Text compression using a 4 bit coding scheme

dJ. Pike

Holly Cottage, Chawston, Bedford MK44 3BH, UK

The most frequently used words in natural or printed English are found unexpectedly to contain
only an average proportion of the most frequently used letters. This independence of the word and
letter frequency distributions is used to minimise the number of bits necessary to code natural
English text. It is shown that mean bit rates of less than 4 per character can be achieved for
text using the full ASCII set of 96 characters, by combining a variable bit length representation of
each character with a character combination dictionary of a 100 or more common words. A simple
practical scheme is presented which uses 4, 8 or 12 bits to code the characters and dictionary words.
Using this scheme with a 205 word dictionary, a mean code rate of 3.87 bits per character is
achieved. It is indicated how even this rate might be improved with a larger dictionary or by
basing the dictionary on the more numerous word prefixes.

(Received September 1980)

1. Introduction
Digital storage or transmission of text characters usually uses
8 bits per character, as for example in ASCII code. As these
8 bits can represent up to 2% (i.e. 256) different characters and
about 100 characters are sufficient for most text, there is
redundancy when using 8 bits to code each character. By
removing this redundancy and using the structure of natural
English text, several authors (Huffman, 1952; Lea, 1978;
Shannon, 1951; White, 1967; Williams, 1978) have developed
techniques for the more efficient coding of text. In general
these techniques fall into two classes: those which use a
variable bit length representation of the text characters
according to their frequency (Huffman, 1952), and those which
use the spare capacity of the 8 bit coding to repressnt a
common word or character string dictionary (Lea, 1978 ; White,
1967; Williams, 1978). Results from the variable bit length
approach have shown that the minimum number of bits to
represent the text is given by the product of the number of text
characters and the mean bit length per character (H), where
H=-3Y P, InP, (¢))
in which P, is the probability of the Jth character occurring.
Applying this to natural English text (White, 1967), a lower
bound of greater than 4 is found for the minimum mean bit
rate per character. More recent attempts (Lea, 1978; White,
1967; Williams, 1978) to reduce the mean bit rate have
concentrated on the dictionary technique, which is not subject
to this lower limit. Indeed, if it is assumed that the words are
ranked according to their frequency of occurrence in natural
English and that the probability of a particular word being of
rank R is given by the empirical rule (Zipf, 1949)
01
Py == ®
then a minimum mean bit length representation of less than
2 is theoretically possible for each character. However, to
achieve this lower limit, a dictionary of over 12000 words
with their appropriate bit codings is required. For more
practical dictionary sizes (say up to 1000 words or character
strings), even schemes which have complicated techniques
for obtaining near optimised string dictionaries (Lea, 1978;
Williams, 1978) seem to be unable to breach the 4 bits per
character barrier (which would give a 50% compression
of the text compared with ASCII coding).
Some dictionary schemes (Lea, 1978) severely restrict the
character set that can be represented in the text. This type of
restriction might be acceptable for certain applications, but

in general it would appear desirable to include at least all the
95 non-control ASCII characters. An advantage of variable
bit length schemes is that further ‘rare’ or unusual characters
can easily be accommodated within the coding whilst making
little difference to the coding efficiency. Other schemes have
different restrictions. To clarify the aims of the present paper,
the properties considered here to be important in coding
natural English text are listed below:

(1) The coding should use a small number of bits to represent
natural English text and should not use significantly more bits
when the text varies due to style or content.

(2) A full range of characters should be representable and in
particular text using only upper case letters should be able to
be coded with similar efficiency as text using lower case letters.

(3) The storage ‘overhead’ for the program coding and the
dictionary should be small. This requires that the text coding

100

- Space
90

801

3
(=]
T

2

Occurrences (thousands)
H w
(=] (=)
T T

30+ E
20
10 v
0IllllIllllllllllHIYIFlBlvl
WKXJQZ
Character

Fig. 1 Character occurrence in a text of 100 000 words:
(a) full text (total 538 023), (b) text minus 200 common
words (total 308800 characters)

CCC-0010-4620/81/0024-0324 $03.50

324 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 © Heyden & Son Ltd, 1981

Downl oaded from https://acadenic. oup.com conjnl/article-abstract/24/4/324/ 363574

by guest
on 09 July 2018

Table 1
Word occurrences in a natural English text of 100000 words

Rank Word Occurrence in Dictionary word Rank Word Occurrence in Dictionary word
100000 words occurrences® 100000 words occurrences®
1 the 7310 7425 70 other 169 194
2 of 3998 4225 71 into 166 166
3 and 3280 3280 72 men 164 194
4 to 2924 3214 73 must 163 168
5 a 2120 —b 74 people 163 163
6 in 2116 2533 75 said 161 161
7 that 1345 1367 76 may 160 162
8 it 1216 1488 77 man 156 214
9 is 1213 1258 78 about 153 153
10 1 1155 — 79 over 153 153
11 for 1035 1237 80 some 152 206
12 be 846 1072 81 these 152 152
13 was 839 866 82 two 146 146
14 as 782 795 83 very 145 145
15 you 773 1132 84 before 139 139
16 with 727 747 85 great 134 178
17 he 680 1294 86 could 133 147
18 on 643 1091 87 such 132 132
19 have 617 658 88 first 131 131
20 by 600 600 89 upon 129 129
21 not 589 634 90 every 124 155
22 at 585 — 91 how 124 146
23 this 572 572 92 come 123 171
24 are 542 549 93 us 123 251
25 we 529 691 94 shall 120 120
26 his 517 535 95 should 118 131
27 but 504 504 96 then 115 —
28 they 478 495 97 like 113 129
29 all 466 506 98 well 113 113
30 or 458 — 99 little 111 112
31 which 454 454 100 say 111 191
32 will 445 464 101 because 108 108
33 from 433 433 102 being 108 108
34 had 411 411 103 under 108 109
35 has 390 390 104 after 107 117
36 one 368 — 105 here 107 —
37 our 331 351 106 good 106 125
38 an 330 — 107 make 105 165
39 been 328 329 108 most 105 107
40 no 321 — 109 many 104 104
41 their 315 350 110 much 104 104
42 there 306 322 111 those 104 194
43 were 305 307 112 way 104 104
4 S0 300 — 113 see 103 258
45 my 296 343 114 world 103 117
46 if 263 263 115 know 102 196
47 me 257 509 116 day 101 175
48 what 253 276 117 never 101 101
49 would 252 267 118 did 100 123
50 who 248 370 119 new 99 122
51 when 237 237 120 down 95 98
52 him 234 285 121 even 94 132
53 them 228 262 122 long 94 110
54 her 222 — 123 years 93 93
55 war 214 229 124 country 92 111
56 your 214 — 125 business 91 91
57 any 210 240 126 right 91 110
58 more 210 210 127 get 89 117
59 now 210 210 128 life 89 90
60 its 208 — 129 just 86 110
61 time 205 232 130 take 86 164
62 up 204 207 131 where 83 83
63 do 203 — 132 work 83 127
64 out 203 206 133 things 82 126
65 can 197 219 134 part 79 97
66 than 194 194 135 through 78 94
67 only 189 189 136 while 78 79
68 she 188 217 137 last 77 85
69 made 170 170 138 might 77 84
© Heyden & Son Ltd, 1981 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 325

Eownl oaded from https://academn c. oup. com conjnl/article-abstract/24/4/324/ 363574
y guest
on 09 July 2018

Downl oaded from https://acadenic. oup.com conjnl/article-abstract/24/4/324/ 363574

by guest

on 09 July 2018

Table 1 continued

Rank Word Occurrence in Dictionary word
100000 words occurrences?

139 am 75 124
140 back 75 83
141 old 75 84
142 own 75 90
143 three 75 75
144 against 73 73
145 80 73 247
146 think 73 : 99
147 came 71 71
148 matter 71 76
149 days 70 —

150 without 70 70
151 also 69 69
152 public 68 69
153 today 68 88
154 yet 68 68
155 don’t 67 —

156 same 67 67
157 thought 67 113
158 each 63 63
159 far 63 100
160 home 63 71
161 put 63 67
162 again 62 62
163 always 62 62
164 nothing 61 61
165 present 61 68
166 between 60 60
167 going 60 60
168 money 60 60
169 per 60 135
170 once 59 59
171 peace 59 62
172 woman 59 59
173 year 59 —

174 another 58 58
175 away 58 58
176 cannot 58 58
177 fact 58 85
178 half 58 58
179 still 58 58
180 give 57 127
181 government 57 57
182 power 57 68
183 too 57 —

184 yours 56 —

185 found 55 56
186 few 54 56
187 possible 54 72
188 does 53 63
189 food 53 55
190 house 53 66

Rank Word Occurrence in Dictionary word
100 000 words occurrences®
191 less 53 56
192 oh 53 —
193 best 52 52
194 case 52 1
195 line 52 79
196 place 52 85
197 says 52 —
198 since 52 52
199 ever 51 51
200 himself 51 51
201 let 51 —
202 military 51 51
203 tell 51 71
204 why 51 51
205 big 50 54
206 got 50 —
207 until 50 50
208 went 50 50
209 find 49 57
210 five 49 49
211 dear 48 —
212 interest 48 82
213 left 48 48
214 order 48 71
215 service 48 54
216 set 48 —
217 steel 48 48
218 women 47 48
219 among 46 46
220 front 46 49
221 given 46 —
222 hand 46 81
223 high 46 81
224 means 46 72
225 night 46 46
226 small 46 54
227 taken 46 —
228 both 45 46
229 morning 45 46
230 used 45 —
231 whole 45 52
232 city 44 —
233 enough 44 44
234 gun 44 —
235 next 4 —
236 thing 44 —
237 want 4 —
238 army 43 —
239 off 43 —
240 pay 43 —

@ Includes prefixes (not otherwise included) in the first 1000 ranked words.
b words not included in the 205 word dictionary.

and decoding scheme should be relatively simple and the
dictionary small.

(4) The coding and decoding of the text should be fast. The
coding speed depends primarily on the dictionary search
times, whereas the decoding time depends more on the compli-
cation of the scheme.

I attempt in this paper to produce a simple scheme satisfying
the above criteria with a mean coding rate of better than 4 bits
per character. A crucial observation is that the letter frequency
distribution in natural English text is largely independent
of the word frequency distribution, giving prospects of com-
bining both dictionary and character frequency distribution
techniques to gain the desired improvement. Word and letter
frequency distributions in natural English are given in Dewey
(1923, Table 4) from the analysis of 100000 words of text.

326 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

The frequency distribution found for the letters (Dewey,

1923) is shown by (a) in Fig. 1, where the most common
character ‘space’ is included on the assumption that it occurs
at a mean rate of one per word. Also shown from the 100000
word text are the 240 most common words, ranked in order
of frequency of occurrence in Table 1. Removal from the text
of 200 of these words leaves the lower character frequency
distribution of Fig. 1. Although the letter order is changed
significantly, the shape of the distribution remains very
similar to the original. Thus, it should be advantageous to
optimise the word and letter representations independently
and then combine the results.

A possible disadvantage of this dual technique is that the
scheme will be too complicated. In Section 3 a practical
scheme is developed based on a simple 4, 8 or 12 bit representa-
tion of characters and words, which approaches very closely

© Heyden & Son Ltd, 1981

Downl oaded from https://acadenic. oup.com conjnl/article-abstract/24/4/324/ 363574

by guest

the optimum coding rate of the dual scheme.

It might be noted that only ranked word dictionaries with a
space preceding each dictionary word are considered here.
Optimisation of the dictionary members by analysing word
‘prefix’ frequency distributions could produce a reduction in
the coding rate of 3-87 bits per character demonstrated in this
paper using a 205 word dictionary. The development of such
a dictionary is beyond the scope of the present paper.

2. Minimisation of mean bit rates for words and characters
The representation of words and characters using variable bit
length codes is analysed theoretically. Simple expressions for
the minimum number of bits to code natural English text
are derived, against which the efficiency of practical schemes
can be compared.

Consider a dictionary formed from the words of rank 1 to N.
The proportion of the words in natural English text represented
by the dictionary is given by

N
PN=21PR 3)

where the values of P may be obtained from Table 1 for
N < 240 or more generally from Eqn (2). To find Py from
Eqn (2) we need to sum 1/R from 1 to N. The usual summation
expression in terms of Euler’s constant (Abramowitz and
Stegun, 1965) is not sufficiently accurate for our purposes,
so expressions have been derived for 1/R and other sums
needed later which are better than 1% accurate for N > 1:

S 1/R = 0577 + In(N + }) @)
Y (InR)/R = }[In(N + ¥)]* — 0073 5)
T RO = 637N + 3)°157 — 5.8 (6)

The proportion of the text words which are dictionary words
is thus given by
Py = 00577 + O-1 In(NV + 3) @)

The increase of Py with In N is shown by the lower curve in
Fig. 2. From Py = 1, we see that Eqn (2) contains the fairly
arbitrary prediction that all the text will be represented by a
12367 word dictionary. At N = 100 about 529 of the text
words are words of rank 1 to 100. This compares well with
the 549, obtained by direct summation from Table 1.
Suppose we code the dictionary word of rank R using By
bits and this combination of bits represents a fraction Fy of all
the available bit combinations, such that §

Bg = — IbFy ®)
then the mean bit length of the dictionary words in the text
(By) is given by

BNPN=ZPRBR=_ZPRleR ®)

§ Ib is now the recommended symbol for log,, see for example
British Standard, BS 1991: Part 1, 1976.

10 1.0 %

9 0.9 g

8 08 &
27 078
2 a
L 6 0.6 &
< st 058
E 4 04 %
n§: 3 035
2 028

)=

1 01g

0 2

0 &

Fig. 2 Minimum mean bits per word for a coding dictionary of

N members

© Heyden & Son Ltd, 1981

on 09 July 2018

As Py is a function of N only, the values of By (or F, z) Which
minimise the number of bits to represent the dictionary words
in the text will be the same as those obtained from minimising
By. Minimising By, with the total fraction of bit combinations
used by the dictionary constant (i.e. Fy = Y F, r = constant),
we obtain in the usual way

Pr _ Fy
P, = F, (10)
Then from Eqn (9), the minimum value of By is
. Pg.. P
By(min) = —IbFy — Zl’—:lbﬁi 11)

For the particular case Fy = Py = 1 this equation has been
derived previously (Shannon, 1951). However, the value of
By(min) obtained (Shannon, 1951) was 11-82 bits per word,
which is in error as is shown below.

The tedious summation expression in Eqn (11) can be
removed using Eqn (5) to give
By(min) = 1;1_10 _In(Fy/Py) . [In(N + §)], — 0-146 (12)

n2 In2 [(In(NV + %) + 0-577]in 4
For Fy = Py the minimum mean bit length per word is shown
as the upper curve of Fig. 2. When N = 100 we see that just
over half the words in the text can be represented at a mean bit
rate of 6-3 bits per word. When Fy = Py = 1, By(min) is
9-7 bits per word. It is this value and not Shannon’s (1951)
value given above which is correct.

After the N dictionary words have been identified in the
text, there remain the less common words plus a variety of
punctuation marks and other odd characters. Although these
latter rare characters can vary significantly in their occurrence
from text to text, their comparative rarity means that however
they are represented they make little difference to the overall
efficiency of the coding.

White (1967) has suggested coding the free characters using
digrams and trigrams. However, he needed a dictionary of
1340 words, digrams and trigrams to achieve a compression
ratio of 0.53. Here an alternative approach is considered in
which the bit length to represent the free characters is varied
in a manner similar to that applied previously (Huffman,
1952) to the whole text. Similar analysis to that used in

Huffman (1952) gives a mean bit length per character of
K

By(min) = —IbF, — Z ? Ib 9
K

K

13)
1
where Fy is the total fraction of bit combinations used to
represent the free characters, Py is the probability of a character
selected at random from the text being a free character and P,
is the probability that this free character is the Jth character.
That is, the proportion of free characters is given by
K

Py = le P, (14)
where K is the number of different characters to be represented.
The similarity between the above expressions and those for
the dictionary words is immediately apparent. An essential
difference, however, is that K is a relatively small finite number
(e.g. K = 96 for the ASCII text characters) and thus every
free character may be represented by summing over K. Values
of P, can be obtained from Fig. 1 for the letters and ‘space’
character and from Dewey (1923) for the others. The main
punctuation characters (comma, full stop, hyphen and inverted
commas) were found to occur 5951, 5272, 2416 and 2216
times in 100000 words of text, respectively, and all the other
rare characters occurred a total of about 12000 times (Dewey,
1923). One common ‘character’ not mentioned in Dewey
(1923) is the ‘end of line’ character. It is necessary to code the
end of line position if the text is to be reproduced exactly.

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 327

It is assumed that there are 10 words per line on average, giving
a total of 10000 end of line characters.

When all the text characters are treated as free characters,
the frequencies from Dewey (1923) as described above give a
minimum mean value of 4:32 bits per character. With a 200
word dictionary, using Fig. 1 for the values of P, in Eqn (14),
we obtain

By(min) = — IbFg + 4:52 (15)
The small change between 4-32 for the full text and 4-52 above
reflects the relative similarity in the distribution of the free
characters as N is varied.

Having obtained the minimum number of bits per dictionary
word [Eqn (12)] and the minimum number of bits per character
[Eqn (15)] I now investigate how best to apportion the total
bit combinations between them. If the whole text is coded
and all the available bit combinations used then

Py P =1 (16)
L,

Fy+ Fg=1 17)
where Ly is the mean word length of all the dictionary words
in the text and L, is the mean word length of all the words
in the text. The value of L, is well known (White, 1967) to
be close to 4-5 letters per word for natural English. The analysis
of 100000 words in Dewey (1923) finds 4-38 letters per word.
A space is included on the front of every word, except for
words which begin a new line, hence 5-4 characters per word
is an appropriate value for L. An empirical rule for the length
of the word of rank R is given by White (1967) as

Ly = 2-45R°'167 R > 10 (18)
Unfortunately, this equation does not match the line through
the data from which it is derived and further the value of
L, = 575 which it gives (White, 1967) is too high. A better
fit to White’s data is given by

Lg = 2:45 R%'157 R > 10 (19)
which gives a more realistic value for L, of 5-43. With this
value of Lg, the value of Ly can be found from

LyPy =Y LgPg = 1'56(N + 3)°*°7 — 1-42 N > 10 (20)

The mean bit rates per character to code the text using a
combination of character and word coding is

By = g’-" By + PygBg 1)
Minimising By gives
Fy Py
X = X 22
7= Lap @
and a minimum mean bit rate for the text as a function of N
By(min) = i’l’ By(min) + PyBy(min) @3)
where
. In(10Py + 10P,L,) , [In(N + }]* — 0-146 24
By(min) = n2 20P, In 2 24
By(min) = In[1 + Py/(L,Pg)] + 452 (25)
Py =00577 + 01 In(N +) (26)
Py =1 — PyLy/L, (27)
=126 — 0-287(N + $°**7 N >10 (28)

with L, = 5-4 the value of B(min) from the above equations
is shown in Fig. 3. Of particular significance is the intersection
of the curve with the 4 bit line below N = 100.

Thus, for a dictionary of 100 members, representation of the
text at a mean rate of less than 4 bits per character becomes
theoretically possible, and for a 1000 word dictionary the mean

328 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

Lo

N

By (min) (bits)

—_
|

N= N= N=
100 1000 12367
L 1 1 TR 1 I 1 |
0 1 2 3 4 5 6 7 8 9 10

In N

Fig. 3 Minimum mean bits per character for the combined
dictionary and character coding scheme of this paper

rate is 3-3 bits per character. The practical means to realise
this potential is discussed in Section 3.

It should be noted that the word frequency estimate of
Eqn (1) used to produce Fig. 3 applies to words rather than
word prefixes. Thus, for example, one would expect that the
dictionary word ‘be’ would occur more frequently in the text
than estimated in Table 1 because such a word as ‘best’ would
be represented in part. Estimates of the occurrence of prefixes
in natural English do not appear to be available. However,
the occurrences of the most common words as prefixes amongst
the 1000 most common words are shown in Table 1. It is
difficult to estimate the improvement which would occur if
the dictionary members were chosen using the most frequent
prefixes rather than the word frequencies of Table 1. A more
radical alternative would be to use string dictionaries (which do
not necessarily start with a space) similar to those used in
Lea (1978) and Williams (1978); however, as is explained in
Section 3, such dictionaries have practical disadvantages
compared with the ‘prefix’ dictionaries.

3. The 4 bit scheme
Coding schemes using unrestricted variable bit lengths to
represent characters or words tend to be complicated and slow

4 bit / AW
0 |8 BIT WORDS u THE
1 (8 BIT CHARS p OF
2 [12 BITS (256)* g AND
3 |END OF LINE m TO
4 SPACE h IN
S e y THAT
6 a f IT
7 i b IS
8 s v FOR
9 r w BE
10 t k WAS
11 n X AS
12 o i You
13 | q WITH
14 d HE
15 c . ON
4 bit 8 bit 8 bit
& 256, 12 bit options coded as 67 rare characters and 189 dictionary
words

Fig. 4 Possible representation of characters and words for the 4
bit scheme

© Heyden & Son Ltd, 1981

Downl oaded from https://acadenic. oup.com conjnl/article-abstract/24/4/324/ 363574
by guest
on 09 July 2018

Downl oaded from https://acadenic. oup.com conjnl/article-abstract/24/4/324/ 363574

by guest

because each bit has to be analysed individually. Schemes
which use 8 bits for representing characters and dictionary
words are much simpler but appear to have a lower limit
of about 4 bits per character as their mean rate to represent
natural English text. Here we use a 4 bit coding which retains
much of the simplicity associated with the 8 bit schemes but
manages to approach closer to the lower bit rates per character
found in Section 2 for variable bit lengths.

The free characters are coded as shown in Fig. 4, with 13
characters using 4 bits, 16 characters using 8 bits and 67
characters using 12 bits. The characters using 4 bits are the
letters e, a, i, s, 1, t, n, 0, 1, d, c, plus ‘space’ and ‘end of line’
characters. From Fig. 1 it can be seen that these represent
about 80% of the free characters. If the 67 rare characters
represented by 12 bits form 29, of the characters, the mean
rate of bits per character for the free characters is 4-88.

A scheme is now investigated using a modest 205 word
dictionary which is coded with the 16 most common words
using 8 bits and the rest of the words the 189 unused 12 bit
options. The actual words used are those indicated in the
occurrence column of Table 1, and it can be seen that they do
not confirm exactly with the 205 most commonly occurring
words. Consider for example the word ‘a’ which is ranked
fifth. This should be coded on rank considerations as an 8 bit
word. However, a ‘space’ and an ‘a’ only uses 8 bits when they
are coded as free characters. Hence including ‘a’ in the diction-
ary does not reduce the number of bits used to record the
text. Ideally the words should be reranked according to the
number of bits saved in a natural English text assuming that
e, a,i,s,1,t,n,0,l,d, c, use 4 bits and the other letters 8 bits.
Returning to our sample dictionary of Table 1, we see that the
16 words using 8 bits can represent about 30%, of all the words
and that a further 309 of the words is represented by the
189 words using 12 bits. These word occurrences include
words at the start of a line which do not begin with a space,
and words which contain upper case letters. To enable the
scheme to accommodate these words and also fulfil the require-
ment that both mixed and upper case text should both be
coded efficiently, we introduce a number of logical rules, which
although complicated to state are easily implemented in a
computer program.

We assume that the 4 and 8 bit letters represent lower case
letters except under the following conditions:

(1) the character is the first letter of the text;
(2) the character is the first letter following a full stop;

(3) the character is the single letter ‘I’ (i.e. part of ‘space I
space’);
(4) the two previous letters have been upper case.

The last requirement enables text which is only upper case to
be coded as efficiently as normal mixed upper and lower case
text. The convention for the dictionary words is taken to be
that each word is preceded by a space except when it is the
first word in the line. Adding the spaces has the effect of
increasing the mean word length of the dictionary by 0-9
characters (for the assumed 10 word line) without the need to
record the ‘space’ in the dictionary listing. There is a second
major advantage in starting all the dictionary words with a
space. When coding the text it is only necessary to search the
dictionary following a space or end of line character, giving a
potential 809 saving in dictionary search times. The dictionary
storage and search times can also be reduced by ordering the
dictionary alphabetically and recording the location of the
dictionary words which start with a particular letter. Only
the dictionary words with the correct first letter then need be
searched.

With these innovations, a 200 word dictionary requires about

© Heyden & Son Ltd, 1981

on 09 July 2018

\wgme
Optimumm\

[Eqn (23)]

Mean bits per character
H

T T T T T T T T

3 I U T T T T T Y T W S N Y B0 W

50 100 150 200
Words in dictionary, N

250

(=)

Fig. 5 Mean bits per character for coding natural English text
using the 4 bit scheme

600 bytes to store the necessary dictionary characters in
ASCILI. If dictionary storage needs to be reduced further, the
letters forming the dictionary words can be coded in the same
way as the free characters, at some cost in the coding and
decoding speed for the dictionary words in the text.

Using the dictionary of 205 words indicated in Table 1 and
the character representation of Fig. 4, we can estimate the
compression rate of natural English text using the present
scheme. In Fig. 5, the mean bit rate per character for the 4 bit
scheme applied to the 100000 words of text from Dewey (1923)
is shown as a function of N. We see that the 4 bit scheme
achieves values close to the optimised values also shown which
are taken from Fig. 3. At the design value for N of 205 dictionary
members, Fy = 1 and the rate of 3-87 bits per character is
achieved, which is significantly below that of other methods.

The 205 word dictionary discussed above demonstrates the
capability of practical schemes to achieve coding rates of
less than 4 bits per character. Rates of less than 3-87 could be
achieved either by increasing the dictionary size or optimising
the dictionary members.

4. Conclusions

Variable bit length codings of both words and characters have
been combined to form an efficient technique for coding natural
English text. Theoretical optimisation of the word and character
representation indicates that using 100 or more coded words,
mean coding rates of 4 bits per character are possible and for
1000 words the rate is 3-3 bits per character. A practical coding
scheme is presented which uses multiples of 4 bits to code
the words and characters according to their frequency. The
use of a 4 bit unit reduces the complicated processing usually
associated with variable bit length schemes, whilst retaining a
sufficiently good match with the frequency distributions to
enable a coding rate better than 4 bits per character to be
achieved with a 205 word dictionary.

The present scheme has been compared with other schemes
to code natural English text. Although a considerable number
of text compression schemes have appeared in the literature
[see, for example, the list in Lea (1978)], many of them are
only of theoretical interest or apply to reduced forms of
text. From its construction, the present scheme will be superior
to those which code just words or letters (Huffman, 1952).
More successful schemes, however, use word fragment or
string dictionaries to improve the compression rate, culminating
in the near optimum dictionaries of Lea (1978) and Wolff
(1978).

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 329

Downl oaded from https://acadenic. oup.com conjnl/article-abstract/24/4/324/ 363574

by guest

on 09 July 2018

In Lea (1978), a compression rate of nearly 509 (equivalent
to 4 bits per character) is achieved by coding a 206 member
dictionary using fixed length code. This coding technique is
simpler than the one used here, but the complexities encountered
in searching the string dictionary were such that Lea (1978)
needed to develop a hardware solution to achieve sufficient
coding speed.

In Wolff (1978), compression rates which are superior to the
present scheme are obtained with comparatively large dictionar-
ies (> 500) on small samples of 2000-3000 words. Although
Wolff obtains mean coding rates down to 3 bits per character,
his dictionaries are derived specifically for each sample. Hence,

References

ABRAMOWITZ, M. and STEGUN, I. A. (1965).
Office, Washington, DC.

DEewey, G. (1923).

HurrMAN, D. A. (1952).
Vol. 40, pp. 1098-1101.

to obtain a fair comparison the dictionary storage require-
ment must be included with that of the text, again giving a
coding rate above 4 bits per character.

If the string search problem can be solved satisfactorily, a
string dictionary could replace the word dictionary in the
present scheme. However, a more immediate improvement
might be achieved by using an optimised ‘prefix’ dictionary
in which each string starts with a space. To match such a
dictionary to the 4 bit scheme, the characters of each prefix
need to be weighted according to their 4, 8 or 12 bit representa-
tion. These developments are beyond the scope of the present

paper.

Handbook of Mathematical Functions, National Bureau of Standards, US Government Printing

Relative Frequency of English Speech Sounds. Harvard University Press, Cambridge, Mass.
A method for the construction of minimum-redundancy codes, Proceedings of the Institute of Radio Engineers,

LEa, R. M. (1978). Text compression with an associative parallel processor, The Computer Journal, Vol. 21 No. 1, pp. 45-56.

SHANNON, C. E. (1951).
WHITE, H. E. (1967).
WILLIAMS, P. W. (1978).
WoLFr, J. G. (1978).

Prediction and entropy of printed English, Bell System Technical Journal, Vol. 30, pp. 50-64.

Printed English compression by dictionary encoding, Proceedings of the IEEE Vol. 55 No. 3, pp. 390-396.

Criteria for choosing subjects to obtain maximum relative entropy, The Computer Journal, Vol. 21 No. 1, pp.57-65.
Recoding of natural language for economy of transmission or storage, The Computer Journal, Vol. 21 No. 1, pp.42-44.

ZipF, G. K. (1949). Human Behaviour and the Principle of Least Effort. Addison-Wesley, Reading, Mass.

Book reviews

The Art of Electronics, by P. Horowitz and W. Hill, 1980; 716 pages.
(CUP, £35-00, £12-50 paper)

Most technical bookshops carry a shelf full of textbooks on electro-
nics; consequently any new textbook must offer some new material
or novel treatment if it is to gain acceptance. This book largely
succeeds in this aim by concentrating on the problems of circuit
design and construction, and explaining the measures necessary
to cope with component and supply tolerances and imperfections.
All too many textbooks and university courses deal with ideal
components and their behaviour, and give scant coverage to the
imperfections of real components and ways of coping with them.

The book starts with chapters on basic components, operational
amplifiers, active filters and oscillators, F.E.T.’s and low noise
techniques, digital electronics, D-A and A-D conversion. Later
chapters deal with systems assembled from these, such as mini-
computers and microprocessors, and constructional techniques,
high frequency and high speed techniques, measurements and
signal processing. There are also 11 appendices, giving information
on colour codes, using oscilloscopes, how to draw circuit diagrams,
component data sheets, etc.

In all of these topics the text concentrates on the practical aspects
of designing reliable and predictable circuits, and indicates the
range of components and devices currently available for the task. In
general the relative merits of various types of component are well
presented, but the paragraph on carbon composition resistors may
be a little misleading. After mentioning the well known defects of
excess noise and parameter drift, the authors comment on the
inductance of this type of resistor. Whilst this may indeed cause
problems at high frequencies, because of their ‘geometry carbon
composition resistors have lower inductance for a range of resistor
values than the more precise film resistors with spiral tracks. For
this reason they may be preferred for some high frequency applica-
tions.

The design methods discussed are largely intended for prototype
and low volume production, so little attention is paid to worst
case design. Despite these minor points, the book adopts a more
practical approach than the general run of electronics textbooks
and should thus be of particular interest to engineers moving into
the field of circuit design. It should also aid students tackling project
work and those trained in other disciplines who have to interface
their systems to electronic equipment.

J. C. CLULEY (Birmingham)

330 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

Fundamentals of Net:vork Analysis, by D. T. Phillips and A. Garcia-
Diaz, 1981; 474 pages. (Prentice-Hall, £17.50)

Network analysis is far more than the use of PERT or critical path
methods to plan and control projects. A very large number of
practical problems can be given network representations in areas
as diverse as production sequencing, stock control, manpower
planning, and the operation of transportation or distribution systems.

The authors’ objectives are to provide a wide ranging review of
possible applications, and descriptions of algorithms which have
been developed for special network models.

The book begins with an introduction to network concepts and
notation and states without proof some of the mathematical
results linking networks with the more general class of linear
programming problems. Chapter 2 describes several well known
applications, including those of transportation, assignment, shortest
routes and the infamous travelling salesman. An algorithm is
offered for each problem, illustrated by at least one semi-real
numerical example. The third chapter considers the versatile
‘out-of-kilter’ algorithm, which can be applied to many deterministic
flow problems. Chapter 4 reviews the methods of critical path
analysis and PERT. The book concludes with some topics designated
as advanced—networks with flow gains and losses, the GERT
approach to stochastic networks and multicommodity flows.

A 40 page listing of a general purpose network optimisation
FORTRAN program appears in the Appendix, but it is rather
doubtful whether many readers would have the patience to key
in a problem of such length, even if the copious comment statements
were excluded.

Despite its 474 pages and substantial price, the book is not as

comprehensive as the preface suggests. No warnings are given about
the invalidity of PERT probability estimates, and it is misleadingly
stated that “‘the travelling salesman problem cannot be directly
formulated and solved as a linear program’’.
In general the writing is clear, but the presence of contributed
sections leads to some unevenness in style. The quality of production
is good, apart from some incompletely cut pages in the review
copy.

The book is aimed at the student market, and is worth considering
as an introductory text emphasising network applications and
algorithms as an alternative to the more formal graph theoretic
approach.

L. CorNER (Newhaven)

© Heyden & Son Ltd, 1981

