
X P L A N AT I O N : F P G A 1 0 1

 54 Xcell Journal Fourth Quarter 2014

Getting the Most
out of Your PicoBlaze
Microcontroller

Many FPGA
applications can
benefit from using a
simple soft-core processor
to ease the generation of
sequential control structure.

by Adam P. Taylor
Head of Engineering – Systems
e2v
aptaylor@theiet.org

mailto:aptaylor@theiet.org

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2014 Xcell Journal 55

T
he PicoBlaze™ is a com-
pact 8-bit soft-core mi-
crocontroller that FPGA
engineers instantiate with-
in their selected Xilinx®

FPGA. Once implemented, this core is
completely contained within the FPGA
fabric using only logic slices and Block
RAMs; it requires no external volatile or
nonvolatile memory.
 Thanks to its small implementation
footprint, it is possible for an FPGA to
contain multiple PicoBlaze instantia-
tions, with each instantiation used to
implement control structures typically
created by state machines. The result
is a reduction in the development time
along with a standardized approach to
control structure generation. Thanks to
the underlying high performance of the
Xilinx FPGA fabric, PicoBlaze instantia-
tions are often capable of outperforming
many discrete 8-bit microcontrollers.
 Let’s take a look at how we can best uti-
lize this handy device within our designs.

PICOBLAZE ARCHITECTURE
Before we can use the core, it is first a
good idea to understand a little about
its architecture. PicoBlaze is a very sim-

WHY USE PICOBLAZE?
FPGA applications usually require a
combination of parallel and sequential
operations, with data flow being pre-
dominantly parallel and control struc-
tures predominantly implemented as
sequential structures, for example state
machines (see Xcell Journal issue 81,
“How to Implement State Machines in
Your FPGA”). However, complex con-
trol structures if implemented as a state
machine can become unwieldy, increas-
ing the verification time and making
modifications later in the development
cycle more difficult. Complicated state
machines also take more time to devel-
op and if several are required, this time
can be considerable.
 You can also use PicoBlaze for seri-
al communication control over RS232,
I2C and SPI. In fact, anything that you
would use a typical 8-bit micro for can
be implemented within a PicoBlaze,
with the upside of higher performance.
Engineers have used PicoBlaze to im-
plement PID controllers in control sys-
tems. They have used it with I2C, SPI or
parallel DACs to create reference wave-
forms that range from simple square,
sawtooth and triangular to more com-

ple 8-bit microcontroller that is based
around a RISC architecture (see Figure
1). The controller has a 12-bit address
port, which means it can address as
many as 4,096 memory locations. Each
address location contains an 18-bit in-
struction that defines the operation the
core must perform. Inputs and outputs
to and from the core are possible via two
8-bit ports (one input, one output). The
controller also provides an 8-bit identi-
fication port, allowing for up to 256 pe-
ripherals to be read from or written to.
There is also a size-selectable scratch-
pad that can be 64, 128 or 256 bytes. As
with all micros, PicoBlaze contains an
arithmetic logic unit and support for
one interrupt. These capabilities mean
the controller offers many advantages
to the FPGA design engineer.
 One of the most important aspects
of PicoBlaze is its highly determinis-
tic nature, which means all instruc-
tions require two clock cycles for ex-
ecution and interrupts are serviced
with four clock cycles maximum.
(You can find more detailed infor-
mation on the PicoBlaze architec-
ture within the Xilinx user guide that
comes with your download.)

In Port[8]

I/O Ports

Out Port[8]

Port ID[8]

Strobes

Contained within KCPSM6.Vhd

Program Counter Stack

Program Counter

Decode and ControlFlagsALU

Scratchpad 64, 128, 256
Bytes

Register Bank
Bank A – 16 Registers
Bank B – 16 Registers

Program
Memory

Enable

Address[12]

Instruction[18]

Generated by KCPSM6.exe
<Your Program>.Vhd

Figure 1 – PicoBlaze architecture, with processor in left box and memory at right

http://www.xilinx.com/publications/archives/xcell/Xcell81.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell81.pdf

X P L A N A N T I O N : F P G A 1 0 1

 56 Xcell Journal Fourth Quarter 2014

plicated sine/cosine waveforms (using
the shift-and-add CORDIC algorithm).
 Instantiating a PicoBlaze microcon-
troller within your FPGA to implement
these sequential functions can result
in a faster development time and al-
low for simplified modifications later
in the development life cycle. And of
course, being a soft core, PicoBlaze
also helps address obsolescence is-
sues and it encourages design reuse as
ASM modules are developed.

FIRST PICOBLAZE INSTANTIATION
You can quickly implement a PicoBlaze
within your design by following a few
initial steps. First, make sure you have
the latest version of the microcontroller
for the device you are targeting. Xilinx
makes these available from the Pico-
Blaze Lounge, offering versions that
support the latest 7 series devices to
those that work with older Spartan®-3
and Virtex®-4 devices.
 Having downloaded the correct
version of the processor, extract
those files into your working directo-
ry and ensure that you read the “read-
me” file, paying close attention to the
setting of the PATH and Xilinx envi-
ronment variables as required. Within
your working directory, you will now
notice the following files or applica-
tions, along with the usual readme
and license files and user guides.

 • KCPSM6.Vhd: This is the actual
source code for the PicoBlaze.

 • KCPSM6.exe. This is the assembler
 program that you will use to gener-
ate the machine code and memory
files required.

 • ROM_Form.vhd. The assembler
executable uses this file to gen-
erate the VHDL file your created
program will reside in.

 • KCPSM6_design_template vhd.
This is a template instantiation of a
PicoBlaze processor.

 • All_kcpsm6_syntax.psm. This file
is a definition of all assembler com-
mands and syntax.

Figure 3 – Using the KCPSM6 assembler to generate your memory files

NAMEREG s0,led ;rename S0 register to led
;As 8 bit processor we need four delay loops 256 * 256 * 256 *
256 = 4294967296
CONSTANT max1, 80 ;set delay
CONSTANT max2, 84 ;set delay
CONSTANT max3, 1e ;set delay
CONSTANT max4, 00 ;set delay
main: LOAD led, 00; load the led output register with 00
flash:	 XOR	led,	FF;	xor	the	value	in	led	register	with	FF	i.e.	
toggle
 OUTPUT led,01; output led register with port ID of 1
 CALL delay_init; start delay
	 JUMP	flash;	loop	back	to	beginning
delay_init: LOAD s4, max4;
 LOAD s3, max3;
 LOAD s2, max2;
 LOAD s1, max1;
delay_loop: SUB s1, 1’d; subtract 1 decimal from s1
 SUBCY s2, 0’d; carry subtraction
 SUBCY s3, 0’d; carry subtraction
 SUBCY s4, 0’d; carry subtraction
 JUMP NZ, delay_loop;
 RETURN

Figure 2 – Snippet of assembler code for a program to flash LEDs

http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2014 Xcell Journal 57

Figure 2 – CPRI Switch Demonstrator.

 For our example design, the final
step is to create a new project in the
ISE® Design Suite within which we
can instantiate the PicoBlaze and its
program memory if you are not adding
them to an existing project.
 Once we have completed the above
steps, we are ready to start creating a
PicoBlaze processor within our appli-
cation. At the very simplest level, you
need declare only two components
within your design: the processor itself
and the program memory as shown in
Figure 1 (processor is within the left
box and memory the right box, to pro-
vide context). Of course, if you have
more than one instantiation you will
have a number of memory components,
each containing a different program.
However, the first thing we need to do
is understand the development flow of
a typical project.

Figure 4 – PicoBlaze context diagram

Instruction

FPGA Fabric IP
Input
Port

Interrupt Ack

CLK

RS

Interrupt

Sleep

Data

Rdl

From FPGA
CLK Tree

FPGA Fabric OP

Enable

Address

Output
Port

Port ID

Enable

Address

DEVELOPMENT FLOW
Creating your first PicoBlaze instan-
tiation is simple. The first step is to
create a blank text file using an editor
like Notepad++. This file should have
the file extension .PSM—for instance,
test.psm. You program the microcon-
troller using the PicoBlaze assembler.
Xilinx provides detailed information
on this syntax in the file All_kcpsm6_
syntax.psm, which comes with your
download. However, it is easy to un-
derstand and learn this syntax. Figure
2 is an example of an assembler code
snippet, which is a simple program to
flash LEDs at 2-Hz frequency with a
40-MHz clock.
 Once you are happy with your as-
sembler program, the next stage is to
run this program through the assem-
bler executable that came with your
download. Doing so will generate a

memory file (VHDL for use within
your FPGA), a log file and a hex file
whose use we will look at later. Figure
3 shows the assembler process having
been run for the code snippet above.
Having run the assembler, you are now
in a position to instantiate the Pico-
Blaze within your FPGA.
 You are now in possession of the
two VHDL files required: KCPSM6.
vhd and the VHDL file created by the
assembler program containing your
application (in this case, test.vhd).
The second stage is to declare the
two components (KCPSM6 and Mem-
ory) within your VHDL design and
instantiate them as shown in Figure
4. This simple VHDL example can be
seen in the code snippet in Figure 5,
which implements a PicoBlaze that
will flash LEDs on an LX9 Spartan®
development board.

At the very simplest level, you need declare
only two components within your design.

X P L A N A N T I O N : F P G A 1 0 1

 58 Xcell Journal Fourth Quarter 2014

library IEEE;
use	IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if instantiating
--	any	Xilinx	primitives	in	this	code.
--library UNISIM;
--use	UNISIM.VComponents.all;

entity	pico_wave_top	is
				Port	(clk	:	in		STD_LOGIC;
											led		:	out		STD_LOGIC_VECTOR	(3	downto	0));
end	pico_wave_top;

architecture	Behavioral	of	pico_wave_top	is

component	kcpsm6	is
		generic(hwbuild	:	std_logic_vector(7	downto	0)	:=	X”00”;
	 interrupt_vector	:	std_logic_vector(11	downto	0)	:=	X”3FF”;
											 scratch_pad_memory_size	:	integer	:=	64);
		port	(address	:	out	std_logic_vector(11	downto	0);
													instruction	:	in	std_logic_vector(17	downto	0);
 bram_enable : out std_logic;
													in_port	:	in	std_logic_vector(7	downto	0);
													out_port	:	out	std_logic_vector(7	downto	0);
													port_id	:	out	std_logic_vector(7	downto	0);
 write_strobe : out std_logic;
													k_write_strobe	:	out	std_logic;
 read_strobe : out std_logic;
 interrupt : in std_logic;
													interrupt_ack	:	out	std_logic;
 sleep : in std_logic;
 reset : in std_logic;
													clk	:	in	std_logic);
		end	component	kcpsm6;

component test is
		generic(C_FAMILY	:	string				:=	“S6”;	
 C_RAM_SIZE_KWORDS : integer := 1;
	 	 C_JTAG_LOADER_ENABLE	:	integer	:=	1);
		Port	(address	:	in	std_logic_vector(11	downto	0);
										 	 instruction	:	out	std_logic_vector(17	downto	0);
 enable : in std_logic;
 rdl : out std_logic;
																			 clk	:	in	std_logic);
 end component test;

SIGNAL	instruction	:	std_logic_vector(17	DOWNTO	0);
SIGNAL	address	:	std_logic_vector(11	DOWNTO	0);
SIGNAL enable : std_logic;
SIGNAL rd1 : std_logic;
SIGNAL	kcpsm6_output	:	std_logic_vector(7	downto	0);
SIGNAL	port_id	:	std_logic_vector(7	downto	0);
SIGNAL write_strobe:std_logic;
begin

ram_inst : test PORT MAP (
 address => address,
 instruction => instruction,
 enable => enable,
 rdl => rd1,
	 clk	=>	clk);

SIMULATION AND VERIFICATION
Once you have instantiated the design
files within your application, you will of
course want to verify the performance
of the system or module within a simu-
lation environment before you progress
to synthesis and implementation. As
PicoBlaze uses logic slices and Block
RAMs, it can be simulated very simply
in programs like Mentor Graphics’ Mod-
elSim or Xilinx’s ISim in ISE (or Xsim in
the Vivado® Design Suite if that is where
you are implementing your PicoBlaze).
 Since the Block RAM contains the in-
structions for your program, simulation is
simple. Essentially, all you need to provide
is a clock and other inputs and outputs
as required by the instantiation, Figure 6
shows ISim results for a PicoBlaze simu-
lation and shows the two clock cycles be-
tween the loading of instructions.

UPDATING YOUR PROGRAM
One of the great benefits of having the
PicoBlaze contained within the FPGA
(and bit file) and is that following config-
uration of the FPGA the core will start
executing the program within its RAM.
However, in some cases you may need to
modify the program the core is executing.
While you could rerun the implementation
stage including an updated memory file,
depending upon the complexity of the re-
maining design this may take considerable
time, especially if you are only trying out
possibilities in the lab. It is therefore pos-
sible to update the program memory the
core uses to modify the program and try it
out before you rerun the implementation
stage using the JTAG loader program also
provided with your download.
 The initial step in using the JTAG
loader is to enable it within your design
setting. Use the generic C_JTAG_LOAD-
ER_ENABLE : integer := 1 within your
instantiation of one program memory.
Note that you can set this parameter for
only one memory instantiation within
your design at a time.
 Having enabled this facility within
your design, you must first select the
correct version for the operating system
you are using from the JTAG_loader di-

 Fourth Quarter 2014 Xcell Journal 59

X P L A N A N T I O N : F P G A 1 0 1

Figure 5 – Code snippet for a PicoBlaze that will flash LEDs on
an LX9 Spartan development board

rectory and copy it to your working di-
rectory (where you hex file is located).
Now you can open a command window
and navigate to your working directory
and use the command below.

jtagloader –l <Your Project Name>.hex

Note: I have renamed the version of the
executable for my OS jtagloader.exe.

 This action will download the hex
file created when you ran the assembler
on your latest PSM file, with results as
shown in Figure 7. As this file downloads,
you will notice that the JTAG loader halts
the core execution and downloads the
new program to memory before releasing
the core reset, at which point it starts run-
ning your new program.
 Once you are happy with the updated
behavior of the PSM file, you can rerun
the implementation and bit file gener-
ation, ensuring that the next time the
device is configured it will execute the
updated program.

Figure 6 – ISim simulation results

pico_inst	:		kcpsm6	PORT	MAP	(
 address => address,
 instruction => instruction,
 bram_enable => enable,
	 in_port		=>	(OTHERS	=>’0’),
	 out_port	=>	kcpsm6_output,
 port_id => port_id,
 write_strobe => write_strobe,
	 k_write_strobe	=>	open,
 read_strobe => open,
 interrupt => ‘0’,
	 interrupt_ack	=>	open,
 sleep => ‘0’,
 reset => rd1,
	 clk	=>	clk);

output_ports:	process(clk)
begin
if	rising_edge(clk)	then
if write_strobe = ‘1’ then
--	4	LEDs	at	port	address	01	hex	Spartan	LX9	
			Development	board
	 	 if	port_id(0)	=	‘1’	then
	 	 					led	<=	kcpsm6_output(3	DOWNTO	0);
 end if;
end if;
end if;
end process;
end	Behavioral;

Figure 7 – JTAG loader in action

