

ARM Cortex-M4 based LPC4000 Family

October/November 2010 Presenter's Name

Agenda

- Introduction
- Introducing the Cortex-M4 LPC4300
- NXP's advanced peripherals
- Demo
- Tools / Getting started

Introduction

NXP is a leader in ARM Flash MCUs

NXP microcontrollers = One continuum

→ Five MCU cores lined up to serve a full range of application requirements

NXP changing the industry MCU landscape

→ Breaking through traditional boundaries of 8b, 16b, 32b and DSP

Powerful Cortex-M instruction set

	РКН	QADD	QADD16	QADD8	QASX	QDADD	QDSUB	QSAX	QSUB
	QSUB16	QSUB8	SADD16	SADD8	SASX	SEL	SHADD16	SHADD8	SHASX
	SHSAX	SHSUB16	SHSUB8	SMLABB	SMLABT	SMLATB	SMLATT	SMLAD	SMLALBB
┛								SMLALBT	SMLALTB
	ADC	ADD	ADR	AND	ASR	В	CLZ	SMLALTT	SMLALD
	BFC	BFI	BIC	CDP	CLREX	CBNZ CBZ	CMN	SMLAWB	SMLAWT
	СМР				DBG	EOR	LDC	SMLSD	SMLSLD
	LDMIA	BKPT BLX	ADC ADD	ADR	LDMDB	LDR	LDRB	SMMLA	SMMLS
	LDRBT	BX CPS	AND ASR		LDRD	LDREX	LDREXB	SMMUL	SMUAD
	LDREXH	DMB	BL	BIC	LDRH	LDRHT	LDRSB	SMULBB	SMULBT
	LDRSBT	DSB	CMN CMP	EOR	LDRSHT	LDRSH	LDRT	SMULTB	SMULTT
	MCR	ISB			LSL	LSR	MLS	SMULWB	SMULWT
	MCRR	MRS	LDRH (LDRSB	(LDRSH)	MLA	MOV	MOVT	SMUSD	SSAT16
	MRC	MSR	LSL LSR) MOV	MRRC	MUL	MVN	SSAX	SSUB16
	NOP	NOP REV	MUL MVN	ORR	ORN	ORR	PLD	SSUB8	SXTAB
	PLDW	REV16 REVSH	POP PUSH	ROR	PLI	РОР	PUSH	SXTAB16	SXTAH
	RBIT	SEV SXTB	RSB SBC) STM	REV	REV16	REVSH	SXTB16	UADD16
	ROR	SXTH UXTB	STR STRB) STRH	RRX	RSB	SBC	UADD8	UASX
			(SUB) (SVC) (TST)	SDIV	SEV	SMLAL		UHADD8
_	SBFX	UXTH WFE						UHADD16	
	SBFX SMULL	WFI YIELD	CORTEX	M0/M1	SSAT	STC	STMIA	UHASX	UHSAX
	SBFX SMULL STMDB	WFI YIELD	CORTEX-	M0/M1	SSAT STR	STC (STRB	STMIA STRBT	UHASX UHSUB16	UHSAX UHSUB8
	SBFX SMULL STMDB STRD	WFI YIELD	CORTEX-	M0/M1	SSAT STR STR	STC (STRB (STRHT)	STMIA STRBT STRT	UHASX UHSUB16 UMAAL	UHSAX UHSUB8 UQADD16
	SBFX SMULL STMDB STRD SUB	STREX	CORTEX- STREXB	MO/M1 STREXH TBB	SSAT STR STR TBH	STC (STRB (STRB (STRHT (TEQ (STMIA STRBT STRT TST	UHADDIG UHASX UHSUB16 UMAAL UQADD8	UHSAX UHSUB8 UQADD16 UQASX
	SBFX SMULL STMDB STRD SUB UBFX	UXTH WFE WFI YIELD STREX SXTB UDIV	CORTEX- STREXB SXTH UMLAL	MO/M1 STREXH TBB UMULL	SSAT STR STRH TBH USAT	STC (STRB (STRB (STRHT (TEQ (UXTB (STMIA STRBT STRT TST UXTH	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX	UHSAX UHSUB8 UQADD16 UQASX UQSUB16
	SBFX SMULL STMDB STRD SUB UBFX WFE	UXTH WFE WFI YIELD STREX SXTB UDIV WFI	CORTEX- STREXB SXTH UMLAL YIELD	MO/M1 STREXH TBB UMULL	SSAT STR STRH TBH USAT	STC (STRB (STRB (STRHT (TEQ) (UXTB) (C	STMIA STRBT STRT TST UXTH ORTEX-M3	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8
	SBFX SMULL STMDB STRD SUB UBFX WFE	UXTH WFE WFI YIELD STREX SXTB UDIV WFI	CORTEX- STREXB SXTH UMLAL YIELD	MO/M1 STREXH TBB UMULL	SSAT STR STRH TBH USAT	STC (STRB (STRHT) (TEQ (UXTB) (C	STMIA STRBT STRT TST UXTH ORTEX-M3	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8 USADA8	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8 USAT16
	SBFX SMULL STMDB STRD SUB UBFX WFE USAX	UXTH WFE WFI YIELD STREX SXTB UDIV WFI USUB16	CORTEX- STREXB SXTH UMLAL YIELD USUB8	MO/M1 STREXH TBB UMULL IT UXTAB	SSAT STR STRH TBH USAT	STC STRB STRB TEQ UXTB C	STMIA STRBT STRT TST UXTH ORTEX-M3 UXTB16	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8 USADA8	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8 USAT16 Cortex-M4
	SBFX SMULL STMDB STRD SUB UBFX WFE USAX	UXTH WFE WFI YIELD STREX SXTB UDIV WFI USUB16	CORTEX- STREXB SXTH UMLAL YIELD USUB8	MO/M1 STREXH TBB UMULL IT UXTAB	SSAT STR STRH TBH USAT UXTAB16	STC STRB STRHT TEQ UXTB C	STMIA STRBT STRT TST UXTH ORTEX-M3	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8 USADA8	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8 USAT16 Cortex-M4
	SBFX SMULL STMDB STRD SUB UBFX WFE USAX	UXTH WFE WFI YIELD STREX SXTB UDIV WFI USUB16	CORTEX- STREXB SXTH UMLAL YIELD USUB8	MO/M1 STREXH TBB UMULL UXTAB	SSAT STR STRH TBH USAT UXTAB16	STC STRB STRHT TEQ UXTB UXTAH	STMIA STRBT STRT TST UXTH ORTEX-M3 UXTB16	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8 USADA8	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8 USAT16 Cortex-M4
	SBFX SMULL STMDB STRD SUB UBFX WFE USAX VABS VMLA	UXTH WFE WFI YIELD STREX SXTB UDIV WFI USUB16 VADD VMLS	CORTEX- STREXB SXTH UMLAL YIELD USUB8	MO/M1 STREXH TBB UMULL IT UXTAB	SSAT STR STRH TBH USAT UXTAB16	STC STRB STRHT TEQ UXTB UXTAH VCVTR VMUL	STMIA STRBT STRT TST UXTH ORTEX-M3 UXTB16	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8 USADA8 USADA8	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8 USAT16 Cortex-M4
	SBFX SMULL STMDB STRD SUB UBFX WFE USAX VABS VMLA VNMUL	UXTH WFE WFI YIELD STREX SXTB UDIV WFI USUB16 VADD VMLS VPOP	CORTEX- STREXB SXTH UMLAL YIELD USUB8 VCMP VMOV	MO/M1 STREXH TBB UMULL IT UXTAB VCMPE VMRS VSQRT	SSAT STR STRH TBH USAT UXTAB16	STC STRB STRB STRHT TEQ UXTB C UXTAH VCVTR VMUL VSTR	STMIA STRBT STRT TST UXTH ORTEX-M3 UXTB16	UHADDIS UHASX UHSUB16 UMAAL UQADD8 UQSAX UQSUB8 USADA8 VLDM VNMLA	UHSAX UHSUB8 UQADD16 UQASX UQSUB16 USAD8 USAT16 Cortex-M4

ARM Cortex[™]-M0 based parts

- Low Power
- Superior Code Density
- ▶ 32-bit performance
- Low Cost

Pin compatible options from M0 to M3

ARM Cortex[™]-M3 based parts

- General purpose, 32-bit microprocessor
- High performance
- Very low power consumption.

Cortex-M3

Pin compatible options from M0 to M3

ARM Cortex[™]-M4 based parts

Adds DSP extensions and a Floating Point Unit

Rapidly growing family of Cortex-M microcontrollers

→ Check pin- and software compatible options: <u>www.nxp.com/microcontrollers</u>

LPC4000

Cortex-M4 Introduction

- Feb 22, ARM Launches Class-Leading Cortex-M4 Processor For High Performance Digital Signal Control
 - combination of high-efficiency signal processing and MCU technology
- Feb 22, NXP Licenses ARM Cortex-M4 Processor for 32-bit Microcontroller Signal Processing Applications
 - complements NXP's Cortex-M3 and Cortex-M0 processor-based devices and enables us to provide an end-to-end solution to the MCU community
- April 12, NXP Demonstrates New Class of DSC Based on ARM Cortex-M4
 - first working silicon of newest NXP microcontrollers based on the ARM Cortex-M4
 - the DSP extensions of the Cortex-M4 offer significant advantages, for example, offering 5 to 10 times improvement in complex DSP algorithms
- Now, Close cooperation with lead customers and DSP algorithm developers

Introducing the LPC4300 Family

- Cortex-M4 based Digital Signal Controller
- Cortex-M0 Subsystem
- Up to 1 MB Flash
 - Dual-Bank Flash provides safe inapplication programming (IAP)
- Large SRAM: up to 200 KB SRAM
- SPI Flash Interface with four lanes and up to 80 Mbps/lane
- State Configurable Timer Subsystem
- SGPIO
- Two High-speed USB 2.0 interfaces. An on-chip High-speed PHY
- Pin compatibility with Cortex-M3 parts

- Additional Features
 - 10/100 Ethernet MAC
 - LCD panel controller (up to 1024H × 768V)
 - Two 10-bit ADCs and 10-bit DAC at 400ksps
 - Eight-channel General-Purpose DMA (GPDMA) controller
 - Motor Control PWM
 - Quadrature Encoder Interface
 - 4x UARTs, 2x I2C, I2S, CAN 2.0B, 2x
 SSP/SPI
 - Smart card interface
 - Up to 80 general purpose I/O pins

LPC4300

Code Compatible

LPC4000

LPC4300 Cortex-M4

LPC1800 Cortex-M3

LPC4300

Cortex-M4

Microcontroller Core – CPU

LPC4000 Family Cortex-M4 Features:

- NVIC & WIC
 - Supports peripheral interrupts
- MPU (Memory Protection Unit)
 - Supports up to 8 regions
- FPU (Floating Point Unit)
 - IEEE 754 compliant
- Full Debug Options:
 - JTAG/SWD
 - ETM
 - Flash Patch
- 150MHz Execution
 - Flash or SRAM

NXP's low-leakage 90nm process technology allows operation at up to 150MHz

Microcontroller Core – Power Control

Flexible clock generation unit:

- Allows clock to each peripheral to be configured independently.
 - Can use different source and create different frequencies.
 - Unused peripherals can be turned off by disabling the clock.

Low power modes:

- Sleep:
 - CPU execution is suspended but peripherals continue
- Deep-Sleep
 - Main oscillator and all internal clocks except the IRC are stopped Flash memory is in standby, ready for immediate use

- Power-down

- Same as Deep-Sleep mode except Flash and IRC are shut down, state is preserved
- Deep power-down
 - All clocks including IRC are stopped. Internal voltage is turned off
 - Complete system state is lost, special registers in the RTC domain are preserved
 - Wake up via reset, external pin, or RTC Alarm

LPC4300

Cortex-M0 Subsystem

Cortex-M0 subsystem - unburdens the main Cortex-M4 core! Separates Processing and Real Time Control – in one chip

Cortex-M0 Subsystem - Overview

- Highly flexible Cortex-M0 subsystem features
 - Connected to the internal bus matrix giving access to all peripherals.
 - NVIC for dedicated interrupt support.
 - Separate clock and power control
 - Shared memory allows easy inter-processor communication

Cortex-M0 Subsystem – Audio Processing

- Cortex-M4: Full power devoted to Audio processing
- Cortex-M0: Handles the hardware control I²S & USB

Cortex-M0 Subsystem – Motor Control

- Cortex-M4: Single shunt Field Oriented Control (FOC)
- Cortex-M0: Receives control commands via CAN interface

Cortex-M0 Subsystem - Development

Cortex-M4 and Cortex-M0 share a debug interface allowing a single JTAG/SWD unit to debug both cores

Blinky - pVision4	
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help	
□ 📽 🖬 🖉 メ 山 乱 り で (4 +) や 逸 逸 肉 達 連 /// /// () enum 🛛 💌 🗼	
	₩ Blinky - µVision4
	File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Registers State blinky.c 🗙] 😂 🖬 🦉 メ い 記 り で (+ ⇒) 作 常 背 後 津 岸 // // 🙋 enum 🛛 😠 🖉 🌒 ● ○ 🔗 🍕 📾 - 🔧
Register Value 11 * which provides customers with programming info 12 * products. This software is supplied "AS IS" wi	
Core 13 * NXP Semiconductors assumes no responsibility of B0 0x180000d5 14 * use of the software conveys no license or tit	
R1 0x18001090 15 * copyright, or mask work right to the product.	Registers Jy Binky.c K startup_LPCLiso.s System_LPCLiso.c
R2 0x0000000 16 * reserves the right to make changes in the soft	Register Value A 20 #include "Statio.h/ 21 #include "LPCI8xx H" /* LPCI8xx definitions */
R4 0x18000668 19 * use without further testing or modification	← Lore 22 #include "scu.h" — R0 0x10000537 23
R5 0x00000001 20 ****************************	R1 0x10004298 24 unsigned long msec;
R6 0x18000668 21 #include Lrcloxin 7* LF	R2 0x0000000 20 void IOInit(void);
	R4 0x1000764 28 int main (void)
R9 0x0000000 25	- R5 0x10000764 239 (Swetzer Lait ()
B11 0x0000000 = 20 Int wall (Vold) {	R6 0x18000508 Systematic(); B3 100mit();
R12 0x0000000 28 29 //scu pinaux(0x9,2, MD PDN, FUNC2); // GPIC	R8 0x0000000 32 #define USE XTAL 0
R13(SP) 0x18001290 30 scu_pinmux(0x9,2, MD_PDN, FUNC2); // GPI04	
B14(En) 0x18000662 32 32 32 32 32 32 32 32 32 32 32 32 32	BI1 0x0000000 36 SetClock(XTAL, (CLKSRC_Type)12000000UL, DIV1);
xPSR 33 SetClock(BASE_M3_CLK, SRC_IRC, DIV8); 34 SetClock(BASE_M0_CLK, SRC_IRC, DIV1);	R12 0x0000000 37 SetPl160M(SRC_XTAL, JD); // Set Pl160M(@ 10*12=120 MHz 8 SetClock(BASE M3 CLK, SRC Pl160M 0. DIV1); // Run base M3 clock from Pl160M, no divi
N 0 35	R13(SP) 0x10004298 39 SetClock(BASE_OUT_CLK, SRC_XTAL, DIV1); // Show base out clock on output
C 1 37 while (1) /* Loc	
V 0 38 ¹ *(uint32_t volatile *)0x400F0094 ^= ~(1<<15);	APSR 42 SetFlibUN(SRC_IRC, 10); // Set FlibUN @ 10#12=120 HHz 42 // SetFlibUN(SRC_IRC, 6); // Set FlibUN @ 10#12=22 HHz
U U 40 for(i=0;i<0x1FFFF;i++){}	N 0 44 SetClock(BASE M3 CLK, SRC PL160M 0, DIV1); // Run base M3 clock from PL160M, div by 7 1 45 SetClock(BASE 01T CLK SRC DIV); // Show base not clock an output
T Disabled 42 }	C 1 46 #endif
43 - 43 -	V 0 448 // M3Frequency is automatically set when SetClock(BASE_M3_CIK was called.
Banked MSP 0x18001290	U U 49 SysTick_Config(M3Frequency/1000); // Generate interrupt @ 1000 Hz
PSP 0x0000000	IT Disabled 51 District (1)
System	ISB 0 dulle (1) // Loop forever
	Sparse 54 mssc = 500; MSP 0x10004298 55 while(mssc);
E Project Registers	PSP URUUUUUUU 56 57 IPC GPI04->PIN ^= (1<<14)
Locals	B Distance 58
Name	B Project = Registers
<u>-i</u>	
	I COLIN
	Name
	ucks
	P priority
	AL CONTRACTOR OF A CONTRACTOR OFTA

LPC4300

Memory

Memory - Dual Bank Flash

- Two 512K byte banks of flash memory.
- Can be used as a single 1M byte memory area.
- Enhanced memory controller and 256-bit wide interface allows operation at up to 150MHz.

Information

Flash B

Flash A

Memory - SRAM

- Up to 200KB static RAM available.
- Optimized for DSP use 96kB and 40kB SRAM blocks accessible by high speed system bus can be used for code and data storage.
- 32kB and 16kB SRAM blocks with separate bus interfaces.
- Block/bus architecture allows simultaneous CPU and DMA accesses to different SRAM areas.

LPC4300

SPI Flash Interface

SPI Flash Interface

Patented feature that maps low-cost serial flash memories into the internal memory system.

SPIFI - Supported Devices

 Compatible with both standard and Quad SPI flash memory devices from a majority of suppliers: Atmel, Gigadevice, Macronix Numonyx (now Micron) SST (now Microchip), Winbond

- A couple of years ago, PCs started using Quad-SPI Flash for loading BIOS. The high PC volumes forced prices down to low levels
- Advantages: High speeds, small packages/few pins, low cost
- Disadvantages: Not supported by standard MCUs -- UNTIL NOW!
- NXP's patent-pending SPI Flash Interface (SPIFI) on the LPC4300 series is the first and only MCU to take full advantage of Quad SPI Flash

SPIFI - Quad SPI Flash Interface

- SPI Flash Interface uses either 4 or 6 lines
 - Standard SPI flash uses CLK, CS, MISO and MOSI
 - Quad SPI flash uses CLK, CS IO0, IO1, IO2 and IO3

SPIFI – Image Storage – Problem

Image Storage: Problem

- Devices with complex user interfaces require storage for images that will be displayed on an LCD.
- Images can be stored in external SPI flash but usually have to be copied into internal SRAM and then sent to LCD controller.
- Problem with this approach is that it uses large amounts of internal SRAM

SPIFI – Image Storage – Solution

Image Storage: SPIFI Solution

- Image stored within external serial flash memory
- High speed quad SPI interface allows images to be transferred directly to LCD controller using DMA
- Advantages of a SPIFI based solution:
 - Does not use precious internal SRAM – available for other uses.

SPIFI - DSP Algorithm: Problem

- DSP applications are often loaded from flash into internal SRAM for high performance execution.
- These algorithms are stored within internal or external parallel memory
- Problems with this approach:
 - Have to add space consuming external flash memory to board OR
 - Have to sacrifice precious internal flash memory for algorithm storage

SPIFI - DSP Algorithm: Solution

- Store DSP algorithm in low cost external serial flash memory.
- Loaded into dedicated internal SRAM block for high speed execution.
- Advantages of a SPIFI based solution:
 - Low cost external SPI flash memory consumes minimal board space.
 - No waste of precious internal flash memory for code that is always executed from SRAM

LPC4300

State Configurable Timer Subsystem

SCT - Overview

- State Configurable Timer (SCT) is a timer/capture unit coupled with a highly flexible event driven state machine block.
- Allows a wide variety of timing, counting, output modulation, and input capture operations.
- Key Features:
 - 8 inputs
 - 16 outputs
 - 16 match/capture registers
 - 16 events
 - 32 states

SCT - Example Application

SCT - Example Application

- Four different allowed combinations (states) of the two display entities
- One external input (the button)
- Five outputs

#	Car lane lights	Pedestrian lane lights
1	Green	Red
2	Yellow	Red
3	Red	Red
4	Red	Green

SCT allows a this application to be implemented in hardware!

SCT – Easy to use

1. Design the state machine

2. Set the registers/timer

LPC SCT->ENB &= 0x8001;

LPC_SCT->CTRL |= (1UL << 7);

= 0x4534;

Library of examples will be available!

3. Let the SCT do the work!

	ist Note	* 🖉	Ш 🖬	8	nu vita 🖥	= r 4		₩	୬ାଷ୍ପ୍ଡ	V Butter P	oshori					
		Sample	Rate	•	500KHz	•				Logic Thre	shold 🔻 1	.40v			Pre-Trigger Bu	lfer 🔻
	•					•				Ī	Ī	•				
Signal	Wire ID	Wire Status	Pattern A	Edge A	Cursor A	. J.	·14s		-12s	-10s	-8s .	-6s .	 	-2s 	T+15.1s	+2s
UMATO G	DO	Н	Х		0											
UMAT1 Y	D1	L	X		0											
UMAT2 R	D2	L	X		1											
UMAT3 WALK	D3	L	X		0				-							
UMAT4 STOP	D4	H	X		1											
UMAT5 REQ	D5	L	X	\$	0	_										
UMAT11	D11	L	X		0	_			1							
UMAT13	013	L	X		U											
UMAI15	015	L	X		U	-										
	D18	L 1	×		0											
UCALS	D 13	1	x		0											
LICAPS CROSS	D21	1	X	t	0											
LICAP6	D22	1	X		0				1							

LPC SCT->TIM

Information

LPC4300

Serial GPIO

SGPIO - Overview

- Serial GPIO (SGPIO) = GPIO + Timer/Shift Register:
 - Used to create or captures multiple real time serial data streams.
 - No more having to write code loops to manipulate GPIO in real time.
 - Say goodbye to CPU intensive big banging!
- Key Features:
 - Up to 8 inputs/outputs each with their own timer/shift register unit.
 - Counter to control the rate at which data is clocked in/out.
 - Counter to control the number of bits clocked out/in.
 - Output has three states high, low, or high impedance.

SGPIO - Operation

Each SGPIO unit features:

- Two 32-bit shift registers
- Counter to control bit rate
- Counter to control number of bits clocked out/in
- Register controls the state (enable/disable) of the output for each bit that is clocked out.

0

0

regoe_ss

regoe

31

31

30

30

SGPIO = Proprietary Serial Interface

SGPIO can be used to emulate proprietary serial interfaces

- **Problem:** Lots of peripherals on the market use **non-standard serial interfaces** (LCD drivers, audio codec etc).
- Standard Microcontroller Solution (no SGPIO):
 - Application designer has to write CPU intensive loops to create required bit streams – painful bit banging!
 - CPU is 100% occupied while waveform(s) are generated.
- LPC4300 based Solution:
 - Configure SGPIO to generate desired waveform(s) with just a few register writes.
 - Interrupt generated when data is clocked out CPU is not blocked.

SGPIO = Standard Serial Interface

- To create a 7.1 channel I²S output 5 SGPIO units are required:
 - 4x I2S Data for 7.1 channels
 - 1x I2S WS
- Data is shifted out at 2M.fs, M=data word length, fs=sampling rate
- For 32bit data and fs = 96kHz the shift clock = 2.32.96k = 6.144 MHz
- The I²S data shift register should be loaded with the 32b audio samples. The CPU has to read SRAM and load the slices at a rate of 8x96k words/sec.
- The WS shift register should be loaded to create a 96kHz WS waveform.
- The I²S CLK does not need a dedicated shift register, it can be created from a shift counter output.
- CPU load: if an instruction takes 2 clk, SRAM access 2clk, SGPIO access 2clk then the CPU load is 6x8x96kHz, this is 3% load at a 150MHz clk rate

LPC4300

USB 2.0 Ethernet

Interfaces – USB & Ethernet

• Two USB 2.0 Interfaces:

- USB 2.0 Host/Device/OTG interfaces.
- One with on-chip high-speed PHY.
- One with on-chip full-speed PHY and ULPI interface for external high speed PHY

• Ethernet MAC with RMII and MII interfaces to external transceiver:

- Supports 10/100 Mbit/s
- TCP/IP hardware checksum
- DMA support allows high throughput at low CPU load
- IEEE 1588 advanced time stamp support.

몲놂

Audio Application

Audio Design Example

- 7-band Graphic Equalizer
 - Cortex-M3 LPC1768 running at 120MHz
 - Cortex-M4 running at 120MHz

Real-time Demo

7 band parametric EQ

32-bit precision

Stereo processing

- 48 kHz sample rate
- Designed using DSP Concept's Audio Weaver development environment
 - a graphical drag-and-drop design environment and a set of optimized audio processing libraries.

[test]		10 - 12		a - 13		a: ::::						44	
freq (Hz)	gain (dB)	freq (Hz)	gain (dB)										
31.25	6.77	88.39	3.39	250.00	1.13	707.11	-0.56	2000.00	0.99	5656.85	2.83	16000.00	5.37
	10 -		10 -		10 ·		10 ·		10 · ·	\bigcirc	10 ·		10 -
	5		5.		5.	~	5.		5 -	<u> </u>	5.	$\mathbf{\nabla}$	5.🜑.
Q	0· ·	Q	0.	Q	o.📟.	Q	0	Q	o.🗢.	Q	0.	Q	0· ·
1.00	·5· ·	1.00	·5 · ·	1.00	·5 · ·	1.00	·5· ·	1.00	·5· ·	1.00	·5 · ·	1.00	·5· ·
	·10 ·		·10 ·		-10 · ·		·10 · ·		-10 · ·		-10 · ·		·10 ·
filterType		filterType		filterType		filterType		filterType		filterType		filterType	
PeakEQ 💌		PeakEQ 💌		PeakEQ 💽		PeakEQ 💌		PeakEQ 💽		PeakEQ 💌		PeakEQ 💌	

2nd order IIR Filter – AKA "Biquad"

Commonly used for control and audio filtering

Implemented using a difference equation.

Direct Form 1 structure is the most numerically robust - shown below

Has 5 coefficients and 4 state variables

Coefficients determine the response of the filter (lowpass, highpass, etc.) and may be computed in a number of different ways

- Simple design equations running on the MCU
- External tools such as MATLAB

$$y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] -a_1 y[n-1] - a_2 y[n-2]$$

Cortex-M Biquad implementation

Only looking at the inner loop, making these assumptions

- Function operates on a block of samples
- Coefficients b0, b1, b2, a1, and a2 are in registers
- Previous states, x[n-1], x[n-2], y[n-1], and y[n-2] are in registers

Optimize by unrolling the loop by 3

```
x0 = *x++; (2 cycles)
v0 = x0 * b0;
                       (1 cycle)
y0 += x1 * b1;
                       (1 cycle)
y0 += x2 * b2;
                      (1 cycle)
y0 -= y1 * al;
                      (1 cycle)
y0 -= y2 * a2;
                       (1 cycle)
*y++ = y0; (2 cycles)
x2 = *x++; (2 cycles)
y^2 = x^2 * b0;
                       (1 cycle)
y2 += x0 * b1;
                      (1 cycle)
y2 += x1 * b2;
                      (1 cycle)
y2 -= y0 * al;
                      (1 cycle)
y2 -= y1 * a2;
                       (1 cycle)
*y++ = y2; (2 cycles)
x1 = *x++; (2 cycles)
y1 = x1 * b0;
                       (1 cycle)
y1 += x2 * b1;
                      (1 cycle)
y1 += x0 * b2;
                      (1 cycle)
```

```
y1 -= y2 * a1; (1 cycle)
y1 -= y0 * a2; (1 cycle)
*y++ = y1; (2 cycles)
```

```
Decrement loop counter (1 cycle)
Branch (2 cycles)
```


- Reduces loop overhead
- Eliminates the need to shift down state variables
- 30 cycles on Cortex-M4 to for 3 output samples
 - \rightarrow 10 cycles per sample

Sampling / Nyquist

- Nyquist / Shannon Criteria
 - sampling frequency (Fs) must be at least twice the signal bandwidth, or information about the signal will be lost.

Туре	Signal bandwidth	Typical Fs
Voice frequencies	300 Hz to 3400 Hz	8 kHz

Audible frequencies	20 to 20,000 Hz*	44.1 kHz
.,)))))	 * < 20 Hz often felt rather than heard >20,000 Hz sometimes sensed by younger people 	48 kHz

Real Time Processing

DSC bandwidth limited by sampling rate

– Available clock cycles = processor speed / sampling rate

Results

Performance

Cortex-M3 needed 1291 cycles (51.6% processor loading) Cortex-M4 needed only 299 cycles (12% processor loading).

Motor Control Application

NXP's Cortex M4 Motor control EXAMPLE

- NXP's first Cortex-M4 based DSC
- Running Single shunt Field Oriented Control (FOC)
- Uses new State Configurable Timer Subsystem
 - Makes 6 independent PWM signals with dual edge control
 - Triggers ADC conversion at an exact determined moment

System overview

NXP Cortex-M4 Eval board

Tools/Getting Started

Cortex Microcontroller Software Standard

- CMSIS defines for a Cortex-Mx Microcontroller System:
 - A common way to access peripheral registers and a common way to define exception vectors
 - The register names of the Core Peripherals and the names of the Core Exception Vectors
 - A device independent interface for RTOS Kernels including a debug channel
 - Interfaces for middleware components (TCP/IP Stack, Flash File System)
- By using CMSIS compliant software components, the user can easily re-use template code. CMSIS is intended to enable the combination of software components from multiple middleware vendors.

DSP Libraries for Cortex[™]-M3

- C Library of Optimized DSP Algorithms
 - FFT
 - Supports both 32 and 16 bit data lengths
 - Block sizes of 64, 256 and 1024
 - FIR and IIR filters
 - 16-bit single stage Biquad
 - 32-bit single stage Biquad
 - PID controller
 - Resonator function
 - Random number generator
 - Dot Product
 - Cross product of vectors

M3 and M4 pin compatible boards

MCU Tool Solutions

Circuit Cellar/Elektor "NXP mbed Design Challenge"

- Launched Sept 21, 2010
- mbed microcontroller
 - Based on NXP LPC1768
 - Made for prototyping
 - Comes in a 40-pin 0.1" pitch DIP form-fact so it's ideal for experimenting on breadboard, stripboard and PCBs
- Combined with mbed "Cloud" compiler at <u>http://mbed.org</u>
- Already more than 10,000 boards shipped!
- For complete rules, or to request your complimentary contest kit, please visit: <u>www.circuitcellar.com/nxpmbeddesignchallenge</u>.

