
 

 

The Inefficiency of C++, Fact or Fiction? 

Anders Lundgren, IAR Systems 
Anders.Lundgren@iar.se 

 

ABSTRACT 

A widespread "truth" among developers of embedded software is that using 
C++ results in inferior code size and speed compared with using C. This article 
will attempt to sort out the facts from the fiction in this statement. By better 

understanding the underlying mechanisms of the language, a designer can 
avoid code bloat. 

In the article we will discuss various C++ language features, compare them 
with C, describe their implications for the ARM code generation, and look at 
the efficiency of the different ARM architectures. 

 

INTRODUCTION 

C++ offers the embedded programmer some striking advantages over C. As a 
starting point, it can be seen simply as a better C, some C programmers will 

run their code through C++ compilers for quality checking. This also 
demonstrates that moving to C++ is not an all or nothing event, it is possible 

to choose among the C++ features those that are useful in the application and 
ignore others, just as this article will do. The stronger type checking, 

compared with C, means that many errors are caught at compile time. It is 
possible to exercise tight control over memory locations and exploit the 
knowledge for tighter execution code. And the change of approach that comes 

with object orientation provides improved debugging and maintenance.  

But alongside these recognized advantages, there seems to be a general 

feeling among C programmers that C++ can result in inefficient code when 
compared with coding the same application in C. Like all such general 
knowledge, this need not be true, it all depends on which C++ features you 

use and how you use them. 

TARGET SYSTEM 

For the purposes of this discussion, the target is a typical small embedded 
system where code size is a concern and where the flash available is between 

64kByte and 512kByte.  



EVALUATION OF C++ CONSTRUCTS 

The C++ constructs that will be considered are 

 encapsulation/classes 

 namespaces 

 inlining 

 operator overloading 

 constructors/destructors 

 references 

 virtual functions 

 templates 

 STL (Standard Template Library) 

 RTTI 

 exceptions 

C++ constructs and the code will be given price tags, compared with C code 
achieving the same result. Something priced as FREE has no overhead 

compared to coding in C (not that no code is generated, just that the size of 
the generated code will be almost the same as in C.) CHEAP has a small 

overhead compared to C while EXPENSIVE has a large overhead compared to 

C. All the comparisons were made using the C/C++ ARM compiler from IAR 

Systems. 

Encapsulation – information hiding 

In C++, encapsulation is implemented by the class, which is the equivalent 

of a C struct but with the addition of methods (functions) and an information 

hiding mechanism; the private part is accessible only from within the class 

CircularBuffer while the public section is accessible to all users of the class. 

 

class CircularBuffer 

{ 

private: // implicit private 

unsigned char mBuffer[256]; 

unsigned char mFirst; 

unsigned char mLast; 

public: 

CircularBuffer() : mFirst(0), mLast(0) {} // constructor 

~CircularBuffer() {} // destructor 

bool IsEmpty() { return mFirst == mLast; } // implicit inline 

bool IsFull(); 

void Write(unsigned char c); 

unsigned char Read(); 

}; 

 

Example 1: Class 

By looking at how the compiler treats the C++ code internally we will get a 



good understanding of the cost associated with using classes. Two examples 
will be used as illustration. 

The first example (2) shows how the implementation of larger methods 

(functions), such as Write, are not done inline. The function names use the 

global name space and are mangled to form unique names, in a real 
implementation the parameter and return types are also part of the mangled 

function name. The example also shows how the pointer this is used as a 

hidden parameter from the C++ point of view. 

 

void CircularBuffer::Write(unsigned char c) 

{ 

if (IsFull()) Error("Buffer full"); 

mBuffer[mLast++] = c; 

} 

 

Example 2 (a): C++ class member function 

 

 

void CircularBuffer_Write(struct CircularBuffer *this, unsigned 

char c) 

{ 

     if (CircularBuffer_IsFull(this)) Error("Buffer full"); 

     this->mBuffer[this->mLast++] = c; 

} 

 

Example 2 (b): How the function is handled internally by the compiler 

In the next example (3), the object buf is created as an instance of the class 

CircularBuffer. A pointer to the object, p, is also created. A hidden 

parameter, called this, which is also a pointer to the object, is passed to each 

call of a member function. Although the syntax gives the impression that the 

functions are called through pointers, they are actually called directly as seen 
in (3b). 

 

CircularBuffer buf; 

CircularBuffer *p = &buf; 

 

void test() 

{ 

buf.Write('a'); // Call member function directly 

p->Read(); // Call member function through pointer 

} 

 

Example 3 (a): C++ object creation and calling member functions 

 
 
 



 

void test() 

{ 

     CircularBuffer_Write(&buf, 'a'); 

     CircularBuffer_Read(p); 

} 

 

Example 3 (b): How the function is handled internally by the compiler 

The function call is made in the same way as in C. Setting up a pointer to the 
object and passing it to the member function is likely to be the same in C as it 

is in C++. For comparison, then, the cost of function calls and use of pointers 
are FREE. 

Namespace 

Within a namespace, all visible names are grouped together. Code outside the 
namespace wanting to refer to data within the namespace, must qualify with 

the namespace name. In the example, this could be Decoders::bitrate. 

Namespace has no cost associated with it: FREE.  

 

namespace Decoders 

{ 

int bitrate; 

... 

} 

 

Example 4: A namespace declaration 

Implicit inlining  

Inlining, running a copy of a function rather than calling the function, initially 
sounds expensive, but, by avoiding the function call overhead which can be 
considerable for small member functions leads to a dramatic code size 

reduction. In C++, functions defined in the class are by default inlined. 
Inlining in C++ is essential for good code generation and the cost is therefore 
FREE. 

 

class CircularBuffer 

{ 

public: 

bool IsEmpty() { return mFirst == mLast; } // implicit inline 

}; 

 

Example 5: Implicit inlining 

Operator overloading 

With operator overloading it is possible, within a class, to define the function of 

a standard operator (such as +, -, | …) to operate on the class. In the 



example, the + operator is defined not as a simple addition, instead it is used 

to concatenate two circular buffers. When the + operator is encountered, it is 

translated to a function call to the overloaded operator function. 

 

CircularBuffer operator+(const CircularBuffer& a, const 

CircularBuffer& b); 

 

CircularBuffer buf, buf_a, buf_b; 

 

buf = buf_a + buf_b; 

 
Compiled code for the + operator 
 
LDR R2,=buf_b 

LDR R1,=buf_a 

LDR R0,=buf ; return value 

BL CircularBuffer_operator_plus 

 

Example 6: operator overloading: + is defined as function within the class. Note that R0 points to the return 

value location. 

If used in a natural way, such as using + for imaginary numbers and 

concatenation operations, operator overloading is a powerful way of 
simplifying code writing and it is FREE. 

Constructor and Destructor 

When an object is created, the constructor function is called implicitly. The 

created object can be, as in the example, member data, or the constructor can 
be used for hardware initialization, for example when creating an UART object. 

The destructor is also called implicitly when an object is destroyed; this 
provides better control of the memory space and makes maintenance easier.  

 

class CircularBuffer 

{ 

public: 

// constructor 

CircularBuffer() : 

mFirst(0), mLast(0) {} 

// destructor 

~CircularBuffer() {} 

}; 

 

Example 7: constructor and destructor 

Constructors and destructors are essentially FREE except for the actual code 

they contain. 

 



References 

References, which are mostly used as parameters, is a safer way to do call-by-
reference compared to using pointers. 

 

void get5(int& value) 

{ 

value = 5; 

}; 

 

                      will be compiled to  MOV R1,#+5 

STR R1,[R0, #+0] 

 

Example 8: References 

References have the same cost as passing a pointer, and are FREE. 

Inheritance and virtual functions 

When different classes have data and functionality in common, the classes can 

share data and methods through inheritance. By combining inheritance with 
virtual functions it is possible to separate the class interface from the 
implementation, retaining clarity and making future changes easier. 

The example shows how inheritance can be used in developing a portable 
music player, able to play MP3, WMA and Ogg formats.  

The class Track represents the properties and functionality needed to play a 

track, specifying the interface between a track and the rest of the world. Other 

classes will inherit from Track. As it is an abstract class, no objects of the type 

Track can be created. A class is made abstract if at least one of the virtual 

functions are declared “pure virtual” using the notation =0, meaning that the 

function must be defined in the derived class. 

 

class Track // base class 

{ 

public: 

virtual string const& Artist() = 0; 

virtual string const& Title() = 0; 

virtual void Play() = 0; 

}; 

 

Example 9 (a): Defining the abstract class, Track 

The derived class, MP3Track inherits from the base class Track. The derived 

class must implement all the pure virtual functions in Track. The derived 

class WMATrack will look the same, but will decode WMA instead of MP3. The 

separation of interface and implementation means that in DoMusic there is no 

need to know what type of track is being decoded. p->Play() will call 

Mp3Track::Play() or WmaTrack::Play() depending on which track 



implementation p points to. 

 

class Mp3Track : public Track // derived class 

{ 

public: 

virtual string const & Artist(); // Extract Artist info from ID tag 

virtual string const & Title();  // Extract track title info from ID tag 

virtual void Play();             // Play the audio data 

}; 

 

void DoMusic(Track *p) 

{ 

     p->Play(); 

} 

Example 9 (b): Creating the derived class, MP3Track 

To implement this, each object gets a vptr that points to the vtable for the 

corresponding class, and the vtable has one function pointer for each virtual 

function. 

 

void Mp3Track_Play(struct Mp3Track *this); 

typedef void (*Fptr)(struct Mp3Track *); 

typedef Fptr (VTable)[4]; 

 

struct Track 

{ 

VTable const *vptr;  // Hidden element 

}; 

struct Mp3Track 

{ 

struct Track mBase;  // Hidden element 

}; 

 

const VTable Mp3Track_vtable = 

{ 

(Fptr)Mp3Track_Artist, 

(Fptr)Mp3Track_Title, 

(Fptr)Mp3Track_Play 

}; 

 

void DoMusic(Track *p) 

{ 

(*(p->mBase.vptr[2]))(p);  

} 

 

compiles to LDR R1,[R0, #+0] 

LDR R1,[R1, #+12] 

MOV LR,PC 

BX R1 

 

Example 9 (c): How the virtual function mechanism is handled internally by the compiler, by implementing 

vtable and vptr 



The player could be implemented in C, in many different ways. These would 

include using a switch statement on the track type, or through a table lookup 

and function call through a function pointer. All functions, Artist, Title and 

Play would need to be implemented using one of these mechanisms. So 

instead of one vtable for each class, there will be a switch table or a table of 

function pointers for each function. This would tend to spread the track details 

all over the code, making it a non-trivial operation to add support for a new 
track type, for example adding the AAC audio format. Debugging and 
maintenance will also be more complex.  

Using virtual functions does come with a price. There needs to be one vptr per 

object, and one vtable per class for virtual functions as calls to virtual 

functions must follow vptr and lookup the function address in vtable. In C, by 

contrast, the function address can be looked up in a table without following a 
pointer. In C++, each created object needs 4 bytes, compared to a table in C. 

It also needs constructor code to set up vptr and vtable data. 

However, the code price paid is still CHEAP, and for many cases can be 

considered as almost FREE. In addition, virtual functions provides huge 

advantages for future code maintenance and product development. 

Templates  

Templates, once called type parameterization, provide a way of using a piece 

of code in several different variants in an application, like a macro. This cuts 
down on code writing and simplifies maintenance; a change to the template is 
instantly reflected in every instantiation of that template. Once written, a 

template can be used in other applications; an example of re-usable code. 

Templates come in two flavors: Function Templates and Class Templates. 

Function templates are closer to macros but are more secure both syntactically 
and semantically. As with macros, each invocation potentially generates extra 
code.  

/* C implementation */ 

#define CastToInt(x) ((int) x) 

int FloatToInt(float f) 

{ 

return CastToInt(f); 

} 

 

// C++ implementation 

template<typename X> int Cast2Int(X x) 

{ 

return (int) x; 

} 

 

int Float2Int(float f) 

{ 

      return Cast2Int(f); // Implicit instantiation. 

} 

Example 10 (a): Function template 



Class templates offer a lot more as each template creates a class, with all the 
functionality of a class, including the ability to include templates.  

Templates provide the opportunity to build elegant implementations of very 
complex structures for reuse, but, as always complexity comes with a potential 

for significant code size expense, at least for the template user if not the 
template implementer.  

 

template<typename X> class Value { 

public: 

Value(X x) : mX(x) { 

} 

private: 

X mX; 

}; 

 

Value<int> val1(6); 

 

Example 10 (b): Class template 

But elegance does not have to be expensive, this example shows how a 
template can compute values at translation time, rather than at runtime, 
generating no code but only the constant 24.  

 

template<int N> class Factorial { 

public: 

      static const int value = N * Factorial<N-1>::value; 

}; 

 

class Factorial<1> { 

public: 

static const int value = 1; 

}; 

 

// factorial = 24 (1*2*3*4) 

int factorial = Factorial<4>::value; 

 

Example 10 (c): Example  template: the template is recursively expanded for the values 4, 3, 2 and 1 and the 

factorial is calculated at translation time. 

Because template complexity can vary enormously, from a simple macro 
expansion with a couple of lines of code to a complex set of functions 
generating lots of code, the cost also varies. Templates can be FREE, CHEAP, 

or EXPENSIVE 

Standard Template Library 

A part of C++ is the Standard Template Library (STL). As its name suggests, 
this library provides a resource of pre-composed templates that can be used to 

easily implement data structures, such as stacks, lists and queues and the 
algorithms operating on them. 



Many of the templates use the concept of containers, which is illustrated 
below:  

 

// Vector of ints 

vector<int> vec; 

 

 

 

// List of chars 

list<char> li; 

 

 

 

// Map with char keys 

// and float values 

map<string, int> phonedir; 

 

 

Example 11: Containers; Some examples of how C++ uses the concept of containers to implement data 

structure 

Containers use their own version of pointers to refer to a specific element. The 
iterator is a smart pointer, and has different features for different containers. 
The iterator to a vector, for example, can be randomly moved within the 

vector, while that for a list can only move one step forward or backwards.  

 

vector<int> v; 

 

v[0] = 21; 

v[8] = 1; 

 

vector<int>::iterator b = v.begin(); 

vector<int>::iterator e = v.end(); 

vector<int>::iterator i = b + 3; 

 

*i = 7; 

 

// sort(i, e); 

 

Example 12 (a): STL vector. This will cost 1000 bytes without sort(), which will add a further 2300 bytes of 

code. 

 

Associative array 

 
rep 

node node 

k    v k    v k    v 

Double linked list 

rep 

Dynamic C array 

rep 



 

map<string,int> m; 

int x; 

 

m["monday"] = 1; 

m["tuesday"] = 2; 

m["wednesday"] = 3; 

m["thursday"] = 4; 

m["friday"] = 5; 

m["saturday"] = 6; 

m["sunday"] = 7; 

 

x = m["friday"]; 

 

Example 12 (b): STL map. This will cost 7000 bytes. Replacing string with char will reduce the price to 5500 

bytes. However, additional use of map is significantly cheaper, as the code is reused. Another map of the 

same type adds only 100 bytes, while using a different type of map adds 2000 bytes. 

In STL there are a great number of algorithms for operating on the iterators. 
There are three significant groups that do not modify the contents of the 

containers, such as for_each, find, and count, those that do modify the 

contents, such as transform, copy, replace, fill, generate and remove 

and those that sort the contents, such as sort, lower_bound, 

binary_search and merge.  

Using STL reduces implementation time, compared with hand crafting, and the 

result is likely to work as intended but at a considerable code and data cost. 
Using the STL library is EXPENSIVE. 

RTTI 

RTTI, RunTime Type Information, allows a running application to find out the 

identity of derived classes, either by asking for the name using typeid, or by 

checking if the class is of the expected type using dynamic_cast. It requires 

the literal names of all classes to be part of the application binary, and also 
adds extra code, it is EXPENSIVE. 

Exceptions 

The C++ exception-handling mechanisms are provided to report and handle 

errors and exceptional events. A function that finds itself in a situation that 

can not be handled by a standard return, can throw an exception. A function 

higher up in the call chain can register to catch that exception. A lot of extra 

code is needed to implement the exception mechanism, it is EXPENSIVE. 

SUMMARY 

The most expensive elements of C++, when compared with C code, is STL and 

exceptions. Templates themselves are very implementation dependent and 
they can range from expensive down to free. Classes, namespaces, inlining, 
operator overloading, constructors/destructors and references are all 

effectively free when compared with C for the same result and virtual functions 



incur a small expense but are still relatively cheap. 

The cost in terms of code size overhead compared to C for the C++ constructs 

we have discussed are 

 encapsulation/classes - FREE 

 namespaces - FREE 

 inlining - FREE 

 operator overloading - FREE 

 constructors/destructors - FREE 

 references - FREE 

 virtual functions - CHEAP 

 templates - EXPENSIVE 

 STL (Standard Template Library) – EXPENSIVE 

 RTTI – expensive 

 exceptions - expensive 

 

But the real cost, or lack of it, for C++, can often come from the code writer. 
Perhaps even more than some other languages, the power and options 

available within C++ can lead to one implementer producing tight, “cheap” 
code, while leading another astray to produce a much more expensive result.  

 


