
Production Code Generation &
System Architecture

Frank Hein

dSPACE GmbH

Technologiepark 25 33100 Paderborn

Tel. +49 5251 1638-545 Fax +49 5251 66529

Email: FHein@dspace.de

Automatic Production Code Generation

Hardware-in-the-Loop Simulation

Calibration

Rapid Control Prototyping

Control Design TargetLink

C code generation from MATLAB/Simulink

Generated C code is as efficient as hand
code

High reliability, readability and
reproducibility of generated C code

Today’s Development Process - The V Cycle

Problems:

 Communication

 Ambiguity of specs

 Resource conflicts

 Large turnaround time!

Production
Code

Specs

Function Developer

 algorithm
knowledge

#include <math.h>
if (a > 0)
ki = 0.4*x+z1;

Software Spezialist

 implementation
+ coding knowledge

Time

Traditional Approach

Function Developer

 algorithm
knowledge

Software Specialist

 implementation
knowledge

Coding knowledge:

• ANSI-C
• language extensions
• assembly language
• processor architecture

 … and how to

optimally use it!
TargetLink

Code Generator

 coding knowledge

Approach with Code Generation

 - no unnecessary code overhead
- no waste of execution time
- no temporary variables

bool1 = (In >= 10);
bool2 = (In <= -10);
bool3 = bool1 || bool2;

tmp1 = table_lookup(Table, In);
tmp2 = in;

if (bool3)
out = tmp1;

else
out = tmp2;

RCP Code:

if ((in >= UT) || (in <= LT))
out = table_lookup(Table, in);

else
out = in;

TargetLink Code:

Example of Interblock Optimization

Block Optimization

C16x CPU32

SH2

Solution: Carefully designed code patterns
 Code pattern library

 Contains best code pattern for each compiler/processor combination

 Optional for:

 ANSI C only

 Assembly language and compiler specific C

Example:

16 bit Addition with saturation
+

+

Problem

 Many different implementations for one algorithm exist

 Optimal implementations differ between compiler/processors

TargetLink

 Production Code Generation directly from Simulink® / Stateflow®

 ANSI C Code with the efficiency of hand-written code

 Target Simulation Modules for testing the generated code on evaluation boards

 Data Management with the dSPACE Data Dictionary

 Special modules for AUTOSAR and OSEK Support

 Target optimized code for different compiler-processor combinations

TargetLink Code Properties

 TargetLink generates ANSI C code and optionally non-ANSI C or even
assembly code when the benefit is substantial.

 Speed and memory efficiency correspond to handwritten code.

 Fixed-point and floating point code generation is supported.

 The generated code is readable, well commented and easily inspectable.

 The generated code is easy to integrate, and it is easy to integrate legacy code

 Efficiency achieved by TargetLink through

 Sophisticated interblock optimization.

 Carefully selected code patterns.

 Compiler/processor specific block optimization through the
use of language extensions and assembler macros
(Target Optimization Modules).

Code Efficiency

 Delphi, 2002

 German Tier One Supplier, February 2006:

0,75 – 1.21.2 – 1.250.97 – 1.20.96 – 1.1

SpeedStackRAMROM

Generated code better than hand code
Source: Lev Vitkin, Delphi, USA

88,5%2182 (100%)ROM [bytes]

97,1%104 (100%)RAM [bytes]

100,4%2,27 (100%)Run time [msec]

TargetLinkManual Code

50%

60%

70%

80%

90%

100%

ROM RAM Run time

Manual Code

TargetLink

Delphi: Surviving a Vehicle Rollover

 Delphi's developments for passenger
safety systems

 A rollover detection algorithm was
implemented and is now in production

 Significant code improvements were
achieved using TargetLink's code profiling
techniques

Simulated sensor signals show the lateral and
vertical accelerations to be analyzed by

a rollover detection algorithm

Delphi: Surviving a Vehicle Rollover

Autocode Success Story

 Code-Profiling led to
handcode-efficiency

RAM and throughput
(execution time) down by 75%

 Integrated in 1.5 days

 In production

 Statements from software engineers:

“The generated code was easy to
understand. Every comment and
variable name was a great help.”

“In my opinion it saved a lot of time.
It is a good base for developing
target C code. The main backbone
of code was almost unchanged.”

TargetLink was used
to generate efficient

fixed-point C code
from Simulink and
Stateflow models

Delphi: Surviving a Vehicle Rollover

Equipment and Methods

 TargetLink

 Target Optimization Module

 Motorola HC12 Evaluation Board
for code profiling

 Throughput (execution time)

 RAM (including stack)

 ROM

 Back-to-Back-Tests
(MIL, SIL and PIL simulations)
at earliest stage

Delphi: Surviving a Vehicle Rollover

Autocode reduces risks

 No transcription errors

 No spec misinterpretation

 Match with model performance
The deployment time measured

for the autocoded algorithm
matched the simulation

Insights into the algorithm gained from using
TargetLink’s code analysis tools and an

evaluation board led to huge improvements
in RAM consumption and throughput

(execution time)

Unmatched Simulation Support

 TargetLink offers MIL, SIL, PIL simulation at a mouse-click

 No need for separate test model

 No need for manual insertion into test harness model

 Integrated Data Logging
for all simulation modes

 Integrated Result Plotting

 Direct visualization of
simulation results

 Direct comparison of
MIL/SIL/PIL results

 No need for writing your own plotting scripts

 SIL/PIL simulation enhanced by Code Coverage measurement

Simulink blockset

automatic

Model-in-the-Loop
Simulation

on the Host PC

algorithm design
 behavior validity checks
 scaling (auto or manual)
 overflow detection
 reference traces

Software-in-the-Loop
Simulation

on the Host PC

fixed-point effects
 quantization errors
 saturation and overflow
 implementation option

Processor-in-the-Loop
Simulation

on evaluation board EVM

code validation
 profile execution time
 measure stack size
 measure RAM / ROM
 final verifications

Code

generation

Basic Workflow with TargetLink

ECUTargetLink blockset

Code generation

TargetLink – Successfully used by …

TargetLink – Successfully used by …

EADS: Unmanned aerial vehicle (UAV) „Barracuda“

 Barracuda: demonstrator and design
platform for future UAVs

 TargetLink for all algorithms (flight control,
autopilot, flight management, calculation of
flight data, navigation, signal consolidation
in the triplex redundant system)

 45% of the source code of the flight control
computer was generated automatically
using TargetLink

"TargetLink is the
connecting link between
prototyping and the
target system.

TargetLink guarantees
seamless software
design, which is
frequently demanded by
our customers"

Matthias Haußmann, ZF
Lenksysteme

"TargetLink is the
connecting link between
prototyping and the
target system.

TargetLink guarantees
seamless software
design, which is
frequently demanded by
our customers"

Matthias Haußmann, ZF
Lenksysteme

ZF Steering Systems: Steer-By-Wire

 Standard architecture is replaced by electrical or electrohydraulic actuators

 Simulink model with 355 blocks used to design the controller

 TargetLink fits ideally into the development environment

 Reduction of development time using TargetLink’s Code Generator by 40%

AUTOSAR Support

 Product level support since end of 2006

 dSPACE strategy: early and competent support of automotive standards

 AUTOSAR might not yet be interesting for you, but at the time it will, TargetLink will offer
a mature and proven-in-practice solution!

 First production projects, e.g. at

 Daimler AG, Body,
refer to

 AUDI AG, Chassis,
refer to

Systematic AUTOSAR-Migration, Frank Gesele, Dr. Karsten Schmidt, AUDI AG, dSPACE NEWS
2008/1, Feb 2008

AUTOSAR in the development process – procedure for introducing model-based AUTOSAR
function development into production projects, Christian Dziobek, Dr. Florian Wohlgemuth, Dr.
Thomas Ringler, Daimler AG, dSPACE Magazine, 01/2008

Why Customers Need AUTOSAR

AUTOSAR Software Component Support

 Support for AUTOSAR Software Components includes

 Modeling: Model AUTOSAR Software Components by means of special AUTOSAR
Blocks to define AUTOSAR Ports, Runnables etc.

 Code Generation: Generate AUTOSAR compatible code with corresponding RTE function
calls

 AUTOSAR SW-C description support:

 Generate xml-File according to AUTOSAR SW-Component Template

 Import SW-C description into the DD for reference from within the TargetLink model

dSPACE SystemDesk 1.0 – Main Features

 Support of AUTOSAR 2.0

 Modeling of

 Software architectures

 Hardware topologies

 System descriptions

 Import of DBC files for CAN bus

 RTE generation

 Connection to dSPACE TargetLink for modeling control algorithms

 Connection to AUTOSAR R2.0 compliant BSW configuration tools, espc. EB tresos 2007b

 Process support, e.g. tool automation and scripting

From Software Architectures onto ECUs

Mapping of software components
onto ECUs

(in SystemDesk)

CAN-Bus

Mapping of Logical Communication onto Bus Signals

Supported Busses:
• FlexRay
• CAN
• LIN

Mapping onto Bus Signals in SystemDesk
Logical

Communciation

Bus Signals
(e.g. from dbc)

Simulation of Models on PCs

VPU: Plant ModelVPU: ACC

RTE

Basic Software

Follow
Control

Free Cruise
Control ...

DEM

VPU: ESP

RTE

Basic Software

Lateral
Dynamic
Control

ABS
Control ...

DEM

virtual CAN

Simulated sensor failure

 Early detection of errors

 Verification of diagnosis software

... ...

SystemDesk – Upcoming releases

SystemDesk 2.0

 AUTOSAR R3.0 and R2.1

 Simulation of software
architectures

 Support for calibration &
measurement

 Improved bus support espc.
for FlexRay

 Connection to BSW config.
tool EB tresos 2008-B

November 2008

July 2008

SystemDesk 1.1

 AUTOSAR R2.1 and R2.0
(compatibility update for
R2.1)

 LDF import

 Connection to requirements
mgmt. tools like DOORS

 Connection to BSW config.
tool EB tresos 2008-A

Releases in 2009/2010

 AUTOSAR > R3.0

 Expansion of features
provided by SystemDesk 2.0

 Connection to future BSW
config. tool versions

2009

*) Due to ongoing
specification work with
AUTOSAR, features for
future versions of
SystemDesk are still under
discussion.

