
ARMv8 Neon Programming
-BY KRISTOFFER ROBIN STOKKE

Goals of Lecture
Simple introduction to ARMv8 NEON programming environment
Register environment, instruction syntax

Some emphasis of differences wrt. ARMv7 NEON

Important for debugging!

Introduction to intrinsics
Programming example

Introduction to inline assembly
Programming example

Introduction to GDB debugging
Example, no bug!

Keep This Under Your Pillow

GNU compiler intrinsics list:
o https://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/ARM-NEON-Intrinsics.html

ARM Infocenter
o infocenter.arm.com

-> developer guides (..) -> software development -> Cortex A series Programmer’s Guide for arm8

This may also be useful..
https://community.arm.com/groups/android-community/blog/2015/03/27/arm-neon-programming-

quick-reference

Last but not least – GDB
You will need it

https://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/ARM-NEON-Intrinsics.html

ARMv8 vs. ARMv7

Same mnemonics as for general purpose registers
E.g., in ARMv7, «mul, r0, r0, r1» (normal) and «vmul d0, d0, d1» (SIMD)

In ARMv8: «mul x0, x0, x1» (normal) and «mul v0.u8, v0.u8, v1.u8» (SIMD)

Simplifies life, but take care to use correct operands

Twice as many 128-bit registers
32 128-bit registers, vs 16 128-bit registers for ARMv7

Different instruction syntax

ARMv8 Registers

X0 X8 x16 x24

31 x 64-bit general purpose registers

V0 V8 V16 V24

32 x 128-bit vector registers

SP

WSP

Stack pointer
WZR

Zero registers

XZR

PC

In armv7:
• Only 16 128-bit registers
• Different naming convention

• D0-D31: 64-bit registers
• Q0-Q15: 128-bit registers

The Vector Registers V0-V31: Packing
Data in V0-V31 are packed, and you control how they are packed

Example: 16 bytes or 8 bytes

Example: 8 half-words or 4 half-words

Example: Vector Packing

v0.8b, v0.16b: 8 bytes or 16 bytes (8 bit)

v0.4h, v0.8h: 4 half-words or 8 half-words (16 bit)

v0.2s, v0.4s: 2 words or 4 words (32-bit)

v0.2d: 2 double-words (64-bit)

x x x x x x x x

v0 v1

v0
mul v0.u8, v0.u8, v1.u8

Instruction Syntax

<prefix> Represents data type (signed, unsigned, float, poly) [S, U, F, P]

<op> Instruction mnemonic, for example [mul] or [add]

<suffix> For special purpose functions, e.g. pairwise operations

<T> Packing format. [8B, 16B, 4H, 8H, 2S, 4S, 2D]. B=byte, H=halfword
(16-bit), S=word (32-bit), D=doubledord (64-bit)

<prefix> <op> <suffix> <output operands><T> <input operands><T>

mul v0.8b, v0.8b, v1.8b

Programming With Intrinsics
By far the most simple approach, but you might not be able to do everything you want
Some intrinsics for instructions missing

Assembly also needed to debug, or implement things that are not supported by intrinsics

Data Types uint8x8_t, uint8x16_t, float32x4_t, float64x2_t

Load / Store vld1_u8(uint8_t*), vst1_u8(uint8_t*, uint8x8_t)

Arithmetic vadd_u8(uint8x8_t, uint8x8t), vmul_u(uint8x8_t, uint8x8t)

Conversion vcvt_f32_u32(uint32x2_t)

Move Register Zip Functions Lane Functions++

Programming Example: Intrinsics
Remember to include <arm_neon.h> in sources

gcc –march=armv8-a <input file> -o <output file>

Inline Assembly
Sometimes, easier than using intrinsics.
Increased control and flexibility

..with great power, comes great responsibility

__asm__(
«mnemonic+operand \n\t»
«mnemonic+operand \n\t»
«mnemonic+operand \n\t»
: // Output operands
: // Input operands
: // Dirty registers etc

)

Programming Example: Inline Assembly

Debug Example
You will need to debug with GDB at times.
Turn on –g flag in Makefile, turn off –Ox, run make, then gdb ./<yourapplicationnamegoeshere>

Review of useful commands
layout asm : get a nice-looking disassembly of current instruction location

b <symbol name> : breakpoint..

info all-registers : Complete print of processor and register state

p $v0 : print register v0 (also works for general purpose x0, stack pointer etc)

display $v0 : At every step, display the value of v0

si: Step instruction

 + breakpoint on conditionals is useful when debugging loops

Tips
Build functions to print out macroblocks from vector registers and memory

Start small – test independent parts of the code that are easy to verify

When in trouble, step through the code, display the relevant registers, verify with output you
know is working

And last but not least..

Do not take anything for granted!

Good Luck!
Questions?

