
October 2017 DocID030787 Rev 1 1/51

1

AN5050
Application note

Octal-SPI interface (OctoSPI) on STM32L4+ Series

Introduction

The growing demand for richer graphics, wider range of multimedia and other data-intensive
content, is driving embedded designers to enable more sophisticated features in embedded
applications. These sophisticated features require higher data throughputs and extra
demands on the often limited MCU on-chip memory.

External parallel memories have been widely used so far to provide higher data throughput
and to extend the MCU on-chip memory, solving the memory size and the performance
limitation. However, this action compromises the pin count and implies a need of more
complex designs and higher cost.

To meet these requirements, STMicroelectronics offers the first MCU products in the market
with the new integrated high throughput OctoSPI interface; STM32L4+ Series devices.

The OctoSPI interface enables the connection of the external compact-footprint Octal-SPI
and the HyperBus™ high-speed volatile and non-volatile memories available today in the
market. Thanks to its low-pin count, the OctoSPI interface allows easier PCB designs and
lower costs. Its high throughput allows code execution and data storage.

Thanks to the OctoSPI’s memory-mapped mode, the external memory can be accessed as
if it was an internal memory allowing to the system masters (GP-DMA, LTDC, DMA2D,
GFXMMU…) to access autonomously even in low-power mode when the CPU is stopped,
which is ideal for mobile and wearable applications

This application note describes the OctoSPI interface on the STM32 MCUs and explains
how to configure it in order to write and read external Octal-SPI and HyperBus™ memories.
It describes some typical use cases to use OctoSPI interface and provides some practical
examples on how to configure the OctoSPI depending on the type of the targeted memory.

Related documents

Available from STMicroelectronics web site www.st.com:

• STM32LRxxx and STM32LSxxx advanced Arm®-based 32-bit MCUs (RM0432)

• STM32L4Rxxx and STM32L4Sxxx datasheets

• AN4760 Quad-SPI (QSPI) interface on STM32 microcontrollers

www.st.com

http://www.st.com

Contents AN5050

2/51 DocID030787 Rev 1

Contents

1 Overview of STM32L4+ Series OctoSPI interface 6

1.1 OctoSPI availability and features across STM32L4+ Series 6

1.2 OctoSPI in a smart architecture . 6

1.2.1 STM32L4Rxxx and STM32L4Sxxx system architecture 7

2 OctoSPI interface description . 9

2.1 OctoSPI hardware interface . 9

2.1.1 OctoSPI pins and signal interface . 9

2.1.2 OctoSPI IO manager . 9

2.2 Two low-level protocols . 10

2.2.1 Regular-command mode . 10

2.2.2 HyperBus™ mode . 11

2.3 Three operating modes . 12

2.3.1 Indirect mode . 12

2.3.2 Status-flag polling mode . 13

2.3.3 Memory-mapped mode . 13

3 OctoSPI configuration . 15

3.1 OctoSPI common configuration . 15

3.1.1 GPIOs and OctoSPI IO manager configuration 15

3.1.2 Interrupts and clocks configuration . 16

3.2 OctoSPI configuration for regular-command mode 17

3.3 OctoSPI configuration for HyperBus™ mode . 18

3.4 Memory configuration . 18

3.4.1 Octal-SPI memory device configuration . 18

3.4.2 HyperBus™ memory device configuration . 19

4 OctoSPI application examples . 20

4.1 Implementation examples . 20

4.1.1 Using OctoSPI in a graphical application . 20

4.1.2 Executing from external memory: extend internal memory size 21

4.2 OctoSPI STM32CubeMX examples . 22

4.2.1 Hardware description . 22

DocID030787 Rev 1 3/51

AN5050 Contents

3

4.2.2 Use case description . 24

4.2.3 OctoSPI GPIOs and clocks configuration . 25

4.2.4 Regular-command mode . 33

4.2.5 HyperBus™ mode . 43

5 Decreasing power consumption . 47

5.1 STM32 low-power modes . 47

5.2 Decreasing Octal-SPI memory's power consumption 47

5.2.1 Timeout counter usage . 47

5.2.2 Put the memory in deep power-down mode . 48

6 Conclusion . 49

7 Revision history . 50

List of tables AN5050

4/51 DocID030787 Rev 1

List of tables

Table 1. OctoSPI availability and features across STM32 families. 6
Table 2. OctoSPI peripheral state in different power modes on STM32L4Rxxx and STM32L4Sxxx 47
Table 3. Document revision history . 50

DocID030787 Rev 1 5/51

AN5050 List of figures

5

List of figures

Figure 1. STM32L4Rxxx and STM32L4Sxxx system architecture. 8
Figure 2. Example of connecting an Octal-SPI Flash memory and a

HyperRAM™ memory to an STM32 device . 10
Figure 3. Regular-command mode: octal DTR read operation example

in Macronix mode . 11
Figure 4. HyperBus™ mode: example of reading operation from HyperRAM™ 12
Figure 5. OCTOSPI1 and OCTOSPI2 clock scheme. 17
Figure 6. OctoSPI graphic application use case . 21
Figure 7. Executing code from memory connected to OCTOSPI2 . 22
Figure 8. Octal-SPI Flash and HyperRAM™ memories connection to the

STM32L4R9AI device in the STM32L4R9I-EVAL board . 23
Figure 9. Examples configuration: OCTOSPI1 set to

regular-command mode and OCTOSPI2 set to HyperBus™ . 24
Figure 10. STM32CubeMX: setting Octal I/O mode for OCTOSPI1 . 25
Figure 11. STM32CubeMX: mapping OCTOSPI1 signals to Port1 . 26
Figure 12. STM32CubeMX: setting PB0 pin to OCTOSPIM_P1_IO1 alternate function 27
Figure 13. STM32CubeMX - OCTOSPI1 GPIOs correct configuration . 28
Figure 14. STM32CubeMX - configuration tab . 28
Figure 15. OCTOSPI1 button in the configuration tab . 29
Figure 16. STM32CubeMX - setting GPIOs to very high speed . 29
Figure 17. STM32CubeMX: mapping OCTOSPI2 signals to port 2 . 30
Figure 18. STM32CubeMX: OCTOSPI2 GPIOs correct configuration. 31
Figure 19. STM32CubeMX: enabling OCTOSPI1 global interrupt. 31
Figure 20. STM32CubeMX: enabling OCTOSPI2 global interrupt. 32
Figure 21. STM32CubeMX: system clock configuration . 32
Figure 22. STM32CubeMX: OCTOSPI1 and OCTOSPI2 clock source configuration 33
Figure 23. OCTOSPI1 peripheral configuration in regular-command mode . 34
Figure 24. OCTOSPI2 peripheral configuration in HyperBus™ mode. 44

Overview of STM32L4+ Series OctoSPI interface AN5050

6/51 DocID030787 Rev 1

1 Overview of STM32L4+ Series OctoSPI interface

This section provides an overview of the OctoSPI interface availability across the different
STM32 devices. It gives a clear explanation on the OctoSPI integration in the STM32 MCUs
system architecture.

1.1 OctoSPI availability and features across STM32L4+ Series

Table 1 summarizes the STM32 MCUs embedding the OctoSPI interface and details their
related features.

1.2 OctoSPI in a smart architecture

The OCTOSPI is an AHB slave mapped on a dedicated AHB layer. This type of mapping
allows the OCTOSPI to be accessible as if it was an internal memory thanks to memory-
mapped mode.

In addition, the OCTOSPI interface is integrated in a smart architecture that enables:

• All masters can access autonomously to external memory without any CPU
intervention.

• Masters can read/write data from/to memory in SLEEP mode when the CPU is
stopped.

• CPU as a master can access the OCTOSPI and then execute code from the memory.

• GP DMA can do transfers from OCTOSPI to other internal or external memories.

• Graphical DMA2D can directly build framebuffer using graphic primitives from the
connected Octal-SPI Flash or HyperFlash™ memory.

• Graphical DMA2D can directly build framebuffer in Octal-SPI SRAM or HyperRAM™.

• GFXMMU as a master can autonomously access the OCTOSPI.

• LTDC can fetch framebuffer directly from the memory that is connected to the
OCTOSPI.

Table 1. OctoSPI availability and features across STM32 families

OctoSPI
features

Max AHB
frequency

(MHz)

Maximum OctoSPI speed (MHz)(1)

1. Maximum OctoSPI speed reported on product’s datasheet. For more details on the OctoSPI maximum
speed refer to the relevant device's datasheet.

Max addressable
space(2)

2. 32-bit address mode should be used to reach the 256 Mbytes in memory-mapped mode and 4 Gbytes in
indirect mode.

Regular-command
mode

HyperBus™
mode

SDR DTR (DTR with DQS)
Memory-
mapped

Indirect
mode

STM32L4Rxxx/
STM32L4Sxxx

120 86 60 64 256 Mbytes 4 Gbytes

DocID030787 Rev 1 7/51

AN5050 Overview of STM32L4+ Series OctoSPI interface

50

1.2.1 STM32L4Rxxx and STM32L4Sxxx system architecture

The STM32L4Rxxx and STM32L4Sxxx system architecture consists mainly of a 32-bit
multilayer AHB bus matrix that interconnects nine masters and eleven slaves.

The system of the STM32L4Rxxx and STM32L4Sxxx devices integrates the OCTOSPI
peripheral as described below:

• Two OCTOSPI slaves: OCTOSPI1 and OCTOSPI2. Each of them is mapped on a
dedicated AHB layer.

• Each OCTOSPI slave is completely independent from each other. Each OCTOSPI
slave can be configured independently.

• Each OCTOSPI slave is independently accessible by all the masters on the AHB bus
matrix.

• When the MCU is in Sleep or Low-power sleep mode, the connected memories are still
accessible by the masters.

• In memory-mapped mode:

– OCTOSPI1 addressable space is from 0x90000000 to 0x9FFFFFFF

– OCTOSPI2 addressable space is from 0x70000000 to 0x7FFFFFFF.

• In a graphical application, the LTDC can autonomously fetch pixels data from the
connected memory.

• The external memory connected to OCTOSPI1 or OCTOSPI2 can be accessed (for
code execution or data) by the Cortex®-M4 either through S-Bus or through I-bus and
D-bus when physical remap is enabled.

Figure 1 shows OCTOSPI1 and OCTOSPI2 slaves interconnection in the STM32L4Rxxx
and STM32L4Sxxx system architecture.

Overview of STM32L4+ Series OctoSPI interface AN5050

8/51 DocID030787 Rev 1

Figure 1. STM32L4Rxxx and STM32L4Sxxx system architecture

DocID030787 Rev 1 9/51

AN5050 OctoSPI interface description

50

2 OctoSPI interface description

The OctoSPI is a serial interface which allows communication on 8 data lines between a
host (STM32) and an external slave device (like a memory).

This interface is integrated on the STM32 MCU to fit memory-hungry applications without
compromising performances, to simplify PCB (printed circuit board) designs and to reduce
costs.

2.1 OctoSPI hardware interface

The OctoSPI provides a flexible hardware interface, which enables the support of multiple
hardware configurations. It supports the Single-SPI (traditional SPI), Dual-SPI, Quad-SPI,
Dual Quad-SPI and Octal-SPI. The flexibility of the OctoSPI’s hardware interface permits
the connection of several serial memories available in the market.

2.1.1 OctoSPI pins and signal interface

The OctoSPI interface uses up to eleven lines:

• OCTOSPI_NCS line for chip select

• OCTOSPI_CLK line for clock

• OCTOSPI_DQS line for data strobe

• OCTOSPI_IO[0...7] eight lines for data

Note: The HyperBus™ protocol supports single-ended clocks with 3 V signals and differential
clock with 1 V8 signals, please note that only single ended clock is supported by OctoSPI.

Figure 2 shows OctoSPI interface signals.

2.1.2 OctoSPI IO manager

The OctoSPI IO manager allows the user to set a fully programmable pre-mapping of the
OCTOSPI1 and OCTOSPI2 signals. Any OCTOSPIM_Pn_x port signal can be mapped
independently to OCTOSPI1 or OCTOSPI2.

By default, after reset all the signals of the OCTOSPI1 and OCTOSPI2 are mapped
respectively on port 1 and on port 2.

For instance when two external memories are used, a HyperRAM™ can be connected to
Port1 and an Octal-SPI Flash can be connected to Port2 as shown in Figure 2. In that case
the user has two possibilities:

• HyperRAM™ memory linked to OCTOSPI1 and Flash memory linked to OCTOSPI2.

• HyperRAM™ memory linked to OCTOSPI2 and Flash memory linked to OCTOSPI1.

Figure 2 shows an Octal-SPI Flash memory and a HyperRAM™ memory connected to the
STM32 MCU using the OctoSPI interface. Thanks to the OctoSPI IO manager, the
HyperRAM™ memory can be linked to OCTOSPI1 and the Flash memory can be linked to
OCTOSPI2 and vice versa.

OctoSPI interface description AN5050

10/51 DocID030787 Rev 1

Figure 2. Example of connecting an Octal-SPI Flash memory and a
HyperRAM™ memory to an STM32 device

2.2 Two low-level protocols

The OctoSPI interface can operate in two different low-level protocols, the regular-command
mode and the HyperBus™ mode. Each protocol supports three operating modes: the
indirect mode, the status-flag polling mode, and the memory-mapped mode.

2.2.1 Regular-command mode

The regular-command mode is the classical frame format where the OctoSPI communicates
with the external memory device by using commands where each command can include up
to five phases. The external memory device can be an SPI, Dual-SPI, Quad-SPI, Dual
Quad-SPI or Octal-SPI memory.

Flexible frame format and hardware interface

The OctoSPI interface provides a fully programmable frame composed of five phases. Each
phase is fully configurable, allowing the phase to be configured separately in terms of length
and number of lines. The five phases are:

• Instruction phase: this phase can be set to send a one, two, three or four bytes
instruction (SDR or DTR). This phase can send instructions using the Single-SPI (2
lines), Dual-SPI, Quad-SPI or Octal-SPI mode.

• Address phase: this phase can be set to send one, two, three or four bytes address.
This phase can send addresses using the Single-SPI (2 lines), Dual-SPI, Quad-SPI or
Octal-SPI mode.

• Alternate-bytes phase: this phase can be set to send one, two, three or four alternate-
bytes. This phase can send alternate-bytes using the Single-SPI (2 lines), Dual-SPI,
Quad-SPI or Octal-SPI mode.

• Dummy-cycles phase: this phase can be set to 0 to up to 31 cycles.

• Data phase: for indirect or automatic-polling mode, the number of bytes to be
sent/received is specified in the OCTOSPI_DLR register. For memory-mapped mode
the bytes are sent/received following any AHB access request. This phase can

DocID030787 Rev 1 11/51

AN5050 OctoSPI interface description

50

send/receive data using the Single-SPI (2 lines), Dual-SPI, Quad-SPI, Dual Quad-SPI
or Octal-SPI mode.

Any of these phases can be configured to be skipped. Figure 3 illustrates an example of an
octal DTR read operation showing instruction, address, dummy and data phases.

Data strobe (DQS) usage

The DQS signal can be used for data strobing during the read transactions when the device
is toggling the DQS aligned with the data.

Figure 3. Regular-command mode: octal DTR read operation example
in Macronix mode

2.2.2 HyperBus™ mode

The OctoSPI supports the HyperBus™ protocol which enables the communication with
HyperRAM™ and HyperFlash™ memories.

The HyperBus™ has a double data rate (DDR) interface where two data-bytes per clock
cycle are transferred over the DQ input/output (I/O) signals, leading to high read and write
throughputs.

Note: For additional information on HyperBus™ interface operation, refer to the HyperBus™
specification.

The HyperBus™ frame is composed of two phases:

• Command/address phase: during this phase, the OctoSPI sends 48 bits (CA[47:0])
over IO[7:0] to specify the operations that should be performed with the external
device.

• Data phase: during this phase, the OctoSPI performs data transactions from/to the
memory.

During the command/address (CA) phase, the read-recovery time (RWDS) is used by the
HyperRAM™ memory to indicate whether an additional initial access latency should be
inserted. If RWDS was low during the CA period, only one latency count is inserted (tACC
initial access). If RWDS was high during the CA period, an additional latency count is
inserted (2*tACC).

OctoSPI interface description AN5050

12/51 DocID030787 Rev 1

The initial latency count (tACC) represents the number of clock cycles without data transfer
used to satisfy any initial latency requirements before data is transferred. The initial latency
count required for a particular clock frequency is device dependent, it is defined in the
memory device configuration register.

Note: For HyperFlash™ memories, the RWDS is only used as a read data strobe.

Figure 4 illustrates an example of a HyperBus™ read operation.

Figure 4. HyperBus™ mode: example of reading operation from HyperRAM™

Depending on the application needs, the OctoSPI peripheral can be configured to operate in
the following HyperBus™ modes:

• HyperBus™ memory mode: the protocol follows the HyperBus™ specification, allowing
read/write access from/to the HyperBus™ memory.

• HyperBus™ register mode: should be used to access to the memory's register space,
which is useful for memory configuration.

2.3 Three operating modes

Whatever the used low-level protocol, the OctoSPI can operate in the three operating
modes: the indirect mode, the status-flag polling mode and the memory-mapped mode.

2.3.1 Indirect mode

The indirect mode is used either for HyperBus™ or for regular-command low-level
protocols. The indirect mode is used in below cases:

• For reading, writing or erasing operations.

• If there is no need for AHB masters to access autonomously the OctoPI peripheral
(available in memory-mapped mode).

• For all the operations to be performed through the OctoSPI data register using CPU or
using DMA.

• To configure the external memory device.

DocID030787 Rev 1 13/51

AN5050 OctoSPI interface description

50

2.3.2 Status-flag polling mode

The status-flag polling mode allows an automatic polling fully managed by hardware on the
memory status register. This feature avoids the software overhead and the need to perform
software polling. An interrupt can be generated in case of match.

The status-flag polling mode is mainly used in the below cases:

• To check if the application has successfully configured the memory: after a write
register operation, the OctoSPI periodically reads the memory's register and checks if a
bit or bits are properly set. An interrupt can be generated when the check is ok.

– Example: this mode is commonly used to check if the write enable latch bit (WEL)
is set. Once the WEL bit is set, the status match flag is set and an interrupt can be
generated (if the status-match interrupt-enable bit (SMIE) is set)

• To autonomously poll for the end of an ongoing memory operation: the OctoSPI polls
the status register inside the memory while the CPU continues the execution, an
interrupt can be generated when the memory operation has finished.

– Example: this mode is commonly used to wait for an ongoing memory operation
(programming/erasing). The OctoSPI in status-flag polling mode reads
continuously the memory status register and checks the write in progress bit
(WIP). As soon as the operation ends, the status-match flag is set and an interrupt
can be generated (if SMIE is set).

2.3.3 Memory-mapped mode

The memory-mapped mode is used in the cases below:

• For reading and writing operations.

• To use the external memory device exactly like an internal memory, so any AHB master
can access it autonomously.

• For code execution from external memory device.

In memory-mapped mode the external memory is seen by the system as if it was an internal
memory. This mode allows all AHB masters to access to an external memory device as if it
was an internal memory. The CPU can execute code from the external memory as well.

When the memory-mapped mode is used for reading, a prefetching mechanism, fully
managed by the hardware, enables the optimization of the read and the execution
performances from the external memory.

Each OctoSPI peripheral is able to manage up to 256 Mbytes of memory space:

• OCTOSPI1 addressable space: from 0x90000000 to 0x9FFFFFFF (256 Mbytes)

• OCTOSPI2 addressable space: from 0x70000000 to 0x7FFFFFFF (256 Mbytes)

Starting memory-mapped read or write operation

A memory-mapped operation is started:

• As soon as there is an AHB master read request to an address in the range defined by
DEVSIZE

• As soon as there is an AHB master write request to an address in the range defined by
DEVSIZE

If there is an on-going memory-mapped read operation, the application can start a write
operation as soon as the on-going read operation is terminated.

OctoSPI interface description AN5050

14/51 DocID030787 Rev 1

If there is an on-going memory-mapped write operation, the application can start a read
operation as soon as the on-going write operation is terminated.

Note: When programming a Flash memory in memory-mapped mode the application should wait
until the programming operation finishes. Since it is not possible to poll on the write in
progress memory flag in memory-mapped mode, the application should insert a delay
corresponding to the operation duration.

Note: Reading the OCTOSPI_DR data register in memory-mapped mode has no meaning and
returns 0.

The data length register OCTOSPI_DLR has no meaning in memory-mapped mode.

Execute in place (XIP)

The OCTOSPI supports execution in place (XIP) thanks to its integrated prefetch buffer. The
XIP permits to execute the code directly from the external memory device. The OctoSPI
anticipates the next CPU access and loads the byte in advance at the following address. If
the subsequent access is indeed made at a continuous address, the access is completed
faster since the value is already prefetched.

Send instruction only once (SIOO)

The SIOO feature permits the reduction of the command overhead and boost non-
sequential reading performances (like execution). When SIOO is enabled, the command is
sent only once when starting the reading operation, then for the next accesses only the
address is sent.

DocID030787 Rev 1 15/51

AN5050 OctoSPI configuration

50

3 OctoSPI configuration

In order to enable the read or write form/to external memory, the application should
configure the OctoSPI peripheral and the connected memory device.

There are some common and some specific configuration steps regardless of the low-level
protocol used (regular-command mode or HyperBus™ mode).

• OctoSPI common configuration steps:

– GPIOs and OctoSPI IO manager configuration

– Interrupts and clock configuration

• OctoSPI specific configuration steps:

– OctoSPI low-level protocol specific configurations (regular-command or
HyperBus™)

– Memory device configuration

The following subsections describe all needed OctoSPI configuration steps to enable the
communication with external memories.

3.1 OctoSPI common configuration

This section describes the common steps needed to configure the OctoSPI peripheral
regardless of the used low-level protocol (regular-Command mode or HyperBus™ mode).

Note: It is recommended to reset the OctoSPI peripheral before starting a configuration. This
action also guarantees that the peripheral is in reset state.

3.1.1 GPIOs and OctoSPI IO manager configuration

The user should configure the GPIOs to be used for interfacing with the external memory.
The number of GPIOs to be configured depends on the preferred hardware configuration
(Single-SPI, Dual-SPI, Quad-SPI, Dual Quad-SPI or Octal-SPI).

In Octal-SPI mode, when only one external memory is connected, ten GPIOs are needed.
An additional GPIO for DQS is optional for regular-command mode and mandatory for
HyperBus™ mode.

When two external octal memories are connected, each memory should be connected to an
IO manager port, which requires up to 22 GPIOs.

The user should select the proper package depending on its needs in terms of GPIOs
availability.

The OctoSPI GPIOs should be configured to the correspondent alternate function. For more
details on OctoSPI alternate functions availability versus GPIOs, refer to the alternate
function mapping table in the relevant datasheet.

Note: All GPIOs have to be configured in very high-speed mode.

OctoSPI configuration AN5050

16/51 DocID030787 Rev 1

GPIOs configuration using STM32CubeMX tool

Using the STM32CubeMX tool is a very simple, easy and rapid way to configure the
OctoSPI peripheral and its GPIOs. STM32CubeMx permits to generate a project with a
preconfigured OctoSPI. Section 4.2.3 provides a guide on how to configure the OctoSPI
GPIOs.

OctoSPI IO manager configuration

By default, after reset all the signals of the OCTOSPI1 and OCTOSPI2 are mapped
respectively to port 1 and to port 2.

3.1.2 Interrupts and clocks configuration

This section describes the steps required to configure interrupts and clocks.

Enabling interrupts

In the STM32L4Rxxx and STM32L4Sxxx devices, each OctoSPI peripheral has its
dedicated global interrupt connected to the NVIC.

To be able to use OCTOSPI1 and/or OCTOSPI2 interrupts, the user should enable the
OCTOSPI1 and/or OCTOSPI2 global interrupts on the NVIC side.

Once that the global interrupts are enabled on the NVIC, each interrupt can be enabled
separately via its corresponding enable bit.

Clock configuration

In the STM32L4Rxxx and STM32L4Sxxx devices both OCTOSPI1 and OCTOSPI2
peripherals have the same clock source. Each peripheral has its dedicated prescaler
allowing the application to connect two different memories running at different speeds. The
following formula shows the relationship between OctoSPI clock and the prescaler.

OCTOSPIx_CLK = FClock_source / (PRESCALER + 1)

For instance when the PRESCALER[7:0] is set to 2 then
OCTOSPIx_CLK = FClock_source / 3

On STM32L4Rxxx and STM32L4Sxxx devices any of the three different clock sources,
SYSCLK, MSI or PLLQ, can be used for OctoSPI clock source.

Note: User should consider the frequency drift when using the MSI or HSI oscillator. Refer to
relevant datasheet for more details on MSI and HSI oscillator frequency drift.

Figure 5 illustrates the OCTOSPI1 and OCTOSPI2 clock scheme.

DocID030787 Rev 1 17/51

AN5050 OctoSPI configuration

50

Figure 5. OCTOSPI1 and OCTOSPI2 clock scheme

3.2 OctoSPI configuration for regular-command mode

The regular-command mode should be used when an external-SPI, Quad SPI, Dual Quad-
SPI or Octal-SPI memory is connected to the STM32.

The user should configure the following OctoSPI parameters:

• Memory type: Micron mode, Macronix mode or Macronix RAM mode.

• Device size: number of bytes in device = 2[DEVSIZE+1].

• Chip-select high time: the CSHT should be configured according to the memory
datasheet. It is commonly named CS# Deselect Time. It represents the period between
two successive operations where the memory is deselected.

• Clock mode: low (Mode 0) or high (Mode 3).

• Clock prescaler should be set to get the targeted operating clock.

• DHQC is recommended when writing to the memory. It shifts the outputs by a 1/4
OctoSPI clock cycle and avoids hold issues on the memory side

• SSHIFT can be enabled when reading from the memory in SDR mode but must not be
used in DTR mode. When enabled, the sampling is delayed by one more ½ OCTOSPI
clock cycle enabling more relaxed input timings.

OctoSPI configuration AN5050

18/51 DocID030787 Rev 1

3.3 OctoSPI configuration for HyperBus™ mode

The HyperBus™ mode should be used when an external HyperRAM™ or HyperFlash™
memory is connected to the STM32.

The user should configure the following OctoSPI parameters:

• Memory type: HyperBus™ mode.

• Device size: number of bytes in device = 2[DEVSIZE+1].

• Chip-select high time: the CSHT should be configured according to the memory
datasheet. It is commonly named CS# Deselect Time. It represents the period between
two successive operations where the memory is deselected.

• Clock mode low (Mode 0) or high (Mode 3).

• Clock prescaler should be set to get the targeted operating clock.

• DTR (DDR) mode must be enabled for HyperBus™

• DHQC is recommended when writing to the memory. It shifts the outputs by a 1/4
OCTOSPI clock cycle and avoids hold issues on the memory side.

• SSHIFT must be disabled since HyperBus™ is operating in DDR mode.

• Read-write recovery time (tRWR): it is used only for HyperRAM™ and it should be
configured according to the memory device.

• Initial latency (tACC): should be configured according to the memory device and the
operating frequency.

• Latency mode: fixed or variable latency.

• Latency on write access: enabled or disabled.

3.4 Memory configuration

The external memory device should be configured depending on the targeted operating
mode. This section describes some commonly needed configurations for HyperBus™ and
Octal-SPI memories.

3.4.1 Octal-SPI memory device configuration

It is common that the application needs to configure the memory device. An example of
commonly needed configurations is presented below:

• Set the dummy cycles according to the operating speed (see relevant memory device
datasheet).

• Enable the Octal mode which enables the communication in Octal I/O mode.

• Enable DTR mode which enables the communication in DTR mode.

Note: It is recommended to reset the memory device before configuration. In order to reset the
memory a reset enable command then a reset command need to be issued.

DocID030787 Rev 1 19/51

AN5050 OctoSPI configuration

50

3.4.2 HyperBus™ memory device configuration

The HyperBus™ memory device should be configured depending on the targeted OctoSPI
operating mode. To configure HyperBus™ memory device, the HyperBus™ register mode
should be selected in order to address the memory register space. This can be done by
setting MTYP[2:0] to 0b101 in the OCTOSPI_DCR1 register.

Here below an example of HyperBus™ device parameters in the memory's configuration
register fields:

• Deep power-down (DPD) operation mode.

• Initial latency count (should be configured depending on the memory clock speed).

• Fixed or variable latency.

• Hybrid wrap option.

• Wrapped burst length and alignment.

OctoSPI application examples AN5050

20/51 DocID030787 Rev 1

4 OctoSPI application examples

This section provides some typical OctoSPI implementation examples and STM32CubeMX
examples using the STM32L4R9I-EVAL board.

4.1 Implementation examples

This section provides some typical OctoSPI use case examples. The following examples
are described in this section:

• OctoSPI usage in a graphical application

• Code execution from OctoSPI memory

4.1.1 Using OctoSPI in a graphical application

The STM32L4Rxxx and STM32L4Sxxx devices embed two independent OctoSPI
peripherals that enable the connection of two external memories. This configuration is ideal
for graphical applications where:

• An Octal-SPI Flash memory is connected to OCTOSPI1 which is used to store
graphical primitives.

• A HyperRAM™ memory is connected to OCTOSPI2 which is used to build framebuffer.

• OCTOSPI1 should be set to regular-command mode in order to communicate with the
Octal Flash memory.

• OCTOSPI2 should be set to HyperBus™ mode in order to communicate with
HyperRAM™ memory.

• Both OCTOSPI1 and OCTOSPI2 should be configured to memory-mapped mode.

• Any AHB master such as CPU, LTDC, DMA2D or GFXMMU can autonomously access
to both memories exactly like an internal memory.

DocID030787 Rev 1 21/51

AN5050 OctoSPI application examples

50

Figure 6. OctoSPI graphic application use case

4.1.2 Executing from external memory: extend internal memory size

Using the external Octal-SPI memory permits to extend the total application's available
memory space.

To execute code from an external memory:

• The application's code should be placed in the external memory.

• The OctoSPI should be configured in memory-mapped mode during the system's
initialization before jumping to the Octal-SPI memory code.

As illustrated in Figure 7, the CPU can execute code from the external memory connected
to OCTOSPI2, while in parallel DMA2D and LTDC access to the memory connected to
OCTOSPI1 for graphics.

By default OCTOSPI1 and OCTOSPI2 are accessed by the Cortex®-M4 through S-bus. In
order to boost execution performances, physical remap to 0x00000000 can be enabled for
OCTOSPI2 allowing execution through I-bus and D-bus.

OctoSPI application examples AN5050

22/51 DocID030787 Rev 1

Figure 7. Executing code from memory connected to OCTOSPI2

4.2 OctoSPI STM32CubeMX examples

This section provides two examples of basic OctoSPI configuration based on the
STM32L4R9I-EVAL board:

• Regular-command low-level protocol in indirect mode for programming and in memory-
mapped mode for reading from the Octal-SPI Flash memory.

• HyperBus™ low-level protocol in memory-mapped mode enabling reading and writing
from/to the HyperRAM™ memory.

Note: The regular-command mode example can be easily ported to the STM32L4R9I-DISCO
board which embeds a MACRONIX MX25LM51245GXDI00 Octal-SPI Flash memory (same
memory as STM32L4R9I-EVAL board).

For more details on the STM32L4R9I-EVAL and STM32L4R9I-DISCO boards, refer to
UM2248 and UM2271 respectively.

4.2.1 Hardware description

The STM32L4R9I-EVAL board used for these examples embeds two external memories:

• The MACRONIX MX25LM51245GXDI0A Octal-SPI Flash memory connected to Port1.

• The ISSI IS66WVH8M8BLL-100BLI HyperRAM™ memory connected to Port2.

DocID030787 Rev 1 23/51

AN5050 OctoSPI application examples

50

As shown in Figure 8, each memory is connected to the STM32L4R9AI device using eleven
pins:

• OCTOSPI_CS

• OCTOSPI_CLK

• OCTOSPI_DQS

• OCTOSPI_IO[0..7]

The OCTOSPI_RESET reset pin permits to reset the memories, it is connected to the global
MCU reset pin (NRST).

Figure 8 shows MACRONIX MX25LM51245GXDI0A and ISSI IS66WVH8M8BLL-100BLI
memories connected to the STM32L4R9AI MCU.

Figure 8. Octal-SPI Flash and HyperRAM™ memories connection to the
STM32L4R9AI device in the STM32L4R9I-EVAL board

OctoSPI application examples AN5050

24/51 DocID030787 Rev 1

4.2.2 Use case description

The adopted configuration for each example is:

• Regular-command mode example:

– OCTOSPI1 signals are mapped to port 1 (Nor Flash) so OCTOSPI1 has to be set
to regular-command mode.

– SDR Octal I/O mode (without DQS) with OCTOSPI1 running @ 60 MHz.

– Programming the memory in indirect mode and reading in memory-mapped mode.

• HyperBus™ mode example:

– OCTOSPI2 signals are mapped to port 2 (HyperRAM™) so OCTOSPI2 has to be
set to HyperBus™ mode.

– DDR Octal I/O mode (with DQS) with OCTOSPI2 running @ 30 MHz.

– Memory-mapped mode for reading and writing.

Figure 9 illustrates the OctoSPI configuration for each example.

Figure 9. Examples configuration: OCTOSPI1 set to
regular-command mode and OCTOSPI2 set to HyperBus™

The two examples described later on, regular-command and HyperBus™, have some
common configurations based on STM32CubeMX:

• GPIO and OctoSPI IO manager configuration.

• Interrupts and clock configuration.

DocID030787 Rev 1 25/51

AN5050 OctoSPI application examples

50

Each example has the following specific configurations:

• OctoSPI peripheral configuration.

• Memory device configuration.

4.2.3 OctoSPI GPIOs and clocks configuration

This section describes the needed steps to configure the OCTOSPI1 and OCTOSPI2
GPIOs and clocks. These steps are the same whatever the low-level protocol used (regular-
command mode or HyperBus™ mode).

I. STM32CubeMX: GPIOs configuration

As shown in Figure 8, the MACRONIX MX25LM51245GXDI00 Octal-SPI Flash memory is
connected to the STM32L4R9 MCU through the OctoSPI IO manager port 1 while the ISSI
IS66WVH8M8BLL-100BLI HyperRAM™ is connected through port 2. Based on this
hardware implementation the user should configure all the GPIOs shown in Figure 8.

A. STM32CubeMX: OCTOSPI1 GPIOs configuration

Once that the STM32CubeMX project is created for the STM32L4R9AI product, the user
must follow the steps below:

1. Select the pinout tab and uncollapse the OCTOSPI1 as shown in Figure 10.

2. Configure the Octal I/O mode for OCTOSPI1 by selecting “Octo Single Ended Mode”
in the listed hardware configurations shown in Figure 10.

Figure 10. STM32CubeMX: setting Octal I/O mode for OCTOSPI1

1. Pink color highlights the key items in the figure.

OctoSPI application examples AN5050

26/51 DocID030787 Rev 1

3. Mapping OCTOSPI1 signals to port 1:

– Set the OCTOSPI1 LSB data signals Data[3:0] to port 1 [3:0]

– Set the OCTOSPI1 MSB data signals Data[7:4] to port 1 [7:4]

– Set the OCTOSPI1 chip select to port 1 NCS

– Set the OCTOSPI1 clock to port 1 CLK

– Set the OCTOSPI1 data strobe to port 1 DQS.(a)

Figure 11 shows how to map OCTOSPI1 signals to port 1.

Figure 11. STM32CubeMX: mapping OCTOSPI1 signals to Port1

1. Pink color highlights the key items in the figure.

The user must make sure that the configured GPIOs match the memory connection as
shown in Figure 8. If the configuration is not correct, he must manually configure all the
GPIOs, one by one, by clicking on each pin directly.

a. DQS pin is used in the STM32L4R9I-EVAL board and configured in this example, but it is optional for regular-
command mode. Some memory commands require DQS while some others do not require it (see MACRONIX
MX25LM51245GXDI00 datasheet).

DocID030787 Rev 1 27/51

AN5050 OctoSPI application examples

50

Figure 12 shows how to manually configure the PB0 pin to OCTOSPIM_P1_IO1 alternate
function.

Figure 12. STM32CubeMX: setting PB0 pin to OCTOSPIM_P1_IO1 alternate function

1. Pink color highlights the key items in the figure.

OctoSPI application examples AN5050

28/51 DocID030787 Rev 1

4. OCTOSPI1 GPIOs correct configuration

Figure 13 shows the OCTOSPI1 GPIOs properly configured to port 1.

Figure 13. STM32CubeMX - OCTOSPI1 GPIOs correct configuration

1. Pink color highlights the key items in the figure.

Once that all the OctoSPI GPIOs are properly set, the status of the OCTOSPI1 should be
OK in the OCTOSPI1 configuration button as illustrated in Figure 15. Else a red cross is
displayed in the configuration tab and an error message will be displayed.

5. Configuring OCTOSPI1 GPIOs to very high speed

a) Select the configuration tab shown in Figure 14.

Figure 14. STM32CubeMX - configuration tab

1. Pink color highlights the key items in the figure.

b) Click on the OCTOSPI1 button in the configuration tab as shown in Figure 15.

DocID030787 Rev 1 29/51

AN5050 OctoSPI application examples

50

Figure 15. OCTOSPI1 button in the configuration tab

1. Pink color highlights the key items in the figure.

c) In the OCTOSPI1 configuration window, select the GPIO settings tab then make
sure that all the GPIOs output speed is set to “very high” as shown in Figure 16.

d) Click on Apply and then OK.

Figure 16. STM32CubeMX - setting GPIOs to very high speed

1. Pink color highlights the key items in the figure.

B. STM32CubeMX: OCTOSPI2 GPIOs configuration

To configure OCTOSPI2 GPIOs, follow the following steps:

OctoSPI application examples AN5050

30/51 DocID030787 Rev 1

1. Select the pinout tab and uncollapse the OCTOSPI2 as shown in Figure 17.

2. Configure the Octal I/O mode for OCTOSPI2 by selecting “Octo Single Ended Mode”
in the listed hardware configurations shown in Figure 17.

3. Mapping OCTOSPI2 signals to port 2

– Set the OCTOSPI2 LSB data signals Data[3:0] to port 2 [3:0]

– Set the OCTOSPI2 MSB data signals Data[7:4] to port 2 [7:4]

– Set the OCTOSPI2 chip select to port 2 NCS

– Set the OCTOSPI2 clock to port 2 CLK

– Set the OCTOSPI2 data strobe to port 2 DQS

Figure 17 shows how to map OCTOSPI2 signals to port 2.

Figure 17. STM32CubeMX: mapping OCTOSPI2 signals to port 2

1. Pink color highlights the key items in the figure.

Note: The DQS pin (RWDS) must be enabled since it is mandatory for HyperBus™ mode.

DocID030787 Rev 1 31/51

AN5050 OctoSPI application examples

50

4. OCTOSPI2 GPIOs correct configuration

To configure OCTOSPI2 GPIOs, follow the same steps as for OCTOSPI1. Figure 18 shows
the OCTOSPI2 GPIOs properly configured to port 2.

Figure 18. STM32CubeMX: OCTOSPI2 GPIOs correct configuration

1. Pink color highlights the key items in the figure.

5. Configuring OCTOSPI2 GPIOs to very high speed

To configure OCTOSPI2 GPIOs to very high speed, follow the same steps as for
OCTOSPI1.

II. STM32CubeMX: Enabling interrupts

As previously described in Section 3.1.2, each OctoSPI peripheral has its dedicated global
interrupt connected to the NVIC, so each peripheral interrupt should be enabled separately.

In the OCTOSPI1 configuration window (see Figure 19) select the NVIC settings tab, check
the OCTOSPI1 global interrupts then click on the OK button.

Figure 19. STM32CubeMX: enabling OCTOSPI1 global interrupt

1. Pink color highlights the key items in the figure.

OctoSPI application examples AN5050

32/51 DocID030787 Rev 1

In the OCTOSPI2 configuration window (see Figure 20) select the NVIC settings tab, check
the OCTOSPI2 global interrupts then click on the OK button.

Figure 20. STM32CubeMX: enabling OCTOSPI2 global interrupt

1. Pink color highlights the key items in the figure.

3. STM32CubeMX: clocks configuration

In this example the system clock is configured as shown below:

• Main PLL is used as system source clock.

• SYSCLK and HCLK set to 60 MHz, so Cortex®-M4 and AHB are operating @ 60 MHz.

As previously described in Section 3.1.2: Interrupts and clocks configuration, both
OctoSPI peripherals have the same clock source but each one has its dedicated
prescaler allowing to connect two memories running at different speeds.

In this example the SYSCLK is used as clock source for both OCTOSPI1 and
OCTOSPI2 peripherals.

• System clock configuration:

– Select the clock configuration tab.

– In the clock configuration tab, set the PLLs and the prescalers to get the system
clock @ 60 MHz as shown in Figure 21.

Figure 21. STM32CubeMX: system clock configuration

1. Pink color highlights the key items in the figure.

DocID030787 Rev 1 33/51

AN5050 OctoSPI application examples

50

• OctoSPI clock source configuration:

– In the clock configuration tab, select the SYSCLK clock source (see Figure 22).

Figure 22. STM32CubeMX: OCTOSPI1 and OCTOSPI2 clock source configuration

1. Pink color highlights the key items in the figure.

With this configuration, both OctoSPI peripherals are clocked by SYSCLK@60 MHz. Then
for each OctoSPI peripheral a prescaler is configured to get the 60 MHz and 30 MHz
targeted speed (see Section 4.2.4: Regular-command mode and Section 4.2.5: HyperBus™
mode).

4.2.4 Regular-command mode

Once that all of the OCTOSPI1 GPIOs and the clock configuration have been done, the user
should configure the OCTOSPI1 peripheral to the regular-command mode.

STM32CubeMX: OCTOSPI1 peripheral configuration in regular-command
mode

Referring to the Macronix MX25LM51245GXDI00 datasheet, the OCTOSPI1 parameters
should be configured as following:

• Memory type set to Macronix mode.

• Device size set to 26: memory size is 64 Mbytes = 2[DEVSIZE+1] = 2[25+1].

• Chip select high time (CSHT) set to 3: 3 OctoSPI clock cycles = 50 ns since in the
datasheet the minimum CS# Deselect time from write/erase/program to read status
register is 40 ns.

• Clock mode set to low (Mode 0).

• Clock prescaler set to 1: 60 MHz/1 = 60 MHz.

• Sample shifting (SSHIFT) is disabled.

• Delay hold quarter cycle (DHQC) must be disabled in SDR mode.

In the OCTOSPI1 configuration window, select the “Parameter Settings” tab and configure
the parameters as shown in Figure 23. Then click on “Apply” and “OK” button.

OctoSPI application examples AN5050

34/51 DocID030787 Rev 1

Figure 23. OCTOSPI1 peripheral configuration in regular-command mode

1. Pink color highlights the key items in the figure.

STM32CubeMX: project generation

Once that all of the GPIOs, the clock and the OCTOSPI1 peripheral configurations have
been done, the user should generate the project with the desired toolchain (SW4STM32,
EWARM, MDK-ARM….).

Indirect mode and memory-mapped mode configuration

At this stage the project should be already generated with GPIOs and OCTOSPI1 peripheral
properly configured following steps in Section 4.2.3: OctoSPI GPIOs and clocks
configuration andSection 4.2.4: Regular-command mode. In order to configure the
OCTOSPI1 peripheral in indirect/memory-mapped mode and to configure the external
memory allowing communication in SDR Octal I/O mode (without DQS), some functions
have to be added to the project.

• Adding code to the main.c file

Open the already generated project and follow the steps described below:

DocID030787 Rev 1 35/51

AN5050 OctoSPI application examples

50

Note: Update the main.c file by inserting the lines of code to include the needed functions in the
adequate space indicated in green bold below. This task allows to avoid losing the user
code in case of project regeneration.

1. Insert variables declarations in the adequate space indicated in green bold below.

/* USER CODE BEGIN PV */

/* Private variables --
---*/

uint8_t aTxBuffer[]=" Programming:indirect mode -Reading:mem-mapped mode ";

__IO uint8_t *ospi_dataregister = (__IO uint8_t *)(0xA0001050);

__IO uint8_t *nor_memaddr = (__IO uint8_t *)(OCTOSPI1_BASE);

__IO uint8_t aRxBuffer[BUFFERSIZE] ="";

/* USER CODE END PV */

2. Insert the functions prototypes in the adequate space indicated in green bold below.

/* USER CODE BEGIN PFP */

/* Private function prototypes --
---*/

void NOR_ResetMemory(void);

void WriteEnable(void);

void OctalWriteEnable(void);

void NOR_OctalSDR_MemoryCfg(void);

void OctalSectorErase(void);

void OctalAutoPollingWEL(void);

void OctalAutoPollingWIP(void);

void EnableMemMapped(void);

/* USER CODE END PFP */

3. Insert the functions to be called in the main() function, in the adequate space, indicated
in green bold below.

/* USER CODE BEGIN 1 */

uint16_t index;

/* USER CODE END 1 */

/* USER CODE BEGIN 2 */

/*-------------- MX25LM51245G memory configuration --------------*/

/* Reset the MX25LM51245G memory */

NOR_ResetMemory();

/* Configure MX25LM51245G memory to SDR Octal I/O mode */

NOR_OctalSDR_MemoryCfg();

/*---*/

/*------------------- Erasing the first sector ------------------*/

/* Enable writing to memory using Octal Write Enable cmd 0x06F9 */

OctalWriteEnable();

/* Enable Automatic Polling in Octal mode to wait until WEL=1 */

OctalAutoPollingWEL();

OctoSPI application examples AN5050

36/51 DocID030787 Rev 1

/* Erasing first sector using Octal erase cmd */

OctalSectorErase();

/* Insert a delay until Erase sequence is completed */

HAL_Delay(MEMORY_SECTOR_ERASE_DELAY);

/*Enable Auto-Polling Octal mode to wait until memory is ready(WIP=0)*/

OctalAutoPollingWIP();

/*---*/

/*------------------- Programming operation --------------------*/

/* Enable writing to memory using Octal Write Enable cmd 0x06F9 */

OctalWriteEnable();

/* Enable Auto-Polling in Octal mode to wait until WEL=1 */

OctalAutoPollingWEL();

/* Setting OCTOSPI1 to Indirect write SDR Octal mode */

/*DMODE=8lines, ADSIZE=32-bit, ADMODE=8lines, ISIZE=16-bit, IMODE=8lines*/

OCTOSPI1->CCR = 0x04003414;

/* Setting Octal write instruction 0x12ED */

OCTOSPI1->IR = OCTAL_PAGE_PROG_CMD;

/* Setting the number of bytes to be written */

OCTOSPI1->DLR = BUFFERSIZE-1;

/* Setting the first programming address */

OCTOSPI1->AR = 0x00000000;

/*##### Writing the aTxBuffer(using CPU) to the memory #####*/

for(index = 0; index < BUFFERSIZE; index++)

{

*ospi_dataregister = aTxBuffer[index];

}

/* Insert a delay until Page prog sequence is completed */

HAL_Delay(MEMORY_PAGE_PROG_DELAY);

/* Enable Auto-Polling Octal mode to wait until memory is ready (WIP=0)*/

OctalAutoPollingWIP();

/*--*/

/*----- Configuring OCTOSPI1 to memory-mapped SDR Octal Read/write -----*/

EnableMemMapped();

/*--*/

/*------------------ Reading from the NOR memory ----------------------*/

for(index = 0; index < BUFFERSIZE; index++)

{

/* Reading back the aTxBuffer in memory-mapped mode */

aRxBuffer[index] = *nor_memaddr;

if(aRxBuffer[index] != aTxBuffer[index])

{

/* Can add code to toggle a LED when data doesn’t match */

}

DocID030787 Rev 1 37/51

AN5050 OctoSPI application examples

50

*nor_memaddr++;

}

/*---*/

/* USER CODE END 2 */

4. Insert the functions definitions, called in the main(), in the adequate space indicated in
green bold below.

/* USER CODE BEGIN 4 */

/*** This function Resets the MX25LM51245G memory ***/

void NOR_ResetMemory(void)

{

/* Setting OCTOSPI1 to indirect write mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

/* Configure CCR reg to send Reset enable command in 1 line */

OCTOSPI1->CCR = 0x00000001;

/* Set Reset-Enabe cmd in Inst register */

OCTOSPI1->IR = 0x66;

/* Wait till 0x66 cmd is sent and transfer complete flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

 OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

/* Set Reset cmd in Inst register */

OCTOSPI1->IR = 0x99;

/* Wait till 0x99 cmd is sent and transfer complete flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

/* Wait until memory Reset sequence is completed */

HAL_Delay(2);

}

/* This function Enables writing to the memory: write enable cmd is sent in
single SPI mode */

void WriteEnable(void)

{

/* Setting OCTOSPI1 to indirect write mode to send write enable cmd */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

/* Configure CCR reg to send write enable command */

OCTOSPI1->CCR = 0x00000001;

/* Set Write enable cmd (0x06) in Inst register */

OCTOSPI1->IR = WRITE_ENABLE_CMD;

/* Wait till 0x06 cmd is sent and transfer complete flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

 OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

OctoSPI application examples AN5050

38/51 DocID030787 Rev 1

/*----- Enabiling Automatic-STOP mode to wait until WEL=1 -----*/

/* Set the mask to 0x02 to mask all Status REG bits except WEL */

OCTOSPI1->PSMKR = WRITE_ENABLE_MASK_VALUE;

/* Set the match to 0x02 to check if the WEL bit is set (compare match with
the read masked value) */

OCTOSPI1->PSMAR = WRITE_ENABLE_MATCH_VALUE;

/* Set period between 2 consecutive read accesses to 16 cycles */

OCTOSPI1->PIR = AUTO_POLLING_INTERVAL;

/* Set OCTOSPI1 to Automatic Polling mode; Automatic-poll stop APMS=1;AND
match mode PMM=0 */

OCTOSPI1->CR |= (HAL_OSPI_AUTOMATIC_STOP_ENABLE | HAL_OSPI_MATCH_MODE_AND
| OCTOSPI_CR_FMODE_1);

/* Configure CCR reg to send cmd in 1line and read data in 1line */

OCTOSPI1->CCR = 0x01000001;

/* Set READ-STATUS-REG cmd in Inst register */

OCTOSPI1->IR = READ_STATUS_REG_CMD;

/* Set DLR reg to read one byte each periodic access*/

OCTOSPI1->DLR = 0;

/* Wait till Status-Match-Flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_SMF)==0);

 /* Clear Status-Match-Flag */

 OCTOSPI1->FCR = OCTOSPI_FCR_CSMF;

/* Disable Automatic Polling mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE_Msk;

}

/* This functions Enables writing to the memory: write enable cmd is sent in
Octal SPI mode */

void OctalWriteEnable(void)

{

/* Setting OCTOSPI1 to indirect write mode to send write enable cmd */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

/* Configure CCR reg to send write enable command in 8lines (IMODE=0b100) */

OCTOSPI1->CCR = 0x00000014;

/* Set Write enable cmd (0x06F9) in Inst register */

OCTOSPI1->IR = OCTAL_WRITE_ENABLE_CMD;

/* Wait till 0x06F9 cmd is sent and transfer complete flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

}

/* This function Configures automatic polling mode to wait until WEL=1 */

void OctalAutoPollingWEL(void)

{

DocID030787 Rev 1 39/51

AN5050 OctoSPI application examples

50

/* Set the mask to 0x02 to mask all Status REG bits except WEL */

OCTOSPI1->PSMKR = WRITE_ENABLE_MASK_VALUE;

/* Set the match to 0x02 to check if the WEL=1 (compare match with the read
masked value) */

OCTOSPI1->PSMAR = WRITE_ENABLE_MATCH_VALUE;

/* Set period between 2 consecutive read accesses to 16 cycles */

OCTOSPI1->PIR = AUTO_POLLING_INTERVAL;

/* Set OCTOSPI1 to Automatic Polling mode; Automatic-poll stop APMS=1;AND
match mode PMM=0 */

OCTOSPI1->CR |= (HAL_OSPI_AUTOMATIC_STOP_ENABLE | HAL_OSPI_MATCH_MODE_AND
| OCTOSPI_CR_FMODE_1);

/* Reset Dummy cycles on OCTOSPI1 */

OCTOSPI1->TCR &= ~OCTOSPI_TCR_DCYC;

/* Set dummy cycles to 4 on OCTOSPI1 host side */

OCTOSPI1->TCR |= DUMMY_CLOCK_CYCLES_READ_REG;

/* Set the number of bytes to be read each periodic access to one (status
reg) */

OCTOSPI1->DLR = 0;

/* Configure CCR reg to send cmd/address in SDR 8lines:IMODE=8lines
ISIZE=16-bit

ADMODE=8lines ADSIZE=32-bit DMODE=8lines */

OCTOSPI1->CCR = 0x04003414;

/* Set READ-STATUS-REG cmd (0x05FA) in Inst register */

OCTOSPI1->IR = OCTAL_READ_STATUS_REG_CMD;

/* Set AR to 0x00000000 needed to read status reg in octal mode */

OCTOSPI1->AR = 0x00000000;

/* Wait till Status-Match-Flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_SMF)==0);

 /* Clear Status-Match-Flag */

 OCTOSPI1->FCR = OCTOSPI_FCR_CSMF;

/* Reset Dummy cycles on OCTOSPI1 */

OCTOSPI1->TCR &= ~OCTOSPI_TCR_DCYC;

/* Disable Polling mode and enable Indirect mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

}

/* This function Configures automatic polling mode to wait the memory is
ready (WIP=0) */

void OctalAutoPollingWIP(void)

{

/* Set the mask to 0x01 to mask all Status REG bits except WIP */

OCTOSPI1->PSMKR = MEMORY_READY_MASK_VALUE;

/* Set the match to 0x00 to check if the WIP=0 (compare match with the read
masked value) */

OCTOSPI1->PSMAR = MEMORY_READY_MATCH_VALUE;

/* Set period between 2 consecutive read accesses to 16 cycles */

OctoSPI application examples AN5050

40/51 DocID030787 Rev 1

OCTOSPI1->PIR = AUTO_POLLING_INTERVAL;

/* Set OCTOSPI1 to Automatic Polling mode; Automatic-poll stop APMS=1;AND
match mode PMM=0 */

OCTOSPI1->CR |= (HAL_OSPI_AUTOMATIC_STOP_ENABLE | HAL_OSPI_MATCH_MODE_AND
| OCTOSPI_CR_FMODE_1);

/* Reset Dummy cycles on OCTOSPI1 */

OCTOSPI1->TCR &= ~OCTOSPI_TCR_DCYC;

/* Set dummy cycles to 4 on OCTOSPI1 host side */

OCTOSPI1->TCR |= DUMMY_CLOCK_CYCLES_READ_REG;

/* Set the number of bytes to be read to one*/

OCTOSPI1->DLR = 0;

/* Configure CCR reg to send cmd/address in SDR 8lines:IMODE=8lines
ISIZE=16-bit

ADMODE=8lines ADSIZE=32-bit DMODE=8lines */

OCTOSPI1->CCR = 0x04003414;

/* Set READ-STATUS-REG cmd (0x05FA) in Inst register */

OCTOSPI1->IR = OCTAL_READ_STATUS_REG_CMD;

/* Set AR to 0x00000000 needed to read status reg in octal mode */

OCTOSPI1->AR = 0;

/* Wait till Status-Match-Flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_SMF)==0);

/* Clear Status-Match-Flag */

OCTOSPI1->FCR = OCTOSPI_FCR_CSMF;

/* Reset Dummy cycles on OctoSPI host side */

OCTOSPI1->TCR &= ~OCTOSPI_TCR_DCYC;

/* Disable Polling mode and enable Indirect mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

}

/*** This function configures the MX25LM51245G memory ***/

void NOR_OctalSDR_MemoryCfg(void)

{

/* Enable writing to memory to be able to set Dummy */

WriteEnable();

/* Setting Dummy cycles on memory side */

/* Setting OCTOSPI1 to indirect write mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

/* DMODE=1line;ADSIZE=32-bit;ADMODE=1line;IMODE=1line */

OCTOSPI1->CCR = 0x01003101;

/* Set Write Configuration Register2 (WRCR2) cmd in Inst register */

OCTOSPI1->IR = WRITE_CFG_REG_2_CMD;

/* Set address register to 0x00000300 corresponding to Dummy cycle field in
Config Reg2 */

OCTOSPI1->AR = CONFIG_REG2_ADDR3;

/* Set the value to be written to Config Reg2 in data register */

OCTOSPI1->DR = CR2_DUMMY_CYCLES_66MHZ;

DocID030787 Rev 1 41/51

AN5050 OctoSPI application examples

50

/* Wait till TCF flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

/* Enable writing to memory to be able to set SDR Octal I/O mode */

WriteEnable();

/* Enabling SDR Octal I/O mode on memory side */

/* DMODE=1line;ADSIZE=32-bit;ADMODE=1line;IMODE=1line */

OCTOSPI1->CCR = 0x01003101;

/* Set Write cmd in Inst register */

OCTOSPI1->IR = WRITE_CFG_REG_2_CMD;

/* Set address register to 0x00000000 corresponding to STR/DTR OPI Enable
fields in Config Reg2 */

OCTOSPI1->AR = CONFIG_REG2_ADDR1;

/* Set 0x01 in data register, the value to be written to Config Reg2
enabling Octal I/O mode */

OCTOSPI1->DR = CR2_STR_OPI_ENABLE;

/* Wait till TCF flag is set */

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

}

/* This function erases the first memory sector */

void OctalSectorErase(void)

{

/* Setting OCTOSPI1 to indirect write mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

/* ADSIZE=32-bit;ADMODE=8lines;ISIZE=16-bit;IMODE=8lines */

OCTOSPI1->CCR = 0x00003414;

/* Set Octal Erase cmd 0x21DE in instruction register */

OCTOSPI1->IR = OCTAL_SECTOR_ERASE_CMD;

/* Set the address of the page to be erased */

OCTOSPI1->AR = 0x00000000;

while((OCTOSPI1->SR & OCTOSPI_SR_TCF)==0);

/* Clear transfer complete flag */

OCTOSPI1->FCR = OCTOSPI_FCR_CTCF;

}

/* This function enables memory-mapped mode for Read and Write */

void EnableMemMapped(void)

{

/* Setting memory-mapped mode for read in SDR Octal mode */

/*DMODE=8lines, ADSIZE=32-bit, ADMODE=8lines, ISIZE=16-bit, IMODE=8lines*/

OCTOSPI1->CCR = 0x04003414;

/* Setting dummy cycles on OctoSPI host side to 6 */

OctoSPI application examples AN5050

42/51 DocID030787 Rev 1

OCTOSPI1->TCR &= ~OCTOSPI_TCR_DCYC;

OCTOSPI1->TCR |= DUMMY_CLOCK_CYCLES_READ;

/* Setting Octal read instruction 0xEC13 */

OCTOSPI1->IR = OCTAL_IO_READ_CMD;

/* Setting FMODE to memory-mapped mode */

OCTOSPI1->CR &= ~OCTOSPI_CR_FMODE;

OCTOSPI1->CR |= OCTOSPI_CR_FMODE;

}

/* USER CODE END 4 */

• Adding defines to the main.h file

Update the main.h file by inserting the defines in the adequate space as indicated in green
bold below.

/* USER CODE BEGIN Private defines */

/* MX25LM512ABA1G12 Macronix memory */

/* Flash commands */

#define OCTAL_IO_READ_CMD 0xEC13

#define OCTAL_PAGE_PROG_CMD 0x12ED

#define OCTAL_READ_STATUS_REG_CMD 0x05FA

#define OCTAL_SECTOR_ERASE_CMD 0x21DE

#define OCTAL_WRITE_ENABLE_CMD 0x06F9

#define READ_STATUS_REG_CMD 0x05

#define WRITE_CFG_REG_2_CMD 0x72

#define WRITE_ENABLE_CMD 0x06

/* Dummy clocks cycles */

#define DUMMY_CLOCK_CYCLES_READ 6

#define DUMMY_CLOCK_CYCLES_READ_REG 4

/* Auto-polling values */

#define WRITE_ENABLE_MATCH_VALUE 0x02

#define WRITE_ENABLE_MASK_VALUE 0x02

#define MEMORY_READY_MATCH_VALUE 0x00

#define MEMORY_READY_MASK_VALUE 0x01

#define AUTO_POLLING_INTERVAL 0x10

/* Memory registers address */

#define CONFIG_REG2_ADDR1 0x0000000

#define CR2_STR_OPI_ENABLE 0x01

#define CONFIG_REG2_ADDR3 0x00000300

#define CR2_DUMMY_CYCLES_66MHZ 0x07

/* Memory delay */

#define MEMORY_SECTOR_ERASE_DELAY 25

#define MEMORY_PAGE_PROG_DELAY 2

/* Exported macro ---
---*/

#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__)/sizeof(*(__BUFFER__)))

/* Size of buffers */

DocID030787 Rev 1 43/51

AN5050 OctoSPI application examples

50

#define BUFFERSIZE (COUNTOF(aTxBuffer) - 1)

/* USER CODE END Private defines */

Building and running the project

At this stage, the user can build, debug and run the project.

4.2.5 HyperBus™ mode

Once all of the OCTOSPI2 GPIOs and the clock configuration have been done, the user
should configure the OCTOSPI2 peripheral to the HyperBus™ mode.

STM32CubeMX: OCTOSPI2 peripheral configuration in HyperBus™ mode

Referring to the IS66WVH8M8BLL-100BLI datasheet, the OCTOSPI2 parameters should be
configured as following:

• Memory type: HyperBus™ mode.

• Device size set to 23: the memory size is 8 Mbytes = 2[DEVSIZE+1] = 2[22+1].

• Clock prescaler set to 2: 60 MHz/2 = 30 MHz.

• Chip select high time (CSHT) set to 1 clock cycle (33.3 ns), the minimum based on the
datasheet is 10 ns when operating @ 3.0 V.

• Clock mode set to low (mode 0).

• Sample shifting (SSHIFT) must be disabled when DTR (DDR is enabled in
OCTOSPI_CCR register) is enabled.

• Delay hold quarter clock (DHQC) enabled.

In the OCTOSPI2 configuration window, select the “Parameter Settings” tab then
configure the parameters as shown in Figure 24.

OctoSPI application examples AN5050

44/51 DocID030787 Rev 1

Figure 24. OCTOSPI2 peripheral configuration in HyperBus™ mode

1. Pink color highlights the key items in the figure.

STM32CubeMX: project generation

Once that all of the GPIOs, the clock and the OCTOSPI2 configuration have been done, the
user should generate the project with the desired toolchain (SW4STM32, EWARM, MDK-
ARM….).

Memory-mapped mode configuration

At this stage the project should be already generated with the GPIOs and the OCTOSPI2
peripheral properly configured following steps in Section 4.2.3: OctoSPI GPIOs and clocks
configuration and Section 4.2.5: HyperBus™ mode.

Some code lines, allowing the following configurations, have to be added to the project:

– The default memory configuration is used. No need to configure the HyperRAM™
memory.

– OCTOSPI2 peripheral timings and latency mode configuration according to the
HyperRAM™ datasheet.

– OCTOSPI2 peripheral configuration to memory-mapped mode.

DocID030787 Rev 1 45/51

AN5050 OctoSPI application examples

50

• Adding code to the main.c file

1. Insert variables declarations in the adequate space indicated in green bold below.

/* USER CODE BEGIN PV */

/* Private variables --
---*/

uint8_t aTxBuffer[]="Writing/Reading to/from HyperRAM in mem-mapped mode";

__IO uint8_t *ram_memaddr;

__IO uint8_t aRxBuffer[BUFFERSIZE] ="";

/* USER CODE END PV */

2. Insert the code lines in the main() function, in the adequate space indicated in green
bold below.

/* USER CODE BEGIN 1 */

uint16_t index;

/* USER CODE END 1 */

/* USER CODE BEGIN 2 */

/*--- Setting the OCTOSPI2 peripheral timings and latency mode ----*/

/* TRWR Latency=3 (TRWR=50ns);TACC Latency=6;Latency on write
accesses=0(Enabled);Latency mode=1(Fixed 2 times initial Latency)*/

OCTOSPI2->HLCR = 0x00030601;

/* Setting OCTOSPI2 to HyperBus memory mode: MTYP=0b100 */

OCTOSPI2->DCR1 |= HAL_OSPI_MEMORY_ADDRESS_SPACE;

/*--*/

/*--------- Setting OCTOSPI2 to memory-mapped mode ----------*/

/* Setting memory-mapped communication for reading */

/*DQSE=Enabled;DDTR=Enabled,DMODE=8lines;ADSIZE=32-
bit,ADDTR=Enabled,ADMODE=8lines*/

OCTOSPI2->CCR = 0x2C003C00;

/* Setting memory-mapped communication for writing */

/*DQSE=Enabled;DDTR=Enabled,DMODE=8lines;ADSIZE=32-
bit,ADDTR=Enabled,ADMODE=8lines*/

OCTOSPI2->WCCR = 0x2C003C00;

/* Enabling memory-mapped mode */

OCTOSPI2->CR &= ~OCTOSPI_CR_FMODE;

OCTOSPI2->CR |= OCTOSPI_CR_FMODE;

/*--*/

/*-------------- Writing to the HyperRAM memory --------------*/

ram_memaddr = (__IO uint8_t *)(OCTOSPI2_BASE);

for (index = 0; index < BUFFERSIZE; index++)

{

*ram_memaddr = aTxBuffer[index];

 ram_memaddr++;

}

/* Insert a delay between writing and reading */

OctoSPI application examples AN5050

46/51 DocID030787 Rev 1

HAL_Delay(1);

/*---*/

/*------------------ Reading from the HyperRAM memory -------------*/

ram_memaddr = (__IO uint8_t *)(OCTOSPI2_BASE);

for(index = 0; index < BUFFERSIZE; index++)

{

/* Reading back the written aTxBuffer in memory-mapped mode */

aRxBuffer[index] = *ram_memaddr;

if(aRxBuffer[index] != aTxBuffer[index])

{

/* Can add code to toggle a LED when data doesn’t match */

}

*ram_memaddr++;

}

/*---*/

/* USER CODE END 2 */

• Adding defines to the main.h file
Update the main.h file by inserting the defines in the adequate space as indicated in
green bold below.

/* USER CODE BEGIN Private defines */

#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__)/sizeof(*(__BUFFER__)))

/* Size of buffers */

#define BUFFERSIZE (COUNTOF(aTxBuffer) - 1)

/* USER CODE END Private defines */

Building and running the project

At this stage, the user can build, debug and run the project.

DocID030787 Rev 1 47/51

AN5050 Decreasing power consumption

50

5 Decreasing power consumption

One of the most important requirements in wearable and mobile applications is the power
efficiency. Power consumption can be decreased by following the recommendations
presented in this section.

To decrease the total application's power-consumption, the user usually puts the STM32 in
low-power mode. To reduce even more the current consumption, the connected memory
can also be put in low-power mode.

5.1 STM32 low-power modes

The STM32 low-power states is an important requirement that must be considered as it has
a direct effect on the overall application power consumption and on the OctoSPI interface
state. For instance, the OctoSPI has to be reconfigured after wakeup from standby or
shutdown mode.

Table 2 summarizes OctoSPI peripheral state for STM32L4Rxxx and STM32L4Sxxx
devices in different power modes.

5.2 Decreasing Octal-SPI memory's power consumption

In order to save more energy when the application is in low-power mode, it is recommended
to put the memory in low-power mode before entering the STM32 in low-power mode.

5.2.1 Timeout counter usage

The timeout counter feature can be used to avoid any extra power-consumption in the
external memory, this feature can be used only in memory-mapped mode. When the clock is
stopped for a long time and after a period of timeout elapsed without any access, the
timeout counter releases the nCS pin to put the external memory in a lower-consumption
state (so called standby-mode).

Table 2. OctoSPI peripheral state in different power modes on STM32L4Rxxx and
STM32L4Sxxx

Mode Description

Run
Active

Low-power run

Sleep Active. Peripheral interrupts cause the device to exit sleep mode.

Low-power sleep Active. Peripheral interrupts cause the device to exit low-power sleep mode.

Stop0

Frozen. Peripheral registers content is kept.Stop1

Stop2

Standby Powered-down. The peripheral must be reinitialized after exiting standby or
shutdown mode.Shutdown

Decreasing power consumption AN5050

48/51 DocID030787 Rev 1

5.2.2 Put the memory in deep power-down mode

For most Octal memory devices the default mode after the powering-up sequence is the
standby low-power mode. In standby mode, there is no ongoing operation; the nCS is high
and current consumption is relatively less than operating mode.

To save more energy, some memory manufacturers provide another low-power mode
commonly known “Deep power-down mode” (DPD). This is different from standby mode.
During the DPD, the device is not active and most commands (such as write, program,
read....) are ignored.

The application can put the memory device in DPD mode before entering STM32 in low-
power mode when the memory is not used. This action permits a reduction of the overall
application's power-consumption.

Entering and exiting DPD mode

To enter DPD mode, a DPD command sequence should be issued to the external memory.
Each memory manufacturer has its dedicated DPD command sequence.

To exit DPD mode, some memory devices are requiring to issue a “release from deep
power-down” (RDP) command. For some other memory devices a hardware reset leads to
exit DPD mode.

Note: Refer to the relevant memory device datasheet for more details.

DocID030787 Rev 1 49/51

AN5050 Conclusion

50

6 Conclusion

STM32 MCUs provide a very flexible OctoSPI interface that fits memory hungry applications
at a lower cost and avoids the complexity of designing with external parallel memories by
reducing pin count and offering better performances.

This application note demonstrates STM32L4+ Series excellent OctoSPI interface
performance and flexibility allowing lower development costs and faster time to market.

Revision history AN5050

50/51 DocID030787 Rev 1

7 Revision history

Table 3. Document revision history

Date Revision Changes

20-Oct-2017 1 Initial release.

DocID030787 Rev 1 51/51

AN5050

51

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Overview of STM32L4+ Series OctoSPI interface
	1.1 OctoSPI availability and features across STM32L4+ Series
	Table 1. OctoSPI availability and features across STM32 families

	1.2 OctoSPI in a smart architecture
	1.2.1 STM32L4Rxxx and STM32L4Sxxx system architecture
	Figure 1. STM32L4Rxxx and STM32L4Sxxx system architecture

	2 OctoSPI interface description
	2.1 OctoSPI hardware interface
	2.1.1 OctoSPI pins and signal interface
	2.1.2 OctoSPI IO manager
	Figure 2. Example of connecting an Octal-SPI Flash memory and a HyperRAM™ memory to an STM32 device

	2.2 Two low-level protocols
	2.2.1 Regular-command mode
	Figure 3. Regular-command mode: octal DTR read operation example in Macronix mode

	2.2.2 HyperBus™ mode
	Figure 4. HyperBus™ mode: example of reading operation from HyperRAM™

	2.3 Three operating modes
	2.3.1 Indirect mode
	2.3.2 Status-flag polling mode
	2.3.3 Memory-mapped mode

	3 OctoSPI configuration
	3.1 OctoSPI common configuration
	3.1.1 GPIOs and OctoSPI IO manager configuration
	3.1.2 Interrupts and clocks configuration
	Figure 5. OCTOSPI1 and OCTOSPI2 clock scheme

	3.2 OctoSPI configuration for regular-command mode
	3.3 OctoSPI configuration for HyperBus™ mode
	3.4 Memory configuration
	3.4.1 Octal-SPI memory device configuration
	3.4.2 HyperBus™ memory device configuration

	4 OctoSPI application examples
	4.1 Implementation examples
	4.1.1 Using OctoSPI in a graphical application
	Figure 6. OctoSPI graphic application use case

	4.1.2 Executing from external memory: extend internal memory size
	Figure 7. Executing code from memory connected to OCTOSPI2

	4.2 OctoSPI STM32CubeMX examples
	4.2.1 Hardware description
	Figure 8. Octal-SPI Flash and HyperRAM™ memories connection to the STM32L4R9AI device in the STM32L4R9I-EVAL board

	4.2.2 Use case description
	Figure 9. Examples configuration: OCTOSPI1 set to regular-command mode and OCTOSPI2 set to HyperBus™

	4.2.3 OctoSPI GPIOs and clocks configuration
	Figure 10. STM32CubeMX: setting Octal I/O mode for OCTOSPI1
	Figure 11. STM32CubeMX: mapping OCTOSPI1 signals to Port1
	Figure 12. STM32CubeMX: setting PB0 pin to OCTOSPIM_P1_IO1 alternate function
	Figure 13. STM32CubeMX - OCTOSPI1 GPIOs correct configuration
	Figure 14. STM32CubeMX - configuration tab
	Figure 15. OCTOSPI1 button in the configuration tab
	Figure 16. STM32CubeMX - setting GPIOs to very high speed
	Figure 17. STM32CubeMX: mapping OCTOSPI2 signals to port 2
	Figure 18. STM32CubeMX: OCTOSPI2 GPIOs correct configuration
	Figure 19. STM32CubeMX: enabling OCTOSPI1 global interrupt
	Figure 20. STM32CubeMX: enabling OCTOSPI2 global interrupt
	Figure 21. STM32CubeMX: system clock configuration
	Figure 22. STM32CubeMX: OCTOSPI1 and OCTOSPI2 clock source configuration

	4.2.4 Regular-command mode
	Figure 23. OCTOSPI1 peripheral configuration in regular-command mode

	4.2.5 HyperBus™ mode
	Figure 24. OCTOSPI2 peripheral configuration in HyperBus™ mode

	5 Decreasing power consumption
	5.1 STM32 low-power modes
	Table 2. OctoSPI peripheral state in different power modes on STM32L4Rxxx and STM32L4Sxxx

	5.2 Decreasing Octal-SPI memory's power consumption
	5.2.1 Timeout counter usage
	5.2.2 Put the memory in deep power-down mode

	6 Conclusion
	7 Revision history
	Table 3. Document revision history

