
AN1074: EFM8 Family IEC60730 Library

The IEC60730 library allows OEMs to quickly integrate functional
safety into their EFM8 based devices, per IEC 60730 software re-
quirements as found in Annex H, Edition 5.1 2015-12, available at
https://webstore.iec.ch/publication/23952.
This application note discusses configuring and using those routines, as well as other
suggestions to meet IEC60730 certification. It will also cover integration testing require-
ments for certification.

KEY FEATURES

• Certified library for IEC60730
• Compatible with certified library for

Capacitive Touch Sensing (CSLIB_IEC)
• Instructions for integration in OEM design
• Tips for integration testing when going

through certification

Result: Load
stays inactive
because Q3
is inactive

no PWM output

Q3 gate is
deactivated

no PWM output

Q1 gate is
deactivated

GPIO output is activated

Failure 2
Short on Q1

Q1

Load

Q2
Band pass activation filter

Device

PWM output
GPIO output

PWM output 2

Q3

Band pass activation filter

Failure 1
MCU

silabs.com | Building a more connected world. Rev. 0.1

https://webstore.iec.ch/publication/23952

1. Introduction

1.1 Functional Safety

What is functional safety? Functional safety is not the same thing as reliability or durability. Functional safety is what is required once
reliability or durability has failed. Is a system in such a failed state still safe for a consumer? Does the potential exist for harm to the
consumer or the environment? IEC 60730 is focused on the use of consumer white-box devices, typically items found in a home. Even
within a home, systems exist that control potentially dangerous situations for ovens, microwaves, dishwashers, washing machines, hot
water heaters, etc. Even a refrigerator can potentially cause serious damage with a water dispenser or an unsafe situation with an ice-
maker screw turning with the door open.

IEC60730 covers all aspects of system safety, from the cables used to power a system to the software used to monitor inputs and drive
the controls. This library contains software written for the EFM8 family to meet the requirements found in IEC60730, Annex H: Require-
ments for electronic controls.

Within Annex H, there are three types of electronic controls (taken from IEC60730-1 H.2.22):

• Class A — control functions which are not intended to be relied upon for the safety of the application
• Examples are: room thermostats, temperature control

• Class B — control functions which are intended to prevent an unsafe state of the appliance
• Examples are: thermal limiter, pressure limiter

• Class C — control functions which are intended to prevent special hazards such as explosion or whose failure could directly cause a
hazard in the appliance
• Examples are: burner control systems, thermal cut-outs for closed water systems (without vent protection)

The EFM8 IEC60730 library meets the requirements for Class B controls. This covers the controls most commonly found in household
white-box goods.

1.2 Example System

For this document, an example system of a self-cleaning oven with stovetop will be used. This system contains the following parts:

1. High temperature oven, capable of reaching self-cleaning temperatures. When the oven is at self-cleaning temperatures, a hazard-
ous condition will occur if the oven door opens because the air is hot enough to cause burns.

2. Temperature sensor for the oven, used to control cook temperature and self-clean temperature.
3. Latch for the oven, used during self-cleaning. This latch is slow-opening. When engaged to open, the open signal must be received

for at least one second before the latch is fully opened and the door can open. If the open signal is terminated before the latch is
fully opened, the door cannot be opened.

4. Light within the oven and a manual switch to activate it.
5. Touch controls and indicators for the oven.
6. Stovetop with four induction coils. Induction coils do not directly provide heat. Instead, heat is induced in a pot (or pan) via magnet-

ic induction.
7. Temperature sensors for the stovetop induction coils. Because the stovetop cannot sense the amount of material in the pot, the

amount of energy the induction coil provides must be controlled by the heat of the stovetop conducted from the pot. The pot must
not be heated excessively, or else the contents may catch fire or the pot itself be damaged/too hot to handle.

8. Touch controls and indicators for the induction coils.
9. Clock and timer with audible buzzer and touch controls. The clock and timer do not directly control or interact with other parts.

1.2.1 Classification of the Controls in the Example System

Within the example system given above, the controls are classified as follows:

• Class A — These controls are not relied upon for the safety of the system. A failure in one of these controls does not cause an
unsafe state. The controls are classified as Class A; however, they could be designed to meet Class B requirements.
• Light within the oven and the switch to activate it.
• Clock and timer, including controls to set them, and buzzer control.

• Class B — These controls prevent an unsafe state of the appliance. A failure in one of these controls could cause an unsafe state.
• High temperature oven, controls, and temperature sensor, including the door latch.
• Stovetop induction coils, controls, and temperature sensor.

AN1074: EFM8 Family IEC60730 Library
Introduction

silabs.com | Building a more connected world. Rev. 0.1 | 1

1.2.2 EFM8 Devices within the Example System

For this application note, the EFM8 is used in the following locations in the example system:

• Touch controls for the oven and stovetop, using CSLIB_IEC (touch controls EFM8).
• Activation and temperature monitoring of the stovetop induction coils (stovetop EFM8).
• Activation and temperature monitoring of the oven, including controlling the door latch (oven EFM8).
• Clock and timer touch controls and display (clock EFM8).

A separate host MCU is responsible for controlling and monitoring the overall system. It receives input from the touch controls EFM8
and forwards commands to the stovetop EFM8 and oven EFM8. The clock EFM8 is independent from the other MCUs.

1.2.3 Failure Modes and Effects Analysis

Failure modes and effects analysis is required to understand the effects on the safety-related functions of any hardware component
failures. For example, the failure of the touch controls will prevent a user from turning off the oven or induction coils, the failure of the
stovetop control may cause unwanted activation of the induction coils or prevent shutting off coils, failure of the temperature sensors
may allow excessive temperatures to occur, etc.

This analysis must be done for each hardware component in the system.

1.2.4 Fault Reaction Time

One of the key quantities for IEC60730 certification is the Fault Reaction Time of the system. Fault Reaction Time is defined as time
between the occurrence of a fault and the point where the control has reached a defined state. For our example system, there are two
primary hazards that must be addressed: the oven door opening during a self-clean cycle, and a pot on the induction coils reaching an
unsafe temperature.

The switch for the oven door is specifically designed to be slow-opening, requiring 1 second before opening fully. Any time during the
opening process if the open signal is terminated, the switch will halt, keeping the system in a defined, safe state.

For the second situation, it will take many seconds of induction heating before a pot will reach a dangerous temperature; temperature
sensors on the stovetop will detect the pot temperature exceeding the safe range.

From the software controls, these two requirements set a maximum fault reaction time of 1 second. In other words, the software can
take up to 1 second before entering a safe state.

1.2.5 Safe State

The Safe State is a defined state of the control where the output terminals ensure a safe situation under all circumstances.

For the example above, a Safe State will prevent the oven self-clean latch from opening and disable all induction heating coils. An OEM
may also choose to notify the user that the system has entered a Safe State due to a malfunction, but this is not a requirement.

AN1074: EFM8 Family IEC60730 Library
Introduction

silabs.com | Building a more connected world. Rev. 0.1 | 2

2. Annex H Measures to Address Software Faults/Errors

The table below lists the measures provided by the IEC60730 to address software faults/errors. This table is taken from the IEC60730
documentation available at http://devtools.silabs.com/studio/doc/EFM8/software/Lib/group__efm8__iec60730.html.

Table 2.1. Measures to Address Software Faults/Errors

Component Measure Used Notes

1.1 Registers Periodic self-test using a Static memory test Provided by library

1.2 Instruction decoding and execu-
tion

None Not required for Class B

1.3 Program counter / Watchdog Logical monitoring of the program sequence. Code exe-
cution sets flag that is periodically checked. Watchdog
timer prevents runaway program execution.

Provided by library, see example for
integration sample

1.4 Addressing None Not required for Class B

1.5 Data paths instruction decoding None Not required for Class B

2 Interrupt handling and execution Time-slot monitoring (upper and lower limit) Provided by library, see example for
integration sample

3 Clock Reciprocal Comparison. Use separate oscillator to moni-
tor SYSCLK – Calculate ratio and determine range
based on accuracy

Provided by library, see example for
integration sample

4.1 Invariable Memory Periodic 16-bit CRC Provided by library, see example for
integration sample

4.2 Variable Memory Periodic static memory test using March-C & stack
guard

Provided by library, see example for
integration sample

4.3 Addressing (variable and invaria-
ble memory)

4.1 and 4.2 provide coverage for this
component

5.1 Internal data path 4.1 and 4.2 provide coverage for this
component

5.2 Internal addressing 4.1 and 4.2 provide coverage for this
component

6 External Communications Provided by OEM, UART example in
library

6.1 External Communications – Data 16 bit CRC CRC check provided by library

6.2 External Communications – Ad-
dressing

16 bit CRC including the address OEM must include in protocol proper
address verification – see UART ex-
ample in library

6.3 External Communications – Tim-
ing (UART example)

Scheduled transmission OEM must include in protocol proper
timing measures – see UART exam-
ple in library

7 Input/Output periphery/ 7.1 Digital
I/O

Plausibility check Provided by OEM

7.2 Analog I/O/ 7.2.1 A/D and D/A
convertor

Plausibility check Provided by OEM

7.2.2 Analog Multiplexer Plausibility check Provided by OEM

8 Monitoring device and comparators None Not needed for Class B

9 Custom chips None Not Applicable

AN1074: EFM8 Family IEC60730 Library
Annex H Measures to Address Software Faults/Errors

silabs.com | Building a more connected world. Rev. 0.1 | 3

http://devtools.silabs.com/studio/doc/EFM8/software/Lib/group__efm8__iec60730.html

3. Library Integration

The IEC60730 library is complex software. It requires OEMs to have a deep understanding of their system, the EFM8, and the
IEC60730 standard. This section covers integrating the IEC60730 library, including configuration options, into a project under develop-
ment.

3.1 iec60730_SafeState()

When the library detects a failure, it must enter a defined state. OEMs must update the function iec60730_SafeState(), found in iec6
0730_oem_functions.c in the example, so that it puts the system into a defined state. This may include setting outputs into a safe
state, notifying the user a failure has occurred, or sending a notification to a host device. The variable failure passed into iec60730_Saf
eState() allows OEMs to determine the type of error. Activity within iec60730_SafeState() must be kept minimal, to make sure the
error doesn’t cause additional failures.

While in iec60730_SafeState(), interrupts must be disabled and the watchdog refreshed.

3.2 POST (Power On Self Test)

iec60730_Post() is normally called after system initialization is complete, but before beginning primary operating mode in the system
main() loop. It includes a Watchdog test that resets the system to verify Watchdog operation.

OEMs must expect initialization code before iec60730_Post() to execute twice. Initialization code execution time must be short
enough that the watchdog can be refreshed in iec60730_Post() before expiration.

3.3 BIST (Built In Self Test)

iec60730_Bist() is executed as part of the system main() loop, typically at the end. Systems with long execution times will require
manual watchdog refresh, possibly adjustment of iec60730_TestClockTick() frequency to ensure iec60730_programmeCounterTes
t() passes, or calling iec60730_Bist() at multiple locations in the main system loop.

Interrupts should remain globally enabled. If interrupts must be disabled for a critical section of firmware, the critical section should fol-
low best practices and be as short as possible. The time in the critical section must be shorter than the fastest clock timer interrupt
(usually 10 ms), or iec60730_timerTestControl must be used to disable the timer tests.

3.4 Programme Counter

The Programme Counter check uses the bitfield variable iec60730_programmeCounterCheck to verify that all checks have completed
in the required fault reaction time.

OEM code must set the bits IEC60730_GPIO_COMPLETE and IEC60730_ANALOG_COMPLETE in iec60730_programmeCounterCheck when
each of these tests have completed.

OEMs can use the bits IEC60730_OEM0_COMPLETE - IEC60730_OEM7_COMPLETE in iec60730_programmeCounterCheck to verify their
own test algorithms are executing at least once per every call to iec60730_programmeCounterTest(). Unused flags must be set to 1.

iec60730_Bist() can take several ms to execute. See Execution Time in the IEC60730 documentation for details. If the execution
time is longer than the system can tolerate, the code in iec60730_Bist() can be split up into individual parts within the system main()
loop, as long as all parts of iec60730_Bist() are included. For example, split it so that the Invariable Memory Check is in one part of
the main loop, and the rest of the checks in a different part. As long as all tests complete before the Programme Counter Check exe-
cutes, the system will continue normal operation.

3.5 Watchdog

iec60730_WatchdogPost() configures the Watchdog; do not use enter_DefaultMode_from_RESET() to setup the internal watchdog.
iec60730_WatchdogPost() triggers a watchdog reset to validate that they can occur properly. Code before the POST is run twice,
once during power on reset, and again after the watchdog reset.

When in a long latency loop, use iec60730_RestartWatchdog() to prevent a watchdog reset. Minimize the time in the loop as much
as possible.

iec60730_DisableWatchdog() must be used on PCA-based watchdogs during flash programming because flash erase times are lon-
ger than the maximum watchdog timeout. Call iec60730_RestartWatchdog() to re-enable the watchdog once the flash erase has
completed. During the flash erase time, any control signals must remain in a safe configuration. See Watchdog Test in the IEC60730
documentation for details.

AN1074: EFM8 Family IEC60730 Library
Library Integration

silabs.com | Building a more connected world. Rev. 0.1 | 4

3.6 Interrupt Handling and Execution

OEMs must update the array iec60730_IRQFreqBounds for their system use. Interrupt service routines must include code for incre-
menting iec60730_IRQExecCount; for an example, see iec60730_oem_timer.c. OEMs must choose and enumerate the index values
for iec60730_IRQExecCount.

Interrupts are disabled during portions of the Invariable Memory Test and Variable Memory Test. Interrupts must be tolerant of the la-
tency times these tests introduce to servicing an interrupt.

3.7 Clock

OEMs can modify the default System Clock and Timer Clock configurations in iec60730_oem_timer.c according to their system re-
quirements.

3.8 Invariable Memory

OEMs must modify the iec60730_Invariable structure to align with their memory usage. iec60730_Invar_Crc or similar must be
modified to store the CRC values. During the CRC generation for a block of memory, the CPU is halted and unable to respond to inter-
rupt requests. For a typical system, the amount of invariable memory checked will determine the fault reaction time.

3.9 Variable Memory

More safety critical variables should be placed in IDATA, since IDATA is fully validated every call to iec60730_VmcBist().

If not all of XDATA is used, iec60730_XdataNumPartitions can be decreased to cover only the used portions of memory. This will
decrease the time to check the used XDATA space, but the time for iec60730_Bist() will not change.

Note: The USB XRAM in UB1/UB2 is not validated as part of the Variable Memory Check. Do not use this XRAM space as system
memory.

AN1074: EFM8 Family IEC60730 Library
Library Integration

silabs.com | Building a more connected world. Rev. 0.1 | 5

4. Creating an IEC 60730 Class B Communications Interface

The example provides a sample Class B interface for UART0. An OEM designing their own serial interface must meet the requirements
given in the IEC60730 standard. The library provides a 16-bit CRC routine that can be used by OEMs as part of their protocol.

4.1 Example Interface between EFM8s and a Host CPU

For the example system, an I2C serial interface is connected between the EFM8s in the system and the host CPU.

The protocol uses a 16-bit CRC to protect each packet, to guard against any corruption during transmission.

Multiple devices on the serial interface require unique addresses within the protocol.

Because a class A device, the timer/buzzer control EFM8, is also on the serial bus, the protocol must guarantee that the class A device
cannot accidentally emulate class B traffic. To prevent the class A device from playing back a class B packet, the protocol includes a
sequence number with each packet. The host controller and class B devices use the sequence number to verify the packet is received
in the correct order. If the class A device played back a class B packet, the receiving device would detect that the sequence number did
not increment, and enter Safe State.

The host CPU uses scheduled transmissions to determine if one of the other devices has entered Safe State. The host CPU expects a
packet at least every 100 ms. If it does not receive a packet from a device, the host CPU will enter Safe State.

AN1074: EFM8 Family IEC60730 Library
Creating an IEC 60730 Class B Communications Interface

silabs.com | Building a more connected world. Rev. 0.1 | 6

5. Digital I/O Plausibility Check

5.1 Outputs

For safety-related outputs, multiple outputs must be used together to verify that the target device is activated. For the oven example,
activating the induction coils on the stovetop must use at least two outputs. One of the outputs must use a PWM waveform generated
via software, along with external filtering hardware to generate an activation. Figure 5.1 Device with Two Output Redundancy on page
7 shows an example with output redundancy. If one of the transistors fails, the load does not activate. If the MCU fails, the PWM
output will halt, and Q1 will not activate. This way if a single failure occurs, there is no accidental activation of the target device.

Q1

Load

Q2
Band pass activation filter

Device

PWM output
GPIO output

Figure 5.1. Device with Two Output Redundancy

AN1074: EFM8 Family IEC60730 Library
Digital I/O Plausibility Check

silabs.com | Building a more connected world. Rev. 0.1 | 7

However, for IEC60335-1 (this is a typical additional certification for safety) a second failure must be considered after the first failure
occurs. In this case, Figure 5.1 Device with Two Output Redundancy on page 7 is insufficient. Say that the system fails as in Figure
5.2 Device with Two Output Redundancy, Software Failure Activates GPIO Output, Additional Failure Activates Q1 on page 8. Tran-
sistor Q2 is activated, but Q1 is not. However, if a second failure occurs across Q1, the target device is incorrectly activated.

no PWM output

Q1 gate is
deactivated

GPIO output is
activated

Failure 1
MCU

Failure 2
Short on Q1

Result: Load
incorrectly
activated

Q1

Load

Q2
Band pass activation filter

Device

PWM output
GPIO output

Figure 5.2. Device with Two Output Redundancy, Software Failure Activates GPIO Output, Additional Failure Activates Q1

AN1074: EFM8 Family IEC60730 Library
Digital I/O Plausibility Check

silabs.com | Building a more connected world. Rev. 0.1 | 8

To solve this requirement for IEC60335-1, a second PWM interface, using a different frequency than the first interface, must also acti-
vate the target device, as in Figure 5.3 Device with Three Output Redundancy on page 9.

Q1

Load

Q2
Band pass activation filter

Device

PWM output
GPIO output

PWM output 2

Q3

Band pass activation filter

Figure 5.3. Device with Three Output Redundancy

AN1074: EFM8 Family IEC60730 Library
Digital I/O Plausibility Check

silabs.com | Building a more connected world. Rev. 0.1 | 9

As shown in Figure 5.4 Device with Three Output Redundancy, Software Failure Activates GPIO Output, Additional Failure Activates
Q1 on page 10, a system failure leaving Q2 activated will prevent any second failure from activating the target device.

Result: Load
stays inactive
because Q3
is inactive

no PWM output

Q3 gate is
deactivated

no PWM output

Q1 gate is
deactivated

GPIO output is activated

Failure 2
Short on Q1

Q1

Load

Q2
Band pass activation filter

Device

PWM output
GPIO output

PWM output 2

Q3

Band pass activation filter

Failure 1
MCU

Figure 5.4. Device with Three Output Redundancy, Software Failure Activates GPIO Output, Additional Failure Activates Q1

5.2 Inputs

For safety-related inputs, redundancy or dynamic plausibility are common solutions.

5.2.1 Redundancy

Redundancy prevents a single failure from providing invalid data to the system. For example, the oven door may use two switches that
detect when the door is closed. A discrepancy in the returned values would cause entry into safe state.

5.2.2 Dynamic Plausibility

Dynamic plausibility requires an input that can be controlled by the MCU, either directly or indirectly. For example, the oven door may
use one switch that ties the input to ground via a small external resistor when the door is closed – otherwise the input is tied to VCC via
the large internal pullup resistor. An output from the MCU is connected to the input near the small external resistor. During a plausibility
check, the MCU shorts the output to VCC. The check confirms that the input reads VCC, verifying the MCU could detect if the door is
open. Checking the MCU could detect the door is closed is not necessary, since the unsafe condition exists only when the door is open.

AN1074: EFM8 Family IEC60730 Library
Digital I/O Plausibility Check

silabs.com | Building a more connected world. Rev. 0.1 | 10

6. ADC Plausibility Check

Analog I/O plausibility checks require verifying that the ADC or DAC can sample or output the correct value, and also that any MUX on
the ADC correctly reads from the requested input line.

6.1 ADC Value Validation

To verify the ADC hardware requires separate input(s) from the main sensor input. If this input is close to the expected value for the
sensor, then a single separate input to validate the ADC hardware is sufficient. For example, if the temperature sensor for the induction
coil hits the hazardous value at 1.8 V, then a separate input near 1.8 V is sufficient. If the sensor inputs have a large range, then two
separate inputs at the low/high end of the ADC hardware is required. For example, if there are two sensors, one with a hazardous value
cutoff at 1 V and another at 3 V, then two separate inputs at 0.5 V and 2.5 V can validate that the ADC hardware sample range is
operating correctly. The plausibility test would verify that the separate inputs are measured correctly by the ADC.

For small systems, it may be easier to have a redundant sensor chain. For example, using two independent temperature sensors with
two ADC inputs. A plausibility test would require the two inputs to track closely together.

6.2 Analog Mux Validation

Separately, the system must also validate that any ADC mux is functioning correctly. If ADC input 0x7 is requested, there must be confi-
dence that ADC input 0x7 is actually what is measured by the ADC.

The largest concern is that the ADC mux control signals are shorted together internally. To validate this hardware, a simple test of two
complementary addresses is sufficient. IE, address 0x5 (binary 0101) and 0xA (binary 1010) on a 16 input ADC. The separate input
signals required for analog value validation can be placed on these inputs to verify the ADC mux at the same time as the ADC hard-
ware. In this case, the analog value plausibility check will also validate the analog mux.

If additional voltage levels are not available, then dynamically change the ADC input value to validate that the ADC mux is correctly
choosing the input. For example, if a thermistor is placed on ADC input 0x7 to measure temperature with a range of 1V to 3V, then a
transistor controlled by a GPIO that shorts ADC input 0x7 to ground can be used to verify that the ADC mux is properly choosing the
input.

AN1074: EFM8 Family IEC60730 Library
ADC Plausibility Check

silabs.com | Building a more connected world. Rev. 0.1 | 11

7. Debugging with the Library

This section covers how to debug issues with the library and OEM firmware. It assumes experience with Simplicity Studio and common
firmware debug areas such as setting breakpoints, stepping through code, and using watch expressions.

7.1 Pointing to the Library Source Files

Since the library was built using an automated build environment, Simplicity Studio will not find the source for the library when debug-
ging a program. See Figure 7.1 Breaking within the Library on page 12 for a picture of what Simplicity Studio shows when breaking
within the library.

Figure 7.1. Breaking within the Library

To show the library source code during a debug session, Simplicity Studio must be pointed to the new location of the library source
code within the SDK directory tree. While debugging, click [Locate File] and browse to the location of the source file, as shown in
Figure 7.2 Browsing to the IEC60730 Library Source Files on page 13.

AN1074: EFM8 Family IEC60730 Library
Debugging with the Library

silabs.com | Building a more connected world. Rev. 0.1 | 12

Figure 7.2. Browsing to the IEC60730 Library Source Files

Once Simplicity Studio is pointed to the library source files, it will correctly show source for any other library files except for the CPU
registers check. Halting execution within the CPU registers check will point to a source file that does not exist, iec60730_cpu_registe
rs.SRC. This file is not part of the IEC60730 source code, as it is generated during compilation from iec60730_cpu_registers.c. Ad-
dresses for labels within this file can be found in the .M51 output file by searching for _ASM_BKPT. These labels can be used to set
breakpoints, and execution can be manually compared against the original source file iec60730_cpu_registers.c.

Simplicity Studio will remember the location of the library source files for any new debug sessions with that EFM8 version of the device
library. New projects with other EFM8 devices will require pointing Simplicity Studio to the library source files.

AN1074: EFM8 Family IEC60730 Library
Debugging with the Library

silabs.com | Building a more connected world. Rev. 0.1 | 13

7.2 Setting Breakpoints

Breakpoints set at the labels located within the library give locations that variables or registers can be modified to validate operation.

To locate the address for a label, use the .M51 file generated during the compile. For this example, search for the label IEC60730_CPU_
REGS_CORE_ACC_ASM_BKPT within your project’s .M51 file. Note the last four digits of the address field. Figure 7.3 Last 4 Digits of the
Address Field for IEC60730_CPU_REGS_CORE_ACC_ASM_BKPT on page 14 shows the .M51 file from the EFM8UB1 example, with the
last four digits of the address field highlighted.

Figure 7.3. Last 4 Digits of the Address Field for IEC60730_CPU_REGS_CORE_ACC_ASM_BKPT

AN1074: EFM8 Family IEC60730 Library
Debugging with the Library

silabs.com | Building a more connected world. Rev. 0.1 | 14

Debug the project under development. To set a breakpoint at this address location, write the last 4 of the address into the [Disassem-
bly] window, and then left-click to the left of the address displayed in the [Disassembly] window. The following figure shows where to
input the address. Left-click where indicated.

Figure 7.4. Setting a Breakpoint at IEC60730_CPU_REGS_CORE_ACC_ASM_BKPT

7.3 Watchdog Reset POST

During debugging, expect code before Watchdog Reset POST to execute twice.

AN1074: EFM8 Family IEC60730 Library
Debugging with the Library

silabs.com | Building a more connected world. Rev. 0.1 | 15

8. Integration Testing as Part of Certification

For integration testing, an OEM must demonstrate to a certification house that the IEC library is properly called by their firmware. This
section covers how to use Simplicity Studio to prove to a certification house that the library is checking on the health of the system.

The detailed IEC60730 library test specification documentation provided at http://devtools.silabs.com/studio/doc/EFM8/software/Lib/
group___i_e_c60730___v_e_r_i_f_i_c_a_t_i_o_n.html has links to the automated tests performed during the build process for the li-
brary. These procedures are simplified and done manually during certification to prove that the API is properly called.

8.1 CPU Register Test

1. Debug the project under development.
2. Set a breakpoint at label IEC60730_CPU_REGS_CORE_ACC_ASM_BKPT.
3. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
4. Resume execution by pressing [F8].
5. Change the value of the [Core register A] to [0xFF], as shown in the following figure.

Figure 8.1. Corrupting the Accumulator Register to Cause a Failure

6. Resume execution by pressing [F8].
7. The device will now halt at iec60730_SafeState().
8. This verifies that the library is correctly integrating the CPU Registers test into the device firmware.

AN1074: EFM8 Family IEC60730 Library
Integration Testing as Part of Certification

silabs.com | Building a more connected world. Rev. 0.1 | 16

http://devtools.silabs.com/studio/doc/EFM8/software/Lib/group___i_e_c60730___v_e_r_i_f_i_c_a_t_i_o_n.html
http://devtools.silabs.com/studio/doc/EFM8/software/Lib/group___i_e_c60730___v_e_r_i_f_i_c_a_t_i_o_n.html

8.2 Programme Counter Check

1. Debug the project under development. Set a breakpoint at label IEC60730_PC_BKPT.
2. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
3. Resume execution by pressing [F8].
4. The code will stop at IEC60730_PC_BKPT.
5. Add variable iec60730_programmeCounterCheck to the watch expressions.
6. Clear variable iec60730_programmeCounterCheck to 0x0000.
7. Resume execution again.
8. The device will now halt at iec60730_SafeState().

8.3 Watchdog

1. Debug the project under development.
2. Set a breakpoint at label IEC60730_WATCHDOG_POST_WATCHDOG_RESET_BKPT.
3. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
4. Resume execution by pressing [F8].
5. The code will stop at IEC60730_WATCHDOG_POST_WATCHDOG_RESET_BKPT.
6. Set variable iec60730_WatchdogState to 0x02.
7. Resume execution again.
8. The device will now halt at iec60730_SafeState().

8.4 Interrupt Handling

1. Debug the project under development.
2. Set a breakpoint at label IEC60730_IRQ_BKPT.
3. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
4. Resume execution by pressing [F8].
5. The code will stop at IEC60730_IRQ_BKPT.
6. Set variable iec60730_IRQExecCount[0] to 0x00.
7. Resume execution again.
8. The device will now halt at iec60730_SafeState().

8.5 Clock

1. Debug the project under development.
2. Set a breakpoint at label IEC60730_SYSTEM_CLOCK_FREQ_ADJUSTMENT_BKPT.
3. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
4. Resume execution by pressing [F8].
5. The code will stop at IEC60730_SYSTEM_CLOCK_FREQ_ADJUSTMENT_BKPT.
6. Set SFR CLKSEL so that the SYSCLK frequency is divided by two.
7. Resume execution again.
8. The device will now halt at iec60730_SafeState().

8.6 Invariable Memory

1. Debug the project under development.
2. Set a breakpoint at label IEC60730_IDATA_URDWND_BKPT.
3. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
4. Resume execution by pressing [F8].
5. The code will stop at IEC60730_IDATA_URDWND_BKPT.
6. Corrupt IDATA memory location 0x10 by setting it to 0xFF.
7. Resume execution again.
8. The device will now halt at iec60730_SafeState().

AN1074: EFM8 Family IEC60730 Library
Integration Testing as Part of Certification

silabs.com | Building a more connected world. Rev. 0.1 | 17

8.7 Variable Memory

1. Debug the project under development.
2. Set a breakpoint at label IEC60730_CRCBLOCK_BKPT.
3. Set another breakpoint at IEC60730_SAFE_STATE_BKPT in the project under development.
4. Resume execution by pressing [F8].
5. The code will stop at IEC60730_CRCBLOCK_BKPT.
6. Corrupt the CRC calculation by setting iec60730_CrcCalc to 0x0000.
7. Resume execution again.
8. The device will now halt at iec60730_SafeState().

8.8 Other Modules

Other modules, such as ADC/ADC Mux, I/O, and Communications, will require OEMs to demonstrate module testing for certification.
Since these modules are custom modules developed by the OEM, the OEM must create sufficient tests to demonstrate to the certifica-
tion house that the modules are functioning correctly.

AN1074: EFM8 Family IEC60730 Library
Integration Testing as Part of Certification

silabs.com | Building a more connected world. Rev. 0.1 | 18

9. Rebuilding the IEC60730 Library

Generally, an OEM will use the pre-built certified EFM8 IEC60730 library. However, in special situations an OEM might wish to add
debug code, customize and rebuild the library, or integrate the library directly in their system. Recertification of the whole library will be
required.

9.1 Importing the SLSPROJ file

From the Simplicity Studio IDE, choose [Project]>[Import]>[MCU Project]. Select [Browse], and navigate to C:\SiliconLabs\Simpli
cityStudio\v4\developer\sdks\8051\v4.0.3\Lib\efm8_iec60730. Open the SLSPROJ file for your EFM8 device. Finish the im-
port wizard with the default settings.

9.2 Setting the Library Version

Set the library version to something other than 0.0.0. Each digit of the library version must be between 0 and 255. In iec60730.h, set @
version on line 3 and IEC60730_LIBRARY_VERSION on line 150.

9.3 Building the Library

Build the library project normally.

9.4 Replacing the Pre-built Version

The output .LIB will be located in your Simplicity Studio workspace, visible in the [Console] output window. Rename the original .LIB
file to .LIB.CERT, located at \SiliconLabs\SimplicityStudio\v4\developer\sdks\8051\v4.0.3\Lib, and replace it with the new
version.

AN1074: EFM8 Family IEC60730 Library
Rebuilding the IEC60730 Library

silabs.com | Building a more connected world. Rev. 0.1 | 19

10. Revision History

10.1 Revision 0.1

March 13th, 2017

Initial release.

AN1074: EFM8 Family IEC60730 Library
Revision History

silabs.com | Building a more connected world. Rev. 0.1 | 20

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1. Introduction
	1.1 Functional Safety
	1.2 Example System
	1.2.1 Classification of the Controls in the Example System
	1.2.2 EFM8 Devices within the Example System
	1.2.3 Failure Modes and Effects Analysis
	1.2.4 Fault Reaction Time
	1.2.5 Safe State

	2. Annex H Measures to Address Software Faults/Errors
	3. Library Integration
	3.1 iec60730_SafeState()
	3.2 POST (Power On Self Test)
	3.3 BIST (Built In Self Test)
	3.4 Programme Counter
	3.5 Watchdog
	3.6 Interrupt Handling and Execution
	3.7 Clock
	3.8 Invariable Memory
	3.9 Variable Memory

	4. Creating an IEC 60730 Class B Communications Interface
	4.1 Example Interface between EFM8s and a Host CPU

	5. Digital I/O Plausibility Check
	5.1 Outputs
	5.2 Inputs
	5.2.1 Redundancy
	5.2.2 Dynamic Plausibility

	6. ADC Plausibility Check
	6.1 ADC Value Validation
	6.2 Analog Mux Validation

	7. Debugging with the Library
	7.1 Pointing to the Library Source Files
	7.2 Setting Breakpoints
	7.3 Watchdog Reset POST

	8. Integration Testing as Part of Certification
	8.1 CPU Register Test
	8.2 Programme Counter Check
	8.3 Watchdog
	8.4 Interrupt Handling
	8.5 Clock
	8.6 Invariable Memory
	8.7 Variable Memory
	8.8 Other Modules

	9. Rebuilding the IEC60730 Library
	9.1 Importing the SLSPROJ file
	9.2 Setting the Library Version
	9.3 Building the Library
	9.4 Replacing the Pre-built Version

	10. Revision History
	10.1 Revision 0.1

