
11

Multiplier, Register File, Memory and

UART Implementation

L. Liu

Department of Computer Science, ETH Zürich

Fall semester, 2012

Reconfigurable Computing Systems (252-2210-00L)

Fall 2012

Forming Larger Multipliers with DSP Slices

� Forming a 32 × 32 two’s complement multiplication from a 25 × 18 DSP slice

The notation “0,B[16:0]” denotes B has a leading zero followed by
17 bits, forming a positive two's complement number.

AU = 15{A[31]}, A[31:17] AL = 13’b0, A[16:0]

×××× BU = 3{B[31]}, B[31:17] BL = 0, B[16:0]

sign extended 16 bits BL * AL = 48 bits
[47:17] [16:0]

BL * AU = 48 bits
[47:17] [16:0]

BU * AL = 48 bits
[47:17] [16:0]

BU * AU = 48 bits
[47:30] [29:0]

17 bits

34 bits

p[16:0]p[63:34] p[33:17]

--AU*BUAL*BUAU*BLAL*BLM

AL*BL

Prs17+M

cyc1

((AL*BL)rs17 + AU*BL +

AL*BU)rs17 + AU*BU

--

cyc4

(AL*BL)rs17 + AU*BL

+ AL*BU

(AL*BL)rs17 + AU*BL0P

Prs17+MP+M0+Mopmode

cyc3cyc2cyc0

Register File

� Implemented with dual-port 16×1 bit distributed RAMs.

� Use 32 RAM16X1D_1 primitives.

Verilog code for TRM register file

genvar i;

generate //dual port register file

for (i = 0; i < 32; i = i+1)

begin: rf32

RAM16X1D # (.INIT(16'h0000))

rfa(

.DPO(AA[i]), // data out

.SPO(B[i]),

.A0(dst[0]), // R/W address, controls D and SPO

.A1(dst[1]),

.A2(dst[2]),

.A3(1'b0),

.D(regmux[i]), // data in

.DPRA0(irs[0]), // read-only adr, controls DPO

.DPRA1(irs[1]),

.DPRA2(irs[2]),

.DPRA3(1'b0),

.WCLK(~clk),

.WE(regwr));

end

endgenerate

TRM Instruction Memory

� n BRAMs in Virtex-5 FPGA are configured as a nk*36 bit ROM.

Verilog code in IM Module

…

genvar i;

generate

for (i = 0; i< BN; i = i+1)

begin: ram

RAMB36 #(...)

RAMB36_inst (...

.DOB(rdb[i][31:0]), // 32-bit B port data output

.DOPB(rdb[i][35:32]), // Port B 4-bit Parity Output

...

.WEA(4'b0), // Port A Write Enable Input

.WEB(4'b0) // Port B Write Enable Input)

...)

end

endgenerate

TRM Data Memory

� n BRAMs in Virtex-5 FPGA are configured as a nk*32 bit RAM.

Verilog code in DM Module

…

genvar i;

generate

for (i = 0; i< BN; i = i+1)

begin: RAMB_insts //Port B as read port, port A as write port

RAMB36 #(...)

RAMB36_inst (...

.DOPB(), // Port B 4-bit Parity Output

.DOB(rdb[i]), //32-bit B port data output

...

.WEA({wea[i], wea[i], wea[i], wea[i]}), // Port A Write Enable Input

.WEB(4'b0) // Port B Write Enable Input)

...)

end

endgenerate

Memory-Mapped Input/Output (I/O)

� Processor accesses I/O devices (like keyboards, monitors,

printers) just like it accesses memory

� Each I/O device is assigned one or more address

� When that address is detected, data is read from or written to I/O

device instead of memory

� A portion of the address space is dedicated to I/O devices (for

example, for a TRM with 2K data memory, address

0xFFFFFFC0 ~ 0xFFFFFFFF are reserved for I/Os.)

Memory-Mapped I/O Hardware

� Address Decoder:

� Looks at address to determine which device/memory

communicates with the processor

� I/O Data Buses:

� Hold values read from / written to the I/O devices

� Multiplexer:

� Selects between memory outputs and the data sent to the

processor from I/O devices

The I/O Interface of MRC

Verilog code MRC interface

module TRM (

input clk, rst,

input [31:0] inData,

output [31:0] outData,

output [5:0] ioadr,

output iowr, iord

);

I/O Interface Example: Accessing Switches, Leds

Verilog code in Top Module

module Top (

input CLKBN, CLKBP, rstIn,

input [7:0] swi,

output [7:0] leds

);

...

TRM trmx(.clk(clk), ... , .ioadr(ioadr), .iowr(iowr), .inbus(inbus),

.outbus(outbus));

LED ledx(.clk(clk), .nReset(rst), .ioadr(ioadr), .iowr(iowr),

.inData(outbus[7:0]), .outData(leds));

Switch switchx(.clk(clk), .nReset(rst), .inData(swi), .outData(swiValue));

assign inbus = ((ioadr == 7) & iord)? {24‘b0, swiValue}: 0;

...

end module

allocate address:

0xFFFFFFC7 to switches and leds

12

Selecting Between Memory Outputs and I/O Data

c
lk

+

+

Verilog code in TRM module

...

assign regmux =

(BL | BLR) ? {{{32-PAW}{1'b0}}, nxpc} :

(LDR & ~ioenb) ? dmout :

(LDR & ioenb)? inbus: //from IO

(MUL) ? mulRes[31:0] :

(ROR) ? s3 :

(LDH) ? H :

aluRes;

assign ioenb = &(dmadr[DAW:6]);

assign ioadr = dmadr[5:0];

assign iord = LDR & ~IR[10] & ioenb;

assign iowr = ST & ~IR[10] & ioenb;

assign outbus = B;

...

Memory-Mapped I/O Software

� Suppose address 0xFFFFFFC7 is assigned to 8 switches,

and 8 Leds.

� Read the value from 8 switches and place it on Leds

Memory-Mapped I/O Code

� Read the value from switches (0xFFFFFFC7) and place it

on leds (0xFFFFFFC7).

Assembly code:

MOV R0, 0
SUB R0, 57
LD R0, [R0]
ST R0, [0]
LD R0, [0]
MOV R1, 0
SUB R1, 57
ST R0, [R1]

Oberon code:

….

Clock Generation

� Phase Locked Loop Clock Circuit (PLL)

� Serve as a frequency synthesizer for a wide range of

frequencies, and to serve as a jitter filter for either external or

internal clocks

� This component allows the input clock to be:

• phase shifted

• multiplied

• Divided

PLL Block Diagram

FVCO = FCLKIN x M/D

FOUT = FCLKIN x M/DO

Source:

Xilinx, Virtex-5UserGuide.

PLL Primitives

Verilog code in Top Module

PLL_BASE #(...)

clkBPLL (

...

.CLKOUT2(CLKx),

.LOCKED(pllLock),

.RST(1‘b0));

BUFG bufc(.I(CLKx), .O(clk));

Design and Implementation of UART

Controller

Introduction to UART

� UART stands for “Universal Asynchronous

Receiver/Transmitter”.

� used to convert serial data to parallel data, and parallel data to

serial data.

� Popular serial communication device in computers to

interfacing low speed peripheral devices, such as the

keyboard, the mouse, modems etc.

� Asynchronous communication, operate on independent

clocks.

� Common Speed rates: 9600Bauds, 115200 Bauds.

UART Interface

processor
#1 UART

Processor
#2

UART
Serial Data Channel

In most computer systems, the UART is connected to circuitry
that generates signals that comply with the EIA (Electronics
Industries Association) RS232-C specification.

RS232 (Recommended Standard 232)

� Standard for communication of ASCII-coded character data

between devices such as data computers and modems

� Low speed and cheap

� Standard definition:

� The voltages used to represent 0 and 1 (Electrical)

� The rate at which data is sent.

� The format of the data sent.

� The connectors to be used (physical and mechanical)

� Extra control signals that may be used.

� Typical data rates ((baud rates) are: 75, 300, 1200, 2400, 9600,

19200 and 115,000 bits/sec

RS232 Sent Data (Bit Stream) Format

t

single symbol (8 bits) transmission

Baud Rate = 1/t = bits/sec

D0 D1 D2 D3 D4 D5 D6 D7 (ASCII text)

RS232 Receiver

� Detect transmission, receive the serial bit stream of data from

RxD port, remove the start-bit and transfer the data in a parallel

format to the host (TRM in our case) data bus.

RS232R

clk

rst_

done

RxD

rdy

data

8

Verilog code in RS232R module

module RS232R

#(parameter FreqDiv = 1)

(

input clk, rst,

input done, // "byte has been read"

input RxD,

output rdy,

output [7:0] data);

RS232 Receiver Synchronization Issue

� Receiver speed: Host (TRM) runs at (100/FreqDiv)

MHz

� Transmitter speed: The baud rate of the RS232 port on

Spartan3 board is 115200 bits/sec, which means the

clock speed for the transmitter is 115.2KHz.

� Transmitter and receiver each has its own clock running

at different frequency.

� How to synchronize the two clocks so that the receiver

can sample the coming data in the middle of a bit time.

Sampling Scheme

Source

Michael D. Ciletti “Advanced Digital Design with the Verilog HDL”.

Receiving State Machine

Verilog code in RS232R module

always @(posedge clk)

if (~rst)

State <= Idle;

else

case (State)

Idle: if (~RxD)

State <= Receiving;

Receiving: if (endTick & lastBit)

State <= Received;

Received : if (done)

State <= Idle;

endcase

Idle

~rst

Receiving

Received

~RxD

RxD

done

endTick & lastBit

~endTick | ~lastBit

Sample Counter - Tick

Verilog code in RS232R module

always @(posedge clk)

if (~rst)

Tick <= 0;

else if ((State == Receiving)&

~endTick)

Tick <= Tick + 1;

else

Tick <= 0;

assign endTick =

(Tick == (868/FreqDiv));

assign midTick =

(Tick == (434/FreqDiv));

100000 /115.2 = 868

Idle

~rst

Receiving

Received

~RxD

RxD

done

endTick & lastBit

~endTick | ~lastBit

Bit Counter - BitCnd

Verilog code in RS232R module

always @(posedge clk)

if (~rst)

BitCnt <= 0;

else if (lastBit & endTick)

BitCnt <= 0;

else if (endTick)

BitCnt <= BitCnt+1;

Idle

~rst

Receiving

Received

~RxD

RxD

done

endTick & lastBit

~endTick | ~lastBit

Shift Register - Shreg

Verilog code in RS232R module

always @(posedge clk)

if (~rst)

Shreg <= 0;

else if ((State == Receiving) & midTick)

begin

Shreg[6:0] <= Shreg[7:1];

Shreg[7] <= RxD;

end

assign data = Shreg;

assign rdy = (State == Received);

RS232 Transmitter

� Accepts a byte of data from the host (TRM) data bus and

transmits it as serial data on the TxD port. The baud rate

for the transmission is the same as the baud rate for the

RS232 receiver.

Verilog code in RS232T module

module RS232T

#(parameter FreqDiv = 1)

(

input clk, rst,

input start, // request for sending

input [7:0] data,

output rdy,

output TxD);

RS232T

clk

rst_

start

data

rdy

TxD

8

Transmitter Operation

� First the transmitter detects whether the host (TRM) has

set the request (“start” input) for transmission.

� If it is the case, it loads the data onto the transmit

register.

� Synchronous to the baud clock, the transmitter sets the

start bit on the TxD port to initiate the start of a bit

stream frame and then bit by bit the symbol data.

� It finally completes the transmission by sending the stop

bit.

Transmitter State Machine

Idle

Sending

startlastBit &
endTick

Verilog code in RS232T module

always @(posedge clk)

if (~rst)

State <= Idle;

else

case (State)

Idle: if (start)

State <= Sending;

Sending: if (lastBit & endTick)

State <= Idle;

endcase

Sample Counter - Tick

Idle

Sending

startlastBit &
endTick

Verilog code in RS232T module

always @(posedge clk)

if (~rst)

Tick <= 0;

else if ((State == Sending) & ~endTick)

Tick <= Tick + 1;

else

Tick <= 0;

assign endTick =

(Tick == (868/FreqDiv));

Bit Counter - BitCnt

Idle

Sending

startlastBit &
endTick

Verilog code in RS232T module

always @(posedge clk)

if (~rst)

BitCnt <= 0;

else if (lastBit & endTick)

BitCnt <= 0;

else if (endTick)

BitCnt <= BitCnt + 1;

assign lastBit = (BitCnt == 9);

Shift Register - Shreg

Idle

Sending

startlastBit &
endTick

Verilog code in RS232T module

always @(posedge clk)

if (~rst)

Shreg <= 0;

else if ((State == Idle) & start)

begin

Shreg[0] <= 1'b1;

Shreg[8:1] <= ~data;

end

else if ((State == Sending) & endTick)

begin

Shreg[8:0] <= Shreg[9:1];

end

assign TxD = ~Shreg[0];

Interfacing RS232 to TRM

RS232R

clk

rst_

done

RxD

rdy

data

8

RS232T

clk

rst_

start

data

rdy

TxD

8

RS232

ioadr

iowr,
iord

indata

outdata

6

8

8

Communication between RS232 and TRM

� TRM must be able to give commands to RS232 to request for

sending a byte.

� RS232 must be able to notify TRM when a byte is received.

� Data must be transferred between TRM and RS232.

� Assign two I/O addresses to RS232

� Address 0xFFFFFFC5: used for transferring command and status

information.

� Address 0xFFFFFFC4: used for transferring data.

RS232 Module

Verilog code in RS232 module

module RS232

#(parameter FreqDiv = 1)

(

input clk, rst,

input [3:0] ioadr,

input iowr, iord,

input RxD,

input [7:0] inData,

output [7:0] outData,

output TxD

);

RS232R

clk

rst_

done

RxD

rdy

data

8

RS232T

clk

rst_

start

data

rdy

TxD

8

RS232

ioadr

iowr,
iord

indata

outdata

6

8

8

Verilog code in RS232 module

…

assign outData =

(ioadr == 4) ? dataRx :

{6'b0, rdyTx, rdyRx};

command and status signals to / from UART.

RS232R

clk

rst_

done

RxD

rdy

data

8

RS232T

clk

rst_

start

data

rdy

TxD

8

RS232

ioadr

iowr,
iord

indata

outdata

6

8

8

Verilog code in Top module

assign inData =

((ioadr == 4) | (ioadr == 5)) ?

{24’b0, rs232Data}:

(ioadr == 7)? swiDat: 0;

Access I/O in Software

� Polling process: periodically checking bits to see if I/O

is ready for the next I/O operations.

� Interrupt-driven I/O: an I/O scheme that employs

interrupts to indicate to the processor that an I/O device

needs attention.

� If the I/O is ready for the next operation, then starts

transferring data.

Example Code

CONST RSadr= 0FFFFFFC4H;

PROCEDURE Receive*(VAR x: CHAR);
BEGIN

REPEAT UNTIL SYSTEM.BIT(RSadr+1, 0);

SYSTEM.GET(RSadr, x);
END Receive;

PROCEDURE Send*(x: CHAR);
BEGIN

REPEAT UNTIL SYSTEM.BIT(RSadr+1, 1);

SYSTEM.PUT(RSadr, x)
END Send;

polling

Hardware / Software Interface in Operating System

� The Operating system

� Provides drivers - software routines that handle low-level

device operations, for example, read/write a byte/word from

RS232.

� Guarantees that a user’s program accesses only the portions of

I/O devices to which the user has rights.

� Handles the interrupts generated by I/O devices.

� Manages the accesses to the shared I/O devices.

