
Carnegie Mellon University
Research Showcase @ CMU
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

6-2015

Revisiting Memory Errors in Large-Scale
Production Data Centers: Analysis and Modeling
of New Trends from the Field
Justin Meza
Carnegie Mellon University

Qiang Wu
Facebook, Inc.

Sanjeev Kumar
Facebook, Inc.

Onur Mutlu
Carnegie Mellon University, onur@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/ece

Part of the Electrical and Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has
been accepted for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase @ CMU. For
more information, please contact research-showcase@andrew.cmu.edu.

Published In
Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2015.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.cmu.edu%2Fece%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu � Sanjeev Kumar � Onur Mutlu
Carnegie Mellon University � Facebook, Inc.

Abstract—Computing systems use dynamic random-access
memory (DRAM) as main memory. As prior works have shown,
failures in DRAM devices are an important source of errors in
modern servers. To reduce the effects of memory errors, error
correcting codes (ECC) have been developed to help detect and
correct errors when they occur. In order to develop effective
techniques, including new ECC mechanisms, to combat memory
errors, it is important to understand the memory reliability trends
in modern systems.

In this paper, we analyze the memory errors in the entire
fleet of servers at Facebook over the course of fourteen months,
representing billions of device days. The systems we examine
cover a wide range of devices commonly used in modern servers,
with DIMMs manufactured by 4 vendors in capacities ranging
from 2 GB to 24 GB that use the modern DDR3 communication
protocol.

We observe several new reliability trends for memory systems
that have not been discussed before in literature. We show that
(1) memory errors follow a power-law, specifically, a Pareto
distribution with decreasing hazard rate, with average error rate
exceeding median error rate by around 55�; (2) non-DRAM
memory failures from the memory controller and memory channel
cause the majority of errors, and the hardware and software
overheads to handle such errors cause a kind of denial of service
attack in some servers; (3) using our detailed analysis, we provide
the first evidence that more recent DRAM cell fabrication tech-
nologies (as indicated by chip density) have substantially higher
failure rates, increasing by 1.8� over the previous generation; (4)
DIMM architecture decisions affect memory reliability: DIMMs
with fewer chips and lower transfer widths have the lowest error
rates, likely due to electrical noise reduction; (5) while CPU
and memory utilization do not show clear trends with respect
to failure rates, workload type can influence failure rate by up to
6.5�, suggesting certain memory access patterns may induce more
errors; (6) we develop a model for memory reliability and show
how system design choices such as using lower density DIMMs and
fewer cores per chip can reduce failure rates of a baseline server
by up to 57.7%; and (7) we perform the first implementation
and real-system analysis of page offlining at scale, showing that
it can reduce memory error rate by 67%, and identify several
real-world impediments to the technique.

I. INTRODUCTION
Computing systems store a variety of data in memory – pro-

gram variables, operating system and file system structures, pro-
gram binaries, and so on. The main memory in modern systems
is composed of dynamic random-access memory (DRAM), a
technology that, from the programmer’s perspective, has the
following property: a byte written to an address can be read
correctly, repeatedly, until it is overwritten or the machine is
turned off. All correct programs rely on DRAM to operate in
this manner and DRAM manufacturers work hard to design
reliable devices that obey this property.

Unfortunately, DRAM does not always obey this property.
Various events can change the data stored in DRAM, or
even permanently damage DRAM. Some documented events
include transient charged particle strikes from the decay of
radioactive molecules in chip packaging material, charged alpha
particles from the atmosphere [34], and wear-out of the various
components that make up DRAM chips (e.g., [7, 6]). Such
faults, if left uncorrected, threaten program integrity. To reduce

this problem, various error correcting codes (ECC) for DRAM
data [12, 11] have been used to detect and correct memory
errors. However, these techniques require additional DRAM
storage overheads [33] and DRAM controller complexity and
cannot detect or correct all errors.

Much past research has been directed toward analyzing the
causes and effects of memory errors in the field (e.g., [44, 16,
47, 48, 10, 46, 45, 40, 27, 28]). These past works identified a
variety of DRAM failure modes and have formed the basis of
the community’s understanding of DRAM reliability. Our goal
is to strengthen the understanding of DRAM failures in the field
by comprehensively studying new trends in DRAM errors in
a large-scale production datacenter environment using modern
DRAM devices and workloads. To this end, this paper presents
our analysis of memory errors across Facebook’s entire fleet of
servers over the course of fourteen months and billions of device
days. Our main contributions are threefold. We: (1) analyze
new DRAM failure trends in modern devices and workloads
that have not been identified in prior work, (2) develop a
model for examining the memory failure rates of systems with
different characteristics, and (3) describe and perform the first
analysis of a large-scale implementation of a software technique
proposed in prior work to reduce DRAM error rate (page
offlining [49]). Specifically, we observe several new reliability
trends for memory systems that have not been discussed before
in literature:

(1) The number of memory errors per machine follows a
power-law distribution, specifically a Pareto distribution, with
decreasing hazard rate. While prior work reported the average
memory error rate per machine, we find that the average exceeds
the median amount by around 55�, and thus may not be a
reliable number to use in various studies.

(2) Non-DRAM memory failures, such as those in the
memory controller and the memory channel, are the source of
the majority of errors that occur. Contrary to popular belief,
memory errors are not always isolated events and can bombard
a server (if not handled appropriately), creating a kind of denial
of service attack. No prior work that we are aware of that
examined DRAM chip-level failures accounted for this effect.

(3) DRAM failure rates increase with newer cell fabrication
technologies (as indicated by chip density, which is a good
indicator of technology node): 4 Gb chips have 1:8� higher
failure rates than 2 Gb chips. Prior work that examined DRAM
capacity, which is not closely related to fabrication technology,
observed inconclusive trends. Our empirical finding is that the
quadratic rate at which DRAM density increases with each
generation has made maintaining or reducing DRAM failure
rate untenable, as also indicated by a recent paper by Samsung
and Intel [20].

(4) DIMM architecture characteristics, such as the number
of data chips per DIMM and the transfer width of each chip,
affect memory error rate. The best architecture for device
reliability occurs when there are both low chips per DIMM
and small transfer width. This is likely due to reductions in the
amount of electrical disturbance within the DIMM.

(5) The type of work that a server performs (i.e., its
workload), and not CPU and memory utilization, affects failure
rate. We find that the DRAM failure rate of different workloads
can vary by up to 6:5�. This large variation in workloads can
potentially be due to memory errors that are induced by certain

1



access patterns, such as accessing the same memory location
in rapid succession, as shown in controlled studies in prior
work [23].

(6) We develop a model for quantifying DRAM reliability
across a wide variety of server configurations and show how it
can be used to evaluate the server failure rate trends for different
system designs. We show that using systems with lower density
DIMMs or fewer CPUs to access memory can reduce DRAM
failure rates by 57.7% and 34.6%, respectively. We make this
model publicly available at [1].

(7) We describe our implementation of page offlining [49]
at scale and evaluate it on a fraction (12,276) of the servers
that we examine. We show that it can reduce memory error
rate by around 67%. While prior work reported larger error
rate reductions in simulation [16], we show that real-world
factors such as memory controller and memory channel failures
and OS-locked pages that cannot be taken offline can limit the
effectiveness of this technique.

II. BACKGROUND AND METHODOLOGY
A. Server Memory Organization

Modern servers have one or two processor chips that are
connected to DRAM via several memory channels that are
operated in parallel. Attached to each channel are dual in-
line memory modules (DIMMs) that provide an interface for
accessing data stored across multiple DRAM chips. Processors
use the double data rate (DDR) protocol to communicate
with DIMMs. Chips on a DIMM are logically organized into
ranks and chips within a rank are operated in lockstep. Chips
contain multiple banks that are operated in parallel. Each bank
is organized into rows (typically 16 K to 64 K) and columns
(typically 2 K to 4 K). At the intersection of a row and a column
is a DRAM cell, which stores a single bit of data. We refer
the reader to [24, 26, 29, 25] for more information on DRAM
organization and operation.

B. Memory Errors and Their Handling
As prior works have shown, DRAM errors occur relatively

commonly due to a variety of stimuli [34, 44, 16, 47, 48, 10, 46,
6, 27, 45, 30, 23, 21]. To protect against such errors in servers,
additional data is stored in the DIMM (in a separate DRAM
chip) to maintain error correcting codes (ECC) computed over
data. These codes can detect and correct a small number
of errors. For example, single error correction, double error
detection (SEC-DED) is a common ECC strategy that can detect
any 2 flipped bits and correct 1 flipped bit per 64 bits by storing
an additional 12.5% of ECC metadata. An error that can be
corrected by ECC is called a correctable error (CE); an error
that cannot be corrected by ECC, but which can still be detected
by ECC, is called an uncorrectable error (UCE).

The processor’s memory controller orchestrates access to the
DRAM devices and is also responsible for checking the ECC
metadata and detecting and correcting errors. While detecting
errors does not add overhead when performing memory ac-
cesses, correcting errors can delay a memory request and disrupt
a system. As an example, on the systems that we examine,
when an error is corrected, the CPU raises a hardware exception
called a machine check exception (MCE) which must be handled
by the processor.

When an MCE occurs, the processor stores information
about the memory error in special registers that can be read
by the operating system. This information includes the physical
address of the memory access when the error occurred and what
type of memory access (e.g., read or write) was being performed
when the error occurred. Note that memory errors do not only
occur in DRAM chips: memory errors can occur if the memory
controller fails or if logic associated with transmitting data on
a memory channel fails.

We distinguish between errors and faults. A fault refers to
the underlying cause of an error, such as a DRAM cell that no
longer reliably stores data. An error is the manifestation of a
fault. A hard, or permanent, fault causes an error every time the
fault is exercised. A soft, or transient/intermittent, fault causes
an error only some of the times the fault is exercised.

C. The Systems
We examined all of the DRAM devices in Facebook’s

server fleet, which have operational lifetimes extending across
four years and comprise billions of device days of usage. We
analyzed data over a fourteen month period. We examined six
different system types with hardware configurations based on
the resource requirements of the workloads running on them.
Table I lists the workloads and their resource requirements. The
workloads perform a diverse set of operations including web
serving, caching [41], database management [18], video and im-
age processing/storage [50, 37], and messaging routing/storage.
The detailed specifications for the base server platforms that
we examine have been published as part of the Open Compute
Project [2]. For example, typical servers can support two Intel
Xeon CPUs, 16 DIMM slots, and 1 HDD [2]. The resource
requirements in Table I refer to the relative number of processor
cores, memory capacity, and storage capacity for servers for
each type of workload.

Note that each server runs a single type of workload. All
the servers configured for a particular workload type have
equivalent minimum capabilities, and, in general, a workload
can be run on any of them.

TABLE I: The workloads we examine and their resource requirements.

Workload Resource requirements
Processor Memory Storage

Web High Low Low
Hadoop [4] High Medium High
Ingest [18] High High Medium

Database [18] Medium High High
Memcache [41] Low High Low

Media [50] Low Low High

The memory in these systems covers a wide range of de-
vices commonly used in servers. The DIMMs are manufactured
by 4 vendors in capacities ranging from 2 GB to 24 GB per
DIMM. DDR3 is the protocol used to communicate with the
DIMMs. The DIMM architecture spans devices with 1, 2, and
4 ranks with 8, 16, 32, and 64 chips. The chip architecture
consists of 8 banks with 16 K, 32 K, and 64 K rows and 2 K to
4 K columns, and has chips that transfer both 4 and 8 bits of
data per clock cycle. We analyze three different chip densities
of 1 Gb, 2 Gb, and 4 Gb, which are closely related to DRAM
fabrication technology.

The composition of the modules we examine differs from
prior studies (e.g., [44, 16, 47, 48, 10, 45, 40]) in three
ways: (1) it consists of a current DRAM access protocol
(DDR3, as opposed to older generation protocols with less
aggressive memory bus clock frequencies, such as DDR and
DDR2 in [44]); (2) it consists of a more diverse range of
DRAM device organizations (e.g., DIMMs with a variety of
ranks, chips, rows, and columns versus the more homogeneous
DIMMs of [44, 16, 47, 48, 10, 45]); and (3) it contains DIMMs
with characteristics that have never been analyzed at a large-
scale (such as density, number of chips, transfer width, and
workload).

Some of the systems we examined had hardware mem-
ory scrubbing [36] enabled, which would cause the memory
controller to traverse memory, detecting (but not correcting)
memory errors in order to help determine faulty locations in
memory. The hardware scrubber was enabled only when the
machine entered a low enough idle state, so the scrubbing rate
of machines varied.

2



D. Measurement Methodology
We use the mcelog Linux kernel module to log memory

errors in a file. We do this for every machine in the fleet. For
each correctable memory error, we collect: (1) a time stamp
of when the error occurred; (2) the physical address that was
being accessed when the error occurred; (3) the server name;
(4) the socket, channel, and bank the physical address is located
on; and (5) the type of memory access being performed when
the error occurred (e.g., read or write). Uncorrectable errors
will halt the execution of the processors on the machines we
examine, causing a system crash. While we do not have detailed
information on uncorrectable errors, we are able to measure
their occurrence by examining a separate log of them that is kept
in non-volatile memory on the system boards that we examine.
We use a collector script to retrieve log data and parse it into
a form that can be curated in a Hive [5] table. This process is
done in real time every ten minutes.

In addition to information about the correctable errors that
occur, we also collect information on systems that had errors
(e.g., CPU utilization and system age; see Table II for details).
This process is done in a separate step.

The scale of the systems we analyzed and the amount of
data being collected posed challenges for analysis. To process
billions of device days of information, we used a cluster of
machines to perform a parallelized aggregation of the data using
MapReduce jobs. This resulted in a set of statistics for each of
the devices we analyzed. We then processed this summary data
in R [3] to collect our results.
E. Analytical Methodology

When we analyze the reliability trends with respect to a
system characteristic (e.g., chip density or CPU utilization), we
group systems into buckets based on the particular character-
istic and plot the failure rate of the systems in each bucket.
When performing bucketing, we round the value of a device’s
characteristic to the nearest bucket and we eliminate buckets
that contain less than 0.1% of the systems analyzed in order
to have a statistically significant sample of systems in our
measurements. We show the 95th percentile confidence interval
for our data when relevant.

Due to the size of the fleet, we could not collect detailed
information for all the systems without errors (we do collect
detailed information for every system with errors). So, in
Sections IV and V, instead of examining the absolute failure
rate among different types of servers, we examine the relative
failure rate compared to a more manageable size of servers that
we call the control group. The servers in the control group are
uniformly randomly selected from among all the servers that
did not have errors, and we collected detailed information on
the servers in this group.

Note that such a selection process preserves the distribution
of server types in the underlying fleet, and our analysis in
Sections IV and V can be considered as being performed on a
“scaled down” version of the fleet. The size of the control group
was chosen to be equal to the size of the error group, and the
sizes of these groups were sufficiently large to be statistically
significant. We bucket servers in each group based on their
value for a given characteristic (e.g., age) and plot the fraction
of failed servers compared to operational servers in each bucket,
which we call the relative server failure rate. With this metric,
we can perform relative comparisons between failure rates that
we compute for different factors, but the absolute values for the
metric do not have any substantial meaning. We find that the
relative failure rates we examine are in the range Œ0; 1�, and we
plot our data within this range. In Sections IV and V, when we
refer to failure rate we mean relative server failure rate and as
a reminder that our data should not be confused with absolute
failure rates, we label our graphs with relative server failure
rate.

III. BASELINE STATISTICS
We will first focus on the overall error rate and error dis-

tribution among the systems that we analyze and then examine
correlations between different factors and failure rate.

A. Incidence Error Rate and Error Count
Figure 1 shows the monthly incidence error rate for memory

over a span of fourteen months. The incidence error rate is
the fraction of servers in the fleet that have memory errors
compared to the total size of the fleet.1 We observe three trends
with respect to incidence error rate.

7/
13

8/
13

9/
13

10
/1

3
11

/1
3

12
/1

3
1/

14
2/

14
3/

14
4/

14
5/

14
6/

14
7/

14
8/

14

Month

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Fr
ac

tio
n 

of
 s

er
ve

rs

Correctable errors (CE)
Uncorrectable errors (UCE)

Fig. 1: Timeline of correctable and uncorrectable errors.

First, correctable errors occur relatively commonly each
month, affecting 2.08% of servers on average. Though such
errors do not corrupt data, they do reduce machine performance
due to the hardware required to reconstruct the correct data.
While a single correctable error may not be very noticeable, a
large number of correctable errors could lead to performance
degradation. We examine the distribution of the number of
correctable errors among machines at the end of this section.

To compare against prior work, we measured the correctable
error incidence rate over the course of twelve months (7/13
up to and including 7/14, excluding 1/14) and found that,
cumulatively across all months, around 9.62% of servers ex-
perience correctable memory errors. This is much lower than
the yearly correctable error incidence rate reported in work
from the field seven years ago (32.2% in Table 1 in [44])
and comparable with the 5.48% to 9.10% failure rate reported
in more recent work [48] from two years ago. Thus, though
the overall correctable error incidence rate may have decreased
over the better part of a decade of device improvements, our
measurements corroborate the trend that memory errors are still
a widespread problem in the field.

In addition, we find that the correlation between a server
having a correctable error in a given month, depending on
whether there were correctable errors observed in the previous
month is 31.4% on average. In comparison, prior work from
the field found around a 75% correlation in correctable errors
between two consecutive months [44]. Our lower observed
amount of correlation is partially due to how memory errors
are handled in the servers we evaluate: servers were flagged for
memory repair if they had more than 100 correctable errors per
week, whereas prior work (e.g., [44]) only replaced components
with uncorrectable errors. Under our more aggressive/proactive
repair policy, we find that on average around 46% of servers
that have errors end up being repaired each month. As a result,
in contrast to prior work, we find that a majority (69.6%) of the
machines that report errors each month are not repeat offenders
from the previous month.

Second, the rate of uncorrectable errors is much smaller
than the rate of correctable errors, with uncorrectable errors
affecting 0.03% of servers each month on average. Recall

1Correctable error data for January 2014 (1/14) is not available. Note that
if a server has multiple errors in multiple months, it will be represented in
multiple data points.

3



that uncorrectable errors cause a server to crash, increasing
downtime and potentially causing data loss. Therefore, it is
desirable to decrease the rate of uncorrectable errors as much
as possible.

Schroeder et al. conjectured that repair policies “where a
DIMM is replaced once it experiences a significant number of
correctable errors, rather than waiting for the first uncorrectable
error” could reduce the likelihood of uncorrectable errors [44].
To test this hypothesis in the field on our systems that are
repaired with more than 100 correctable errors, we compare
the rate of uncorrectable errors relative to the rate of correctable
errors, in order to control for the change in rate of correctable
errors between the two studies. Interestingly, in Schroeder et
al.’s study, uncorrectable error rate was only 25:0� smaller than
the correctable error rate, while in our study it is 69:3� smaller.
If more aggressive repair policies indeed lead to higher server
reliability, then our results suggest that uncorrectable error rate
can be lowered by up to 2:8� (i.e., 69:3� / 25:0�). This is
achieved by repairing around 46% of the machines with errors
(those with more than 100 correctable errors). System designers
must decide whether the benefit in reduction of potential data
loss is worth the increase in repair rate.

Third, the incidence error rate for correctable errors fluctu-
ates little (its standard deviation is ˙0:297%) and is relatively
stable over the fourteen months that we examined. Uncor-
rectable errors also remain low in comparison to correctable
errors (with a standard deviation of ˙0:018%). We attribute
the low standard deviation in error behavior over time to the
large population size that we examine.

Figure 2 (left) shows the distribution of correctable errors
among servers that had at least one correctable error. The x axis
is the normalized device number, with devices sorted based on
the number of errors they had during a month. The y axis shows
the total number of errors a server had during the month in log
scale. Notice that the maximum number of logged errors is in
the millions. We observe that a small number of servers have
a large number of errors. For example, the top 1% of servers
with the most errors have over 97.8% of all observed correctable
errors. We also find that the distribution of number of errors
among servers is similar to that of a power-law distribution
with exponent �2:964. Prior work observed that some failed
devices, such as the memory controller or bus, can account for
a large number of errors (e.g., [45]), though the full distribution
of errors has not been quantified before.

Fig. 2: The distribution of memory errors among servers with errors (left)
resembles a power-law distribution. Memory errors also follow a Pareto
distribution among servers with errors (right).

Figure 2 (right) shows the probability density distribution of
correctable errors. The x axis is the number of errors per month
and the y axis is the probability of a server having at least that
many errors per month. A Pareto distribution (a special case
of the power law) has been fit to the measured data. Similarly
to many past works that have found decreasing hazard rates in
the behavior of systems (e.g., Unix process lifetimes [14], sizes
of files transferred through the Web [8, 9], sizes of files stored
in Unix file systems [17], durations of FTP transfers in the

Internet [42], CPU requirements for supercomputing jobs [43],
and memory access latencies [22]), we find that the distribution
of errors across servers follows a Pareto distribution, with a
decreasing hazard rate. This means, roughly, that the more
errors a server has had so far, the more errors it is expected
to have.2

Quantifying the skewed distribution of correctable errors is
important as it can help diagnose the severity of a memory
failure relative to the population. For comparison, Schroeder
et al. reported a mean error rate of 22,696 correctable errors
per server per year (Table 1 in [44]), or 1,891 correctable
errors per server per month. Without knowing the underlying
distribution, however, it is not clear whether all servers had such
a large number of errors each month or whether this average is
dominated by a small number of outliers (as we observe here).

If we compute the mean error rate as in prior work, we
observe 497 correctable errors per server per month. However, if
we examine the error rate for the majority of servers (by taking
the median errors per server per month), we find that most
servers have at most 9 correctable errors per server per month.3
In this case, using the mean value to estimate the value for
the majority overestimates by over 55�. We therefore conclude
that, for memory devices, the skewed nature in which errors
are distributed among devices call for the full distribution to be
examined. Doing so reveals that memory errors follow a power-
law distribution, which can be used to accurately assess the
severity of machine failures. Therefore, we hope future studies
that use error data from the field take into account the new
distribution we observe and openly provide.

In addition, we found that hardware scrubbing detected
13.1% of the total number of errors. While we did not monitor
how many servers employed scrubbing, we observed that 67.6%
of the servers with errors detected at least one error through
scrubbing. We do not have detailed memory access information,
so the interaction between scrubbing and different workloads is
not clear, and requires further examination.

B. Component Failure Analysis
Memory errors can occur due to failures in a DRAM device

as well as if the memory controller in the processor fails
or if logic associated with transmitting data on a memory
channel fails. While prior work examined DRAM chip-level
failures ([16, 47, 48]) and memory controller/channel failures
([45]) separately, no prior work has comprehensively examined
failures across the entire memory system.

We adopted a methodology for classifying component fail-
ures similar to prior work (e.g., [16, 47, 48, 45]). We examined
all of the correctable errors across the fleet each month. We
began by determining each correctable error’s corresponding
processor socket, memory channel, bank, row, column, and byte
offset. Then, we grouped errors based on the component that
failed and caused the error to occur. For grouping errors by
components, we used the following criteria:

Socket. If there were > 1K errors across > 1 memory
channel connected to the same processor socket, we classified
those errors as being caused by a socket failure. The > 1K error
threshold was chosen so as to ensure that the failures we classify
are not due to a small number of independent cell failures. To
make sure this was the case, we cross-referenced repair logs of
the servers classified with failed sockets and found that 50% of
them had a large number of errors that required replacing the

2Note that one can take advantage of this property to potentially predict
which servers may have errors in the future. We leave this for future work.
For more information on the Pareto distribution, decreasing hazard rate, and
their properties, we refer the reader to [22, 13].

3Concurrent work by Sridharan et al. [46] makes a similar observation,
though we quantify and provide a model for the full distribution of errors
per server.

4



processor to eliminate the errors and 50% contained intermittent
bursts of errors that caused the server to become unresponsive
for long periods of time – both of these are characteristics of
failed sockets that can generate a large number of machine
check exceptions, as observed in prior work [45].

Channel. After excluding the above errors, if there were
> 1K errors across > 1 DRAM banks connected to the same
memory channel, we classified the channel as having failed.
Similar to sockets, we cross-referenced repair logs for servers
classified with failed channels and found that 60% of the servers
with failed channels did not have any logged repair action (re-
placing or reseating the DIMM), suggesting that these failures
were transient, potentially caused by temporary misalignment
of the transmission signal on the channel. The other 40% of
servers required DIMMs to be replaced, suggesting permanent
failures related to the channel transmission logic (e.g., the I/O
circuitry) within the DIMM.

Bank. After excluding the above errors, we repeated the
procedure for banks, classifying a bank as having failed if it
had > 1K errors across > 1 row. Note that our study examines
monthly failure trends, and we assume that multiple row failures
in the same bank in the same month may be more indicative
of a bank failure than multiple independent row failures in the
bank.

Row. After excluding the above errors, we classified a row
as having failed if > 1 column in the same row had errors.

Column. After excluding the above errors, we classified
a column as having failed if > 1 error occurred in the same
column.

Cell. After excluding the above errors, we classified a cell
as having failed if > 1 error occurred in the same byte within
60 seconds. We chose this amount of time because we found
that 98.9% of errors at a particular byte address had another
error at the same address within 60 seconds if they ever had an
error at the same byte address again in the same day.

Spurious. After excluding the above errors, we are left
with what we term spurious errors. These errors are isolated to
individual cells that do not share a common failed component
and do not repeat in a short amount of time. Potential causes of
these errors include alpha particle strikes from the atmosphere
or chip packaging [34] and cells with weak or variable charge
retention times [30, 21, 20].

Figure 3 shows the fraction of logged errors each month that
are attributed to different types of failures. Error bars show the
standard deviation between months.

S
oc

ke
t

C
ha

nn
el

B
an

k

R
ow

C
ol

um
n

C
el

l

S
pu

rio
us

0.
00

0.
50

1.
00

F
ra

ct
io

n 
of

 e
rr

or
s

Fig. 3: How errors are distributed
among different memory compo-
nents. Error bars signify the varia-
tion in total errors from month to
month.

S
oc

ke
t

C
ha

nn
el

B
an

k

R
ow

C
ol

um
n

C
el

l

S
pu

rio
us

0.
00

0.
50

1.
00

F
ra

ct
io

n 
of

 s
er

ve
rs

Fig. 4: The fraction of failed
servers that had each type of mem-
ory component failure.

Sockets and channels generate the most errors when they
fail, 63.8% and 21.2% of all errors each month, respectively.
This is because when these components fail, they affect a
large amount of memory. Compared to a prior work that

examined socket (memory controller) and channel failures [45]
(but did not examine DRAM chip-level failures), we find that
our systems have 2:9� more socket errors and 5:3� more
channel errors. This could be due to differences in the server
access patterns to memory or how quickly servers crash when
experiencing these types of failures.

That sockets and channels cause a large number of errors
when they fail helps explain the skew in the distribution of
errors among servers (Figure 2, left). For example, servers
with socket failures had the highest number of errors in the
distribution. This large source of errors, if not controlled for, can
confound memory reliability conclusions by artificially inflating
the error rates for memory and creating the appearance of more
DRAM chip-level failures than in reality. Besides the work that
only measured socket and channel failures, but not DRAM chip-
level failures ([45]), we did not find mention of controlling for
socket and channel errors in prior work that examined errors
in the field (e.g., [44, 16, 47, 48, 10, 27, 28]).

We observe that DRAM chip-level (banks, rows, columns,
cells, and spurious) failures contribute a relatively small number
of errors compared to sockets and channels: 6.06%, 0.02%,
0.20%, 0.93%, and 7.80%, respectively. This is because when
these components fail, they affect only a relatively small amount
of memory. Based on these findings, to help with the diagnosis
of memory failures, we recommend that memory error classifi-
cation should always include components such as sockets and
channels.

So far, we have examined how component failures are
related to the number of errors reported. We next turn to how
component failures themselves (the underlying source of errors)
are distributed among servers. Figure 4 shows what fraction of
servers with correctable errors each month have each type of
failure that we examine. We plot error bars for the standard
deviation in fraction of servers that report each type of error
between months, though we find that the trends are remarkably
stable, and the standard deviation is correspondingly very low
(barely visible in Figure 4).

Notice that though socket and channel failures account for
a large fraction of errors (Figure 3), they occur on only a small
fraction of servers with errors each month: 1.34% and 1.10%,
respectively (Figure 4). This helps explain why servers that
have socket failures often appear unresponsive in the repair
logs that we examined. Socket failures bombard a server with
a large flood of MCEs that must be handled by the operating
system, essentially creating a kind of denial of service attack on
the server. Systems that have these type of failures have been
observed to appear unresponsive for minutes at a time while
correcting errors and handling MCEs. We believe that context
switching to the operating system kernel to handle the MCE
contributes largely to the unresponsiveness.

Thus, memory errors are not always isolated events, and
correcting errors in hardware and handling MCEs in the sys-
tem software (as current architectures do) can easily cause
a machine to become unresponsive. We suspect that simple
hardware changes such as caching error events and having
system software poll the contents of the error cache once in a
while, instead of always invoking the system software on each
error detection, could greatly reduce the potential availability
impact of socket and channel failures. In addition, the DDR4
standard [19] will allow memory accesses to be retried by the
memory controller (by using a cyclic redundancy check on the
command/address bits and asserting an “alert” signal when an
error is detected) without interrupting the operating system,
which can help reduce the system-level unavailability resulting
from socket and channel failures.

Bank failures occur relatively frequently, on 14.08% of
servers with errors each month. We observe a larger failure
rate for banks than prior work that examined DRAM chip-

5



level failures on Google servers, which found 2.02% of banks
failed over the course of their study (Table 2 in [16]4). One
reason for this difference could be the different composition
of the servers evaluated. For example, while the prior work
examined older DDR and DDR2 DIMMs from over five years
ago, we examine newer DIMMs that use the DDR3 protocol.
The relatively large occurrence of bank failures suggests that
devices that support single chip failures (e.g., Chipkill [11]) can
provide additional protection to help ensure that such failures
do not lead to uncorrectable errors.

We find that row and column failures are relatively infre-
quent, occurring in 0.92% and 0.99% of servers each month.
Prior work on Google servers found much larger rate of row
(7.4%) and column (14.5%) failures [16]. We believe that the
much larger estimate in prior work could potentially be due
to the confounding effects of socket and channel errors. Such
errors, if present and unaccounted for, can artificially increase
the number of row and column errors (e.g., the socket and
channel errors in Figure 3 may end up being misidentified as
other types of errors).

We observe that a relatively large fraction of servers experi-
ence cell failures, 25.54%. Similar to row and column failures,
prior work found a much larger amount of cell failures, 46.1%.
As with rows an columns, this could also potentially be due
to unaccounted-for socket and channel failures increasing the
perceived number of cell failures. The prevalence of this type of
failure prompted the prior work to examine the effectiveness of
page offlining, where the operating system (OS) removes pages
that contain failed cells from the physical address space. While
the prior study evaluated page offlining in simulation using the
same memory traces from their evaluation, we evaluate page
offlining on a fraction (12,276) of the servers we examine in
Section VI and find it to be less effective than reported in prior
work ([16]).

While prior work, which may not have controlled for socket
and channel failures, found repeat cell errors to be the dominant
type of failure (e.g., [16, 48, 10]); when controlling for socket
and channel failures (by identifying and separately accounting
for the errors associated with them), we find spurious failures
occur the most frequently, across 56.03% of servers with errors.
Such errors can be caused by random DRAM-external events
such as alpha particle strikes from the atmosphere or chip
packaging [34] and DRAM-internal effects such as cells with
weak or variable charge retention times [30, 21, 20]. This is
significant because, as we mentioned before and as we will
show in Section VI, spurious failures can limit the effectiveness
of the page-offlining technique. To deal with these type of
failures, more effective techniques for detecting and reducing
the reliability impact of weak cells are required (some potential
options are discussed in [21, 20]).

IV. THE ROLE OF SYSTEM FACTORS
We next examine how various system factors are correlated

with the occurrence of failures in the systems we examine.
For this detailed analysis, we examine systems that failed
over a span of three months from 7/13 to 9/13. We focus
on understanding DRAM failures and excluded systems with
socket and channel failures from our study. We examine the
effects of DRAM density and DIMM capacity, DIMM vendor,
DIMM architecture, age, and workload characteristics on failure
rate.

A. DIMM Capacity and DRAM Density
DRAM density is measured in the number of bits per

chip and is closely related to the DRAM cell technology and
manufacturing process technology [20]. As DRAM cell and

4Other studies (e.g., [47, 48]) have similar findings. For brevity, we
compare against [16].

fabrication technology improves, devices with higher densities
can be manufactured. The most widely-available chip density
currently is 4 Gb as of 2014, with 8 Gb chips gaining adoption.

DRAM density is different from DIMM capacity. A DIMM
of a certain capacity could be composed in multiple ways
depending on the density and transfer width of its chips. For
example, a 4 GB capacity DIMM could have 16 � 2Gb chips
or 8� 4Gb chips. Prior work examined DIMM capacity when
drawing conclusions [44, 40], and observed trends that were,
in the authors’ own words, either “not consistent” [44] or a
“weak correlation” [40] with error rate. This led the prominent
Schroeder et al. work to conclude that “unlike commonly
feared, we don’t observe any indication that newer generations
of DIMMs have worse error behavior.” Our results with DRAM
density stand to refute this claim as we explain below.

Similar to these works, we also find that the error trends
with respect to DIMM capacity are not consistent. Figure 5
shows how the different capacities of DIMMs we examine are
related to device failure rate.5 The large error bars for 16 GB
and 24 GB DIMMs are due to the relatively small number of
DIMMs of those types. Notice that there is no consistent trend
across DIMM capacities.

●

●

●

●

●

DIMM capacity (GB)

2 8 16 24

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

Fig. 5: The relative failure rate
for servers with different DIMM
capacities. Similar to prior work,
we find no consistent reliability
trend.

●

●

●

Chip density (Gb)

1 2 4

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

Fig. 6: The relative failure rate
for servers with different chip den-
sities. Newer densities (related to
newer technology nodes) show a
trend of higher failure rates.

In contrast to prior works [44, 40], we do observe indication
that newer generations of DRAM chips have worse error
behavior by examining failure rate as a function of DRAM
chip density. The servers we analyzed contained three different
types of DRAM chip densities: 1 Gb, 2 Gb, and 4 Gb. Figure 6
shows how different DRAM chip densities are related to device
failure rate. We can see that there is a clear trend of increasing
failure rate with increasing chip density, with 2 Gb devices
having 2:4� higher failure rates than 1 Gb devices and 4 Gb
devices having 1:8� higher failure rates than 2 Gb devices. This
is troubling because it indicates that business-as-usual practices
in DRAM design will likely lead to increased memory failure
rates in the future, as predicted by both industry [20] and
academia [21, 23, 38, 39] in recent works. To understand the
source of this trend, we next examine the failure rate for DRAM
cells.

Figure 7 shows the cell failure rate computed by normal-
izing the failure rates in Figure 6 by the number of cells in
each chip. Interestingly, cell failure rate had a brief increase
going from 1 Gb chips to 2 Gb chips but a recent decrease going
from 2 Gb chips to 4 Gb chips. This shows that the reliability
of individual DRAM cells may be improving recently. This is

5Recall from Section II-E that we examine relative server failure rates
compared to the sampled control group. Though relative failure rates happen
to be in the range Œ0; 1�, they should not be confused with absolute failure
rates across the fleet.

6



likely due to the large amounts of effort that DRAM manufac-
turers put into designing faster and more reliable DRAM cell
architectures. Our insight is that small improvements in DRAM
cell reliability are easily outpaced by the quadratic increase in
number of cells per chip, leading to the trend of net decrease
in DRAM reliability as shown by the server failure rate data in
Figure 6. Unless more-than–quadratic improvements in DRAM
cell reliability are achieved in future devices, maintaining or
decreasing DRAM server failure rates in the future (while still
increasing DRAM chip capacity) will be untenable without
stronger hardware and/or software error correction.

●

●

●

0.
0e

+
00

1.
5e

−
13

3.
0e

−
13

Chip density (Gb)

1 2 4

R
el

at
iv

e 
ce

ll 
fa

ilu
re

 r
at

e

Fig. 7: The relative per-cell failure rate at different technology nodes (chip
densities).

B. DIMM Vendor
DIMM vendors purchase chips from DRAM chip manufac-

turers and assemble them into DIMMs. While we have infor-
mation on DIMM manufacturer, we do not have information
on the DRAM chip manufacturers in our systems.

Figure 8 shows the failure rate for servers with different
DIMM vendors.6 We observe that failure rate varies by over
2� between vendors (e.g., Vendor B and Vendor C). The dif-
ferences between vendors can arise if vendors use less reliable
chips from a particular foundry or build DIMMs with less
reliable organization and manufacturing. Prior work [48, 10]
also found a large range in the server failure rate among vendors
of 3:9�.

A B C D

DIMM vendor (anonymized)

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

Fig. 8: Relative server failure rate for different vendors varies widely.

C. DIMM Architecture
We next examine how DIMM architecture affects server

failure rate. We examine two aspects of DIMM design that have
not been studied in published literature before: the number of
data chips (not including chips for ECC) per DIMM and the
transfer width of each chip.

Figure 9 plots the failure rate for servers with DIMMs with
different numbers of data chips for each of the densities that
we examine. The DIMMs that we examine have 8, 16, 32, and
48 chips. We make two observations from Figure 9.

6We have made the vendors anonymous.

●

●

Data chips per DIMM

8 16 32 48

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

x8 x4

● 1 Gb 2 Gb 4 Gb

Fig. 9: The relative failure rate of
servers with DIMMs with different
numbers of data chips separated by
chip density.

●

●

Chip transfer width (bits)

4 8

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

● 1 Gb 2 Gb 4 Gb

Fig. 10: The relative failure rate of
servers with DIMMs with different
chip transfer widths separated by
chip density.

First, for a given number of chips per DIMM, servers with
higher chip densities generally have higher average failure rates.
This illustrates how chip density is a first-order effect when
considering memory failure rate (as we showed in Figure 6).

Second, we find that server failure rate trends with respect
to chips per DIMM are dependent on the transfer width of the
chips – the number of data bits each chip can transfer in one
clock cycle. In order to transfer data at a similar rate, DIMMs
with fewer (8 or 16) chips must compensate by using a larger
transfer width of 8 bits per clock cycle (and are called �8
devices) while DIMMs with more chips (32 or 48) can use a
smaller transfer width of 4 bits per clock cycle (and are called
�4 devices). We have annotated the graph to show which chip
counts have transfer widths of �4 bits and �8 bits.

We observe two trends depending on whether chips on a
DIMM have the same or different transfer widths. First, among
chips of the same transfer width, we find that increasing the
number of chips per DIMM increases server failure rate. For
example, for 4 Gb devices, increasing the number of chips from
8 to 16 increases failure rate by 40.8% while for 2 Gb devices,
increasing the number of chips from 32 to 48 increases failure
rate by 36.1%. Second, once the number of chips per DIMM
increases beyond 16 and chips start using a different transfer
width of �8, there is a decrease in failure rate. For example,
for 1 Gb devices, going from 16 chips with a �8 interface to
32 chips with a �4 interface decreases failure rate by 7.1%.
For 2 Gb devices, going from 8 chips with a �8 interface to 32
chips with a �4 interface decreases failure rate by 13.2%.

To confirm the trend related to transfer width, we plotted
the failure rates dependent on transfer width alone in Figure 10.
We find that, in addition to the first-order effect of chip density
increasing failure rate (Effect 1), there is a consistent increase
in failure rate going from �4 to �8 devices (Effect 2).

We believe that both effects may be partially explained by
considering how number of chips and transfer width contribute
to the electrical disturbance within a DIMM that may disrupt
the integrity of the signal between components. For example,
a larger transfer width increases internal data transfer current
(e.g., IDD4R=W in Table 19 of [35], which compares the power
consumption of �4 and �8 DRAM devices), leading to addi-
tional power noise across the device. Such power noise could
induce additional memory errors if, for example, charge were
to get trapped in components. Interestingly, we find that, for a
given chip density, the best architecture for device reliability
occurs when there is, first, low transfer width and, second, low
chips per DIMM. This is shown by the 2 Gb devices with 32
chips with a �4 interface compared to the other 2 Gb devices
in Figure 9.

7



D. Workload Characteristics
We next examine how workload-related characteristics such

as CPU utilization (the average utilization of the CPUs in a
system), memory utilization (the fraction of physical memory
pages in use), and workload type affect server failure rate. Prior
work examined CPU utilization and memory utilization and
found that they were correlated positively with failure rate [44].

We measure CPU utilization as the fraction of non-idle
cycles versus total cycles across the CPUs in a server. Due to
software load balancing, we find that CPU utilization among
cores in a server running the same workload are relatively
similar, and so the average utilization across the cores is rea-
sonably representative of each core’s individual utilization. We
measure memory utilization as the fraction of pages allocated
by the OS. Note that memory utilization does not describe how
the cells in pages are accessed. For this reason, we examine
workloads as a proxy for how cells are accessed. We plot how
CPU utilization and memory utilization are related to server
failure rate in Figures 11 and 12.

●

●

●
●

●
●

CPU utilization

0 0.25 0.5 0.75 1

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

● 1 Gb 2 Gb 4 Gb

Fig. 11: The relative failure rate of
servers with different average CPU
utilizations.

●

●
●

● ●

●
● ●

Memory utilization

0 0.25 0.5 0.75 1

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

● 1 Gb 2 Gb 4 Gb

Fig. 12: The relative failure rate
of servers with different average
memory utilizations.

Contrary to what was observed in prior work, we do not
find a correlation between either CPU utilization or memory
utilization and failure rate. We observe multiple local maxima
for failure rate compared to CPU utilization and memory
utilization across all the chip densities. We believe that this
is due to the more diverse workloads that we examine (Table I)
compared to prior work [44, 47, 48, 10], which mainly exam-
ined a homogeneous workload. The implications of this are that
memory failure rate may depend more on the type of work as
opposed to the CPU or memory utilization the work causes.

To examine how the type of work a server performs affects
failure rate, we plotted the server failure rate for the different
workload types at Facebook in Figure 13. We observe that, de-
pending on the workload, failure rate can vary by up to 6:5�, as
shown by the difference between servers executing a Database-
type workload compared to those executing a Hadoop-type
workload. While we leave the detailed examination of how
workloads affect memory failure rate to future work, we hy-
pothesize that certain types of workload memory access patterns
may increase the likelihood of errors. For example, prior work
has shown that memory errors can be induced in a controlled
environment by accessing the same memory row in rapid
succession [23]. Such an access pattern involves modifying
data and writing it back to memory using the clflush and
mfence instructions. We believe it would be interesting to
examine what types of workloads exhibit this behavior.

E. Server Age
We examine next how age affects server failure rate. The

servers we analyzed were between one and four years old, with
an average age of between one and two years. Figure 14 shows
the monthly failure rate for servers of different ages. We observe

W
eb

H
ad

oo
p

In
ge

st

D
at

ab
as

e

M
em

ca
ch

e

M
ed

ia

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

Fig. 13: The relative failure rate of servers that run different types of
workloads (Table I) can vary widely.

that chip density once again plays a large role in determining
server failure rate: For a given age, servers with 4 Gb devices
have a 15.3% higher failure rate on average than 2 Gb devices,
and servers with 2 Gb devices have a 23.9% higher failure rate
on average than 1 Gb devices.

We do not observe any general age-dependent trend in
server failure rate when controlling for the effects of density
alone. One reason for this is that age is correlated with other
server characteristics. For example, we find that in addition to
being correlated with chip density (correlation coefficient of
�0:69), age is also correlated with the number of CPUs in a
system (correlation coefficient of �0:72). Figure 15 shows the
trend for age for different combinations of chip density and
CPUs (which we will denote as hx; yi where x is chip density
in Gb and y is number of CPUs). We make two observations
from Figure 15.

First, we find that among systems of the same age, more
cores lead to higher failure rates. For example, consider the
h2;�i systems that are two years of age: going from 4 ! 12
cores increases failure rate by 21.0% and going from 12! 16
cores increases failure rate by 22.2%. Figure 16, which plots
the server failure rate with respect to different numbers of CPUs
confirms this trend, with 2 Gb systems with 16 cores having a
40.0% higher failure rate than 2 Gb systems with 4 cores. This
could potentially be due to more cores accessing DRAM more
intensely and wearing out DRAM cells at a faster rate, a failure
mode that was shown in a prior controlled study [6].

The most related trend observed in prior work was that
CPU frequency was shown to be correlated with error rate [40].
The trend we observe with respect to CPU count is significant
because the number of CPU cores per processor is increasing
at a much faster rate than CPU frequency and so our results
allow us to predict that future processor generations will likely
continue to induce higher rates of errors in DRAM devices.

Second, among systems with the same number of cores,
older machines generally have higher failure rates than younger
machines. For example, for the h2; 12i system, average failure
rate increases by 2.8% going from 2 ! 3 years of age, and
average failure rate increases by 7.8% going from 3! 4 years
of age. This is consistent with prior observations from the field
that showed that failure rates can increase with age [44], though
we observe a much clearer trend compared to prior work (e.g.,
Figure 10 in [44] shows large fluctuations in failure rate over
time) because we have controlled for correlated factors such as
chip density and CPU count. Not all systems exhibit this trend,
however: the h1; 12i system shows a small decrease in failure
rate going from 3 ! 4 years of age, which could be due to
second-order effects on failure rate from other factors that may
be correlated with age, such as transfer width.

V. MODELING DRAM FAILURES
We next develop a model for DRAM failures using the data

collected from our study. We use a statistical regression analysis

8



●
●

Server age (years)

1 2 3 4

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

● 1 Gb 2 Gb 4 Gb

Fig. 14: The relative failure rate of
servers of different ages. There is no
clear trend when controlling only for
chip density.

● ●

Server age (years)

1 2 3 4

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

● 1 Gb, 12 cores
2 Gb, 4 cores

2 Gb, 8 cores
2 Gb, 12 cores

2 Gb, 16 cores
4 Gb, 16 cores

Fig. 15: The relative failure rate of servers of different
hchip density;CPU counti configurations. When controlling for
density and CPUs together, older devices usually have higher
failure rates.

●

CPU cores

4 8 12 16

0.
00

0.
50

1.
00

R
el

at
iv

e 
se

rv
er

 fa
ilu

re
 r

at
e

● 1 Gb 2 Gb 4 Gb

Fig. 16: The relative failure rate of
servers with different numbers of CPU
cores. Servers with more CPUs have
higher failure rates.

TABLE II: The factors in our regression analysis and the resulting error model. p-value is the likelihood that a characteristic is inaccurately modeled: lower
p-values indicate more accurate modeling. Significant? is whether the p-value is < 0:01, corresponding a < 1% chance that the characteristic is inaccurately
modeled. ˇ -coefficient is the characteristic’s contribution to error rate and standard error is how much the model differs from the measured values for a given
characteristic. The model is publicly available at [1].

Characteristic Description p-value Significant? ˇ -coefficient Standard error
Intercept A baseline server with 1 Gb chips with a �4 interface and 0 <2:000� 10�16 Yes �5:511 3:011� 10�1

for all other factors.
Capacity DIMM capacity (GB). <2:000� 10�16 Yes 9:012� 10�2 2:168� 10�2

Density2Gb 1 if the server has 2 Gb density chips; 0 otherwise. <2:000� 10�16 Yes 1:018 1:039� 10�1

Density4Gb 1 if the server has 4 Gb density chips; 0 otherwise. <2:000� 10�16 Yes 2:585 1:907� 10�1

Chips Number of chips per DIMM. <2:000� 10�16 Yes �4:035� 10�2 1:294� 10�2

Width8 1 if the server has �8 DRAM chips; 0 otherwise. 0:071 No 2:310� 10�1 1:277� 10�1

CPU% Average CPU utilization (%). <2:000� 10�16 Yes 1:731� 10�2 1:633� 10�3

Memory% Average fraction of allocated physical pages (%). 0:962 No 5:905� 10�5 1:224� 10�3

Age Server age (years). <2:000� 10�16 Yes 2:296� 10�1 3:956� 10�2

CPUs Number of physical CPU cores in the server. <2:000� 10�16 Yes 2:126� 10�1 1:449� 10�2

Failure model ln ŒF=.1�F/� D ˇIntercept C .Capacity � ˇCapacity/C .Density2Gb � ˇDensity2Gb/C .Density4Gb � ˇDensity4Gb/C .Chips � ˇChips/
C.CPU% � ˇCPU%/C .Age � ˇAge/C .CPUs � ˇCPUs/

to determine which server characteristics have a statistically
significant effect on failure rate and how much they contribute
to failure rate. The resulting model can then be used to examine
how relative server failure rate changes for servers with different
characteristics, which can be used to reason about the relative
reliability of different server configurations.

We used R [3] for our statistical analysis. We performed
a logistic regression [15, 32] on a binary characteristic that
represented whether a server was part of the error group or
control group of servers (see Section II-E for our error and
control group classification/formation). We include most of the
characteristics we analyzed in Section IV in our regression with
the exception of DIMM vendor because it is anonymized and
workload type because it is difficult to apply outside the context
of our fleet.7 One limitation of the logistic regression model
is that it is able to identify only linear relationships between
characteristics and failure rates. On the other hand, using a
logistic regression made analyzing our large data set of errors
across many variables tractable.

Table II shows the parameters and output of the regression
and the resulting model (in the last row). The first two columns
describe the factors included in the regression. The third column
lists the resulting p-value for each factor after performing
the logistic regression. The p-value is the likelihood that a
characteristic is inaccurately modeled: lower p-values indicate
more accurate modeling. The fourth column describes whether
the p-value is < 0:01, corresponding to a < 1% chance that
the characteristic is inaccurately modeled. The fifth column, ˇ-

7This results in these contributions to the model being expressed indirectly
though other factors, whose values will be computed, in part, based on how
they are correlated with different vendors/workloads.

coefficient, is the characteristic’s contribution to error rate and
the last column, standard error, is how much the model differs
from the measured values for a given characteristic.

The Intercept is a byproduct of the regression and helps the
model fit the measured data better. It represents a server with
a certain set of baseline characteristics (listed in Table II) and
0 for all other factors (0 CPUs, 0 years old, and so on). The
factors Density2Gb and Density4Gb take on the value 0 or 1
depending on whether the server has the characteristic (in which
case the value is 1) or does not (0). Note that the regression
analysis computes the ˇ-coefficients for these variables in such
a way that when they are added to the model, they effectively
replace the default values represented in ˇIntercept (e.g., though
ˇIntercept represents a server with 1 Gb chips, when Density2Gb
is set to 1, the model computes the failure rate of servers with
2 Gb chips).

Note that a characteristic that is included in the model
does not necessarily mean that it affects failure rate in the
real world. It may mean that it is only correlated with other
characteristics that do affect failure rate. The opposite is true
as well: A characteristic that is not included in the model may
in fact contribute to failure rate but its effects are captured
by other characteristics present in the model. For example,
Figure 17 shows a heatmap representing the correlation between
the different measured factors: darker colors correspond to a
stronger correlation while lighter colors correspond to a weaker
correlation. While some factors that are independent of one
another have weak or no correlation (i.e., close to 0, such
as CPUs and Chips), others show strong correlations (i.e.,
more/less than ˙0:8, such as Capacity and Chips). We have
discussed and attempted to control for these correlations in
Section IV.

9



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
ge

C
P

U
%

M
em

or
y%

C
hi

p 
w

id
th

C
P

U
s

D
en

si
ty

C
ap

ac
ity

C
hi

ps

Age

CPU%

Memory%

Chip width

CPUs

Density

Capacity

Chips

Fig. 17: The correlation between different measured factors.

Using the equation in Table II, we can solve for F , the rate
of memory failure for a server with a given set of characteristics.
For example, Table III compares the failure rates predicted by
the model for four different server types: (1) a low-end server
with low density DIMMs and few CPUs, (2) a high-end (HE)
server with high density DIMMs and twice as many CPUs
as the low-end server, (3) a high-end server that uses lower-
density DIMMs (HE/#density), and (4) a high-end server that
uses half as many CPUs (HE/#CPUs). So that the workload is
kept roughly similar across the configurations, we double the
CPU utilization for servers with half as many CPUs.
TABLE III: Predicted relative failure rates among different server types.
Factor Low-end High-end (HE) HE/#density HE/#CPUs
Capacity 4 GB 16 GB 4 GB 16 GB
Density2Gb 1 0 1 0
Density4Gb 0 1 0 1
Chips 16 32 16 32
CPU% 50% 25% 25% 50%
Age 1 1 1 1
CPUs 8 16 16 8
Predicted

0.12 0.78 0.33 0.51relative
failure rate

We can see that the model-predicted failure rate of the high-
end server is 6:5� that of the low-end server. This agrees with
the trends that we observed in Section IV, which showed, for
example, increasing failure rates with increasing chip density
and number of CPUs. Interestingly, the model can be used
to provide insight into the relative change in error rate for
different system design choices. For example, the failure rate
of the high-end server can be reduced by 57.7% by using
lower density DIMMs and by 34.6% by using half as many
cores. This indicates that designing systems with lower density
DIMMs can provide a larger DRAM reliability benefit than
designing systems with fewer CPUs. In this way, the model
that we develop allows system architects to easily and quickly
explore a large design space for memory reliability. We hope
that, by using the model, system architects can evaluate the
reliability trade-offs of their own system configurations in order
to achieve better memory reliability. We make the model also
available online at [1].

VI. EFFECT OF PAGE OFFLINING AT SCALE
We next discuss the results of a study performed to examine

ways to reduce memory errors using page offlining [49, 16].
Page offlining removes a physical page of memory that contains
a memory error from the set of physical pages of memory that
the operating system can allocate. This reduces the chance of
a more severe uncorrectable error occurring on that page com-

pared to leaving the faulty page in the physical address space.
While prior work evaluated page offlining using simulations on
memory traces [16], we deployed page offlining on a fraction of
the machines we examined (12,276 servers) and observed the
results. We next describe the system design decisions required
to make page-offlining work well at a large scale, and analyze
its effectiveness.

A. Design Decisions and Implementation
The three main design decisions we explore with respect

to utilizing page offlining in practice are: (1) when to take a
page offline, (2) for how long to take a page offline, and (3)
how many pages to take offline (the first and last of which were
also identified in [16]).

(1) When to take a page offline? ECC DIMMs provide
flexibility for tolerating correctable errors for a certain amount
of time. In some settings, it may make sense to wait until a
certain number of memory errors occur on a page in a certain
amount of time before taking the page offline. We examine a
conservative approach and take any page that had a memory er-
ror offline immediately (the same as the most aggressive policy
examined in prior work [16]). The rationale is that leaving a
page with an error in use increases the risk of an uncorrectable
error occurring on that page. Another option could be to leave
pages with errors in use for longer and, for example, design
applications that are not as adversely affected by memory errors.
Such an approach is taken by Flikker [31], which developed a
programming model for reasoning about the reliability of data,
and by heterogeneous-reliability memory systems where parts
of memory can be less reliable and application data that is less
vulnerable to errors can be allocated there [33].

(2) For how long to take a page offline? One question
that arose when designing page offlining at a large scale was
how to make an offlined page persist across machine reboots
(both planned and unplanned) and hardware changes (e.g., disk
replacement). Neither of these cases are handled by existing
techniques. Allowing an offlined page with a permanent error
to come back online can defeat the purpose of page offlining by
increasing the window of vulnerability for uncorrectable errors.
We examine a policy that takes pages offline permanently. To
keep track of offlined pages across machine reboots, we store
offlined pages by host name in a distributed database that is
queried when the OS kernel loads. This allows known-bad
pages to be taken offline before the kernel allocates them to
applications. Entries in this database need to be updated as
DRAM parts are replaced in a system.

(3) How many pages to take offline? Taking a page offline
reduces the size of physical memory in a system and could
cause increased swapping of pages to storage. To limit the
negative performance impact of this, we place a cap on the
number of physical pages that may be taken offline. Unlike
prior work, as we showed in Section III-B, socket and channel
failures can potentially cause page offlining to remove large
portions of the physical address space, potentially causing large
amounts of swapping to storage and degrading performance.
To check how many pages have been taken offline, logs are
routinely inspected on each machine. When the amount of
physical memory taken offline is greater than 5% of a server’s
physical memory capacity, a repair ticket is generated for the
server.

B. Effectiveness
Figure 18 shows a timeline of the normalized number of

errors in the 12,276 servers that we examine (unlike the rest
of this study, we only examine a small number of servers for
this technique). The experiment was performed for 86 days and
we measure the number of errors as a moving average over 30
days. As it was a production environment, page offlining was
deployed on all of the machines over the course of several

10



days. We divide the graph into three regions based on the
different phases of our experiment. Region a shows the state
of the servers before page offlining was deployed. Region b
shows the state of the servers while page offlining was deployed
gradually to 100% of the servers (so that any malfunctions
of the deployment could be detected in a small number of
machines and not all of them). Region c shows the state of
the servers after page offlining was fully deployed.

0 10 20 30 40 50 57
Day of study

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 lo
gg

ed
 e

rr
or

s

Initial
testing

Fully
deployed

a b c

Fig. 18: The effect of page offlining on error rate.

The initial hump in Region a from days 0 to 7 was due
to a bank failure on one server that generated a large number
of errors. By day 8 its effects were no longer noticeable in
the moving average and we compare the effectiveness of page
offlining to the error rate after day 8.

There are three things to note from Figure 18. First, after
deploying page offlining to 100% of the fleet at day 25,
error rate continues to decrease until day 50. We believe that
this is because some pages that contained errors, but which
were not accessed immediately after deploying page offlining,
were eventually accessed, triggering an error and taking the
page offline. In addition, some pages cannot be taken offline
immediately due to restrictions in the OS, which we will
describe in the next section. Second, comparing the error rate
at day 18 (right before initial testing) to the error rate at day 50
(after deploying page offlining and letting the servers run for a
couple of weeks), the error rate decreased by around 67%. This
is smaller than the 86% to 94% error rate reduction reported
in Hwang et al.’s study [16]. One reason for this could be that
the prior study may have included socket and channel errors in
their simulation – increasing the number of errors that could
be avoided due to page offlining. Third, we observe a relatively
large rate of error occurrence (e.g., at day 57 the error rate
is still around 18% of the maximum amount), even after page
offlining. This suggests that it is important to design devices
and other techniques that help reduce the error rate that does
not seem to be affected by aggressive page offlining.

C. Limitations
While page offlining is relatively effective at reducing the

number of reported errors, we find that it has two main limi-
tations that were not addressed in prior work. First, it reduces
memory capacity, which requires repairing a machine after a
certain fraction of its pages have been taken offline. Second, it
may not always succeed in real systems. We additionally logged
the failure rate of page offlining and found that around 6% of
the attempts to offline a page initially failed. One example we
found of why a page may fail to be offlined in the Linux kernel
is if its contents cannot be locked for exclusive access. For
example, if its data is being prefetched into the page cache at
the time when it is to be offlined, locking the page could result
in a deadlock, and so the Linux kernel does not allow this.
This, however, could be easily fixed by retrying page-offlining
at a later time, at the expense of added complexity to system
software.

Despite these limitations, however, we find that page of-
flining – when adapted to function at scale – provides reason-

able memory error tolerance benefits, as we have demonstrated.
We look forward to future works that analyze the interaction of
page offlining with other error correction methods.

VII. RELATED WORK
To the best of our knowledge, we have performed the

first analysis of DRAM failure trends (on modern DRAM
devices using modern data-intensive workloads) that have not
been identified in prior work (e.g., chip density, transfer width,
workload type), presented the first regression-based model for
examining the memory failure rate of systems, and performed
the first analysis of page offlining in the field. Prior large
scale empirical studies of memory errors analyzed various
aspects of memory errors in different systems. We have al-
ready presented extensive comparisons to the most prevalent of
them [44, 16, 47, 48, 10] throughout the paper. We will discuss
these and others here briefly.

Schroeder et al. performed the first study of memory errors
in the field on a majority of Google’s servers in 2009 [44].
The authors’ study showed the relatively high rate of memory
errors across Google’s server population, provided evidence that
errors are dominated by device failures (versus alpha particles),
and noted that they did not observe any indication that newer
generations of DRAM devices have worse error behavior, that
CPU and memory utilization are correlated with error rate, and
that average server error rate is very high – findings clarified
by our study in this paper, five years later, as we explained in
Section III. Their work formed the basis for what is known of
DRAM errors in the field.

Hwang et al. performed an analysis on a trace of memory
errors from a sample of Google servers and IBM supercomput-
ers, showing how errors are distributed across various DRAM
components [16], but without controlling for the effect of
socket and channel failures. The high number of repeat address
errors led them to simulate the effectiveness of page offlining
(proposed in [49]) on the memory error traces, which they found
to reduce error rate by 86% to 94%. Note that their study of
page offlining, unlike ours (presented in Section VI), was done
purely in simulation, not in a large scale system.

Sridharan et al. examined memory errors in a supercom-
puting environment [47, 48, 10]. Similar to Hwang et al., they
found that most memory errors are permanent and additionally
identified occurrences of multi-DIMM errors, and speculated as
to their origin. They also found that DRAM vendor and age are
correlated with error rate. Concurrent to our work, Sridharan et
al. also observe that average server errors are much larger than
median server errors [46], though we quantify and provide a
model for the full distribution of errors per server. Siddiqua et
al. provided an error classification methodology for the memory
controller and memory bus, but did not classify memory errors
at a finer DRAM chip-level granularity as we do [45]. They
found that a small number of faults generate a large number of
errors and that faults are predominantly permanent.

Nightingale et al. examined the failure rate of consumer PCs
and showed that increased CPU frequency is correlated with
increased DRAM error rates [40]. A pair of works by Li et al.
analyzed memory errors on 212 Ask.com servers and evaluated
their application-level impact [27, 28]. They found that most
memory errors are permanent and that memory errors affected
applications in noticeable ways, and proposed a technique to
monitor memory for errors to reduce application impact.

VIII. CONCLUSIONS
We performed a comprehensive analysis of the memory

errors across all of Facebook’s servers over fourteen months.
We analyzed a variety of factors and how they affect server
failure rate and observed several new reliability trends for
memory systems that have not been discussed before in lit-
erature. We find that (1) memory errors follow a power-law

11



distribution, specifically, a Pareto distribution with decreasing
hazard rate, with average error rate exceeding median error
rate by around 55�; (2) non-DRAM memory failures from the
memory controller and memory channel contribute the majority
of errors and create a kind of denial of service attack in
servers; (3) more recent DRAM cell fabrication technologies (as
indicated by chip density) show higher failure rates (prior work
that measured DRAM capacity, which is not closely related
to fabrication technology, observed inconclusive trends); (4)
DIMM architecture decisions affect memory reliability: DIMMs
with fewer chips and lower transfer widths have the lowest error
rates, likely due to electrical noise reduction; and (5) while CPU
and memory utilization do not show clear trends with respect
to failure rates, workload type can influence server failure rate
by up to 6:5�.

We developed a model for memory failures and showed how
system design choices such as using lower density DIMMs and
fewer processors can reduce failure rates of baseline servers
by up to 57.7%. We also performed the first analysis of page
offlining in a real-world environment, showing that error rate
can be reduced by around 67% identifying and fixing several
real-world challenges to the technique.

We hope that the data and analyses presented in our work
can aid in (1) clearing up potential inaccuracies and limitations
in past studies’ conclusions, (2) understanding the effects of
different factors on memory reliability, (3) the design of more
reliable DIMM and memory system architectures, and (4) im-
proving evaluation methodologies for future memory reliability
studies.

ACKNOWLEDGMENTS
We thank Konrad Lai, Manish Modi, and Jon Brauer for

their contributions to the work. We also thank the students
who attended the Fall 2014 lectures of 18-742 at CMU, who
provided feedback on earlier drafts. We thank the anonymous
reviewers from ISCA 2014, OSDI 2015, and DSN 2015 and the
members of the SAFARI research group for their comments and
suggestions. This work is supported in part by Samsung and the
Intel Science and Technology Center for Cloud Computing, as
well as NSF grants 0953246, 1065112, 1212962, and 1320531.

REFERENCES
[1] “DRAM Failure Model,” http://www.ece.cmu.edu/~safari/tools.html.
[2] “Open Compute Project,” http://www.opencompute.org/.
[3] “The R Project for Statistical Computing,” http://www.r-project.org/.
[4] D. Borthakur et al., “Apache Hadoop goes realtime at Facebook,”

SIGMOD, 2011.
[5] P. Chakka et al., “Hive: A Warehousing Solution Over a Map-Reduce

Framework,” VLDB, 2009.
[6] P.-F. Chia, S.-J. Wen, and S. Baeg, “New DRAM HCI Qualification

Method Emphasizing on Repeated Memory Access,” IRW, 2010.
[7] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliabil-

ity,” IEEE Micro, 2003.
[8] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web

traffic: Evidence and possible causes,” IEEE/ACM TON, 1997.
[9] M. E. Crovella, M. S. Taqqu, and A. Bestavros, A Practical Guide to

Heavy Tails. Chapman & Hall, 1998.
[10] N. DeBardeleben et al., “Extra Bits on SRAM and DRAM Errors –

More Data from the Field,” SELSE, 2014.
[11] T. J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC for

PC Server Main Memory,” IBM Microelectronics Division, Nov. 1997.
[12] R. W. Hamming, “Error Correcting and Error Detecting Codes,” Bell

System Technical Journal, Apr. 1950.
[13] M. Harchol-Balter, “Task assignment with unknown duration,” J. ACM,

2002.
[14] M. Harchol-Balter and A. Downey, “Exploiting Process Lifetime

Distributions for Dynamic Load Balancing,” SIGMETRICS, 1996.
[15] D. Hosmer and S. Lemeshow, Applied Logistic Regression (Second

Edition). John Wiley and Sons, Inc., 2000.
[16] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike

Twice: Understanding the Characteristics of DRAM Errors and the
Implications for System Design,” ASPLOS, 2012.

[17] G. Irlam, “Unis File Size Survey – 1993,” http://www.base.com/
gordoni/ufs93.html.

[18] N. Jain et al., “Data Warehousing and Analytics Infrastructure at
Facebook,” SIGMOD, 2010.

[19] JEDEC Solid State Technology Association, “JEDEC Standard: DDR4
SDRAM, JESD49-4A,” Nov. 2013.

[20] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling,” The Memory Forum, 2014.

[21] S. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study,” SIGMET-
RICS, 2014.

[22] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” HPCA, 2010.

[23] ——, “Flipping Bits in Memory Without Accessing Them: An Exper-
imental Study of DRAM Disturbance Errors,” ISCA, 2014.

[24] ——, “A Case for Subarray-Level Parallelism (SALP) in DRAM,”
ISCA, 2012.

[25] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing
for the Common-Case,” HPCA, 2015.

[26] ——, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM
Architecture,” HPCA, 2013.

[27] X. Li et al., “A Memory Soft Error Measurement on Production
Systems,” USENIX ATC, 2007.

[28] ——, “A Realistic Evaluation of Memory Hardware Errors and Soft-
ware System Susceptibility,” USENIX ATC, 2010.

[29] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,”
ISCA, 2012.

[30] ——, “An Experimental Study of Data Retention Behavior in Modern
DRAM Devices: Implications for Retention Time Profiling Mecha-
nisms,” ISCA, 2013.

[31] S. Liu et al., “Flikker: Saving DRAM Refresh-power through Critical
Data Partitioning,” ASPLOS, 2011.

[32] J. S. Long, Regression Models for Categorical and Limited Dependent
Variables. Sage Publications, 1997.

[33] Y. Luo et al., “Characterizing Application Memory Error Vulnerability
to Optimize Data Center Cost via Heterogeneous-Reliability Memory,”
DSN, 2014.

[34] T. C. May and M. H. Woods, “Alpha-Particle-Induced Soft Errors in
Dynamic Memories,” IEEE Transactions on Electron Devices, 1979.

[35] Micron Technology, Inc., “4 Gb: �4, �8, �16 DDR3 SDRAM,” 2009.
[36] S. S. Mukherjee et al., “Cache Scrubbing in Microprocessors: Myth or

Necessity?” PRDC, 2004.
[37] S. Muralidhar et al., “f4: Facebook’s warm blob storage system,” OSDI,

2014.
[38] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,”

MEMCON, 2013.
[39] O. Mutlu, J. Meza, and L. Subramanian, “The Main Memory System:

Challenges and Opportunities,” Comm. of the Korean Institute of
Information Scientists and Engineers, 2015.

[40] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, Cells and
Platters: An Empirical Analysis of Hardware Failures on a Million
Consumer PCs,” EuroSys, 2011.

[41] R. Nishtala et al., “Scaling Memcache at Facebook,” NSDI, 2013.
[42] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson

modeling,” IEEE/ACM TON, 1995.
[43] B. Schroeder and M. Harchol-Balter, “Evaluation of task assignment for

supercomputing servers: The case for load unbalancing and fairness,”
Cluster Computing, 2004.

[44] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the
Wild: A Large-Scale Field Study,” SIGMETRICS/Performance, 2009.

[45] T. Siddiqua et al., “Analysis and Modeling of Memory Errors from
Large-scale Field Data Collection,” SELSE, 2013.

[46] V. Sridharan et al., “Memory Errors in Modern Systems: The Good,
The Bad, and The Ugly,” ASPLOS, 2015.

[47] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,”
SC, 2012.

[48] V. Sridharan et al., “Feng Shui of Supercomputer Memory: Positional
Effects in DRAM and SRAM Faults,” SC, 2013.

[49] D. Tang et al., “Assessment of the Effect of Memory Page Retirement
on System RAS Against Hardware Faults,” DSN, 2006.

[50] P. Vajgel et al., “Finding a Needle in Haystack: Facebook’s Photo
Storage,” OSDI, 2010.

12


	Carnegie Mellon University
	Research Showcase @ CMU
	6-2015

	Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field
	Justin Meza
	Qiang Wu
	Sanjeev Kumar
	Onur Mutlu
	Published In


	tmp.1435695878.pdf.H5uRE

