
Parallel Simulation of Mixed-abstraction SystemC Models
on GPUs and Multicore CPUs

Rohit Sinha, Aayush Prakash, and Hiren D. Patel

Electrical and Computer Engineering
University of Waterloo, Waterloo, Canada

e-mail: {rsinha, aayush.prakash, hdpatel}@uwaterloo.ca

Abstract—This work presents a methodology that parallelizes
the simulation of mixed-abstraction level SystemC models across
multicore CPUs, and graphics processing units (GPUs) for im-
proved simulation performance. Given a SystemC model, we par-
tition it into processes suitable for GPU execution and CPU execu-
tion. We convert the processes identified for GPU execution into
GPU kernels with additional SystemC wrapper processes that in-
voke these kernels. The wrappers enable seamless communica-
tion of events in all directions between the GPUs and CPUs. We
alter the OSCI SystemC simulation kernel to allow parallel execu-
tion of processes. Hence, we co-simulate in parallel, the SystemC
processes on multiple CPUs, and the GPU kernels on the GPUs;
exploit both the CPUs, and GPUs for faster simulation. We exper-
iment with synthetic benchmarks and a set-top box case study.

I. INTRODUCTION

SystemC [1] is an electronic system-level design language
that supports modeling and simulation of designs at register-
transfer level (RTL), and at abstractions higher than RTL such
as at the transaction-level (TL). It also enables the simulation of
mixed-abstraction level models, and hardware/software mod-
els. The OSCI reference implementation provides a discrete-
event (DE) simulation kernel that executes models specified
in the SystemC language. In contrast to traditional hardware
description languages such as VHDL and Verilog, SystemC’s
ability for higher abstraction modeling promises shorter de-
sign cycle times allowing designers to meet stringent time-to-
market deadlines.

With a continued increase in the complexity and size of mod-
ern SystemC designs (both at RTL and TL), we find that Sys-
temC has struggled to deliver on its promise for faster design
cycle times. The central reason for this is the inability of Sys-
temC’s reference implementation to exploit parallel process-
ing architectures that are commonplace in today’s computing
platforms. The DE simulation kernel uses co-operative multi-
threading resulting in a simulation kernel that cannot execute
SystemC processes in parallel. Consequently, there is consid-
erable research interest in discovering methods to expedite the
simulation of SystemC models [2, 3, 4, 5, 6, 7].

These efforts parallelize the DE simulation kernel using ei-
ther conservative or opportunistic methods. Conservative ap-
proaches process the events in the event queue in causal or-
der, and opportunistic approaches allow violating this causal-
ity constraint such that processes can proceed executing events

past the current simulation time. Opportunistic methods re-
quire support for rollback or an agreement that such causality
violations are acceptable given a certain error bound. Chopard
et al. [2], Schumacher et al. [3], and Chandran et al. [4] take
the conservative approach, and they focus on the parallel simu-
lation of synchronous SystemC models on multicore CPUs.

Alternatively, Mello et al. [5] and Jones et al. [6] use oppor-
tunistic methods where the focus is on accelerating the simula-
tion of loosely-timed TL models. However, Mello et al. [5] do
not support mixed-abstraction models. Instead, they only sup-
port a subset of TL models that do not use timed or immediate
events. This prohibits mixed-abstraction simulation, and the
reuse of existing TL models using other SystemC events. On
the other hand, Jones et al. [6] do enable parallel simulation of
mixed-abstraction RTL and TL models with full support of all
SystemC events, but they require the user to explicitly describe
temporal constraints to limit the temporal decoupling. This re-
tains an acceptable degree of functional correctness. We find
this to be an involved task for a large and complex SystemC
model where ensuring functional correctness with tweaks on
temporal constraints and quanta can become cumbersome.

Notice that these efforts do not identify nor leverage graph-
ics processing units (GPUs) as a potential platform for paral-
lel computation. GPUs are commodity components on general
purpose computing platforms, and clearly an alternative plat-
form for accelerating SystemC simulation as shown by Nan-
jundappa et al. [7]. However, they only support GPU execution
of SystemC models at the RTL abstraction. More importantly,
they do not co-simulate the SystemC models across both the
multiple central processing units (CPUs), and GPUs.

Our work parallelizes and co-simulates mixed-abstraction
SystemC models by supporting all SystemC events on both
multiple CPUs and GPUs. We translate selected SystemC pro-
cesses into GPU CUDA programs with the appropriate com-
munication and event handling functionality. Our main con-
tributions in this work are the following: 1) we parallelize the
simulation of mixed-abstraction RTL and TLM (approximately
and loosely-timed) SystemC models targeting multicore CPUs
and GPUs while preserving the original DE semantics, and 2)
we implement synchronization primitives in CUDA to enable
co-simulation of RTL and TLM SystemC models on CPUs and
GPUs.We experiment with synthetic benchmarks, and a case
study that shows performance speedups of up to 41x without
any compiler optimizations enabled, and 12x with compiler op-
timizations.



RTL & TLM 
SystemC 

Specification

GPU Process
Identification

SC2GPU
Translator

SystemC & GPU
Compilation

GPU-CPU 
Parallel 

Simulation

sc_process a;
sc_process b;
sc_process c;
sc_process d;

gpu_sc_process a;
gpu_sc_process b;

sc_process c;
sc_process d;

__global__ kernel_a;
__global__ kernel_b;

sc_process wrap_a;
sc_process wrap_b;

Parallel SystemC Library

nvcc

g++

GPU
Binary

CPU
Binary

Linker GPU-CPU 
Binary

GPU-Suitability
Analysis

Translation
CUDA Runtime

Library
CUDA SystemC

Library

CPU0 CPU1

CPU2

GPU

CPU3

Fig. 1: Design flow overview of parallel GPU-CPU co-simulation of RTL & TLM SystemC models.

II. RELATED WORK

Chopard et al. [2], Schumacher et al. [3], and Domer et al. [8]
use a conservative approach for parallel simulation, but they
primarily focus on synchronous SystemC models. Chopard et
al. [2] execute a separate SystemC scheduler on a processing
node, and synchronize at every delta cycle. Schumacher et
al. [3], and Domer et al. [8] execute all processes made ready-
to-run in parallel on multiple processing nodes. Chandran et
al. [4] introduce a partitioning, and grouping of SystemC pro-
cesses in addition to its parallel simulation on multicores.

Mello et al. [5] propose TLM distributed time (TLM-DT),
and they provide a separate simulation kernel supporting tem-
poral decoupling only supporting delta events. This approach,
however, does not allow the simulation of mixed-abstraction
RTL and loosely-timed TL models, which is an important com-
ponent of the SystemC simulation methodology. Jones et al. [6]
present an opportunistic approach to the simulation of RTL
and TL models. Their approach instantiates multiple sched-
ulers executing for a quantum called a time warp, and they
provide interface extensions to limit the temporal decoupling
caused by the loosely-timed execution. Determining the nec-
essary temporal constraints and quanta for fast simulation is
difficult; thus, we parallelize the execution conservatively.

Nanjundappa et al. [7] parallelize the simulation of SystemC
RTL models on GPUs. They translate the SystemC model into
CUDA code preserving the original DE semantics. However,
their approach does not support TL models. We borrow con-
cepts from Nanjundappa et al. [7]; however, we co-simulate
mixed-abstraction RTL and TL models on multicore CPUs and
GPUs.

III. BACKGROUND

A. SystemC’s Discrete-event Simulation Semantics

SystemC [1] implements the discrete-event semantics using
the evaluate-update paradigm. The simulation kernel orches-
trates the execution and synchronization of processes. The
OSCI implementation is a single-threaded implementation. It
starts simulation in an initialization phase where all SystemC
processes are fired once. This causes other processes to be-
come ready-to-run. After initialization, the evaluate phase be-
gins where ready-to-run processes are executed until there are
no remaining ready-to-run processes. This generates notifi-
cations on events, which makes other processes ready-to-run.
For an immediate event, the process made ready-to-run exe-
cutes within the same evaluate phase. When there are no im-

mediate events, the simulation kernel enters the update phase
where SystemC channels update computed values, which may
again make other processes ready-to-run. The completion of an
evaluate-update phase signifies the end of a delta cycle. If any
of the events generated are delta events, then without forward-
ing the simulation time the kernel enters the evaluate phase.
However, if there are no delta events, then the timed event with
the earliest timestamp is chosen, and the simulation time ad-
vances to that timestamp. Then, the kernel enters the evalu-
ate phase, and repeats this process until there are no remaining
events.

B. CUDA C

Compute Unified Device Architecture (CUDA) is a comput-
ing engine developed by NVIDIA to perform general purpose
computing on GPU architectures. The CUDA programming
language is based on C, with extensions for single instruction,
multiple data (SIMD) parallel computation and thread synchro-
nization. The runtime framework offloads computation kernels
to the GPU, and retrieves the results using memory copy oper-
ations. Our GPU-CPU co-simulation framework allows a Sys-
temC developer to simulate data parallel computation on the
GPU.

IV. GPU-CPU CO-SIMULATION METHODOLOGY

A. Overview

Figure 1 presents an overview of the GPU-CPU co-
simulation methodology. This consists of five stages. The first
is the Specification stage where the designers use SystemC at
RTL or TL abstractions to specify their design. The second
stage is the GPU-Suitability Analysis stage where either through
user-guided hints or through automatic analysis, a subset of the
SystemC processes are identified as suitable for GPU execu-
tion. In Figure 1, processes a and b are chosen to execute on the
GPU. The remaining processes c and d execute on the multi-
core CPUs. Currently, we use user-guided hints to identify this
subset of processes. The next stage, the Translation stage, trans-
lates processes a and b into their equivalent GPU kernels and
SystemC wrappers. The wrappers are central to enabling the
communication between the SystemC processes on the CPUs
and GPUs. Note that this requires us to provide synonymous
implementations of SystemC’s event paradigm supporting no-
tifications of timed, immediate, and delta events for the GPU.
The Translation stage also generates the necessary communica-
tion code for signalling on and across the GPU-CPU boundary,



!"
!"
!"

#$%&'"()$)$"

!" !" !"

*%+,"()$)$"

!"
!"!"

-.%/)%,$"
01&%,$" 2345'"

+66$&+%,$"
73489%437"

&$/,%"
73489%437"

46$&"
73489%437"

Fig. 2: Parallel SystemC simulation kernel.
and preserves the original semantics of the SystemC processes.
Following translation, we enter the Compilation stage that com-
piles the processes and links them together into one GPU-CPU
binary. Note that we compile the CPU processes with an al-
tered parallel version of the SystemC library, and the GPU ker-
nels with the CUDA SystemC library that contains the event
handling mechanisms between the GPUs and CPUs, and the
CUDA runtime library. The final Simulation stage takes this
binary and co-simulates the SystemC design on multiple CPUs
and GPUs. Although our framework implements co-simulation
with multiple GPU devices, we present our methodology using
only one GPU.

B. Parallel Simulation on Multicore CPUs

For the parallel simulation of SystemC processes on mul-
ticore CPUs, we take a conservative approach that uses the
synchronous parallel DE systems approach [3]. During the
evaluate-update cycles of SystemC’s DE kernel, multiple pro-
cesses are ready-to-run within a delta cycle. These ready-to-
run processes can execute in any order. This means that they
can execute in parallel on multiple CPUs. However, we en-
sure that all these processes complete their execution and wait
at a barrier synchronization before entering the update phase.
We also support parallel simulation of processes made ready-
to-run via the notification of immediate events. Figure 2 illus-
trates the inclusion of immediate events in our parallel simu-
lation kernel. Processes waiting on an event that are immedi-
ately notified get scheduled for execution within the same delta
cycle. This amounts to adding the processes to the ready-to-
run queue, and when all currently executing processes synchro-
nize at the barrier, the newly readied processes start executing
in parallel. During their execution, these processes generate
events that are added into the event queue. We use shared locks
to prevent race conditions on the shared event queue.

To address immediate notifications, we collect the notifica-
tions in the shared event queue, and allow all the processes
executing in parallel to synchronize at the barrier. Note that we
enforce mutual exclusion when all the immediate notifications
access the shared event queue. Once this synchronization oc-
curs, we allow the processes readied by the immediate events
to execute in parallel. The kernel undergoes multiple iterations
of dispatching multiple SystemC processes and joining them
at the barrier synchronization before completing a delta cycle.
The simulation proceeds to the update phase when there are
no more ready-to-run processes in that delta cycle. From here
on, the simulation kernel proceeds according to the reference
implementation. We use primitives from the POSIX standard

1 gpu sc process
2 init();
3 while (true) {
4 x = x + 1;
5 wait(v);
6 x = x * 2;
7 wait(e);
8 }
9 return;

(a)

init

x = x + 1

x = x ∗ 2

return

wait(v) wait(e)

(b)

1 global kernel
2 switch(stateId) {
3 case 0: init();
4 stateId = 1;
5 case 1: x = x + 1;
6 stateId = 2;
7 gpu timed wait(v);
8 case 2: x = x * 2;
9 stateId = 1;

10 gpu event wait(e);
11 }

(c)

Fig. 3: CUDA implementation of wait.
library to parallelize the simulation of SystemC processes on
multicore CPUs with full support for all event notifications.

C. GPU-CPU Co-simulation

Our framework supports wait and notify primitives in the par-
allelized GPU and CPU simulation kernel. The GPU kernel
communicates with a host SystemC thread, hereon called the
wrapper thread, generated in the Translation stage. A GPU ker-
nel (invoked from a wrapper thread) executes in parallel with
other SystemC processes on multicore CPUs as well as other
GPU kernels. We exploit task-level parallelism on both the
CPUs and GPU, and we also exploit data-level parallelism on
the GPU.

C.1 Translation Algorithm

Sharad et al. [9] propose a technique that converts
SC THREADs to SC METHODs by generating a finite state ma-
chine equivalent to the original SC THREAD. We borrow their
technique in our translation algorithm. Each state transition
denotes a wait statement in the original SC THREAD specifi-
cation. An SC THREAD containing n wait invocations trans-
lates to a finite state machine containing n states. Figure 3b
illustrates the transformation for the gpu sc process in Fig-
ure 3a. Since SystemC SC THREADs typically contain an infi-
nite loop, the state machine contains a transition from the final
state to the first state within the loop. Their translator synthe-
sizes a counter variable (stateId in Figure 3c) that signifies the
next state. The code snippet in Figure 3c shows the translation
for the gpu sc process in Figure 3a.

Algorithm 1 describes the steps involved in the translation.
The internals of code generation are encapsulated within the
codegen wrapper and codegen gpu functions, which synthe-
size code for the wrapper process and the GPU kernel respec-
tively. A gpu sc process contains a sequence of statements
S, where each statement is one of three types: notify, wait,
or any valid SystemC statement. Line 9 of Algorithm 1 syn-
thesizes GPU kernel code for serializing the values of local
variables into GPU global memory. Section C.3 describes
the need for this step. In lines 10 – 14, the translation re-
places each timed wait with gpu timed wait, and event wait
with gpu event wait. In addition, the translation generates an
〈e, v, t〉 tuple in GPU global memory for each gpu sc process.
The functions gpu timed wait and gpu event wait update this
tuple, and their implementation exists within the CUDA Sys-
temC library. The translation stage also replaces notify with



Algorithm 1: translate(P )

/* Initial declarations */
Let P be the set of gpu sc processes.1
Let S be a sequence of program statements.2
Let 〈e, v, t〉 be a tuple where e is the event identifier, v is the3
time, and t is the event type.
foreach p ∈ P do4

codegen wrapper(gpu kernel init())5
S ← getStatements(p)6
foreach s ∈ S do7

if isWait(s) then8
codegen gpu(gpu save reload context(p))9
if t = TIMED then10

codegen gpu(gpu timed wait(e, v))11
else if t = EV ENT then12

codegen gpu(gpu event wait(e))13
end14
codgen wrapper(memcpyFromGPU())15
codegen wrapper(invokeNotify())16
codegen wrapper(invokeWait())17

else if isNotify(s) then18
Let 〈e, v, t〉 ← parseNotify(s)19
if t = TIMED then20

codegen gpu(gpu timed notify(e, v))21
else if t = DELTA then22

codegen gpu(gpu delta notify(e, v))23
else if t = IMMEDIATE then24

codegen gpu(gpu immed notify(e))25
end26

else27
codegen gpu(s)28

end29

end30

end31
return32

their CUDA equivalent statement. In lines 20 - 26, we re-
place delta notifications with gpu delta notify, timed notifica-
tions with gpu timed notify, and immediate notifications with
gpu immed notify. In addition, for each gpu sc process, the
translation generates a set of 〈e, v, t〉 tuples, one for each
sc event in the SystemC model. codegen wrapper synthe-
sizes code for the wrapper process, which manages the inter-
action between the multicore CPU processes and the GPU ker-
nel. Lines 15 - 17 of algorithm 1 generates code to initialize
the GPU kernel and transfer the set of 〈e, v, t〉 tuples from GPU
global memory. The details of this interaction are presented in
section C.2. For statements within S that are neither notify nor
wait, line 28 in the algorithm converts the System statement to
a valid CUDA statement.

C.2 GPU-CPU Interaction

An SC THREAD typically generates notifications prior to sus-
pending itself using a wait (on an sc event or for some period
of simulation time). A GPU kernel, however, cannot suspend
its execution; hence, we relinquish control to the host wrapper
process on each wait. The wrapper process copies the result
of the computation performed by the GPU kernel, and then
invokes the SystemC version of wait. Whenever the wrapper
process becomes ready-to-run, it resumes the execution of the
GPU kernel from its next instruction as explained in section

C.3. The preceding set of interactions occur for each instance
of wait, until the gpu sc process invokes return.

C.3 GPU Implementation of wait

On invoking wait within a GPU kernel, the kernel invokes ei-
ther gpu timed wait or gpu event wait. These functions store
the event identifier e that is null for timed events, the wait type
t that is either TIMED or EVENT, and the wait value v that is a
double representing the time. After this, the kernel relinquishes
control to the CPU wrapper process. The wrapper process first
fetches 〈e, v, t〉 from the GPU global memory, and then invokes
wait(v) if t is TIMED, and wait(e) if t is EVENT. While this
wrapper process waits, other GPU kernels and processes on
the CPUs continue execution. When the wrapper process re-
sumes execution, 〈e, v, t〉 is reset in the GPU memory and the
GPU kernel executes. However, this invocation of the GPU
kernel transitions to the instruction after the gpu timed wait or
gpu event wait. We use a program counter to identify the next
instruction. The GPU kernel in Figure 3c uses stateId as a pro-
gram counter. We serialize values of all local state variables up-
dated during execution of the GPU kernel to a preallocated re-
gion of the GPU global memory before returning control to the
wrapper process. Upon re-invocation, the GPU kernel reloads
the execution state from global memory. In Figure 3c, x and
stateId are saved and reloaded on each kernel invocation.

C.4 GPU Implementation of Delta and Timed Notifica-
tions

A notification in a GPU kernel invokes gpu delta notify,
gpu timed notify or gpu immed notify. The gpu delta notify and
the gpu timed notify store e, v and t in a data structure in GPU
global memory. When there are multiple calls to notify be-
fore a single wait, we store multiple 〈e, v, t〉 tuples in the GPU
global memory. An invocation of wait causes the CPU to copy
these tuples from GPU global memory, and process the corre-
sponding notifications. Multiple timed notifications to the same
sc event prior to a wait store the minimum time value amongst
the notifications. After processing all notifications, the tuples
signifying the notifications are reset in preparation for execut-
ing the next block of statements in the GPU kernel.

C.5 GPU Implementation of Immediate Notifications

An immediate notification causes any process waiting on the
event to immediately become ready-to-run. During simula-
tion, a GPU kernel records a notification by updating the en-
tries in the tuple 〈e, v, t〉. The wrapper copies these tuples
from GPU after the GPU kernel exits via gpu timed wait or
gpu event wait, and then invokes notify. We allow fetching
the notifications from the GPU memory before the kernel’s
exit. Recall that there is a set of tuples {〈e, v, t〉} for each
gpu sc process. When any GPU kernel finishes executing,
its wrapper process fetches the tuples for all other GPU ker-
nels as well. That wrapper process then invokes the immedi-
ate notifications made by all gpu sc process. To prevent fir-
ing the same notification twice, the simulation kernel logs the
immediate notifications made by each gpu sc process. When



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Number of Processes

Sp
ee

du
p

200 Notif./sec
400 Notif./sec
800 Notif./sec
1600 Notif./sec
3200 Notif./sec
6400 Notif./sec

(a) Multicore CPUs parallelization.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Number of Processes

Sp
ee

du
p

200 Notif./sec
400 Notif./sec
800 Notif./sec
1600 Notif./sec
3200 Notif./sec
6400 Notif./sec

(b) GPU-CPU parallelization.

Fig. 4: Results for synthetic benchmarks.

a gpu sc process invokes wait, its tuple entries are compared
with its log to prevent firing the same notification twice.

C.6 Optimization: Concurrent Kernel Execution

In addition to executing processes in parallel on multicore
CPUs, we perform GPU operations concurrently using CUDA
streams. The CUDA programming model defines a stream to
be a sequence of commands, which execute in order. Further-
more, different streams may execute commands concurrently.
For instance, a memory transfer associated with one GPU ker-
nel can simultaneously occur with a different GPU kernel ex-
ecution. The advantage is that memory transfers do not pre-
vent other GPU kernels from executing. Moreover, a CUDA-
enabled GPU can execute multiple kernels in parallel. For
each GPU kernel, we allocate a distinct CUDA stream con-
necting the wrapper process and the GPU kernel. The per-
formance boost is not only a result of parallel execution, but
also the high memory bandwidth in NVIDIA GPUs. Moreover,
NVIDIA GPUs implement hardware multithreading to enable
cheap context switching, and thus hide the latency of global
memory accesses.

V. SYNTHETIC BENCHMARKS

We perform our benchmarks on an Intel Xeon E5645 pro-
cessor (12 cores) and NVIDIA Tesla C2075 graphics card con-
nected via PCI Express using Linux 2.6.32-33 operating sys-
tem. The synthetic benchmarks allow us to evaluate our sys-
tem with a set of generic SystemC processes. These processes
communicate using wait and notify, and model computation us-
ing dummy computation. We vary the number of SystemC pro-
cesses, and the number of generated notifications (measured in
notifications per second). The simulation kernel measures the
number of notifications.

Figure 4a shows the parallel execution of the synthetic
benchmarks on the multicore CPUs with the baseline as the
OSCI SystemC 2.2.0 reference implementation. Suppose the
benchmark contains n SystemC processes. Then, half of the
processes generate notifications, and wait. The other half of

the processes wait on the notification of these events, and upon
notification, they perform some dummy computation and wait
again. This notification and waiting continues. Notice that
initially the speedup increases as the number of processes in-
crease. However, increasing the number of processes beyond
the number of CPUs available (twelve in our platform) shows
the tapering off the speedup improvements. In addition, in-
creasing the number of notifications shows a reduction in the
speedups, which is primarily because of the increased number
of process waits.

Our GPU-CPU experiment uses a CUDA enabled NVIDIA
GPU. Figure 4b uses the same experimental setup as before
with half the processes mapped onto the CPUs and the other
half onto the GPU. For the processes mapped onto the GPU,
we scale the dummy computation by a factor k. This factor k
shows the speedup of the computation part of the code. In our
experiments, we set k = 10, which means that the computation
code of a process executing on the GPU executes only ten times
faster than on the CPU. Note that this is a conservative measure
for the improvement offered by using GPUs, and it is possi-
ble to obtain greater speedups [7]. The speedups in Figure 4b
are higher than those achieved in Figure 4a because of the in-
creased task-level and data-parallel parallelism. Once again, as
the number of notifications per second increase, the speedups
decrease, which is primarily because of increased overhead of
data transfer between CPU and GPU via PCI Express. This
helps in efficient partitioning of the SystemC designs.

VI. CASE STUDY: MULTI-CHANNEL SET-TOP BOX

We implement a set-top box case study modeled after the
Scientific Atlanta’s 8300 PVR with multiple video input chan-
nels as shown in Figure 5. It has three channels, two for view-
ing, and the third for recording to disk. Each channel corre-
sponds to a different video stream. We partition this case study
manually. We map the bilateral filtering to the GPU because it
can exploit data-level parallelism. There are other blocks that
we can also map to the GPU such as inverse DCT to further
show improvements. MPEG2 decoding, on the other hand, is
a highly control flow intensive operation, which is suitable for



Frame
Store

Variable Length
Decoding

Inverse
Scan

Inverse
Quantization

Inverse
DCT

Motion
Compensation

GPU Thread 1_3

GPU Thread m*n_3

... ...SystemC Wrapper
Process 3

MPEG Video
Stream 3

Disk Write
Channel 3

Frame
Store

Variable Length
Decoding

Inverse
Scan

Inverse
Quantization

Inverse
DCT

Motion
Compensation

GPU Thread 1_2

GPU Thread m*n_2

... ...SystemC Wrapper
Process 2

MPEG Video
Stream 2

Display
Channel 2

Frame
Store

Variable Length
Decoding

Inverse
Scan

Inverse
Quantization

Inverse
DCT

Motion
Compensation

GPU Thread 1_1

GPU Thread m*n_1

... ...SystemC Wrapper
Process 1

MPEG Video
Stream 1

Display
Channel 1

Decoder 1

Decoder 2

Decoder 3

Decoding (on CPUs) Filtering (on GPU) Output (on CPU)

Fig. 5: Case study: Multi-channel set-top box.

TABLE I: Results of the experimentation on the case study.

Case Study CPU-seq CPU-parallel GPU-CPU

Time(sec)Speedup Time (sec)SpeedupTime (sec)

No Opt. 350.37 2.7x 127.49 41.0x 8.49

With Opt. 108.01 2.8x 39.10 12.6x 8.59

execution on CPUs. Our implementation has three stages. In
the first stage, we read an MPEG2 video from a streaming in-
put channel and decode it using SystemC processes executed
on the CPUs. This stage includes inverse scanning, quantiza-
tion, discrete-cosine transform, and motion compensation. The
second stage enhances the image via bilateral filtering, which
we execute on the GPU as a separate GPU thread. We fur-
ther parallelize the processing of each frame at the pixel-level
to exploit the data-level parallelism of GPUs. The final stage
displays the processed frames to the respective outputs via Sys-
temC processes on the CPUs. We validate the results by com-
paring outputs of sequential and parallel simulation framework
for each frame of the video stream. We show the performance
results for this case study in Table I with (With Opt.) and with-
out compiler optimizations (No Opt.). Note that optimizations
in the synthetic benchmarks are ineffectual due to the mod-
elled dummy computation; however, for the case study it is im-
portant. As a result, we report performance numbers without
enabling optimizations, and those with -O3 optimization level
enabled. The column with GPU-seq shows the execution times
using OSCI’s reference implementation of SystemC, and the
column with CPU-parallel is our implementation of SystemC
parallelization as described by Schumacher et al. [3], and the
GPU-CPU column is our approach that allows co-simulation
on both the multicore CPUs and the GPUs. The GPU-CPU
co-simulation provides a speedup of up to approximately 12x
for the multi-channel set-top box case study when compared
to using OSCI’s reference implementation of SystemC with all
optimizations enabled. When compared to the CPU-parallel,
the co-simulation provides 5x speedup. We find that the case
study results in Table I are indicative of the case study not fully
exploiting the parallelism offered by the GPU. We expect case
studies with larger partitions of the SystemC processes mapped
to GPUs to further leverage the benefits of GPU parallelism.
Furthermore, notice this approach allows SystemC models with
a high level of parallelism to use all the multicore CPUs on the
platform, and the resources on the GPU together.

VII. CONCLUSION

We present a methodology that parallelizes mixed-
abstraction SystemC models across multicore CPUs and GPUs.
In doing this, we parallelize the SystemC kernel, and provide
a synchronization library for handling SystemC events on the
GPU. These events are transferred to the main SystemC sched-
uler so as to preserve the discrete-event semantics of SystemC.
We also present a translation algorithm that converts selected
SystemC processes to GPU CUDA kernels. For experimenta-
tion, we compare our approach against a previously proposed
technique to parallelize the execution of SystemC models, and
OSCI’s reference implementation of SystemC. We also illus-
trate that co-simulating models across the multicore CPUs and
GPUs can offer performance advantages by utilizing compute
resources on the GPU in addition to the multicore CPUs. For
future work, we intend to investigate automatic GPU suitability
analysis.

REFERENCES

[1] Open SystemC Initiative, “SystemC,” http://www.systemc.org.

[2] B. Chopard, P. Combes, and J. Zory, “A conservative approach to systemc
parallelization,” in Computational Science ICCS 2006, ser. Lecture Notes
in Computer Science, V. Alexandrov, G. van Albada, P. Sloot, and J. Don-
garra, Eds. Springer Berlin / Heidelberg, 2006, vol. 3994, pp. 653–660.

[3] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC: syn-
chronous parallel systemc simulation on multi-core host architectures,”
in Proceedings of ACM International Conference on Hardware/software
Codesign and System Synthesis (CODES/ISSS), 2010, pp. 241–246.

[4] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi, “Parallelizing
systemc kernel for fast hardware simulation on smp machines,” in Pro-
ceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Ad-
vanced and Distributed Simulation, 2009, pp. 80–87.

[5] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel simulation of Sys-
temC TLM 2.0 compliant MPSoC on SMP workstations,” in Proceedings
of the Conference on Design, Automation and Test in Europe, 2010, pp.
606–609.

[6] S. Jones, “Optimistic parallelisation of systemc,” Universite Joseph
Fourier: MoSiG DEMIPS, Tech. Rep., 2011.

[7] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim:
a fast SystemC simulator on GPUs,” in Proceedings of the 2010 Asia and
South Pacific Design Automation Conference, 2010, pp. 149–154.

[8] R. Dömer, W. Chen, X. Han, and A. Gerstlauer, “Multi-core parallel sim-
ulation of system-level description languages,” in Proceedings of Asia and
South Pacific Design Automation Conference, 2011, pp. 311–316.

[9] S. A. Sharad and S. K. Shukla, Optimizing system models for simulation
efficiency. Norwell, MA, USA: Kluwer Academic Publishers, 2004, pp.
317–330.


	Introduction
	Related Work
	Background
	SystemC's Discrete-event Simulation Semantics
	CUDA C

	GPU-CPU Co-simulation Methodology
	Overview
	Parallel Simulation on Multicore CPUs
	GPU-CPU Co-simulation
	Translation Algorithm
	GPU-CPU Interaction
	GPU Implementation of wait
	GPU Implementation of Delta and Timed Notifications
	GPU Implementation of Immediate Notifications
	Optimization: Concurrent Kernel Execution


	Synthetic Benchmarks
	Case Study: Multi-channel Set-top Box
	Conclusion

