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Admittance measurements have been performed on a variety of 0.43  cm2 area, copper indium
gallium diselenide (CIGS) polycrystalline thin film solar cells for frequencies (f) ranging from
1 kHz to 1 MHz and bias voltages (V) ranging from -2.0 to 0.2 V.  The bulk of these
measurements are not presented here.  To extend the usefulness of these measurements, and in
particular, to extract information about traps, it is first necessary to account for frequency-
dependent effects associated with the series resistance and inductance.  Such is the purpose of this
paper.  The complex admittance of a four-element circuit is calculated and compared with
measurements on two typical CIGS solar cells.  The model circuit consists of a capacitance C in
parallel with a resistance r, with this combination in series with a resistor R and inductor L.  C
accounts for the depletion capacitance of the diode, and R and r account for series and shunt
resistances typically observed in solar cell current-voltage measurements.  The series inductance
was introduced to account for observed resonance effects in the admittance measurements.   Model
calculations are shown to be in good agreement with measurements on devices.  For our cells,
measurements above 300  kHz are seldom useful, as these frequencies are in the regime where
series R and L dominate the behavior of the circuit.  We find measurements in the 10 -50 kHz
range to be most appropriate for determining charge densities from C-V scans.
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1. Introduction
The frequency- and voltage-dependencies of the

complex admittance of a reverse biased PN junction can
yield useful information about the junction.  The capacitance
(C) of a well-behaved reverse-biased diode, for instance,
gives an indirect measure of the depletion width.  For an
ideal, uniformly doped, one-sided junction, a plot of 1/C 2
versus bias voltage is expected to yield a straight line whose
slope may be used to determine the lesser of the two doping
densities [1].  For non-uniform doping, the doping density
as a function of distance from the junction (determined by
the depletion width) may be obtained from the derivative,
d(1/C2)/dV, where V is the bias voltage  [2].

The AC capacitance measures the mobile charge density
within a small distance δW (determined by the AC voltage
δV) at the edge of the depletion width W (determined by the
DC bias voltage V).  Trapped charge can respond to low
frequencies but not to high frequencies, where high and low
are determined by the relaxation time of the trap.  Thus,
traps contribute to the low-frequency capacitance, but not to
the high-frequency capacitance [3,4,5].  In principle, trap

distributions may be extracted from measurements of
capacitance versus frequency.

Finally, measurements of the diode conductance may be
used also be used to identify traps [6].  Equilibrium (i.e.,
zero bias) measurements for a range of frequencies and
temperatures have been used to extract trap densities and
energy levels [6, 7].

While the frequency-dependence of the junction
capacitance may, in principle, be used to identify trapping
states and their time constants, series resistance and
inductance introduce additional frequency dependence,
complicating the analysis.  Here the admittance is calculated
for a model circuit consisting of a capacitance (C) in parallel
with a shunt resistance (r), with these in series with a second
resistance (R) and an inductance (L).  For reasonable quality
cells it is  assumed that r >> R.  It is shown that for
frequencies well below 1/(2 πrC), the real and imaginary
parts of the admittance approach 1/r and 2 πfC respectively.
Behavior at higher frequencies is determined by the other
time constant, RC, and the resonant frequency, (2 π(LC)½)-
1.  Various cases are discussed.

The calculations are compared with measurements from
13-16% efficient, 0.43  cm2 copper indium gallium
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diselenide solar cells.  Measurements are found to be
qualitatively in agreement with calculations, with noticeable
differences thought to be associated with trapping effects.
Measurements for the frequency range 1-100  kHz are found
to be most useful for theses cells.  Measurements above
300 kHz were seldom useful due to the effects of series
resistance and inductance.  Thus, commercial C-V systems
that operate at a single frequency of 1 MHz, designed for use
with crystalline materials, are not useful for studying the
capacitance of these solar cells, and are unlikely to be useful
for polycrystalline solar cells generally.

Measurements were performed in the dark with cells
usually in reverse bias which is not, of course, the useful
regime for solar cell operation.  Nevertheless, such
admittance measurements yield information about carrier
and trap densities relevant to solar cell operation.

2. Circuit Model

2.1 Complex Admittance
The voltage and frequency dependencies of a diode in

reverse bias can give useful information about doping
densities and densities of extraneous states near the junction.
Most capacitance meters, or the more general impedance
meters, model the impedance of the diode as a capacitor (C)
and resistor (r) in parallel.  What is measured is the complex
admittance of this circuit, A, given by

A Z G j Cm m( ) ( ) ( ) ( ),ω ω ω ω ω≡ = +1 (1)

where j ≡ −1 , Z is the complex impedance, ω ≡ 2πf is the
angular frequency, C m is the measured capacitance and G m
is the measured conductance.  It is useful to note that the
measured conductance and capacitance are given by

G A

C A
m
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ω ω ω

≡

≡ −1
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For the above circuit, the simple relationship that G m = 1/r
and Cm = C is obtained.  In the absence of extraneous states
both Gm and Cm will be independent of frequency.  For the
National Renewable Energy Laboratory (NREL) CIS and
CIGS test cells having area  = 0.43  cm2, at zero bias
capacitance and shunt resistances range from  8 to 20  nF and
0.5 to 500 kΩ respectively.  Note that C scales with cell area
while both r and R scale inversely with cell area.  While it is
common practice to express these quantities in units of
F/cm2 and Ω cm2 respectively, in this paper capacitance,
resistance, inductance, and conductance will be expressed in
the MKS units of farads (F), ohms ( Ω), henries (H), and
siemens (S) respectively.

2.2 Equivalent Circuit for Thin Film Solar Cell
In  practice, polycrystalline thin film solar cells also

have series resistance (R) which needs to be included in the
model.  The series resistance may be associated with the
contacts, or it may be internal to the diode itself.  Moreover,

the measurement circuit must introduce some series
inductance.  Thus modified, the measurement circuit appears
in Figure 1.  The self-inductance of a wire segment is on the
order of 0.5 µH per foot [8].  For NREL CIS and CIGS test
solar cells, series resistances have a range R = 0.2 to 20 Ω.

FIG. 1. More realistic circuit model for a solar cell in reverse bias
including series resistance and inductance.

The complex impedance of the circuit shown in Figure  1
is given by

Z R j L
r j C
r j C

( )
( )
( )

.ω ω
ω
ω

= + +
⋅
+

−

−

1

1 (3)

As before, the measured capacitance and conductance
are related to the real and imaginary  parts of the admittance.
Inverting the above equation and solving for the real and
imaginary parts one finds
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Before discussing the frequency dependence of the
above equations it is useful to define three characteristic
times for the problem.  These are:

τ
τ
τ

1

2

≡
≡
≡

rC
RC
L rL

,
,
.

(6)

The indexing of the two R-C time constants is chosen to
reflect the ordering of their characteristic frequencies.  For
any reasonable solar cell, the series resistance will be much
smaller than the shunt resistance, and accordingly, the
ordering of the characteristic frequencies will be f 1 << f2,
fL, where
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It is also useful to express the ratio r/R by

λ2 ≡ R r . (8)

Later equations will be simplified by considering the case
where  λ2 << 1.  In terms of the three time constants and the
resistance ratio, the expressions above may be rewritten as
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It is also useful to look at the phase Θm(ω) ≡ Arg{A(ω)} =
tan-1{ωCm/Gm}, given by
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Finally, note that the product τ1τL is related to the L-C
resonant frequency f 0 by

τ τ τ ω π1 0
2

0
2

0
22L LC f= ≡ ≡ ≡− −( ) . (12)

3. Frequency Dependence for Model
Circuit

3.1 Zero Inductance
As the frequency-dependence described by the above

equations is generally complicated, the initial discussion of
these equations is restricted to the case where L = 0.  In this
limit, the equations reduce to
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For the case of λ2  << 1, these expressions simplify to
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 These equations are graphed in Figure  2 for realistic values
of C, r, and R.

FIG. 2. Calculated frequency dependence of a) the measured
capacitance, b) measured conductance, and c) the phase angle for the
model circuit for L = 0, C = 30 nF, r = 10  kΩ, and R = 10 Ω.  The
vertical dashed lines correspond to the frequencies f 1(≈ 530 Hz),
λ f2 = (f1f2)½, and f2 (≈ 530 kHz).   The horizontal dashed lines
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correspond to a) the circuit capacitance C, b) 1/r and 1/R, and c) 45
degrees.

The three frequencies f 1, λ f2 = (f1f2)½, and f2 divide
the frequency domain into four distinct regions.  In the low-
frequency regime (f  << f1) Cm = C and Gm = 1/r.  For high
frequencies (f >> f 2) Cm = 0 and Gm = 1/R.  Most of the
transition in the capacitance and conductance occurs in the
range λf2 < f < f2.  Not much occurs in the lower of the two
intermediate regimes, f 1 <  f < λf2, where Cm remains
constant and Gm changes by a factor of two.  Note that
Θm = 45° at frequencies where f = f 1 and f = f2, and has a
maximum value near 90 ° for f = (f1f2)½.  The calculations
show that Cm deviates from C at high frequencies, but that
Cm = C for arbitrarily low frequencies.  In practice,
however, it has been observed that capacitance
measurements become unreliable whenever Θm < 20° [5].

3.2 Non-zero Inductance
Consider the high- and low-frequency limits of the

admittance for non-zero inductance; these are
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The low-frequency conductance is unchanged by the
introduction of series inductance as expected.  The high-
frequency conductance, and both the low- and high-
frequency capacitances are changed, however.  For the
0.43 cm2 cells used in our study, τL/τ1 << 1, so that series
inductance has negligible effects on the low-frequency
capacitance.  This need not be the case for larger area cells
as τL/τ1 is proportional to cell area.  as the cell capacitance
scales with the cell area and the shunt resistance scales
inversely with the area.

At sufficiently high frequencies, inductive effects are
substantial, as the measured capacitance changes sign.  Of
course the capacitance is not negative, the problem is that
the circuit has become inductive and it no longer makes
sense to interpret the imaginary part of the admittance as
ωCm.

Physically, the introduction of inductance has lead to a
resonance, with resonant frequency 2 πf0 = ω0 = (τ1τL)-
½ = (LC)-½.  The circuit behavior depends on where the
resonant frequency lies relative to the previously mentioned
characteristic frequencies, f 1= λ2 f2, λ f2, and f2.  Since the
inductance is generally small, the resonant frequency will

typically be quite high.  Therefore, only the two cases 1) f 2 <
f0 and 2) f2 > f0 need be considered.

3.2.1 Case f2 < f0
For experiments, the few feet of wire in the

measurement circuit suggests that a few µH is an appropriate
estimate for L.  The curves in Figure  3 are calculated with
the same parameters as were those in Figure  2, except that L
= 0.5 µH.

In the above figures note that at the resonant frequency
f0, the measured capacitance goes negative, the measured
conductance peaks, and the phase angle is equal to zero.

3.2.2 Case f2 > f0
This situation occurs for larger inductance and/or lower

series resistance.  This situation is illustrated in Figure  4,
where curves were generated with L = 10  µH and other
parameters as before.
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FIG. 3. Calculated frequency dependence of a) the measured
capacitance, b) measured conductance, and c) the phase angle for the
model circuit for L = 0.5 µH, C = 30 nF, r = 10 kΩ, and R = 10 Ω.
The vertical dashed lines correspond to the frequencies f 1,
λ f2 = (f1f2)½, f2, and the resonant frequency fo≈ 1.3 MHz.  The
horizontal dashed lines correspond to a) zero and the circuit
capacitance C, b) 1/r and 1/R, and c) 45 degrees.

FIG. 4. Calculated frequency dependence of a) the measured
capacitance, b) measured conductance, and c) the phase angle for the
model circuit for L = 10 µH, C = 30 nF, r = 10 kΩ, and R = 10 Ω.
The vertical dashed lines correspond to the frequencies f 1(≈ 530 Hz),
λ f2 = (f1f2)½, and f2 (≈ 530 kHz).  The vertical solid line
corresponds to the resonant frequency f o≈ 290 kHz.  The horizontal
dashed lines correspond to a) zero and the circuit capacitance C, b)
1/r and 1/R, and c) 45 degrees.

4. Comparison with Measurements for a
Test Circuit
To test the validity of the above calculations and the

reliability of the measurement apparatus, the circuit of
Figure 1 was constructed from two resistors and a capacitor.
Series inductance was not deliberately introduced, but arose
from the residual self-inductance of the connecting cables.
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Measurements were performed for frequencies ranging from
100 Hz to 10 MHz.  Circuit elements were chosen to be C =
(10.0 ± 0.2) nF, r = (1000 ± 20) Ω, and R = (2.0  ± 0.2) Ω.
The circuit elements were wired inside a small metal box
with separate current and voltage leads brought to four
grounded BNC connectors mounted on the box.  Four-probe
and two-probe admittance measurements were performed
using an HP model 4192A LRC meter connected to the
circuit.

Four-probe measurements were performed with four,
36" long BNC cables connected to the separate voltage- and
current- jacks of the HP LRC meter.  The results of these
measurements are shown in Figure  5.  Solid squares are
measurements while the curves represent calculations for
parameter values of C = (9.6  ± 0.2) nF,  r = (1000  ± 50) Ω, R
= (3.0 ± 0.2) Ω, and L = (80 ± 10) nH.1  The separate
voltage and current probes minimize the effects of the cable
series resistance and inductance.  For this case the resonant
frequency f0 is just slightly higher than f 1.  The discrepancy
between the actual value of R and that which, when entered
into the model calculations, causes them to agree best with
the measurements, is not understood.  Neither is the origin
of the
observed frequency dependence for C m at low frequencies
understood.

We also performed two-probe admittance measurements
for this circuit, as these best mimic the measurements
performed on solar cells.  Two-probe measurements result in
additional series resistance and inductance associated with
the connecting cables.  Measurements were performed using
the same leads as those used for subsequent measurements
on solar cells, except that two additional 12 in. clip leads
were used complete the connections.  The results of these
measurements are shown in Figure  6.  As before, the solid
squares represent measurements while the curves represent
the calculations, in this case for C = (9.8  ± 0.2) nF,  r =
(1000 ± 50) Ω, R = (4.4 ± 0.2) Ω, and L = (2.7  ± 0.1) µH.
The main difference between these two-probe and the
previously-discussed four-probe measurements is the
significantly larger series inductance.  The 2.7  µH
inductance is reasonable for the nearly 6 ft. long leads that
connect the circuit to the LRC meter.  The two-probe
measurements also suffer from an additonal 1.2  Ω series
resistance.

5. Comparison with Measurements on
CIGS Solar Cells
The above serves to outline the complicated frequency-

dependent capacitance and conductance that result from
measurements on solar cells due simply to series resistance

and inductance.  In all cases, the low-frequency capacitance
is a good measure of C.  For cells with low series resistance
the tendency is to observe a frequency dependent
capacitance, conductance, and phase angle similar to that
shown in Figure  3.  For cells having high series resistance
the data tends to be more like that shown in Figure  4.

FIG. 5. Measured (symbols) and calculated (curves) a)
capacitance, b) conductance, and c) phase angle for two resistors and
a capacitor wired as shown in Figure  1.  The component values were
C = 10.0 nF, r = 1.0 kΩ, and R = 2.0 Ω.  The curves were calculated
using C = (9.6 ± 0.2) nF,  r = (1000 ± 50) Ω, R = (3.0 ± 0.2) Ω, and
L = (80 ± 10) nH.  The measurements were performed with separate
current and voltage connections, minimizing the series contribution
of the connecting cables.

In Figure 7, calculations are compared with zero-bias
admittance data for NREL CIGS solar cell C253-23-9.  The

                                               
1 Values of C, L, R, and r were chosen so as to yield the best agreement with

the data as determined by visual inspection.  Here, the "uncertainties"
represent the amount by which the particular parameter could be varied
before the agreement between calculations and data was noticeably worse.
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properties of this cell under illumination are shown in
Table I.  Listed are the cell efficiency ( η), short circuit
current density (J sc), open circuit voltage (V oc), and fill
factor (FF).  For this cell, the resonance frequency f 0 < f1,
leading to an up-turn in C(f) at high frequencies similar to
that exhibited in Figure  4 above.  The solid curves in
Figure 7 represent model calculations for C = 11.2  nF, r =
350 kΩ, R = 5 Ω, and L = 1.6 µH.  The characteristic
frequencies for these parameters are f 1 = 41 Hz, f2 =
2.84 MHz, f0 = 1.19 MHz, and the resistance ratio is
λ2 = 1.43 x 10-5.

FIG. 6. Measured (symbols) and calculated (curves) a)
capacitance, b) conductance, and c) phase angle for two resistors and
a capacitor wired as shown in Figure  1.  The component values were
C = 10.0 nF, r = 1.0 kΩ, and R = 2.0 Ω.  The curves were calculated
using C = (9.8 ± 0.2) nF,  r = (1000 ± 50) Ω, R = (4.4 ± 0.2) Ω, and
L = (2.7 ± 0.1) µH.  The measurements were performed with the

same two-probe arrangement that was used for subsequent
measurements on solar cells, increasing the series contribution (both
L and R) of the connecting cables.

Figure 7(a) shows that the low-frequency capacitance is
not exactly constant, but instead, increases slightly at lower
frequencies indicating the presence of some traps.  The
importance of traps is even more noticeable in Figure  7(b) in
the same frequency range, where the measured and
calculated conductances deviate even more significantly.

FIG. 7. Graphs of the frequency dependence of a) the measured
capacitance, b) measured conductance, and c) the phase angle for L
= 1.6 µH, C = 11.2 nF, r = 350 kΩ, and R = 5.0 Ω.  Solid curves are
calculated while solid squares are data from device C253-23-9 with
V = 0.

Admittance data from a second cell, C257-12-7, are
compared with calculations in Figure  8.  The solid squares
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represents equilibrium measurements (V = 0) while the open
triangles are measurements for a bias V = -2.00  V.2  Due to
the higher series resistance of this cell, the resonance
frequency f0 > f1, leading to a frequency-dependent
capacitance similar to that shown in Figure  3.

FIG. 8. Graphs of the frequency dependence of a) the measured
capacitance, b) measured conductance, and c) the phase angle for
cell C257-12-7.  The solid squares were measured with V = 0 while
the open triangles were measured with V = -2.00  V.  The solid and
dashed lines represent model calculations.

 The solid curves are model calculations for C = 10.5  nF, r =
60 kΩ, R = 18 Ω, and L = 1.6 µH.  The characteristic
frequencies for these parameters are f 1 = 250 Hz, f2 =

842 kHz, f0 = 3.1 MHz, and the resistance ratio is
λ2 = 3.00 x 10-4.  The dashed curves are model calculations
for C = 7.0 nF, r = 34 kΩ, R = 20 Ω, and L = 1.6 µH.  The
characteristic frequencies for these parameters are f 1 =
669 Hz, f2 = 1.14 MHz, f0 = 3.7 MHz, and the resistance
ratio is λ2 = 5.880 x 10-4.  As compared with the previous
cell, Figure 8(a) and (b) show that the low-frequency
capacitance is nearly constant and the low-frequency
conductance hardly deviates from the expected curve,
indicating the relative unimportance of traps in this sample. 3

The reverse-bias conductance data of Figure  8(b) agree
better with the model calculation than do the zero-bias data
for the same cell.  This is because of the wider depletion
width, and the fact that more traps tend to be located close to
the junction than farther away.  In all of our measurements
we find the effects of trapping to be decreased for more
negative bias.  Also note that both C and r vary with V.
The voltage-dependence of C is, of course, fully expected,
and is the basis for C-V measurements.  This voltage-
dependent shunt resistance is observed for all of the
polycrystalline devices investigated.  For some cells the
shunt resistance is found to decrease by more than an order
of magnitude as V varies from
0 to -2.0 V.  This effect, due to some type of breakdown
phenomenon, will not be further explored here.

Finally, it is important to note that the values of r and R
extracted from these measurements do not always agree with
those determined from current-voltage curves.  For the shunt
resistance, this is not surprising since the admittance
measurements yield a value of r for each bias voltage while,
for J-V measurements, a single value of r is extracted from
measurements for different voltages -- assuming that r is
constant.    The greater series resistances extracted from
admittance measurements may simply be due to the fact that
these measurements were performed with common current
 and voltage probes (i.e., 2-probe) while the J-V
measurements were performed with separate current and
voltage probes (i.e., 4-probe).  4-probe measurements are
less susceptible to contact resistance contributions than are
2-probe measurements.  It is unlikely, however, that the
18 Ω series resistance required to model the observed
admittance measurements for device C257-12-7 can thus be
explained

                                               
3 The reverse-bias capacitance decreases slightly at lower frequencies.  This

is an artifact associated with transient effects in the cell combined with the
method in which data are recorded.  The cell is initially held in equilibrium
for a few minutes, then the bias voltage is rapidly switched to -2.0 V.
During the next 5 seconds the actual voltage across the cell rapidly decays
to about -1.85 V.  V continues to decay slowly during the next three
minutes or so while the excitation frequency is swept from 1 kHz to
1 MHz and the admittance data are recorded.  At the end of the sweep, V
has a typical value of -1.75 V.  Thus, during the period of the sweep, the
depletion capacitance increases slightly

                                               
2 Negative voltages correspond to reverse bias while positive voltages

correspond to forward bias.
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6. Implications for C-V Measurements
These calculations have implications for the usual C-V

measurements used to extract free carrier densities.  First, it
is obvious that one should choose a measurement frequency
f so that it is well below both f 2 and f0.  This is best
determined by performing measurements of C m(f) versus
frequency for several voltages spanning the range of biases
to be used for the subsequent C-V measurements.  Note that
f2 and f0 both vary with voltage, shifting to higher
frequencies as the V is made more negative (i.e., wider
depletion width).  Thus, if one determines a satisfactory f at
the greatest bias voltage to be used (i.e., narrowest depletion
width), this same f will remain well below f 2 and f0 as the
bias voltage is decreased (i.e., wider depletion width).  The
voltage may be swept in either direction, but it is very
important to be sure that f  << f2, f0 at the greatest bias
voltage.  This is particularly problematic if measurements
are to be performed into forward bias.  Whatever the choice
of f, as V → Vbi (from below) the depletion width
approaches zero and f 2, f0 will ultimately shift below f.
Again, it is safer to choose a satisfactory f at the greatest bias
voltage to be used and to sweep voltages negative from
there.

From the above perspective one would want to choose
the lowest measurement frequency possible.  The lower the
measurement frequency, however, the more that traps
contribute to the measured capacitance, and the more error
introduced into the deduced free charge carrier density.  To
minimize the effects of traps one wishes to use a higher
measurement frequency.  Combining this criteria with our
earlier discussion it seems that a measurement frequency
f f f f= =1 2 2λ is an appropriate choice.

These ideas are illustrated by C-V measurements on
device C257-12-7, shown in Figure  9.  The 1 MHz data
deviate from measurements for lower frequencies for most
of the range of bias voltage.  The 500  kHz data are in
agreement with lower frequency measurements for V < -
0.5 V, but deviate for higher voltages.    The 300  kHz data
show hints of deviation at the very highest bias voltage.
Doping profiles for this range of voltages determined from
the slopes of the curves for f < 300  kHz are all in agreement.

FIG. 9. Plots of 1/C2 versus bias voltage for various measurement
frequencies.  All measurements are in agreement for -1.8  V bias, but
the 1MHz data deviate from the rest for V > -1.7  V, and the 500 kHz
data deviate for V > -0.5 V.

6. Summary and Conclusions
The frequency-dependence of the admittance of

polycrystalline CIGS solar cells in reverse bias has been
measured and compared with the calculations for a simple
circuit.  At low frequencies the admittance is found to be
that of the depletion capacitance (C) in parallel with a shunt
resistance (r).  At higher frequencies the measurements are
strongly affected by series resistance (R) and inductance (L).
Depending on the relative values of the characteristic
frequencies f1 = 1/(2πRC) and f0 = {2π(LC)½}-1, the
"measured" capacitance is found to either decrease (f 1 < f0)
or increase at high frequencies.  For all of the 0.43  cm2 area,
CIGS cells investigated, reliable C-V measurements were
obtained only with f < 300  kHz, with f = 50  kHz being the
recommended measurement frequency.
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