Comparison between Intel®Atom™and
ARM Cortex-A53

Behnam Saeedi

Abstract

The Intel®s Atom™was developed during 2008 by Intel®corporation. This processor was originally intended to be a
low consumption mobile chip.[1] The purpose of this paper is to analyze some of the characteristics of this system and
compare them to an Arm Cortex-A53 Architecture which is used in raspberry pi 3’s processor. It also covers instruction set
design, data-path design and the memory hierarchy of Atom™and ARM processors. Furthermore this paper will go over
some of the possible advantages and disadvantages of each system.

1



CONTENTS

1 Introduction to Architecture 4
1.1 Intel®Atom™ . . . L 4

1.2 Arm Cortex-AB3 . . . . . . e e 4

2 Instruction Set Design 5
2.1 RISCvs CISC . . . . e e e e e 5

2.1.1 Intel®Atom™ . . . L e 5

2.1.2 ARM Cortex-AB3 . . . . . . . 5

22 Available AddressingMode . . . . . ... L L 5

221 Intel®Atom™ . . ..o 6

222 ARM Cortex-AB3 . . . . . . e 6

2.3 AddressLength . . . . .. .. ... .. .. 6

2.3.1 Intel®Atom™ . . . L e 6

232 ARM Cortex-AB3 . . . . . . . 8

3 Data-path Design 10
3.1 Number of Registers . . . . . .. ... ... ... ... 10

3.1.1 Atom™ | o Lo 10

3.1.2 Arm Cortex-A53 . . . . . e 10

3.13 Tricks . . . . o oo 10

3.2 Pipeline analysis . . . .. .. .. ... .. .. .. ... 10

3.2.1 Intel®Atom™ . . . L e 10

322 ARM Cortex-AB3 . . . . . . . 11

3.3 Useof microcode . . . . . . . . . . o o i e 14

3.3.1 Intel®’s Atom™ . . . .o 15

332 ARM Cortex-AB3 . . . . . e 15

4 Memory Subsystem 16



4.1 Limits . . . . . e 16

4.1.1 Intel®'s Atom™N270 . . . . . . ... 16

412 ARM Cortex-AB3 . . . . . . . 16

4.2 Caches . . . . . . 16

421 Intel®’s Atom™N270 . . . . . . ..o 17

422 ARM Cortex-AB3 . . . . . e 17

43 Virtual Memory . . . . . . ... 17

431 Intel®'s Atom™N270 . . . . . . ... 17

432 ARM Cortex-AB3 . . . . . . . 17

5 Conclusion 18
References 19



1 INTRODUCTION TO ARCHITECTURE

Computer architecture analyzes a hardware in an abstract level. It describe the functionality and implementation
of the system. In other words Computer architecture explain the system from a high level standpoint by covering
system layout. Furthermore in the organization of the system, we describes modules and unites within a
computer system and how they are interact with one another.

In this document we will compare two processors and identify their differences. Those two processors are
Intel®Atom™and ARM Cortex-A53. Furthermore, this paper covers some of the methods for finding detailed
information about those two processors.

1.1 Intel®@Atom™

The Intel®Atom™was originally developed in April 2008.[2] This processor was originally designed to be ultra-
low-power IA-32 and x86-64 microprocessors available to a wide range of mobile computers.[1] Since 2008 and
8 this processor has seen many modifications and changes to be a better fit for the market. It was originally
only available to system manufacturers and it was a permanent installation soldered to the motherboard. Even
though the Atom™was not available to home users it was obtainable with an ITX motherboards all in one
package.

Latest Atom™was released in September 2013. This CPU clocks anywhere between 1.60GHz on a 32nm
dual core Centerton 51220 to 2.40GHz on 22nm octa core Avoton C2750.[3]

This system also had several short comings mainly due to bad marketing. Atom processors are great for
consuming low amount of power. This leads to heat reduction and an increase in the battery life if this chip is
meant to work off of a battery. The problem on the other hand is that they processor is not powerful enough to
handle the demands of an average computer user.[4] Specially, when windows vista came out, it was a poorly
optimized OS filled with bugs and impractical software solutions to non existing problems. Atom™simply did
not have enough processing power to handle the work load leading to a slow user experience.

for the purpose of this paper we are using an Intel® Atom™CPU N270 from Diamondpville series. This
single core processor has a i686 architecture and was released at 2008. By default, Atom™N270 clocks at 1.60
GHz.

1.2 Arm Cortex-A53

We all remember the days which we used to purchase computer related magazines to see the coolest newest
technological breakthroughs in the field of computer science. Some of those magazines had a complementary
floppy disk loaded with with the electronic version of the same magazine or a sponsored game. I remember
when I received a magpi issue number 40 I got something that I did not expect. That issue of magpi came with
a raspberry pi zero. In course 8 years the technology has advanced so much that we went from receiving a
floppy disk to a getting an actual computer with our issue of magazine. Needless to say, this computer packs
more computing power than a popular laptop produced in 2006.[5][6]

Raspberry Pi computers offered a user friendly environment for people with less technical knowledge to
use this computer for their projects. Furthermore, it is a great teaching tool for non electrical engineering or
computer science related engineering fields. The most important feature of raspberry pi computers are the 40
GPIO pins that are available to the user. Furthermore, the newer Raspberry pi 3 also has wireless network RF
module for connecting to network and Bluetooth. All of these features, make Raspberry pi a versatile computer
for a small cost of $ 35. [7]

At the heart of this small computer is an ARM processor. different raspberry pis use different ARM
processors. Raspberry pi 1 used an old version of ARMv6 architecture and its performance was somewhat
equivalent to a smart phone.[8] Raspberry pi 2 uses an ARM Cortex-A7 and Raspberry pi 3 uses an ARM
Cortex-A53. [9][10] For the purpose of his paper we use the processor on raspberry pi 3. The Arm Cortex-A53
is a 64-bit architecture developed by ARM Holdings.



2 INSTRUCTION SET DESIGN

processors could be classified based on the size of their instruction set. This refers to simplicity of instructions
rather than the amount of instructions available. These classifications are Complex instruction set computing
(CISC) and Reduced instruction set computing (RISK). These instruction sets are usually decided by a committee
based on the purpose they want that processor to serve.

2.1 RISC vs CISC

e RISC: or Reduced instruction set computing is an architecture where the instructions are simplified to a
point where the entire instruction could be completed in one CPU clock cycle.

e CISC: or Complex instruction set computing is an architecture where instructions are not simplified.
Each instruction can take multiple clock cycles in order to be completely executed.

each system has its own advantages and disadvantages. The deciding factor for which architecture to use
completely depends on the manufacturer, purpose of the CPU and the market they are trying to appeal to.
Some of the differences between these two architectures and their advantages and disadvantages is thoroughly
explained in an article titled ” RISC vs. CISC”.[11]

2.1.1 Intel®Atom™

the x86 instruction set suggests that Intel processors are all designed based on the CISC architecture. Further-
more windows 95 did not even have support for RISC architecture.[12] However, this is where the confusion
begins. Some sources suggest that Intel®’s Atom™architecture is much more complex than RISC and CISC
alone. Since the Pentium Pro all x86 processors have been internally a reduced instruction set architecture.
These systems have a CISC decoder to convert it to RISC and then it is passed to the CPU with a RISC
architecture.[12][13] According to this, Atom™processors are based on RISC architecture that are wrapped
inside a CISC architecture.

2.1.2 ARM Cortex-A53

This processor architecture uses a reduced instruction set as stated in the documentation for the Cortex-A53.
[14] All of arm processors are 32-bit or 64-bit RISC multi-core processors. [15]

2.2 Available Addressing Mode

There are three basic types of Addressing available. These three basic addressing methods are:

e Register addressing
o Immediate addressing
e Memory addressing

These basic addressing modes are available to many different architectures including x86.



2.2.1 Intel®Atom™

There are 5 addressing modes present in x86 architecture.

e Register

o Immediate: where second operand is an immediate constant.

o Direct memory: where instruction or data is directly loaded from memory through a specified address.
o Direct offset: This addressing is similar to Direct memory just using arithmetic to modify address

o Register indirect: where it accesses memory by using addresses stored in registers.

2.2.2 ARM Cortex-A53

There are 3 main addressing modes available in ARM architecture:

e An address expression
e A pre-indexed address: Where the address generated is used immediately.
e A post-indexed address: Where the address generated later replaces the base register.

These addressing methods are available in detail online.[16]

2.3 Address Length

The address size is stored at /proc/cpuinfo in linux. This information could be obtained using;:

# /proc/cpuinfo
cat /proc/cpuinfo
getconf WORD_BIT
getconf LONG_BIT
arch

2.3.1 Intel®Atom™

This syntax returns the following result on the Atom™N270:

cat /proc/cpuinfo

processor : 0

vendor_id : GenuinelIntel
cpu family HIN

model : 28

model name : Intel (R) Atom(TM) CPU N270 @ 1.60GHz
stepping HE

microcode : 0x218

cpu MHz : 1600.000
cache size : 512 KB
physical id : 0

siblings 2

core id : 0



cpu cores 1

apicid : 0
initial apicid : 0
fdiv_bug no
f00£f_bug no
coma_bug no
fpu yes

fpu_exception yes

cpuid level 10
wp yes
flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat clflush

—dts acpi mmx fxsr sse sse2 ss ht tm pbe nx constant_tsc arch_perfmon pebs bts
—aperfmperf pni dtes64 monitor ds_cpl est tm2 ssse3 xtpr pdcm movbe lahf 1m dtherm

bugs :
bogomips 3191.91
clflush size 64

cache_alignment
address sizes

64

32 bits virtual

32 bits physical,
power management:

processor 1

vendor_id GenuinelIntel
cpu family : 6

model 28

model name Intel (R) Atom(TM) CPU N270 @ 1.60GHz
stepping )

microcode 0x218

cpu MHz 1333.000
cache size 512 KB
physical id : 0

siblings 2

core id : 0

cpu cores 1

apicid HE

initial apicid 01
fdiv_bug no

f00£f_bug no

coma_bug no

fpu yes

fpu_exception yes

cpuid level 10
wp yes
flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat clflush dts

—acpi mmx fxsr sse sse2 ss ht tm pbe nx constant_tsc arch_perfmon pebs bts
—aperfmperf pni dtes64 monitor ds_cpl est tm2 ssse3 xtpr pdcm movbe lahf_ 1lm dtherm

bugs :
bogomips 3191.91
clflush size 64

64
32 bits physical,

cache_alignment
address sizes
getconf WORD_BIT
32

getconf LONG_BIT
32

32 bits virtual



arch
1686

2.3.2 ARM Cortex-A53

This syntax returned the following result on ARM Cortex-A53:

cat /proc/cpuinfo

processor
model name
BogoMIPS
Features
—evtstrm crc32
CPU implementer

CPU architecture:

CPU variant
CPU part
CPU revision

processor
model name
BogoMIPS
Features
—evtstrm crc32
CPU implementer

CPU architecture:

CPU variant
CPU part
CPU revision

processor
model name
BogoMIPS
Features
—evtstrm crc32
CPU implementer

CPU architecture:

CPU variant
CPU part
CPU revision

processor

model name
BogoMIPS
Features
—evtstrm crc32
CPU implementer

CPU architecture:

CPU variant
CPU part
CPU revision

0

ARMv7 Processor rev 4 (v71)

76.80

half thumb fastmult vfp edsp neon vipv3 tls vfpv4d idiva idivt vEfpd32 lpae

0x41
-

0x0
0xd03
4

1

ARMv7 Processor rev 4 (v71)

76.80

half thumb fastmult vfp edsp neon vfpv3 tls vipv4d idiva idivt vfpd32 lpae

0x41
-

0x0
0xd03
4

2

ARMv7 Processor rev 4 (v71)

76.80

half thumb fastmult vfp edsp neon vfpv3 tls vfpv4d idiva idivt vfpd32 lpae

0x41
-

0x0
0xd03
4

3

ARMv7 Processor rev 4 (v71)

76.80

half thumb fastmult vfp edsp neon vfpv3 tls vfpv4d idiva idivt vfpd32 lpae

0x41
-

0x0
0xd03
4



Hardware : BCM2709
Revision . a22082
Serial : 0000000053279c46

getconf WORD_BIT
32

getconf LONG_BIT
32

arch

ARM71

As it turned out the Atom™N270 has the same word size as the ARM Cortex-A53. Furthermore, we can
see that the ARM processor has 2 cores and the Atom™N270 has only 1 core.



3 DATA-PATH DESIGN
3.1 Number of Registers
3.1.1 Atom™

x86 specification indicates that there are 6 16-bit, 8 32-bit and 16 64-bit general purpose registers available.
Furthermore, there are 16-bit, 32-bit and 64-bit x87 optional registers available to FPUs.

3.1.2 Arm Cortex-A53

The Arm architecture has 31 64-bit integer register and 32 128 bit registers for floating point.[17]

3.1.3 Tricks

There are several ways to optimize the register use for compiler purposes. These methods could be explained
with having a deeper understanding of the abstraction over the actual hardware and the memory usage.

o Itis actually faster to use
XOr reg, reg
than
mov reg O

to clear a register. The reason to this becomes apparent when we look into the structure of Intel
architecture and opcodes. The opcode for "xor” is only 2 bytes long where assigning a 32-bit value
requires a 5 byte opcode.

o There is a way to compute x!=0 without branching!

XOor eax, eax Bremember trick 1, this clears the register
cmp ecx, 1
adc eax, eax

3.2 Pipeline analysis

Pipelining is the task of parallelizing the instructions required for a process. This technique could be used to
optimize a process and increase the efficiency of the processor. This efficiency could be with respect to time,
temperature, power consumption or any single or group of other performance metrics.

3.2.1 Intel®Atom™

This processor has a deep pipeline. The Intel®’s Atom™pipeline is 16 stages with 13 stage penalty. [18]

IF1 | TF2 | IF3 | ID1 [ ID2 | ID3 | SC | IS IRF
Instruction Fetch | Instruction Decode | Instruction Dispatch | Source operand Read

AG | DC1 | DC2 EX1 FT1 | FT2 IWB/DC1
Data Cache Access | Execute | Exception and MT handling | Commit

Furthermore, This silicon is capable of handling high core frequencies. [18]

10



3.2.2 ARM Cortex-A53

ARM Cortex-A53 has an 8-stage pipeline. [14] This pipeline is more advanced than the more traditional 5-stage
pipeline. The 8-stage pipeline is similar to the pipeline in iPhone 3GS processors. [19]

Fetch Decode 1 | Decode2 | Decode 3 | Operand | Execute 1 | Execute 2 | Retire
Fetch instruction Decode instruction Operand Execute instruction Retire

Pipelines increase the efficiency of the processor by increasing the throughput of the CPU. Furthermore,
it increases the Arithmetic unit’s performance at the cost of losing simplicity. Atom’s long pipeline allows the
CPU to run at a very high frequency. ARM Cortex-A53 architecture’s recommended clock speed is at 1.2 GHz.
The Atom™however can run anywhere between 1.60 to 2.40 GHz clock speed.

The problem with a large pipeline is the branching. In Atom™, 16 stages of pipeline will be flushed as soon
as the process branches out. This takes a toll on the performance making the processor slower in performing its
task. Also the general assumption in programming is that each instruction is executed before the next one. In
this case, out-of-order execution of the instructions could lead to corruption of data. Furthermore, instructions
in Intel®’s Atom™has much higher latency due to all of the flip flops that are placed. I attempted to compare
the performance of the two processors. The following code helps us to measure the instruction latency and
throughput of an Intel®processor.[20]

//***************************************

// This code was found at:
//https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput
// Article Measuring Instruction Latency and Throughput \cite{Code:1}
// Intel's developer zone

//***************************************

#include <stdio.h>

#include "LatThpt.zip"

int main( wvoid )

{

float f;

LatThpt_Init ();

LatThpt_PrepIntl1l28();

printf( "XMM i128 Latency:" );

printf ( "MOVDQA MOVDQU PSHUFD PMULLW

POR PMADDWD PUNPCKLQDQ" ) ;

printf ( "Reg<-Reg ")

LatThpt_MeasurelatXmm( movdga ) ;

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasurelLatXmm( movdqu ) ;

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasurelLatXmmImm( pshufd );

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasurelLatXmm( pmullw );

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasurelLatXmm( por );

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasurelatXmm( pmaddwd ) ;

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasurelatXmm( punpcklqgdg );

printf( "%.2f ", LatThpt_GetClocks () );
printf ( "Mem<-Reg<-Mem ")

LatThpt_MeasurelLatXmmMem ( movdga ) ;

11



printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureLatXmmMem ( movdqu ) ;

printf( "%.2f ",
printf ( "xxx ")
printf ( "xxx ")
printf ( "xxx ")
printf ( "xxx ")
printf ( "xxx ")
printf( " " );

LatThpt_PrepIntl1l28();
printf (

’
r
r
r

r

"XMM 1128 Throughput:"

LatThpt_GetClocks ()

)i

printf( "-———————— ")

printf( " MOVDQA MOVDQU PSHUFD PMULLW POR
printf ( "Reg<-Reg ")
LatThpt_MeasureThptXmm( movdga ) ;

printf( "%.2f ", LatThpt_GetClocks ()
LatThpt_MeasureThptXmm( movdqu ) ;

printf( "%.2f ", LatThpt_GetClocks ()

LatThpt_MeasureThptXmmImm( pshufd );

printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
printf ( "Reg<-Mem

LatThpt_GetClocks ()
pmullw ) ;
LatThpt_GetClocks ()
por );
LatThpt_GetClocks ()
pmaddwd ) ;
LatThpt_GetClocks ()
punpcklqgdqg ) ;
LatThpt_GetClocks ()

")

LatThpt_MeasureThptXmmMemLoad ( movdga ) ;

printf( "%.2f .

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmMemLoad ( movdqu ) ;

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmImmMemLoad ( pshufd );

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmMemLoad ( pmullw ) ;

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmMemLoad( por );

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmMemLoad ( pmaddwd ) ;

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmMemLoad ( punpcklgdqg )

"$.2f ",
"Mem<-Reg

printf (
printf (

LatThpt_MeasureThptXmmMemStore ( movdga

printf( "%.2f ",

LatThpt_MeasureThptXmmMemStore ( movdqu

printf( "%.2f ",
printf ( "xxx ")
printf ( "xxx ")
printf ( "xxx ")
printf ( "xxx ")
printf ( "xxx ")
printf( " " );

4
14
’

’

~.

LatThpt_GetClocks ()
")

)i

LatThpt_GetClocks ()

)i

LatThpt_GetClocks ()

12

~.

)i

)i

PMADDWD PUNPCKLQDQ"

)



LatThpt_PrepSPFP () ;

SHUFPS MULPS DIVPS

printf( "XMM SPFP Latency:" );
printf( "-—————————————
printf( " MOVAPS MOVUPS
printf ( "Reg<-Reg

")

LatThpt_MeasureLatXmm( movaps );

printf( "%.2f .

LatThpt_GetClocks ()

LatThpt_MeasurelatXmm( movups );

printf( "%.2f ",

LatThpt_MeasureLatXmmImm (

printf( "%.2f ",

LatThpt_GetClocks ()
shufps );
LatThpt_GetClocks ()

LatThpt_MeasurelLatXmm( mulps );

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureLatXmm( divps );

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasurelLatXmm( movhlps );

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureLatXmm( movlhps );

printf( "%.2f ",
printf ( "Mem<-Reg<-Mem

LatThpt_GetClocks ()

")

LatThpt_MeasurelLatXmmMem ( movaps );

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasurelLatXmmMem ( movups ) ;

printf( "%.2f ", LatThpt_GetClocks () );
printf ( "xxx "),

printf ( "xxx "),

printf ( "xxx "),

printf ( "xxx "),

printf ( "xxx ")

printf( " " );

LatThpt_PrepSPFP () ;

printf ( "XMM SPEFP Throughput:" );

printf( "-—-————— "),

printf ( "MOVAPS MOVUPS SHUFPS MULPS DIVPS
printf ( "Reg<-Reg ")
LatThpt_MeasureThptXmm( movaps ) ;

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasureThptXmm( movups );

printf( "%.2f ", LatThpt_GetClocks () );

LatThpt_MeasureThptXmmImm( shufps );

printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
LatThpt_MeasureThptXmm (
printf( "%.2f ",
printf ( "Reg<-Mem

LatThpt_GetClocks ()

mulps );
LatThpt_GetClocks ()
divps );

LatThpt_GetClocks ()

movhlps );

LatThpt_GetClocks ()

movlhps );

LatThpt_GetClocks ()
")

LatThpt_MeasureThptXmmMemLoad ( movaps ) ;

printf( "%.2f ",

LatThpt_GetClocks ()

LatThpt_MeasureThptXmmMemLoad ( movups ) ;

printf( "%.2f ",

LatThpt_GetClocks ()

13

MOVHLPS MOVLHPS"

MOVHLPS

)i

MOVLHPS"

)i



LatThpt_MeasureThptXmmImmMemLoad ( shufps );

printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasureThptXmmMemLoad ( mulps );
printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasureThptXmmMemLoad ( divps );
printf( "%.2f ", LatThpt_GetClocks () );
printf ( "xxx "),

printf ( "xxx "),

printf ( "Mem<-Reg ")
LatThpt_MeasureThptXmmMemStore ( movaps );
printf( "%.2f ", LatThpt_GetClocks () );
LatThpt_MeasureThptXmmMemStore ( movups ) ;
printf( "%.2f ", LatThpt_GetClocks () );
printf ( "xxx "),

printf ( "xxx "),

printf ( "xxx "),

printf ( "xxx ")

printf ( "xxx "y

printf( " " );

LatThpt_Free();
return O;

}

#this c code returns the following results on Pentium 4 CPU with an 11 stage pipeline
#clocked at 1.70 GHz:

XMM 1128 Latency:

MOVDQA MOVDQU PSHUFD PMULLW POR PMADDWD PUNPCK LQDQ
Reg<-Reg 6.32 6.03 4.00 6.03 2.18 6.00 2.03
Mem<-Reg<-Mem 9.71 14.03 XXX XXX XXX XXX XXX

XMM 1128 Throughput:

MOVDQA MOVDQU PSHUFD PMULLW POR PMADDWD PUNPCKLQDQ
Reg<-Reg 1.00 1.00 2.05 2.00 2.00 2.18 2.01
Reg<-Mem 1.00 2.04 2.04 2.17 2.01 2.00 2.00
Mem<-Reg 1.75 8.2]1 XXX XXX XXX XXX XXX

XMM SPFP Latency:

MOVAPS MOVUPS SHUFPS MULPS DIVPS MOVHLPS MOVLHPS
Reg<-Reg 6.49 6.20 4.24 6.04 39.79 4.03 2.19
Mem<-Reg<-Mem 9.65 14.23 XXX XXX XXX XXX XXX

XMM SPFP Throughput:

MOVAPS MOVUPS SHUFPS MULPS DIVPS MOVHLPS MOVLHPS
Reg<-Reg 1.01 1.00 2.00 2.17 39.60 2.20 2.00
Reg<-Mem 1.00 2.04 2.00 2.04 39.79 xxx XXX
Mem<-Reg 1.79 8.2]1 xxXX XXX XXX XXX XXX

3.3 Use of microcode

Microcodes are low level instructions that are use in processors and microprocessors in order to split the
instructions into smaller more manageable instructions. This concept sits between the hardware and the
architectural level of CPU. [21]

14



Microcode concept and the hardcoded implementation are very similar and the advantages and disad-
vantages are not that noticeable from an abstract programming perspective. This is mainly the system architect
team’s decision. in some systems this microcode is could be updated (use of FPGAs for CU). We can detect
this microcode using the following bash command:

dmesg | grep —-i micro

3.3.1 Intel®s Atom™
Atom™uses microcode. This microcode could be updated in debian systems from termian using apt-get:

#Intel:

sudo apt-get install intel-ucode
#AMD :

sudo apt-get install amd64-ucode

running the “dmesg” with “grep” returned:

dmesg | grep —-i micro

microcode: CPUO microcode updated early to revision 0x218, date = 2009-04-10
microcode: CPUO sig=0x106c2, pf=0x4, revision=0x218

microcode: CPUl sig=0x106c2, pf=0x4, revision=0x218

microcode: Microcode Update Driver: v2.01 , Peter Oruba

As we can see microcode is present in an Intel®’s Atom™

3.3.2 ARM Cortex-A53

This command did not return any value when ran on a Raspberry pi 3. Furthermore, referring to ARM Cortex-
Ab53’s manual it becomes clear that ARM does not use microcode. However, they use something similar. ARM
licenses the hardware-description language source code to manufacturers in order to give them the ability to
modify their hardware. This language describes the behavior of the micro architecture.

15



4 MEMORY SUBSYSTEM

In computer architecture memory has an hierarchy based on its speed and availability to the processor. In order
for a process to run correctly it needs to have its instrcutions loaded from the main memory to ram, then to
caches and finally in the registered available to the CPU.

Register
L1 Cache
L2 Cache
Random access memory
Magnetic/Optical Disk
Magnetic Tape

In this section we will look into Limits, Caches and virtual memory. Furthermore, we will look into how to
see these values in Linux running on an Intel®’s Atom™processor and an ARM Cortex-A53 architecture based
processor. We have already talked about registers and the number of registers available to the two systems.

4.1 Limits

CPUs can only address certain amount of address space. The concept of Limit refers to the amount of memory
you can theoretically make available to certain processor. This concept is also referred to as the RAM limit.

For example, the 16-bit processors can only handle 15 MB of RAM with 1 MB reserved to OS. The 32-bit
x86 architecture could have handled up to ~3.8 GB of RAM (without PAE). A 64-bit system can handle up to 16
Exabytes of RAM. To see if the system is 32 bit or 64 bit we can use the command:

getconf LONG_BIT

4.1.1 Intel®’s Atom™N270

getconf LONG_BIT
32

4.1.2 ARM Cortex-A53

getconf LONG_BIT
32

Both of these systems are 32-bit CPU making them operate with maximum of ~3.8 GB of RAM.

4.2 Caches

Referring to section 2.3 where we discussed the addressable length we used the command:
cat /proc/cpuinfo
We can use the same command to get the cache size. However, a better alternative to this is to use:

lscpu
16



4.2.1 Intel®’s Atom™N270

L1ld cache: 24K
L1i cache: 32K
L2 cache: 512K

4.2.2 ARM Cortex-A53

The same command does not return any cache size in an ARM Cortex-A53 based architecture. However, in a
Raspberry Pi 3 it has the following amount of cache available to it:

L1d cache: 32K
L1i cache: 32K
L2 cache: 512K

4.3 Virtual Memory

In computer science the operating system sets the memory space in a way to make the entire memory space
available to all of the software at the same time. This happens through the concept of Virtual Memory. It is
the maximum possible memory that a software could possible get in a given system. The following instruction
shows the virtual memory page size available to a system:

$ getconf PAGESIZE

4.3.1 Intel®’s Atom™N270

$ getconf PAGESIZE
4096

4.3.2 ARM Cortex-A53

S getconf PAGESIZE
4096

Both of these systems have a page size of 4096 KB.

17



5 CONCLUSION

During the course of this document we discussed some of the features of Intel®'s Atom™CPU and The
ARM Cortex-A53 architecture. We compared these processors in their abilities and features and looked at
their advantages and disadvantages over one another. The Intel®'s Atom™processor was a technological
breakthrough in low power CPUs for consumer use. This allowed production of windows friendly net-books
to be available at low cost for the consumers. However, this processor was misused when it was released.
When this processor came out, Microsoft had released its brand new operating system Windows™Vista and
many companies in the industry tried to have the newest windows to run on computers equipped with this
CPU. Vista had many problems when it came out and it demanded a powerful processor to keep it running.
Furthermore, the new OS was not efficient at all. Intel®’s Atom™simply was not powerful enough to be used
for Windows®Vista. On the other hand, Raspberry Pi 3 also has a processor that is very powerful but it is not
being advertised as a full computer. The operating system it runs is a light Linux compiled specifically for that
ARM architecture. These cheap systems are very capable if they are used under correct circumstances and for
the right purposes. The system which I used to run these codes were purchased from eBay for under $40. The
Atom processor was mounted on a Dell n series Inspiron 910 mini netbook and was purchased for $30. ($6
cheaper than a the Raspberry pi 3 with ARM Cortex-A53).

18



REFERENCES

(1]
(2]

(3]
(4]

(5]

[6]
(7]

(8]

[9]

[10]
(1]
(12]

[13]
(14]
[15]
[16]

(17]
[18]
(19]
[20]
[21]

“Intel’s atom n2600, n2800 and d2700: Cedar trail, the heart of the 2012 netbook,”
http:/ /www.anandtech.com/show /5273 /intels-atom-n2600-n2800-d2700-the-heart-of-the-2012-netbook, accessed: 2016-11-12.
“Intel®atom™processors,” http://www.intel.com/content/www /us/en/processors/atom/atom-processor.html, accessed:
2016-11-12.

“Intel atom,” https:/ /en.wikipedia.org/wiki/Intel_Atom#History, accessed: 2016-11-12.

“Forbes: Intel’'s not-so-mighty atom,” http://www.forbes.com/forbes/2009/1005/technology-intel-atom-chips-digital-
tools.html, accessed: 2016-11-12.

“Lenovo thinkpad t60p review,” http://www.notebookreview.com/notebookreview /lenovo-thinkpad-t60p-review-pics-
specs /, accessed: 2016-11-12.

“Hp pavilion dv6000t,” http:/ /www.notebookreview.com /notebooks /hp-pavilion-dv6000t/, accessed: 2016-11-12.

“Raspberry pi 3 has wifi and bluetooth, 64-bit chip, still just $35,” http://arstechnica.com/information-
technology/2016/02/raspberry-pi-3-has-wi-fi-and-bluetooth-64-bit-chip-stilljust-35/, accessed: 2016-11-12.

“Bem2835 - high definition 1080p embedded multimedia applications processor,” https:/ /web.archive.org/web/20120513032855 / http:/ /www.broa
accessed: 2016-11-12.

“Raspberry pi 2 on sale now at $35,” https:/ /www.raspberrypi.org/blog/raspberry-pi-2-on-sale/, accessed: 2016-11-12.
“Raspberry pi 3 on sale now at $35,” https:/ /www.raspberrypi.org/blog/raspberry-pi-3-on-sale/, accessed: 2016-11-12.

E. Roberts, “Risc vs. cisc,” accessed: 2016-11-12.

“Intel x86 processors cisc or risc? or both??” http://sunnyeves.blogspot.com/2009/07 /intel-x86-processors-cisc-or-risc-or.html,
accessed: 2016-11-12.

“Intel’s atom architecture: The journey begins,” http://www.anandtech.com /show /2493, accessed: 2016-11-12.

“Cortex-a53 processor,” https:/ /www.arm.com/products/processors/ cortex-a/ cortex-a53-processor.php, accessed: 2016-11-12.
“What is arm,” http:/ /whatis.techtarget.com/ definition/ ARM-processor, accessed: 2016-11-12.

“Arm: Introduction to arm: Addressing modes,” http://www.davespace.co.uk/arm/introduction-to-arm/addressing.html,
accessed: 2016-11-12.

“Arm: Architecture,” https:/ /www.arm.com/files/downloads/ ARMv8_Architecture.pdf, accessed: 2016-11-12.

“Intel’s atom architecture: The journey begins,” http://www.anandtech.com/show /2493 /11, accessed: 2016-11-12.
“Understanding the iphone 3gs,” http://www.anandtech.com/show /2798 /2, accessed: 2016-11-12.

“title of article,” URL.goes.here, accessed: 2016-11-12.

J. G. Kent, Allen; Williams, Encyclopedia of Computer Science and Technology, vol. 28.

19



