

Open Source HDL Synthesis
and Verification with Yosys

Clifford Wolf

Abstract

Yosys (Yosys Open Synthesis Suite) is an open source project aiming at creating a fully-featured HDL
synthesis tool, and more. Lately a lot of features related to formal verification have been added to Yosys.

Project IceStorm aims at documenting the bit-stream format of Lattice iCE40 FPGAs and providing simple
tools for analyzing and creating bit-stream files, including a tool that converts iCE40 bit-stream files into
Verilog.

Arachne-PNR is a place&route tool based on the databases provided by Project IceStorm. It converts BLIF
files into an ASCII file format that can be turned into a bit-stream by IceStorm tools.

This three projects together implement a complete open source tool-chain for iCE40 FPGAs. It is available
now and it is feature complete (with the exception of timing analysis, which is work in progress).

This presentation covers the open source Yosys-IceStorm-Arachne iCE40 flow as well as some other
synthesis and verification applications based on Yosys.

http://www.clifford.at/yosys/
http://www.clifford.at/icestorm/
https://github.com/cseed/arachne-pnr

Overview

● Verilog Synthesis with Yosys

● Project IceStorm: Reverse-Engineered iCE40 FPGA
Bitstream

● Arachne-PNR: Open Source Place&Route for iCE40 (and
maybe others in the future)

● Demo: PicoRV32 CPU on iCE40 HX8K FPGA

● Yosys as formal verification tool

Quick Intro to Yosys

● Yosys is controlled by synthesis scripts. For example:

read_verilog top.v
read_verilog uart.v
synth_xilinx -top top -edif top.edif

● Commands like synth_xilinx are placeholders for
larger scripts. See help synth_xilinx:
– http://www.clifford.at/yosys/cmd_synth_xilinx.html

http://www.clifford.at/yosys/cmd_synth_xilinx.html

← Synthesis is a reduction
of abstraction …

… by performing a sequence
of transformations →

Supported Verilog HDL Constructs

● Almost all of Verilog 2005, for example...
– Memories (incl. FPGA block-ram mapping)

– Verilog tasks and functions

– Real Arithmetic in constant expressions

– A few things from SystemVerilog (e.g. asserts)

– Initialized registers (FPGAs, Formal Checks)

– Various Verilog attributes, e.g. for..
● FSM encoding schemes

● full_case and parallel_case

– DPI-C in constant expressions

– Behavioral modeling

– $display and $finish in initial blocks

Open Source CPUs that I

have tested with Yosys:
● OpenMSP430
● Amber ARMv2 Clone
● Navré AVR Clone
● OpenRISC 1200
● Rocket (default config)
● PicoRV32

Yosys Front-ends

● Native Verilog 2005 front-end

● Additional native front-ends for:
– BLIF

– Liberty File Format

– Yosys' native ILANG format

● Bindings to commercial Verific library
– VHDL, Verilog, SystemVerilog

Yosys Back-ends

● Various netlist formats:
– BLIF, EDIF, InterSynth, Spice, Verilog

● Formats for formal verification:
– SMT2, SMV, BTOR

● Other back-ends:
– Yosys' internal ILANG format

– JSON back-end, 'cause we can

Yosys' Internal Netlist
Representation

● The in-memory netlist format used by Yosys is
called RTLIL. It is a set of simple C++ structs.

● See kernel/rtlil.h in Yosys source code.
● ILANG is a 1:1 text representation of RTLIL.
● Simplified ER diagram:

https://github.com/cliffordwolf/yosys/blob/master/kernel/rtlil.h

Getting started with Yosys C++ API

● Recommended reading:
– The CodingReadme file in the source tree

– The “Yosys Manual” and “Yosys Presentation”

● Get help and ask questions online:
– On Reddit: /r/yosys

– On StackOverflow: yosys tag

● Warning: Correct usage of RTLIL::SigSpec, RTLIL::SigBit,
RTLIL::SigChunk, and SigMap(module) is difficult to grasp at
first. Ask questions when unsure!

https://www.reddit.com/r/yosys
http://stackoverflow.com/questions/tagged/yosys

Example ASIC Synthesis Script

Read Verilog design mytop, transform it to a generic gate-level netlist and then
map to a Liberty cell library, finally write technology netlist to an EDIF file:

read design
read_verilog mydesign.v

generic synthesis
synth -top mytop

mapping to mycells.lib
dfflibmap -liberty mycells.lib
abc -liberty mycells.lib
opt_clean

write synthesized design
write_edif synth.edif

Generic part →

Target-specific part →

Open Source ASIC Flows using Yosys:
● Qflow: http://opencircuitdesign.com/qflow/
● Coriolis2: https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/

http://opencircuitdesign.com/qflow/
https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/

Example iCE40 Flow

Synthesis script for PicoRV32 iCE40/IceStorm example (scripts/icestorm/):

(1) Synthesis (Yosys):

yosys -p 'synth_ice40 -top top -blif synth.blif' picorv32.v

top.v

(2) Place and Route (Arachne-PNR):

arachne-pnr -d 8k -o synth.txt synth.blif

(3) Create bit-stream (IceStorm):

icepack synth.txt synth.bin

(4) Upload bit-stream (IceStorm):

iceprog synth.bin

https://github.com/cliffordwolf/picorv32/tree/master/scripts/icestorm

Project IceStorm

● Reverse-engineered documentation of iCE40 FPGAs bit-stream format.
http://www.clifford.at/icestorm/

● Also a few useful tools:

– icebox_{vlog,explain,chipdb,...}
● Various utilities for analyzing iCE40 bitstreams

– icepack / iceunpack
● iCE40 Bitstream ↔ IceStorm ASCII format

– iceprog
● Programming (icestick, hx8k break-out board, etc.)

– icemulti
● Packing bitstreams into iCE40 multiboot images

http://www.clifford.at/icestorm/

Project IceStorm – History

Mathias Lasser (mostly 2014):
Reverse-engineered the low-level bitstream format (grouping of bits into
tiles, etc)

Created original iceunpack tool

Also did some early work on reverse-engineering the iCE40 interconnect

Clifford Wolf (mostly 2015):

Wrote icefuzz and icebox

Complete reverse-engineering of all iCE40 tile types (IO, LOGIC,
RAMB/RAMT)

Written documentation on IceStorm web-page

Arachne-PNR

● A place-and-route tool for iCE40 FPGAs written by Cotton
Seed.

https://github.com/cseed/arachne-pnr

● Using the chipdb-* files created by icebox_chipdb.py

● Input format:
– BLIF files generated by Yosys (using non-standard .param

statements for cell parameters)

● Output Format:
– IceStorm ASCII files as understood by icepack

https://github.com/cseed/arachne-pnr

Yosys synthesis for other proprietary
FPGA architectures

● Yosys Xilinx Flow:
– Yosys has support for Xilinx 7-series synthesis

– See help synth_xilinx for details

– Output: EDIF netlist

– Place and route: Xilinx Vivado

● Yosys Silego GreenPak4 Flow:
– Going to support synthesis for Silego GreenPak4 Mixed-Signal Matrices

– Complete documentation available, up to 25 LUTs for logic

– Support tool-chain by Andrew Zonenberg

– This is work in progress

ICE40 Demo: PicoRV32 CPU

● PicoRV32 is a CPU core implementing the RISC-V ISA (RV32I)
● Optimized for small size, easy integration, and high clock rate, but not high performance
● Optional co-processor interface (incl. example core implementing MUL[H[SU|U]] from RV32M)
● 0.309 DMIPS/MHz (4.167 CPI)

● On Xilinx 7-series FPGAs (using Vivado):
~1000 LUTs (6-input), up to 476 MHz (Virtex-7T, Speedgrade -3)

● On iCE40 HX8K:
1521 LUTs (4-input) using Yosys

1320 LUTs (4-input) using Synplify Pro

8619 LUTs (4-input) using Lattice Synthesis Engine (LSE)

https://github.com/cliffordwolf/picorv32

https://github.com/cliffordwolf/picorv32

IcoBoard – Open Hardware
iCE40 Raspberry Pi Hat

● Applications
– Raspberry Pi IO Expander
– Intelligent IO Cores
– On-demand HDL generation
– Education

● Hardware
– iCE40 HX8K FPGA
– 4 PMOD connectors
– +16 PMODs on Ico-X Board
– SPI + GPIOs to Raspberry Pi

● Software
– FPGA SRAM programming tool (bitstream upload)
– Raspberry Pi port of the entire Yosys / Arachne-PNR / IceStorm tool-chain
– Python library + FPGA framework for communication with FPGA cores

http://icoboard.org/

http://icoboard.org/

Formal Verification with Yosys

● SAT solving (built-in MiniSAT-based eager SMT solver, see help sat)

● Built-in equivalence checking framework (see help equiv_*)

● Creating miter circuits for equivalence or property checking (Verilog
assert)

– Either solve with built-in solver or

– Export as BLIF and solve with e.g. ABC

● Creating SMT-LIB 2.5 models for circuits and properties that can be used
with external SMT solvers

● Writing Yosys back-ends is easy! Some future Ideas:

– Languages like HOL4 or Haskell (on-demand – contact me!)

– C back-end to be used with something like LLBMC

Verilog asserts
module example_assert(A);
 signed input [31:0] A;
 signed wire [31:0] B;
 assign B = A < 0 ? -A : A;
 assert property (B >= 0);
endmodule

$ yosys example_assert.ys
…
Solving problem with 845 variables and 2305 clauses..
SAT proof finished - model found: FAIL!

 ______ ___ ___ _ _ _ _
 (_____ \ / __) / __) (_) | | | |
 _____))___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |
 | ____/ ___) _ \ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|
 | | | | | |_| | |_| || | | | / ___ | | || ____((_| |_
 |_| |_| ___/ ___/ |_| |_| _____|_|_)_____)____|_|

 Signal Name Dec Hex Bin
 -------------------- ---------- ---------- -------------------------------------
 \A -2147483648 80000000 10000000000000000000000000000000

read_verilog -sv example_assert.v
hierarchy -top example_assert
proc; opt -keepdc
sat -prove-asserts -show-inputs

● Yosys supports SystemVerilog asserts
In module context and always blocks:
assert property (<expression>);

● There is also support for the assume
statement (read_verilog -formal):
assume property (<expression>);

Miter circuits
● Some tools (e.g. ABC) operate on miter circuits.

– Miters are circuits with a single output

– that is asserted when the property is violated

● The miter command can be used to create miters
– For properties using assert and/or assume statements

– For equivalence of two circuits

module main(input clk, output [63:0] state);
 reg [63:0] state = 123456789;

 function [63:0] xorshift64star;
 input [63:0] current_state;
 begin
 xorshift64star = current_state;
 xorshift64star = xorshift64star ^ (xorshift64star >> 12);
 xorshift64star = xorshift64star ^ (xorshift64star << 25);
 xorshift64star = xorshift64star ^ (xorshift64star >> 27);
 xorshift64star = xorshift64star * 64'd 2685821657736338717;
 end
 endfunction

 always @(posedge clk)
 state <= xorshift64star(state);

 assert property (state != 0);
endmodule

read_verilog -sv example_miter.v
hierarchy; proc; opt; memory; opt
miter -assert main; techmap; opt
write_blif example_miter.blif

$ yosys-abc -c 'read_blif example_miter.blif; strash; pdr'
…
Invariant F[3] : 1 clauses with 64 flops (out of 64)
Verification of invariant with 1 clauses was successful. Time = 0.01 sec
Property proved. Time = 0.28 sec

SAT solving

● The Yosys sat command provides access to the built-in SAT solver framework
– Based on MiniSAT SimpSolver

– Essentially an eager SMT solver

● Bounded Model Checking (BMC):
– sat -seq 50 -prove-asserts -set-assumes

● Temporal Induction Proofs:
– sat -tempinduct -prove never_one 0

● Writing traces as VCD files:
– sat … -dump_vcd <vcd_filename> …

● Writing SAT problem in DIMACS format:
– sat … -dump_cnf <dimacs_filename> …

● Interactive Troubleshooting:
– sat -seq 15 -set foo 23 -set-at 10 never_one 1 -show bar

Equivalence Checking
● The equiv_* commands in Yosys are for equivalence checking.
● This equivalence checker uses hints like net names to partition the circuits into to-be-proved equivalent

subcircuits.
● This is extremely helpful for troubleshooting Yosys passes and/or perform pre-vs-post synthesis verification.
● The prover is capable of considering multiple time-steps (equiv_simple -seq N) and even perform

temporal induction (equiv_induct).

module gold(input A, B, output Y);
 wire T = -A;
 assign Y = T + B;
endmodule

module gate(input A, B, output Y);
 wire T = --A;
 assign Y = T - B;
endmodule

equiv_make gold gate equiv
hierarchy -top equiv
opt -purge; show
equiv_simple
equiv_status -assert

…
Found 2 $equiv cells in equiv:
 Of those cells 2 are proven and 0 are unproven.
 Equivalence successfully proven!

SMT-LIB Language

● SMT-LIB is the language used in the annual SMT competition.
– Therefore practically all SMT solvers do support SMT-LIB as input language.

– SMT-LIB does support incremental problems and many different theories.

– Most Yosys+SMT-LIB flows are using the QF_AUFBV theory.

● SMT-LIB is designed so that solvers can be “remote-controlled”
– SMT-LIB is used to communicate with the solver via stdin and stdout

– A Python library for writing proofs based on Yosys SMT-LIB output is provided

– This way there is no lock-in on a single SMT solver

● A few SMT-Solvers worth looking at:
– Z3, CVC4, Yices, MathSAT

http://smtlib.cs.uiowa.edu/
http://www.smtcomp.org/

SMT-LIB BMC Example (1/2)

module main(input clk, input [3:0] addr, input [7:0] data);
 reg [7:0] memory [15:0]; // zero-initialized in SMT2 template

 always @(posedge clk) begin
 assume(data[0] == 0);
 assert(memory[addr][1:0] == 0);
 memory[addr] <= memory[addr] + data*data;
 end
endmodule

read_verilog -formal example_smtlib.v
proc; opt; memory -nomap -nordff; opt
write_smt2 -bv -mem -tpl example_smtlib.tpl example_smtlib.smt2

$ yosys -q example_smtlib.ys
$ z3 -smt2 example_smtlib.smt2
unsat

SMT-LIB BMC Example (2/2)

(set-logic QF_AUFBV)
%%

; declare 21 states
(declare-fun s00 () main_s)
…
(declare-fun s20 () main_s)

; declare 20 state transitions
(assert (main_t s00 s01))
…
(assert (main_t s19 s20))

; s00 is the init state
(assert (main_i s00))

; zero-initialize memory
(assert (= (select (|main_m memory| s00)

#b0000) #b00000000))
…
(assert (= (select (|main_m memory| s00)

#b1111) #b00000000))

; (continued)

; assumptions hold in all states
(assert (main_u s00))
…
(assert (main_u s20))

; we are looking for a case with
; violated assertations
(assert (or
 (not (main_a s00))
…
 (not (main_a s20))
))

; is there such a model?
(check-sat)

(Template file for write_smt -tpl)

SMT-LIB BMC in PicoRV32

● The directory scripts/smt2-bmc/ in the PicoRV32 sources contains two BMC tests.
● Both tests compare two instances of PicoRV32 in the different configurations.
● Both cores start out with the same memory and register file and with nreset=0.

● The sync.sh test (two cores with different ISA):
– Assumption: Memory requests are synchronized

– Assumption: The core with smaller ISA never traps

– Assert: The core with larger ISA never traps

– Assert: Final register file and memory content are identical

– About 13 cycles in 10 minutes (with Yices 2.4.0)

● The async.sh test (two cores with same ISA):
– Assumption: At the and of the trace both cores are in trap state

– Assert: Final register file and memory content are identical

– About 11 cycles in 15 minutes (with Yices 2.4.0)

● Python library for writing SMT proofs: scripts/smt2-bmc/smtio.py

https://github.com/cliffordwolf/picorv32/tree/master/scripts/smt2-bmc/

Questions?

module quine;
parameter t = {"integer i; initial begin $display(\"module quine;\");\n",
"$write(\"parameter t = {\\\"\"); for (i = 292*8-1; i > 0; i = i-8)\n",
"case (t[i-:8]) \"\\n\": $write(\"\\\\n\\\",\\n\\\"\"); \"\\\"\": $write(\"\\\\\\\"\");\n",
"\"\\\\\": $write(\"\\\\\\\\\"); default: $write(\"%s\", t[i-:8]); endcase\n",
"$display(\"\\\"};\"); $display(\"%s\", t); end endmodule"};
integer i; initial begin $display("module quine;");
$write("parameter t = {\""); for (i = 292*8-1; i > 0; i = i-8)
case (t[i-:8]) "\n": $write("\\n\",\n\""); "\"": $write("\\\"");
"\\": $write("\\\\"); default: $write("%s", t[i-:8]); endcase
$display("\"};"); $display("%s", t); end endmodule

Yosys Front-ends

Yosys Back-endsRTLIL and ILANG
Yosys C++ API

ASIC Synthesis

Yosys iCE40 Flow

Project IceStormArachne-PNR

PicoRV32
Yosys Xilinx Flow

Open Source FPGAs

Verilog assertsMiter circuits

SAT solving
Equivalence Checking

SMT-LIB 2.5

Berkeley ABC

Verilog 2005

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

