Reduced Twisted Pair Gigabit Ethernet PHY Call for Interest

IEEE 802.3 Ethernet Working Group

CFI Panel Members

- Chair & presenter:
 - Steve Carlson High Speed Design, Inc.
- Supporters and experts for the Question & Answer session:
 - Dr. Kirsten Matheus BMW, Auto manufacturer
 - Thomas Hogenmüller Bosch, Auto Tier 1 supplier
 - Dr. Thilo Streichert Daimler, Auto manufacturer
 - Don Pannell Marvell, Ethernet PHY & Switch Chip Supplier
 - Dr. Ali Abaye Broadcom, Ethernet PHY & Switch Chip Supplier

Supporters – Page 1

Ali Abaye – Broadcom Thananya Baldwin - Ixia Karl Barker – Jaguar Land Rover Hugh Barrass – Cisco Mike Bennett – LBNL Robert Boatright – Harman Brad Booth – Dell Mark Bugg – Molex Steve Carlson – High Speed Design David Chalupsky – Intel Joseph Chou – Realtek Mabud Choudhury – CommScope John D'Ambrosia – Dell Dan Dove – APM Dave Dwelley – Linear Technology Magnus Eek – Volvo Daniel Feldman – Microsemi Kenneth Furge – XS Embedded Thomas Gallner – Continental Mike Gardner – Molex

Doarte Goncalves – PSA (Peugeot) Bob Grow – Intel Sudhakar Gundubogula – Marvell Craig Gunther – Harman Marek Hajduczenia – ZTE Adam Healey – LSI Chris Healy – IMSCO (aeronautics) Jeff Heath – Linear Technology Mike Hill – Goodrich (aeronautics) Rob Hoeben – NXP Thomas Hogenmüller – Bosch Tony Jeffree – Chair IEEE 802.1 Markus Jochim – GM Mike Jones – Micrel Max Kicherer – BMW Yong Kim – Broadcom Scott Kipp – Brocade Oliver Kleineberg – Hirschmann Olaf Krieger – Volkswagen Ged Lancaster – Jaguar Land Rover

Supporters – Page 2

Wayne Larsen – CommScope Andreas Leibold – Harman Becker Helmut Leier – Daimler John Leslie – Jaguar Land Rover Ludwig Leurs – Bosch Rexroth Kent Lusted – Intel Val Maguire – Siemon/TR42 Dr. Kirsten Matheus – BMW Authur Marris – Cadence Chris Mash – Marvell Brett McClellan – Marvell Richard Mei – CommScope Kent Melin – Volvo Venkatesh Nagapudi – APM Paul Nikolich – YAS Broadband Ventures Dave Olsen – Harman Massimo Osella – GM Don Pannell – Marvell Jerry Peper – Ixia

Wiren Perera – Micrel René Queck – Porsche Mehrnoush Rahmani – Siemens (trains) Adee Ran – Intel Jamal Riani – Marvell Burkhard Rieke – Porsche Juergen Roeder – Continental Samuel Sigfridsson – Volvo Irene Signorino – Microsemi Kevin Stanton – Intel Nancy Supinsky – Focus (automotive) Thilo Streichert – Daimler Katsuhisa Tawa – Sumitomo Electric Geoff Thompson - GraCaSI S.A. Nathan Tracy – TE Connectivity Paul Vanderlaan – Nexans Pedro Reviriego Vasallo – Nebrija Univ. Ludwig Winkel – Siemens (industrial) George Zimmerman – CME Consulting Helge Zinner – Continental

• To gauge the interest in starting a study group developing a

Reduced Twisted Pair Gigabit Ethernet PHY

• This meeting will NOT:

- Fully explore the problem
- Debate strengths and weaknesses of solutions
- Choose a solution
- Create a PAR or 5 Criteria
- Create a standard or specification

Agenda

- Target Markets
- History of Automotive Networking
- Automotive Market Potential
- Automotive Ethernet Challenges
- CFI Proposal
- Q&A
- Straw Polls

Target Markets

Potential Markets

• Automotive networking

- The dominant driving market for this CFI
- Increasing bandwidth requirements
- Large market volume (i.e., port count)
- This presentation will focus on this segment

A Reduced Twisted Pair Gigabit Ethernet PHY could be leveraged across other segments including:

Industrial networking

- Re-use of current installed cable infrastructure with increased bandwidth
 - Factories
 - Trains

• Avionics networking

 The need for weight savings for the cabling infrastructure is even more dominant than in the automotive industry

History of Automotive Networking

Innovation in Automotive Technology is both Hardware & Software

Increasing number of applications •

- Increasing complexity over time
- Higher bandwidth requirements
- Need reliable networks

Electronic Injection Check engine control Cruise control Central locking

. . .

1970

Gearbox control **Climate control** ASC Anti Slip Control ABS Anti -lock Brake Sys. Telephone Seat heating control Automatic mirrors

Navigation system CD-changer Active Cruise Control Airbags **Dynamic Stability** Control Roll stabilization Xenon lighting Vehicle Assist Voice input **Emergency** call

ACC Stop&Go Lane departure warning Blind spot warning Traffic sign recognition Night vision Active headlight system Parking automation Efficient dynamics Hybrid engines Internet access Telematics Online Services **Bluetooth integration** Local Hazard Warning Personalization SW Update Smart Phone Apps

1980 1990 > 2010 Adapted from material provided by BMW Reduced Twisted Pair Gigabit PHY – IEEE 802.3 Call for Interest

Current Automotive Network Solutions

- The previous slide showed the increasing complexity of features being added to cars
- Each of these 'features' takes one or more MCU's (microcontroller units)
- A typical mid-range car may have ~50 MCU's and a high end car may have up to ~140 MCU's
- These MCU's need to be connected somehow thus the creation of automotive networking
- Early networks were low speed & are still useful today for simple applications
- More sophisticated applications required improved network solutions

Current Automotive Network Solutions

Typical networks used in cars today include:

□ CAN (Controller Area Network) – since 1981

- Low-speed serial data bus: 1 1000 Kbps
- Shared medium with CSMA/CR (Collision Resolution)
- Dominant control bus in all automotive domains
- Standardized in ISO 11898; Multi-vendor support

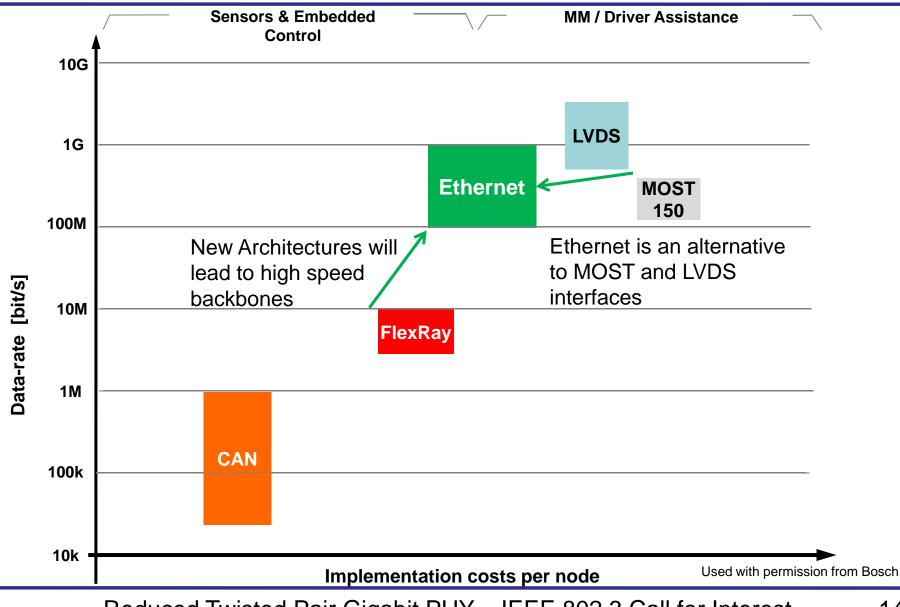
□ FlexRay (consortium of automotive companies) – since 2005

- 10 Mb/s serial data bus (single or dual channel)
- Shared medium with TDMA
- Control bus for high dynamic applications, chassis control, but also designed for future "X-by-Wire" applications
- Standardized in ISO 10681; Multi-vendor support

Current Automotive Network Solutions

□ MOST (Media Oriented Systems Transport) – since 2001

- Shared ring topology: 25 Mb/s (POF), 50 Mb/s (Cu), 150 Mb/s (POF)
- Bus system for control and streaming Infotainment data
- Proprietary solution


□ Ethernet (100Mb/s) – since 2008

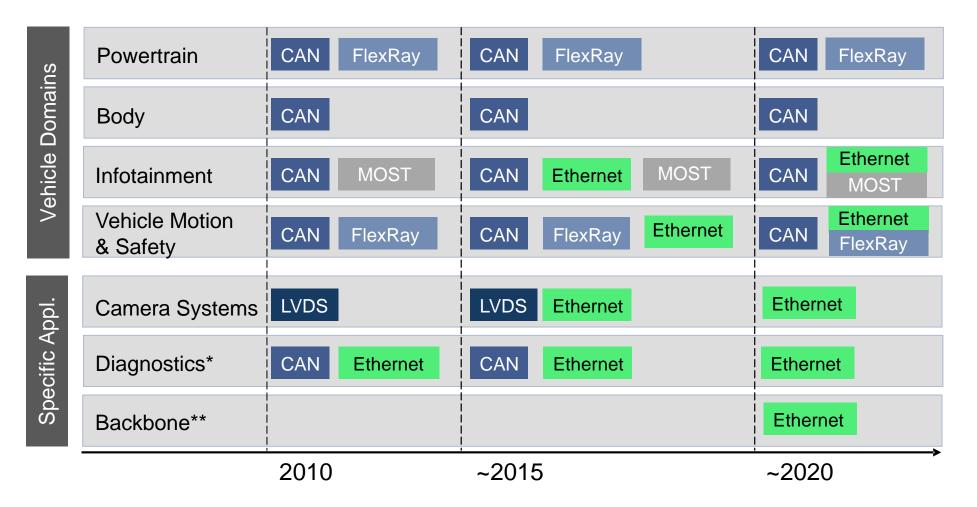
- Mainly diagnostics and firmware upgrades during vehicle servicing (typically not used while the car is operating due to EMC limits)
- Standardized in ISO 13400-3:2011 Road Vehicles Diagnostic communication over Internet Protocol (DoIP) – Part 3: Wired vehicle interface based on IEEE 802.3

□ LVDS – since 2002

- Point-to-point high-speed links (1-4 Gb/s) for cameras and displays
- Multi-vendor support but typically incompatible with each other

Overview of Automotive Comm Systems

Typical Wiring Harness in a Car

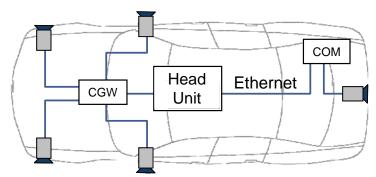

Cabling is the 3rd highest cost component in a car Engine (1st) Chassis (2nd)

Harnesses are built **ONE** at a time with 50% of cost in labor

Cabling is the 3rd heaviest component in a car Chassis (1st) Engine (2nd)

Reducing cable weight has a direct impact on fuel economy!

Estimated Ethernet Adoption Timeline

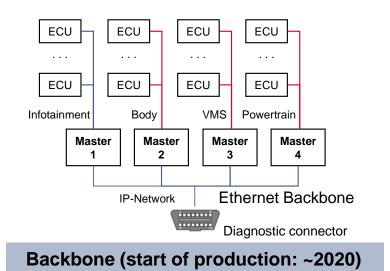

* via Gateway ** with introduction of domain control units

Used with permission from Bosch

Use Cases for Ethernet and IP Communication

• Driver Assist Cameras

- Cameras on bumpers and mirrors
- GbE link saves need for compression
- Reducing latency increases safety
- Compression artifacts make obstacle detection harder/less reliable



CGW = Camera Gateway

Driver Assist System (start of production: 2013)

• Ethernet Backbone

- Many regions of the car linked together via Ethernet
- Allows 'data' from one region to be reused elsewhere in the car
- GPS navigation can be overlaid on camera data
- Enables separate CAN bus domains to communicate with each other

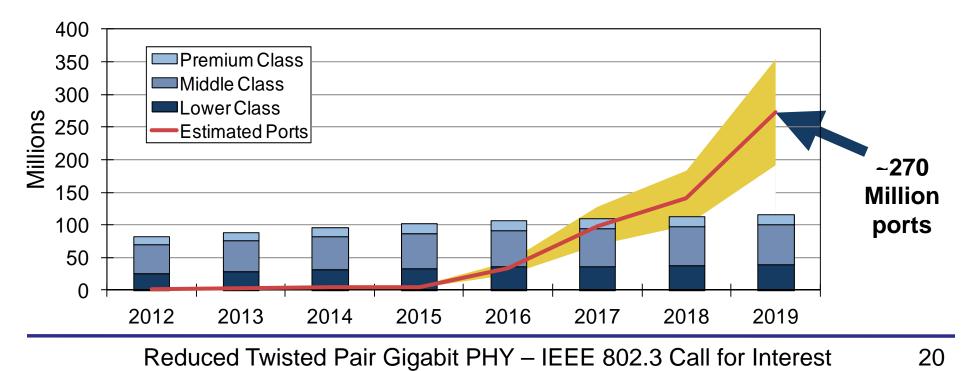
Used with permission from Bosch

Summary - Why Ethernet in Automotive?

- New high bandwidth applications will be introduced
 - Camera based systems like "Top View", obstacle warnings, etc.
 - Current communication links are based on higher-cost LVDS
 - Infotainment is based on proprietary technology
 - New driver assistance systems are based on sensor "fusion" of several domains
- Paradigm shift from decentralized domain-specific communication to centralized backbone architectures
 - Greater flexibility, scalability and innovation (reuse of hardware and software; synergies)
 - Lower complexity, weight and cost (parts and labor)
 - Increased demand on bandwidth and need for lower latency
- Automotive systems require guaranteed bandwidth & latency
 - Ethernet can now support these features based on IEEE 802.1 AVB & IEEE 1722 standards (current and ongoing work)

Application growth will come with the introduction of Ethernet

Automotive Market Potential


Market Potential – Ethernet Ports

Introduction

- Premium class OEMs (volume OEMs will follow → due to life safety improvement goals)
- Chart data includes cars, SUVs, light trucks, but not commercial vehicles

Forecast

- Up to 35 ports (20 avg.) in premium class vehicles and 20 (8 avg.) in medium class vehicles that have Ethernet
- Chart data was compiled by Bosch

Automotive Ethernet Challenges

Automotive Ethernet Challenges

Harsh Environmental Conditions

- Operating temperatures:
 - Body & cabin: -40°C to 85°C
 - Chassis & powertrain: -40°C to 125°C or even 150°C
- Mechanical accelerations:
 - Body & cabin: up to 4 G
- Dirt, water, salt, dust, ice, snow, mud, oil, grease, transmission fluid, brake fluid, engine coolant, hydraulic fluid, fuel, etc. (i.e., this is not a data center)

• Automotive EMC requirements are stringent!

- Tighter requirements than Class A/Class B EMI specs for consumer products
- Automotive EMC test specs exist, e.g., CISPR25 & ISO11452-2 & -4
- Cost and weight constraints unshielded twisted pair cabling only

• Very low standby power requirements

- Standby power needs << 100 uA
- Wake up time < 100-500 ms, support of typical automotive wakeup/sleep/diagnosis mechanism

"Need for Speed" in a car

- 100 Mb/s links will not meet future bandwidth needs
 - Otherwise, driver assist camera video needs to be compressed
 - Desire multiple compressed 720p infotainment video streams
 - Enhanced navigation
 - Tuner module data from satellite antenna (Internet, TV, etc.) gets uncompressed & digitized at the antenna eliminating costly antenna cables from the roof to the head unit
 - Could dump raw digitized radio data on the backbone for all ECU's that may need it
- What about next generation needs?
 - Uncompressed video for driver assist (200 800 Mb/s)
 - Multiple compressed 1080p streams (3-4 streams)
 - Single backbone for reduction of multiple different networks
 - Lower latency
 - …and needs yet unimagined!

• Future requirements are driving the bandwidth to > 100Mbps

This CFI is <u>not</u> requesting changes to the MAC - only a new PHY

- Therefore the next highest existing speed is 1000Mb/s
 - Many CPUs, SOCs or other devices are available that support IEEE 802.3 standard Gigabit Ethernet MACs that can run at 10 Mb/s, 100 Mb/s or 1000 Mb/s – a standardized interface to the micro controllers
- Any PHY speed that is >100Mb/s and <1000Mb/s requires modifications to the MAC
 - This includes CPUs, bridges and other devices with Ethernet MACs
 - Non-standard speeds cannot use **existing** MACs or devices

High Level Summary

- Ethernet is being deployed in vehicles at an ever-increasing rate
- The automotive industry estimates the number of worldwide Ethernet ports in vehicles at ~270 million ports/year ~2019
- Ethernet is poised to become the network backbone in vehicles over the next decade
- A new Gigabit Ethernet PHY that meets these qualifications is needed
 - Operates on fewer than 4-pairs of UTP cabling
 - Operates over the channel model developed in conjunction with the automotive/industrial networking industries
 - Meets automotive EMC & susceptibility requirements
 - Meets automotive environmental requirements

Why Now and Why in IEEE 802.3?

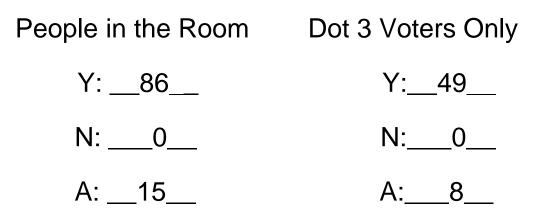
- The automotive industry is requesting it
- It's Ethernet--- it belongs in IEEE 802.3
 - IEEE 802.3 is recognized as the international standard for Ethernet
 - Responsible for Ethernet physical layers
 - The automotive industry wants the same level of international recognition for a Reduced Twisted Pair Gigabit Ethernet PHY as exists for the rest of IEEE 802.3
- The effort should start now to meet the automotive industry adoption timeline

Reduced Twisted Pair Gigabit Ethernet PHY Q&A

15 minutes

Straw Polls

Straw Polls


103 Number of people in the room

- __65_ Individuals who would attend and contribute to a Reduced Twisted Pair Gigabit Ethernet PHY Study Group
- ___42_ Companies that support the formation of a Reduced Twisted Pair Gigabit Ethernet PHY Study Group

Straw Polls

• Request that IEEE 802.3 WG form a study group to develop a PAR and 5 Criteria for a:

Reduced Twisted Pair Gigabit Ethernet PHY

Thank you!