming task. Data fl ow models are com-
mon for modeling DSP algorithms and communication sys-
tems at the functional and architecture levels by processes
that communicate via buffers. For simulation, the processes
are activated in the data fl ow’s direction, considering differ-
ent data rates. Note that, in general, data fl ow models are
untimed and can have different semantics. When modeling
AMS systems, timed semantics are introduced by assuming
discrete time steps between data tokens. Although not as
accurate as a continuous-time signal fl ow, a discrete-time
data fl ow provides a higher simulation performance with
reasonable accuracy.

Electrical networks are essential for modeling E-AMS sys-
tems. They are required to model loads, protection circuits,

and buses at high frequencies using macro models for de-
scribing continuous-time relations between voltages and
currents. For simulation, differential and algebraic equa-
tions are solved, but effi ciency can be maintained by using
only linear primitives and switches. Figure 2 gives an over-
view of modeling formalisms that are required for design-

SystemC AMS extensions introduce new language con-
structs for the design of embedded analog/mixed-signal
systems. This paper presents the novel modeling language
for analog and mixed-signal functions that supports
design and modeling of telecommunications, automotive
and imaging sensor applications at various levels of ab-
straction. A simple example illustrates how new features
facilitate a design refi nement methodology for functional
modeling, architecture exploration and virtual prototyping
of embedded analog and mixed-signal systems.

Continued on next page

ADC

DAC

A
nt

en
na

fr
on

t-
en

d

Receiver

Calibration & Control

Transmitter

RF
detector

Temp.
sensor

Oscillator Clock
Generator

Power
Management

to all
blocks

Micro-
controller

Serial
Interface

Modulator/
demod.

DSP

Host
processor

Memory
Imaging

DSP

Audio
DSP

High
Speed
Serial

Interface

FIGURE 1 Example of an embedded analog/mixed-signal architecture: communication system

Source: OSCI

functional

architecture

implementation

SystemC AMS
extensions

data
flow

signal
flow

electrical
networks

design
abstraction

use
cases

executable
specification

integration
validation

modeling
formalism

virtual
prototyping

architecture
exploration

FIGURE 2 Modeling formalisms and their use cases
between functional level and implementation

Source: OSCI

eda0809p14-41.indd 21eda0809p14-41.indd 21 8/6/08 4:24:15 PM8/6/08 4:24:15 PM

< TECH FORUM > ESL/SYSTEMC22

ing AMS systems and their use cases between the functional
level and implementation.

A major requirement is to maintain an acceptable simula-
tion performance while modeling the architecture’s behav-
ior with suffi cient accuracy. Therefore, the AMS extensions
must enable the use of dedicated simulation kernels syn-
chronized with the standard SystemC kernel.

Electrical networks require specifi c simulation capabili-
ties. The simulation of such models needs structural analy-
sis, the setup of differential and algebraic equations (DAE),
and numerical methods for solving them.

Furthermore, the AMS language must enable the use of
dedicated simulation kernels for special cases such as lin-
ear networks, which permit a signifi cantly higher simula-
tion performance compared with nonlinear networks. For
models, the special case of synchronous data fl ow allows
the implementation of a dedicated simulation kernel that

provides considerable speed-up compared with the Sys-
temC kernel.

Another important requirement is extensibility. Industrial
design fl ows for E-AMS systems use SPICE-like circuit sim-
ulators with high accuracy, special support for RF, nonlinear
systems or other application-specifi c extensions. Therefore,
the SystemC AMS extensions should allow the industry or
EDA vendors to integrate ‘user-defi ned extensions’ to sup-
port different domains.

Language structure and use cases
The SystemC AMS extensions meet the requirements and
use cases discussed in the previous section. They provide
support for signal fl ow, data fl ow, and electrical networks.
The extensions are fully compatible with the SystemC stan-
dard as shown in Figure 3.

Electrical networks and signal fl ow models use a linear
DAE solver that solves the equation system and is synchro-
nized with the SystemC kernel. The use of this solver restricts
networks and signal fl ow components to linear models to
provide high simulation performance.

Data fl ow simulation is accelerated using static schedul-
ing that is computed before simulation starts. This schedule
is activated in discrete time steps, where synchronization
with the SystemC kernel introduces timed semantics. We
therefore call it a ‘timed data fl ow’ (TDF).

The SystemC AMS extensions define new language
constructs identified by the prefix ‘sca_’. They are de-

01 SCA_TDF_MODULE(lp_filter_tdf)
02 {
03 sca_tdf::sca_in<double> in;
04 sca_tdf::sca_out<double> out;
05 sca_tdf::sc_in<double> gain;
 // converter port for SystemC input
06 sca_tdf::sca_ltf_nd ltf;
 // computes transfer function
07 sca_util::sca_vector<double> num, den;
 // coefficients
08 void initialize()
09 {
10 num(0) = 1.0;
11 den(0) = 1.0;
12 den(1) = 1.0/(2.0*M_PI*1.0e4); // M_PI=3.1415…
13 }
14 void processing()
15 {
16 out.write(ltf(num, den, in.read()) * gain.read());
17 }
18 SCA_CTOR(lp_filter_tdf) {}
19 };

EXAMPLE 3 Continuous-time Laplace transfer function
in a TDF module

Source: OSCI

01 SC_MODULE(frontend)
 // SC_MODULES used for hierarchical structure
02 {
03 sca_tdf::sca_in<double> rf, loc_osc;
 // use TDF ports to connect with
04 sca_tdf::sca_out<double> if_out;
 // TDF ports/signals in hierarchy
05 sc_core::sc_in<sc_dt::sc_bv<3> > ctrl_config;
 // SystemC input agc_ctrl configur.
06 sca_tdf::sca_signal<double> if_sig;
 // TDF internal signal
07 sc_core::sc_signal<double> ctrl_gain;
 // SystemC internal signal
08 mixer* mixer1;
09 lp_filter_tdf* lpf1;
10 agc_ctrl* ctrl1;
11 SC_CTOR(frontend)
12 {
13 mixer1 = new mixer(“mixer1”);
14 mixer1->rf_in(rf);
15 mixer1->lo_in(loc_osc);
16 mixer1->if_out(if_sig);
17 lpf1 = new lp_filter_tdf(“lpf1”);
18 lpf1->in(if_sig);
19 lpf1->out(if_out);
20 ctrl1 = new agc_ctrl(“ctrl1”);
 // SystemC module
21 ctrl1->out(ctrl_gain);
22 ctrl1->config(ctrl_config);
23 }
24 };

EXAMPLE 4 Structural description, including TDF and
DE modules

Source: OSCI

01 SCA_TDF_MODULE(mixer)
 // TDF primitive module definition
02 {
03 sca_tdf::sca_in<double> rf_in, lo_in;
 // TDF in ports
04 sca_tdf::sca_out<double> if_out;
 // TDF out ports
05 void set_attributes()
06 {
07 set_timestep(1.0, SC_US);
 // time between activations
08 }
09 void processing()
 // executed at each activation
10 {
11 if_out.write(rf_in.read() * lo_in.read());
12 }
13 SCA_CTOR(mixer) {}
14 };

EXAMPLE 2 TDF model of a mixer

Source: OSCI

eda0809p14-41.indd 22eda0809p14-41.indd 22 8/6/08 4:24:16 PM8/6/08 4:24:16 PM

23EDA Tech Forum September 2008

clared in dedicated namespaces ‘sca_tdf’ (timed data
flow), ‘sca_eln’ (electrical linear networks), and ‘sca_
lsf’ (linear signal flow) according to the underlying se-
mantics. By using namespaces, similar primitives as in
SystemC are defined to denote ports, interfaces, signals,
and modules. For example, a TDF input port is an ob-
ject of class ‘sca_tdf::sca_in<type>’. Linear signal flow
(LSF), models are specified by instantiating a structure
of signal flow primitives such as adders, integrators,
differentiators, or transfer functions. These primitives
are part of the language definition. The primitives are
connected via signals of the class ‘sca_lsf::sca_signal’.
To access LSF signals from TDF and DE, converter
modules must be instantiated. The instantiation of the
primitives can be done in a regular ‘SC_MODULE’ us-
ing standard SystemC rules. Example 1 (p. 21) gives a
simple low pass filter structure with TDF interface, en-
abling its use in a TDF model.

Such models consist of TDF modules connected via TDF
signals using TDF ports. The connected modules form a
contiguous structure called a TDF cluster. Clusters must not
have cycles without delays, and each TDF signal must have
one source. A cluster is activated in discrete time steps. The
behavior of a TDF module is specifi ed by overloading the

predefi ned methods – ‘set_attributes()’, ‘initialize()’, and
‘processing()’.

 The method ‘set_attributes()’ is used to specify attributes
such as rates, delays or time steps of TDF ports and modules.

The method ‘initialize()’ is used to specify initial condi-
tions. It is executed once when the simulation starts.

The method ‘processing()’ describes time-domain behav-
ior of the module. It is executed at each activation of the
TDF module.

At least one defi nition of the time step value is expected
and, in the case of cycles, one defi nition of a delay value per

SystemC
methodology -

specific
elements

Transaction
Level

Modeling

Cycle/bit
Accurate
Modeling

etc.

AMS methodology-specifc elements
elements for AMS design refinement, etc.

Electrical Linear
Networks (ELN)

modules
terminals

nodes

Linear Signal
Flow (LSF)
modules

ports
signals

Timed Data
Flow (TDF)
modules

ports
signals

User-defined
AMS extensions

modules
ports

signals
(e.g. additional

solvers/
simulations)

Linear DAE solver Scheduler

Synchronization layer

SystemC Language Standard

FIGURE 3 AMS extensions for SystemC

Source: OSCI

testbench
loc_osc ctrl_config

frontend

rf_sig d_in symbolBASK
demod.

if_sig

mixer lp_filter_tdf

gain
agc_ctrl

FIGURE 4 BASK receiver at functional level

Source: OSCI

Continued on next page

01 SCA_TDF_MODULE(ad_converter)
 // Very simple AD converter
02 {
03 sca_tdf::sca_in<double> in_tdf;
 // TDF port
04 sca_tdf::sc_out<sc_dt::sc_int<12> > out_de;
 // converter port to DE domain
05 void processing()
06 {
07 out_de.write(static_cast<sc_dt::sc_int<12> >(in_tdf.read()));
08 }
09 SCA_CTOR(ad_converter) { }
10 };

EXAMPLE 5 TDF model of a simple A/D converter

Source: OSCI

eda0809p14-41.indd 23eda0809p14-41.indd 23 8/6/08 4:24:16 PM8/6/08 4:24:16 PM

< TECH FORUM > ESL/SYSTEMC24

cycle. TDF ports are single-rate by default. It is the task of
the elaboration phase to compute and propagate consistent
values for the time steps to all TDF ports and modules. Be-
fore simulation, a schedule is determined that defi nes the
order of activation of the TDF modules, taking into account
the rates, delays, and time steps. During simulation, the
‘processing()’ methods are executed at discrete time steps.
Example 2 shows the TDF model of a mixer. The ‘process-
ing()’ method will be executed with a time step of 1μs.

In addition to the pure algorithmic or procedural descrip-
tion of ‘processing()’, different kinds of transfer function
can be embedded in TDF modules. Example 3 gives the TDF
model of a gain-controlled low pass fi lter by instantiating
a class that computes a continuous-time Laplace transfer
function (LTF). The coeffi cients are stored in a vector of the
class ‘sca_util::sca_vector’ and are set in the ‘initialize()’
method. The transfer function is computed in the ‘process-
ing()’ method by the ‘ltf’ object at discrete time points using
fi xed-size time steps.

The TDF modules in Examples 2 and 3 can be instantiated
and connected to form a hierarchical structure with other
SystemC modules. The modules are connected as in Sys-
temC with TDF signals (‘sca_tdf::sca_signal<type>’) and
SystemC signals (Example 4, p. 23).

Predefi ned converter ports (‘sca_tdf::sc_out’ or ‘sca_
tdf::sc_in’) can establish a connection to a SystemC DE chan-
nel (e.g., ‘sc_signal<T>’), reading or writing values during
the fi rst delta cycle of the current SystemC time step. Ex-

testbench

loc_osc ctrl_config

rf if_sig

mixer lp_filter_tdf

gain
agc_ctrl

frontend

d_in
ADC

d_in_de BASK
demod.
HW/SW

FIGURE 5 Architecture level model of BASK receiver with ADC and a BASK HW/SW system

Source: OSCI

01 SC_MODULE(lp_filter_eln)
02 {
03 sca_tdf::sca_in<double> in;
04 sca_tdf::sca_out<double> out;
05 sca_eln::sca_node in_node, out_node;
 // node declarations
06 sca_eln::sca_node_ref gnd;
 // reference node
07 sca_eln::sca_r *r1;
 // resistor
08 sca_eln::sca_c *c1;
 // capacitor
09 sca_eln::sca_tdf_vsource *v_in;
 // converter TDF -> voltage
10 sca_eln::sca_tdf_vsink *v_out;
 // converter voltage -> TDF
11 SC_CTOR(lp_filter_eln)
12 {
13 v_in = new sca_eln::sca_tdf_vsource(“v_in”, 1.0);
 // scale factor 1.0
14 v_in->ctrl(in);
 // TDF input
15 v_in->p(in_node);
 // is converted to voltage
16 v_in->n(gnd);
17 r1 = new sca_eln::sca_r(“r1”, 10e3);
 // 10kOhm resistor
18 r1->p(in_node);
19 r1->n(out_node);
20 c1 = new sca_eln::sca_c(“c1”, 100e-6);
 // 100uF capacitor
21 c1->p(out_node);
22 c1->n(gnd);
23 v_out = new sca_eln::sca_tdf_vsink(“v_out”, 1.0);
 // scale factor 1.0
24 v_out->p(out_node);
 // filter output as voltage
25 v_out->n(gnd);
26 v_out->tdf_voltage(out);
 // here converted to TDF signal
27 }
28 };

EXAMPLE 6 Continuous-time transfer function in a TDF
module

Source: OSCI

01 SCA_TDF_MODULE(bask_demodulator)
02 {
03 sca_tdf::sca_in<double> in;
 // values …
04 sca_tdf::sca_out<bool> out;
 // symbol
05 void set_attributes()
06 {
07 in.set_rate(20000);
 // port in has 20000 samples/timestep
08 out.set_timestep(0.1, SC_MS);
09 }
10 void processing()
 // maps 20000 samples to 1 symbol
11 {
12 double val = 0.0;
13 for (unsigned long i = 0; i < in.get_rate(); i++)
14 val += abs(in.read(i));
15 if (val>THRESHOLD) out.write(true);
 // THRESHOLD defined in header
16 else out.write(false);
17 }
18 SCA_CTOR(bask_demodulator) {}
19 };

EXAMPLE 7 Executable specifi cation of BASK
demodulator

Source: OSCI

eda0809p14-41.indd 24eda0809p14-41.indd 24 8/6/08 4:24:17 PM8/6/08 4:24:17 PM

www.arm.com

at the heart...
of SoC Design
ARM IP — More Choice. More Advantages.

• Full range of microprocessors, fabric and physical IP, as well as
software and tools

• Flexible Foundry Program offering direct orWeb access to ARM IP

• Extensive support of industry-leading EDA solutions

• Broadest range of manufacturing choice at leading foundries

• Industry’s largest Partner network

©ARM Ltd.AD123 | 04/08

The Architecture for the DigitalWorld®

Untitled-2 1 5/6/08 9:32:51 AMeda0809p14-41.indd 25eda0809p14-41.indd 25 8/6/08 4:24:18 PM8/6/08 4:24:18 PM

< TECH FORUM > ESL/SYSTEMC26

ample 5 illustrates the use of such a converter port in a TDF
module modeling a simple A/D converter with an output
port to which a SystemC DE channel can be bound.

Electrical linear networks (ELN) are specifi ed by instan-
tiating predefi ned network primitives, such as resistors or
capacitors. As with LSF, the primitives can be instantiated in
a regular ‘SC_MODULE’. To access the voltages or currents
in the network, converters must be used. The SystemC AMS
extensions provide converters that translate these voltages
and currents to double-precision fl oating-point values in
TDF and discrete-event models – and vice versa. Example 6
gives the ELN model of a low-pass fi lter implemented with
one resistor primitive and one capacitor primitive. Since the
intention is to use the model in a TDF context, additional
converter primitives are used to convert TDF data sample
values to voltages – and vice-versa.

As well as modeling LSF, TDF, and ELNs, the SystemC
AMS extensions provide a means of tracing signals.

Modeling methodology example
To demonstrate the capabilities of the AMS extensions, a sim-
plifi ed example is presented. The use of the AMS extensions
is explained for the use cases shown in Figure 2 (p. 22):

· executable specifi cation at the functional level;
 · architecture exploration at the functional, architecture,

and implementation levels;
· integration validation; and
· virtual prototyping.
An executable specifi cation is made to verify the correct

understanding of the system specifi cation by simulation.
For this use case, data fl ow and signal fl ow are appropriate
modeling styles. Note, that the executable specifi cation in-
troduces structures and algorithms that are hard to change
or modify later. Therefore, structures and algorithms that
match the architecture must be carefully chosen. The speci-

fi cation of the simple example is shown in Figure 4. It is a ba-
sic binary amplitude shift keying (BASK) receiver consist-
ing of a mixer, a low pass fi lter, and a BASK demodulator.

To verify the receiver specifi cation, it is modeled using
TDF. To achieve good simulation performance we use TDF
for the whole receiver model. We obtain data samples by
oversampling the assumed continuous-time signals and
represent them by double-precision values in the front end.
We also assume that the BASK demodulator generates one
symbol for every 20,000 input samples. Example 7 gives the
TDF model of the BASK demodulator, assuming a DSP-
based implementation.

Using the front-end module in Example 4, the TDF mod-
ule of the BASK demodulator given in Example 7 and an-
other module for the testbench, the structure of a model that
can be used to evaluate the functional specifi cation in Figure
3, is given in Example 8.

The architecture exploration stage evaluates and deter-
mines the key properties and comprises two phases. In
the fi rst, the executable specifi cation is refi ned by adding
non-ideal properties of an implementation to better under-
stand the impact on overall system behavior. In the sec-
ond, the architecture’s structure and interfaces are adapted
to match the fi nal implementation to get a more accurate
model. Note, that this also implies the use of different
models of computation. For example, HW/SW architec-
tures can be analyzed more accurately using cycle accurate
or TLM modeling.

In this example, the impact of mixer noise and distortion
is evaluated in the fi rst phase. The ‘processing()’ method of
the mixer in the executable specifi cation is refi ned by adding
a simple behavioral model of noise (‘function my_noise()’)

and by C++-code that models third-order non-linear distor-
tion as illustrated in Example 9.

Other parameters such as bit widths, delays, time steps
and rates can also be easily analyzed by refi nement of the
executable specifi cation. For the evaluation of different
sample rates, delays and time steps, the properties speci-

01 #include “systemc-ams”
 // top level
02 #include “bask-demodulator.h”
 // other definitions
03 int sc_main(int argc, char* argv[]) {
04 sca_tdf::sca_signal<double> rf, loc_osc, d_in;
05 sca_tdf::sca_signal<bool> symbol;
06 sc_core::sc_signal<sc_dt::sc_bv<3> > ctrl_config;
07 frontend fe1(“fe1”);
08 fe1.loc_osc(loc_osc); fe1.ctrl_config(ctrl_config);
09 fe1.rf(rf); fe1.if_out(d_in);
10 bask_demodulator bask1(“bask1”);
11 bask1.in(d_in);
12 bask1.out(symbol);
13 testbench tb1(“tb1”);
14 tb1.rf(rf); tb1.loc_osc(loc_osc); tb1.ctrl(ctrl_config);
15 tb1.symbol(symbol);
 // tracing, ...
16 sc_core::sc_start(51.2, SC_MS);
17 };

EXAMPLE 8 Executable specifi cation of BASK receiver
(top level)

Source: OSCI

01 void processing() // Mixer refined with distortions and noise
02 {
03 double rf = rf_in.read();
04 double lo = lo_in.read();
05 double rf_dist = (alpha – gamma * rf * rf) * rf; //alpha and gamma
06 double mix_dist = rf_dist * lo; //user-defined
07 if_out.write(mix_dist + my_noise());
08 }

EXAMPLE 9 Refi nement of the ideal mixer (Example 2)
by adding non-linear distortion and noise

Source: OSCI

Continued on next page

eda0809p14-41.indd 26eda0809p14-41.indd 26 8/6/08 4:24:19 PM8/6/08 4:24:19 PM

Calibre nmDRC There’s nothing like having an advantage when you’re racing to market.

That’s exactly what you get with Calibre nmDRC. Widely recognized as the world’s most popular

physical verification solution, Calibre’s hyperscaling architecture produces the fastest run times

available. To accelerate things even more, Calibre nmDRC adds incremental verification and

a dynamic results-viewing and debugging environment. Designers can check, fix and re-verify

DRC violations in parallel, dramatically reducing total cycle time. Start out and stay ahead of the

pack. Go to mentor.com/go/calibre_nmdrc or call us at 800.547.3000.

TAPE-OUT COMES A LOT FASTER

WITH CALIBRE nmDRC.

©2008 Mentor Graphics Corporation. All Rights Reserved. Mentor Graphics and Calibre are registered trademarks of Mentor Graphics Corporation.

®

MRKT1047 Calibre_TrackAd EDAtechAd.ai 5/6/08 2:05:02 PM

Untitled-1 1 5/6/08 2:37:56 PMeda0809p14-41.indd 27eda0809p14-41.indd 27 8/6/08 4:24:20 PM8/6/08 4:24:20 PM

< TECH FORUM > ESL/SYSTEMC28

Virtual prototyping provides software developers with
a high-level untimed or timed model that represents the
hardware architecture.

Especially for E-AMS systems, where software is inter-
acting with AMS hardware, interoperability with SystemC
TLM extensions is important. In the BASK receiver exam-
ple, the refi ned TDF model combines high simulation speed
with appropriate accuracy to act as a virtual prototype for
further development of the HW/SW subsystem. Then, the
AMS subsystem becomes part of the virtual prototype. For
systems that are more complex and realistic than the simple
BASK example, SystemC AMS extensions support a simi-
lar refi nement methodology to SystemC that can be applied
to the overall system by introducing hierarchical converter
channels or adapters.

Summary
The SystemC AMS extensions enhance the available Sys-
temC standard with support for linear electrical networks,
linear signal fl ow, and timed data fl ow models to effi ciently
model and simulate AMS architectures. New language con-
structs support the creation of AMS models at higher levels
of abstraction, introducing functional and architecture-level
modeling. This enables a design refi nement methodology
for executable specifi cation, architecture exploration, in-
tegration validation, and virtual prototyping of E-AMS
systems in a seamless, C-based environment. The extensi-
bility supports application specifi c requirements (e.g., to
model nonlinear or radio frequency behavior). Extending
the unique capabilities of SystemC with new AMS features
offers a powerful modeling and simulation framework, en-
abling design and verifi cation for a wide range of applica-
tions and systems.

Authors
This article was written by Christoph Grimm, Vienna University
of Technology, Martin Barnasconi, NXP Semiconductors, Alain
Vachoux, Ecole Polytechnique Fédérale de Lausanne, & Karsten
Einwich, Fraunhofer IIS/EAS Dresden.

fi ed in the attributes section of TDF modules can be modi-
fi ed. The impact of bit widths and quantization errors can
be analyzed by replacing the fl oating-point data types in the
‘processing()’ methods with ‘sc_int<bw>’ fi nite-length inte-
ger types. In Example 10, different bit widths are evaluated
by replacing the double-precision data type with a 16bit in-
teger representation.

In the second phase of architectural exploration, the in-
tended architecture is modeled more accurately (e.g., the
low pass fi lter could be specifi ed by an electrical network).
Given knowledge of the required sample rates and bit
widths, an A/D converter between the low pass fi lter and
the BASK demodulator is added. This determines the A/D
partitioning as shown in Figure 5 and can be seen as a start-
ing point for HW/SW co-design using SystemC. Instead of
a full TDF model, a model that uses an A/D converter to
translate the TDF signal ‘d_in’ to a cycle accurate or TLM
signal ‘d_in_de’ can be developed. The interface to and
modeling of the demodulator HW/SW system using pure
SystemC is not covered here.

To prepare for the design of subsystems and integration
validation, the interfaces of all subsystems must be mod-
eled accurately. The interfaces and data types used in the
models should match the implementation. For analog cir-
cuits, this relates to electrical nodes. For digital circuits,
this relates to pin accurate buses. For HW/SW systems
TLM interfaces might be appropriate. After the defi nition
and design of the analog, digital HW and SW components,
these components are integrated and their correctness is
verifi ed within the overall system. The layered architec-
ture of the SystemC AMS extensions encourages its use as
a simulation backplane in which other simulators can be
integrated via their C-language interfaces. In the BASK re-
ceiver example, the low pass fi lter and the mixer could be
replaced by circuit-level models to validate the connectiv-
ity and integrity of the subsystems.

The AMS extensions are not intended to replace circuit
simulators. The use of more accurate circuit simulators to
verify circuit implementations can be applied, once an inte-
gration of a circuit simulator is available.

01 void processing()
 // Demodulator refined with quantization
02 {
03 sc_dt::sc_int<16> val;
 // evaluate 16 bit accuracy
04 for (unsigned long i = 0; i < in.get_rate(); i++)
05 val += abs(static_cast<sc_dt::sc_int<16> > (in.read(i)));
 // THRESHOLD defined in header
06 if (val > THRESHOLD) out.write(true);
07 else out.write(false);
08 }

EXAMPLE 10 Refi nement of simple BASK demodulator
to evaluate quantization

Source: OSCI

eda0809p14-41.indd 28eda0809p14-41.indd 28 8/6/08 4:24:21 PM8/6/08 4:24:21 PM

