Supercharging the Embedded Device: ARM[®] Cortex[®]-M7

1

Ian Johnson Senior Product Manager, ARM

The Architecture for the Digital World®

ARM[®] Cortex[®] Processors across the Embedded Market

ARM Cortex-M: Trusted Choice for Embedded Intelligence

Taking the Cortex-M Series to the Next Level

Cortex-M7 Overview

Performance

- Achieving 5 CoreMark/MHz 2000 CoreMark^{*} in 40LP
- Typical 2x DSP performance of Cortex-M4

Versatility

- Highly flexible system and memory interfaces
- Designed for functional safety implementations
- Scalability and compatibility
 - Enables simple migration from any Cortex-M processor
 - Widest third-party tools, RTOS, middleware support

* CoreMark 1.0 : IAR Embedded Workbench v7.30.1 --endian=little --cpu=Cortex-M7 -e -Ohs --use_c++_inline --no_size_constraints / Code in TCM - Data in TCM

ARM® Cortex®-MT

mmmmmmm

Cortex-M7 Key Features (1)

High performance core with DSP capabilities

- Six-stage dual-issue pipeline
- Powerful DSP instructions and SP/DP Floating Point
- Best-in-class core for high-end MCU, or replace MCU+DSP with Cortex-M7

Flexible, memory system

- Tightly-coupled memories for real-time determinism
- 64-bit AXI AMBA4 memory interface with I-cache and D-cache for efficient access to external resources
- Build MCU with access to large external memories and powerful peripherals

Cortex-M7 Key Features (2)

ARMv7E-M architecture

- 100% binary forwards compatibility from Cortex-M4
- Key Cortex-M family processor characteristics: Ease of use, excellent interrupt latency
- Fast interrupt response for real-time systems, reuse code and system design from existing products to reduce development costs

Safety features

- Memory ECC (SEC-DED), MPU, MBIST, lock-step operation, full data trace, safety manual
- Enables entry into safety-critical markets.

Cortex-M7 Target Applications

- Powerful processor for advanced audio/visual sensor hub processing
- Power-efficient local processor for IoT devices such as an edge router
- Flexible and reliable processor for industrial and motor control

Helping Drive Richer Audio Experiences

Cortex-M7 in Automotive

Trends and challenges:

- Safety certification mandated in more regions
- Convergence of functionality into fewer MCUs/ASSPs
- Increasing user requirements and expectations

Typical Applications

- Dashboard in medium-range cars
- Voice recognition (for Multimedia control functions)
- Character recognition (eg Kanji)
- "Convenience" features
- Chassis, electric power steering, "steer-by-wire"
- Automotive audio

Cortex-M7 Advantages:

- High performance core with fast DSP
- Safety features built in and safety manual
- Determinism with high

performance

Full trace via ETM

Cortex-M7 in Industrial Control

Trends and challenges

- High performance control functions
- Safety, reliability and conformance will become mandatory
- 80-90% of cost is software, Cortex-M offers scalability and protects software investment

Typical applications:

- Factory Automation
 - Inverters, Servos
 - Programmable Logic Controllers
 - High-speed comms
- Intelligent motor control

Cortex-M7 Advantages:

- Increased DSP performance for control functions
- Safety features built-in
- In-order pipeline gives performance with predictability
- TCMs and low interrupt latency: Interrupt response within 100ns required
- Scalability from Cortex-M3 through Cortex-M7 up to Cortex-A53

Cortex-M7 in Sensor Fusion

Trends and challenges

- Increased sophistication of fusion algorithm
- Increase in number and variety of sensors
- Image sensors / processing

Typical applications:

- Sensor fusion hubs
- Sensor control and sensor signal fusion

Cortex-M7 Advantages:

- Increased DSP performance for fusion and control operations
- Software support by the top three fusion algorithm developers

Cortex-M7 CPU Performance

Cortex-M7 Breaks the Embedded Barriers

ARM

ARM Cortex-M7: Built for Performance

- Fast compute for demanding embedded applications
 - Six-stage superscalar pipeline with branch prediction
 - Single and double precision floating point unit
- Flexible memory system
 - 64-bit AXI AMBA4 interconnect
 - I-cache and D-cache for efficient memory operation
- Ultra-fast responsiveness for control
 - 12 cycles interrupt latency
 - Tightly coupled memories for real-time determinism

Highest core performance combined with the efficiency of Cortex-M

EEMBC IPC Comparison

- Results are geo-mean of EEMBC IPC relative to baseline (quantified as '1')
- Measured on comparable memory systems (in this case, WB caches on Cortex-M7)

FP Benchmarking Status

Cortex-M7 floating point performance relative to Cortex-R5 and Cortex-M4 processors

Assumes all processors running at the same clock frequency Based on EEMBC FPMark benchmarks using 'small' data-sets Performance relative to Cortex-R5 in the same system Benchmarks compiled with ARM tool-chain (v5.04)`

Cortex-M7: Competitive with Popular DSPs

Essential DSP features

- Parallel execution of loads, stores and MAC
- SIMD support, single-cycle MAC
- Single and double precision floating point unit
- Minimal loop overhead (branch predictor/BTAC)

Consistently good performance across key DSP

Cortex-M7 – Replacement for MCU+DSP

Trends:

- Convergence of MCU+DSP to DSC for cost reduction
- Increased processing demands
- Increasing consumer expectation of quality in portable devices

Example applications:

- Multi-channel audio / Dolby Audio
- Advanced Motor Control
- Factory Automation
- Automotive
- Image processing
- Power conversions

Cortex-M7 Advantages:

- High performance core with fast DSP
- Compatibility with existing Cortex-M4 designs
- Flexible memory system

Cortex-M7 DSP Performance

Paul Beckmann

The Architecture for the Digital World®

The Evolution of the Cortex-M Series

	Cortex-M3	Cortex-M4	Cortex-M7	Traditional DSP
Single cycle MAC		Fixed-point only	Fixed and floating-point	Y
Floating-point		Y	Y	Y
Fractional and saturating math		Y	Y	Y
SIMD operations		Y	Y	Y
Load and store in parallel with math			Y	Y
Zero overhead loops			Y	Y
Accumulator with guard bits				Y
Circular and bit-reversed addressing				Y

Load / Store Improvement

Cortex-M4 Cortex-M7 **Cortex-M4** Xn1 = pln[0];Xn1 = pln[0];Single load or store instructions take 2 cycles Xn2 = pln[1];Xn2 = pln[1];N consecutive loads or stores take N+1 cycles Xn3 = pln[2];Xn3 = pln[2];acc1 = b0 * Xn1 + d1;Approach – group as many loads and stores Xn4 = pln[3];together Xn5 = pln[4];Xn4 = pln[3];Xn6 = pln[5];d1 = b1 * Xn1 + d2;Xn7 = pln[6];Xn5 = pln[4];**Cortex-M7** d2 = b2 * Xn1;acc1 = b0 * Xn1 + d1;• Load and store operations can occur in parallel $_{d1 = b1 * Xn1 + d2}$; Xn6 = pln[5];with math d2 = b2 * Xn1;d1 += a1 * acc1;d1 += a1 * acc1;d2 += a2 * acc1;Xn7 = pln[6];d2 += a2 * acc1;

- Memory access possible without penalty
- Approach interleave memory accesses with computation

Floating-Point MAC Improvement

A

	Cortex-M4	Cortex-M7
 Cortex-M4 Multiplication or addition takes 1 or 2 cycles depending upon whether the result is used in the next instruction MAC requires 2 to 4 instructions Approach – use individual multiplies or adds and reorder to avoid stalls 	Xn1 = pln[0]; Xn2 = pln[1]; Xn3 = pln[2]; Xn4 = pln[3]; Xn5 = pln[4]; Xn6 = pln[5]; Xn7 = pln[6];	Xn1 = pln[0];Xn2 = pln[1];Xn3 = pln[2];acc1 = b0 * Xn1 + d1;Xn4 = pln[3];d1 = b1 * Xn1 + d2;
 Cortex-M7 Multiplication or addition takes 1 or 2 cycles depending upon whether the result is used in the next instruction MAC requires 1 cycle Approach – use MACs whenever possible 	acc1 = b0 * Xn1; tmp1 = b1 * Xn1; acc1 += d1; d1 += d2; d2 = b2 * Xn1; tmp1 = d1 * acc1; tmp2 = a2 * acc1; d1 += tmp1 d2 += tmp2;	Xn5 = pln[4]; d2 = b2 * Xn1; Xn6 = pln[5]; d1 += a1 * acc1; Xn7 = pln[6]; d2 += a2 * acc1;

2x Performance Improvement over the Cortex-M4

- Measurements using the CMSIS DSP Library
- Available free of charge from ARM
- Now optimized for the Cortex-M7

Note: combines architectural improvements with expected core clock increase. The code was compiled using the ARM C Compiler (armcc) 5.04 Comparison was made on an FPGA on a Versatile Express motherboard

Implications for Product Developers

- Connected products require an MCU
 - USB
 - Wi-Fi / Ethernet
 - Etc.
- Signal processing needs for multimedia products are growing
 - Audio, video, microphones, etc.
- IoT products packed with sensors

Cortex-M7 Advantage:

- Reduced BOM cost
- Compatibility with existing Cortex-M4 designs
- Ease of development

5.1 Channel Automotive System

216 MHz on Cortex-M4 144 MHz on Cortex-M7

- Volume and tone controls
- Fader / balance
- Stereo upmix to 5.1 channels
- Perceptual volume leveler
- Speaker EQs over 60 Biquads
- Delays, gains, mutes per channel
- Limiter
- 48 kHz operation
- Designed using Audio Weaver from DSP Concepts

Cortex-M7 CPU Advanced Features

Cortex-M7: Extending the Cortex-M Advantage

Retaining the benefits of Cortex-M DNA

- Easy to use Cortex-M programming model
- Leading-edge interrupt latency
- Flexible low-power modes
- Expanding Cortex-M capabilities
 - AXI, TCM and caches
 - Dual precision FPU
 - Full data trace
- Enhanced support for safety critical markets
 - Lock-step operation
 - Memory interfaces with ECC
 - Safety documentation

Powerful & Scalable Instruction Set

	VARS	VADD	VCMP	VCMPE	VCVT	VCVTR	VDIV	VIDM
	VLDB		VMLS					VNEG
			VNMUI		Floating	Point		VSTR
	VSUR	VEMA	VEMS	VENIMA	VENINS		MAIC -	
	V30B						ortex-M4/Co	rtex-M/ FPU
	РКН	QADD					QDSUB	QSAX
	QSUB	QSUB16		/			SEL	SHADD16
	SHADD8	SHASX		SP (SIMD	, fast MAC	5) B	SMLABT	SMLATB
	SMLATT	SMLAD	S				SMLALD	SMLAWB
	SMLAWT	SMLSD	SMLSLD	SMMLA	SMMLS	SMMUL	SMUAD	SMULBB
				,			SMLILBT	SMULTT
	ADC	ADD	ADR	AND	ASR	В	CMULTE	
	CLZ	BFC	BFI	BIC	CDP	CLREX	SMULTB	SMOLWY
	CBNZ CBZ	CMN	СМР	DBG	EOR	LDC	SMULWB	SMUSD
			· · · ·			LDRD	SSAT16	SSAX
	LDREX	📑 Adv	anced da	ata proces	ssing 📃	LDRSB	SSUB16	SSUB8
	LDRSBT	B	it field m	anipulatic	ons E		SXTAB	SXTAB16
	MRC			ampaiatie		ORN	SXTAH	SXTB16
	ORR	PLD	PLDW	PLL	POP	PUSH	UADD16	UADD8
	RBIT	REV	REV16	REVSH	ROR	RRX		
		, <u> </u>		RSB	SBC	SBFX	UASA	CHADDIe
	BKPT BLX	ADC ADD	ADR	SDIV	SEV	SMLAL	UHADD8	UHASX
	BX CPS	AND ASR	В	SMULL	SSAT	STC	UHSAX	UHSUB16
	DMB	BL	BIC	STMIA	STMDB	STR	UHSUB8	UMAAL
_	DSB	CMN CMP	EOR	STRB	STRBT	STRD	UQADD16	UQADD8
	1	DRB	LDM	STREX	STREXB	STREXH	UQASX	UQSAX
eral da	ata proces	ssing rsb	LDRSH	STRH	STRHT	STRT	UQSUB16	UQSUB8
/O coi	ntrol task	S SR	MOV	SUB	SXTB	SXTH	USAD8	USADA8
		IVN	ORR	ТВВ	ТВН	TEQ	USAT16	USAX
	REV16 REVSH	POP PUSH	ROR	тят	UBFX	UDIV	USUR14	
	SEV SXTB	RSB SBC	STM	UMLAL	UMULL	USAT		
	SXTH UXTB	STR STRB	STRH	UXTB	UXTH	WFE	UXTAB	UX TABIO
	UXTH WFE	SUB SVC	TST	WFI	YIELD	Т	UXTAH	UXTB16
	WFI YIELD	Cortex-N	10/M0+/M1			Cortex-M3	Cortex-M ⁴	/Cortex-M7

- Cortex-M7 has the same powerful instruction set as Cortex-M4:
- MAC instructions are all single-cycle
- SIMD instructions can work on 8-/16-bit quantities packed in to a 32-bit word
- Arithmetic can be signed/unsigned, saturating/non-saturating

Gen

Designed for High Energy Efficiency

Low power processor design

- Extensive clock and power gating
- 3 separate power domains (interrupts, processor, cache RAM)
- Enables MCU vendors to customise their design and minimise power consumption

Power-saving sleep modes:

- Sleep and Deep Sleep modes, with WFI/WFE instructions to put processor to sleep, or sleep on exit from ISR
- Signals exported to MCU to allow peripherals to be powered down on sleep
- Enables MCU vendors to create energy efficient chipsets

Cortex-M7 Safety Features

- Cortex-M7 specific
 - Cache ECC
 - Dual core lock-step with delay
 - External TCM ECC interface
 - On-line MBIST interface
- ARMv7-M architecture based
 - Memory protection unit (MPU)
 - Exception logic

- These features will be included in the Cortex-M7 Safety Documentation Package:
 - Safety Manual
 - FMEA Report
 - Development Interface Report

Cortex-M7 Pipeline

Tightly Coupled Memory (TCM)

- All TCMs:
 - Support wait-states
 - Can be used at boot-up time
 - Support up to 16MB of memory
- Provide deterministic performance
 - Dedicated store buffering
- Instruction TCM (ITCM)
 - 64-bit interface
- Data TCM (DTCM)
 - 2 X 32-bit interface: D0TCM and D1TCM, SSRAM protocol to enable direct integration with memories
 - Supports dual-issue of loads when bit[2] of address is different

AHB Peripheral port (AHBP)

- 32-bit AHB-Lite interface
 - Enables re-use of peripherals from existing Cortex-M systems
- Designed specifically for peripherals rather than memory
- Designed to simultaneously:
 - Minimise both read and write access latency to peripherals
 - Support 1 write/cycle to zero wait-state slaves
- Tightly coupled into processor pipeline
- Expect to be connected to low-latency peripherals

DMA interface (AHBS)

- 32-bit AHB-Lite slave interface
- Provides system access to ITCM and DTCM
- 2 arbitration schemes to TCM are supported:
 - Round robin for 'fair' sharing of TCM bandwidth
 - SW has priority for real-time critical code.
- Separate clock : DMA interface available whilst processor is sleeping
- Support for holding the processor idle out of reset to enable DMA into TCM for boot code.
 - Supports boot from volatile TCM memory

Caches - Overview

- Harvard arrangement for optimum performance
- I-cache 2-way associative, D-cache 4-way associative, pseudo-random replacement policy
- I and D both optional, configurable sizes (4kB 64kB each)
- Extensions defined for the ARMv7-M system architecture
 - Addition of cache maintenance operations
- Full support for the following attributes
 - Write Through, no write allocate (WT)
 - Write-back, no write allocate (WBRA)
 - Write-back, write allocate (WBWA)

Simple Microcontrollers

The minimal design (system level, debug system not shown)

Simple Microcontroller with Flash Access Accelerator

The minimal design (system level, debug system not shown)

Cortex-M7: Unlock and Unleash Software Productivity

- Focus on application development
 - Exploit optimally tuned range of processors
 - Utilize richer variety of peripherals
 - Harness advanced proven runtime environments
- Spend less time on code optimization
 - More capable hardware resources
 - Optimized and proven libraries
- Develop and deploy software faster

Cortex-M7: Extended Support for Turn Key Enablement

Added support for Cortex-M7 available today

Keil MDK Version 5.12

Microcontroller Tools

CMSIS v4.2 Pack Extended

ARM C/C++ Compiler

µVision Debugger with Trace

CMSIS-DSP library for floating point unit

Keil CMSIS-RTOS RTX support Versatile Express MPS2 Fast Models ARM Artisan libraries

POP"

SoC

system design

enablement

Cortex-M Prototyping System

FPGA image with matching Device Family Pack

Cortex-M7: Harnessing the Cortex-M Ecosystem

- "With support for the new Cortex-M7 processor, we are further strengthening our leading market position by delivering development tools for ARM with an outstanding benchmark score of 5.04 CoreMark/MHz - Stefan Skarin, IAR Systems
 - "Our robust embedded software components are designed to be used in high performance applications targeted by Cortex-M7, including industrial control,, safety and IoT

- Jean Labrosse, Micrium

" ARM Cortex-M7 will bring substantially more computing power to embedded applications, and SEGGER will continue to innovate new products and features for each new generation of ARM processors

- Rolf Segger, SEGGER

Cortex-M7 Lead Partners

"The Cortex-M7 is well positioned between Atmel's Cortex-M based MCUs and Cortex-A based MPUs enabling Atmel to offer an even greater range of processing solutions. Customers using the Cortex-M based MCU will be able to scale up performance and system functionality, while keeping the Cortex-M class ease-of-use and maximizing software reuse. We see the ARM Cortex-M7 addressing high-growth markets like IoT and wearables, as well as automotive and industrial applications that can leverage its performance and power efficiency" – Reza Kazerounian, Atmel

"Freescale Cortex-M7-based solutions dramatically extend MCU performance, opening new opportunities for our business. Our solutions will enable significant innovation and system-level efficiency in areas such as motor control, industrial automation and power conversion. These are rapidly growing markets where the high performance of the Cortex-M7 core eliminates the need for additional DSPs and microcontrollers" - Geoff Lees, Freescale

"Offering customers more intelligence and processing power on our STM32 microcontrollers is a major objective for ST, and the Cortex-M7 delivers that impressively. The Cortex-M7 core supports upwardly-scalable compatibility with our existing wide range of 500 Cortex-M STM32 microcontrollers, associated tools and software ecosystem, allowing developers to rapidly adopt our next-generation STM32 Cortex-M7-based MCUs" - Daniel Colonna, STMicroelectronics

Supercharge Cortex-M based solutions Develop versatile, scalable solutions Address safety critical applications Harness the broadest ecosystem

A panel discussion will follow with Cortex-M7's lead partners....

