


C++	14	Quick	Syntax	Reference

Second	Edition

Mikael	Olsson



C++	14	Quick	Syntax	Reference

Copyright	©	2015	by	Mikael	Olsson

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether	the	whole	or	part	of	the	material	is	concerned,
specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,	broadcasting,	reproduction	on	microfilms	or	in	any	other
physical	way,	and	transmission	or	information	storage	and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar
methodology	now	known	or	hereafter	developed.	Exempted	from	this	legal	reservation	are	brief	excerpts	in	connection	with	reviews	or
scholarly	analysis	or	material	supplied	specifically	for	the	purpose	of	being	entered	and	executed	on	a	computer	system,	for	exclusive
use	by	the	purchaser	of	the	work.	Duplication	of	this	publication	or	parts	thereof	is	permitted	only	under	the	provisions	of	the	Copyright
Law	of	the	Publisher’s	location,	in	its	current	version,	and	permission	for	use	must	always	be	obtained	from	Springer.	Permissions	for
use	may	be	obtained	through	RightsLink	at	the	Copyright	Clearance	Center.	Violations	are	liable	to	prosecution	under	the	respective
Copyright	Law.

ISBN-13	(pbk):	978-1-4842-1726-9

ISBN-13	(electronic):	978-1-4842-1727-6

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol	with	every	occurrence	of	a
trademarked	name,	logo,	or	image	we	use	the	names,	logos,	and	images	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark
owner,	with	no	intention	of	infringement	of	the	trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar	terms,	even	if	they	are	not	identified	as	such,	is	not	to
be	taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to	proprietary	rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of	publication,	neither	the	authors	nor	the
editors	nor	the	publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions	that	may	be	made.	The	publisher	makes	no
warranty,	express	or	implied,	with	respect	to	the	material	contained	herein.

Managing	Director:	Welmoed	Spahr
Lead	Editor:	Steve	Anglin
Developmental	Editor:	Matthew	Moodie
Editorial	Board:	Steve	Anglin,	Louise	Corrigan,	Jonathan	Gennick,	Robert	Hutchinson,	Michelle	Lowman,	James	Markham,

Susan	McDermott,	Matthew	Moodie,	Jeffrey	Pepper,	Douglas	Pundick,	Ben	Renow-Clarke,	Gwenan	Spearing
Copy	Editor:	Karen	Jameson
Coordinating	Editor:	Mark	Powers
Compositor:	SPi	Global
Indexer:	SPi	Global
Artist:	SPi	Global

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New	York,	233	Spring	Street,	6th	Floor,	New	York,	NY
10013.	Phone	1-800-SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-sbm.com,	or	visit
www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the	sole	member	(owner)	is	Springer	Science	+
Business	Media	Finance	Inc	(SSBM	Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware 	corporation.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit	www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,	or	promotional	use.	eBook	versions	and	licenses	are
also	available	for	most	titles.	For	more	information,	reference	our	Special	Bulk	Sales–eBook	Licensing	web	page	at
www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this	text	is	available	to	readers	at
www.apress.com/9781484217269.	For	detailed	information	about	how	to	locate	your	book’s	source	code,	go	to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484217269
http://www.apress.com/source-code/


Contents	at	a	Glance

About	the	Author
Introduction

	Chapter	1:	Hello	World
	Chapter	2:	Compile	and	Run
	Chapter	3:	Variables
	Chapter	4:	Operators
	Chapter	5:	Pointers
	Chapter	6:	References
	Chapter	7:	Arrays
	Chapter	8:	String
	Chapter	9:	Conditionals
	Chapter	10:	Loops
	Chapter	11:	Functions
	Chapter	12:	Class
	Chapter	13:	Constructor
	Chapter	14:	Inheritance
	Chapter	15:	Overriding
	Chapter	16:	Access	Levels
	Chapter	17:	Static
	Chapter	18:	Enum
	Chapter	19:	Struct	and	Union
	Chapter	20:	Operator	Overloading
	Chapter	21:	Custom	Conversions
	Chapter	22:	Namespaces
	Chapter	23:	Constants
	Chapter	24:	Preprocessor
	Chapter	25:	Exception	Handling



	Chapter	26:	Type	Conversions
	Chapter	27:	Templates
	Chapter	28:	Headers

Index



Contents

About	the	Author
Introduction

	Chapter	1:	Hello	World
Choosing	an	IDE
Creating	a	Project
Adding	a	Source	File
Hello	World
Using	Namespace
IntelliSense

	Chapter	2:	Compile	and	Run
Visual	Studio	Compilation
Console	Compilation
Comments

	Chapter	3:	Variables
Data	Types
Declaring	Variables
Assigning	Variables
Variable	Scope
Integer	Types
Signed	and	Unsigned	Integers
Numeric	Literals
Floating-Point	Types
Literal	Suffixes
Char	Type
Bool	Type



	Chapter	4:	Operators
Arithmetic	Operators
Assignment	Operators
Combined	Assignment	Operators
Increment	and	Decrement	Operators
Comparison	Operators
Logical	Operators
Bitwise	Operators
Operator	Precedence

	Chapter	5:	Pointers
Creating	Pointers
Dereferencing	Pointers
Pointing	to	a	Pointer
Dynamic	Allocation
Null	Pointer

	Chapter	6:	References
Creating	References
References	and	Pointers
Reference	and	Pointer	Guideline
Rvalue	Reference

	Chapter	7:	Arrays
Array	Declaration	and	Allocation
Array	Assignment
Multi-dimensional	Arrays
Dynamic	Arrays
Array	Size

	Chapter	8:	String
String	Combining
Escape	Characters
String	Compare



String	Functions
String	Encodings

	Chapter	9:	Conditionals
If	Statement
Switch	Statement
Ternary	Operator

	Chapter	10:	Loops
While	Loop
Do-while	Loop
For	Loop
Break	and	Continue
Goto	Statement

	Chapter	11:	Functions
Defining	Functions
Calling	Functions
Function	Parameters
Default	Parameter	Values
Function	Overloading
Return	Statement
Forward	Declaration
Pass	by	Value
Pass	by	Reference
Pass	by	Address
Return	by	Value,	Reference	or	Address
Inline	Functions
Auto	and	Decltype
Lambda	Functions

	Chapter	12:	Class
Class	Methods
Inline	Methods



Object	Creation
Accessing	Object	Members
Forward	Declaration

	Chapter	13:	Constructor
Constructor	Overloading
This	keyword
Field	Initialization
Default	Constructor
Destructor
Special	Member	Functions
Object	Initialization
Direct	Initialization
Value	Initialization
Copy	Initialization
New	Initialization
Aggregate	Initialization
Uniform	Initialization

	Chapter	14:	Inheritance
Upcasting
Downcasting
Constructor	Inheritance
Multiple	Inheritance

	Chapter	15:	Overriding
Hiding	Derived	Members
Overriding	Derived	Members
Base	Class	Scoping

	Chapter	16:	Access	Levels
Private	Access
Protected	Access
Public	Access



Access	Level	Guideline
Friend	Classes	and	Functions
Public,	Protected	and	Private	Inheritance

	Chapter	17:	Static
Static	Fields
Static	Methods
Static	Local	Variables
Static	Global	Variables

	Chapter	18:	Enum
Enum	Example
Enum	Constant	Values
Enum	Conversions
Enum	Scope
Strongly	Typed	Enums

	Chapter	19:	Struct	and	Union
Struct
Declarator	List
Union
Anonymous	Union

	Chapter	20:	Operator	Overloading
Operator	Overloading	Example
Binary	Operator	Overloading
Unary	Operator	Overloading
Overloadable	Operators

	Chapter	21:	Custom	Conversions
Implicit	Conversion	Constructor
Explicit	Conversion	Constructor
Conversion	Operators
Explicit	Conversion	Operators

	Chapter	22:	Namespaces



Accessing	Namespace	Members
Nesting	Namespaces
Importing	Namespaces
Namespace	Member	Import
Namespace	Alias
Type	Alias
Including	Namespace	Members

	Chapter	23:	Constants
Constant	Variables
Constant	Pointers
Constant	References
Constant	Objects
Constant	Methods
Constant	Return	Type	and	Parameters
Constant	Fields
Constant	Expressions
Constant	Guideline

	Chapter	24:	Preprocessor
Including	Source	Files
Define
Undefine
Predefined	Macros
Macro	Functions
Conditional	Compilation
Compile	if	Defined
Error
Line
Pragma
Attributes

	Chapter	25:	Exception	Handling



Throwing	Exceptions
Try-catch	statement
Re-throwing	Exceptions
Exception	Specification
Exception	Class

	Chapter	26:	Type	Conversions
Implicit	Conversions
Explicit	Conversions

C++	casts

Static	Cast
Reinterpret	Cast
Const	Cast
C-style	and	New-Style	Casts
Dynamic	Cast
Dynamic	Cast	Examples
Dynamic	or	Static	Cast

	Chapter	27:	Templates
Function	Templates
Calling	Function	Templates
Multiple	Template	Parameters
Class	Templates
Non-Type	Parameters
Default	Types	and	Values
Class	Template	Specialization
Function	Template	Specialization
Variable	Templates
Variadic	Templates

	Chapter	28:	Headers
Why	to	Use	Headers
Using	Headers



What	to	Include	in	Headers
Include	Guards

Index



About	the	Author

Mikael	Olsson	is	a	professional	web	entrepreneur,	programmer,	and	author.	He	works	for	an	R&D
company	in	Finland	where	he	specializes	in	software	development.	In	his	spare	time	he	writes	books	and
creates	websites	that	summarize	various	fields	of	interest.	The	books	he	writes	are	focused	on	teaching
their	subject	in	the	most	efficient	way	possible,	by	explaining	only	what	is	relevant	and	practical	without
any	unnecessary	repetition	or	theory.



Introduction

The	C++	programming	language	is	a	general	purpose	multi-paradigm	language	created	by	Bjarne
Stroustrup.	Development	of	the	language	started	in	1979	under	the	name	“C	with	classes.”	As	the	name
implies,	it	was	an	extension	of	the	C	language	with	the	additional	concept	of	classes.	Stroustrup	wanted	to
create	a	better	C	that	combined	the	power	and	efficiency	of	C	with	high-level	abstractions	to	better
manage	large	development	projects.	The	resulting	language	was	renamed	to	C++	(C-Plus-Plus)	in	1983.
As	a	deliberate	design	feature	C++	maintains	compatibility	with	C,	and	so	most	C	code	can	easily	be
made	to	compile	in	C++.

The	introduction	of	C++	became	a	major	milestone	in	the	software	industry	as	a	widely	successful
language	for	both	system	and	application	development.	System	programming	involves	software	that
controls	the	computer	hardware	directly,	such	as	drivers,	operating	systems,	and	software	for	embedded
microprocessors.	These	areas	remain	the	core	domain	of	the	language,	where	resources	are	scarce	and
come	at	a	premium.	C++	is	also	widely	used	for	writing	applications,	which	run	on	top	of	system
software,	especially	high-performance	software	such	as	games,	databases,	and	resource-demanding
desktop	applications.	Despite	the	introduction	of	many	modern,	high-level	languages	in	this	domain	–	such
as	Java,	C#,	and	Python	–	C++	still	holds	its	own	and	overall	remains	one	of	the	most	popular	and
influential	programming	languages	in	use	today.

There	are	several	reasons	for	the	widespread	adoption	of	C++.	The	foremost	reason	was	the	rare
combination	of	both	high-level	and	low-level	abstractions	from	the	hardware.	The	low-level	efficiency
was	inherited	from	C,	and	the	high-level	constructs	came	in	part	from	a	simulation	language	called
Simula.	This	combination	makes	it	possible	to	write	C++	software	with	the	strength	of	both	approaches.
Another	strong	point	of	the	language	is	that	it	does	not	impose	a	specific	programming	paradigm	on	its
users.	It	is	designed	to	give	the	programmer	a	lot	of	freedom	by	supporting	many	different	programming
styles	or	paradigms,	such	as	procedural,	object-oriented,	and	generic	programming.

C++	is	updated	and	maintained	by	the	C++	standards	committee.	In	1998,	the	first	international
standard	was	published,	known	informally	as	C++98.	The	language	has	since	undergone	three	more
revisions	with	further	extensions,	including	C++03;	C++11;	and	most	recently,	C++14,	which	is	the	latest
ISO	standard	for	the	C++	programming	language	released	in	2014.



CHAPTER	1

Hello	World

Choosing	an	IDE
To	begin	developing	in	C++	you	need	a	text	editor	and	a	C++	compiler.	You	can	get	both	at	the	same	time
by	installing	an	Integrated	Development	Environment	(IDE)	that	includes	support	for	C++.	A	good	choice
is	Microsoft’s	Visual	Studio	Community	Edition,	which	is	a	free	version	of	Visual	Studio	that	is	available
from	Microsoft’s	website.1	This	IDE	has	built-in	support	for	the	C++11	standard	and	also	includes	many
features	of	C++14	as	of	the	2015	version.

Two	other	popular	cross-platform	IDEs	include	NetBeans	and	Eclipse	CDT.	Alternatively,	you	can
develop	using	a	simple	text	editor	–	such	as	Notepad	–	although	this	is	less	convenient	than	using	an	IDE.
If	you	choose	to	do	so,	just	create	an	empty	document	with	a	.cpp	file	extension	and	open	it	in	the	editor	of
your	choice.

Creating	a	Project
After	installing	Visual	Studio,	go	ahead	and	launch	the	program.	You	then	need	to	create	a	project,	which
will	manage	the	C++	source	files	and	other	resources.	Go	to	File	 	New	 	Project	in	Visual	Studio	to
display	the	New	Project	window.	From	there	select	the	Visual	C++	template	type	in	the	left	frame.	Then
select	the	Win32	Console	Application	template	in	the	right	frame.	At	the	bottom	of	the	window	you	can
configure	the	name	and	location	of	the	project.	When	you	are	finished,	click	the	OK	button	and	another
dialog	box	will	appear	titled	Win32	Application	Wizard.	Click	next	and	a	couple	of	application	settings
will	be	displayed.	Leave	the	application	type	as	Console	application	and	check	the	Empty	project
checkbox.	Then	click	Finish	to	let	the	wizard	create	your	empty	project.

Adding	a	Source	File
You	have	now	created	a	C++	project.	In	the	Solution	Explorer	pane	(View	 	Solution	Explorer)	you	can
see	that	the	project	consists	of	three	empty	folders:	Header	Files,	Resource	Files	and	Source	Files.	Right
click	on	the	Source	Files	folder	and	select	Add	 	New	Item.	From	the	Add	New	Item	dialog	box	choose
the	C++	File	(.cpp)	template.

Give	this	source	file	the	name	“MyApp”	and	click	the	Add	button.	An	empty	cpp	file	will	now	be



added	to	your	project	and	also	opened	for	you.

Hello	World
The	first	thing	to	add	to	the	source	file	is	the	main	function.	This	is	the	entry	point	of	the	program,	and	the
code	inside	of	the	curly	brackets	is	what	will	be	executed	when	the	program	runs.	The	brackets,	along
with	their	content,	is	referred	to	as	a	code	block,	or	just	a	block.

int	main()	{}

The	first	application	will	simply	output	the	text	“Hello	World”	to	the	screen.	Before	this	can	be	done
the	iostream	header	needs	to	be	included.	This	header	provides	input	and	output	functionality	for	the
program,	and	is	one	of	the	standard	library	files	that	come	with	all	C++	compilers.	What	the	#include
directive	does	is	effectively	to	replace	the	line	with	everything	in	the	specified	header	before	the	file	is
compiled	into	an	executable.

#include	<iostream>
int	main()	{}

With	iostream	included	you	gain	access	to	several	new	functions.	These	are	all	located	in	the	standard
namespace	called	std,	which	you	can	examine	by	using	a	double	colon,	also	called	the	scope	resolution
operator	(::).	After	typing	this	in	Visual	Studio,	the	IntelliSense	window	will	automatically	open,
displaying	what	the	namespace	contains.	Among	the	members	you	find	the	cout	stream,	which	is	the
standard	output	stream	in	C++	that	will	be	used	to	print	text	to	a	console	window.	It	uses	two	less-than
signs	known	as	the	insertion	operator	(<<)	to	indicate	what	to	output.	The	string	can	then	be	specified,
delimited	by	double	quotes,	and	followed	by	a	semicolon.	The	semicolon	is	used	in	C++	to	mark	the	end
of	all	statements.

#include	<iostream>

int	main()
{
		std::cout	<<	"Hello	World";
}

Using	Namespace
To	make	things	a	bit	easier	you	can	add	a	line	specifying	that	the	code	file	uses	the	standard	namespace.
You	then	no	longer	have	to	prefix	cout	with	the	namespace	(std::)	since	it	is	now	used	by	default.

#include	<iostream>
using	namespace	std;

int	main()
{



cout	<<	"Hello	World";
}

IntelliSense
When	writing	code	in	Visual	Studio,	a	window	called	IntelliSense	will	pop	up	wherever	there	are
multiple	predetermined	alternatives	from	which	to	choose.	This	window	can	be	also	brought	up	manually
at	any	time	by	pressing	Ctrl+Space	to	provide	quick	access	to	any	code	entities	you	are	able	to	use	within
your	program.	This	is	a	very	powerful	feature	that	you	should	learn	to	make	good	use	of.

________________
1http://www.microsoft.com/visualstudio

http://www.microsoft.com/visualstudio


CHAPTER	2

Compile	and	Run

Visual	Studio	Compilation
Continuing	from	the	last	chapter,	the	Hello	World	program	is	now	complete	and	ready	to	be	compiled	and
run.	You	can	do	this	by	going	to	the	Debug	menu	and	clicking	on	Start	Without	Debugging	(Ctrl	+	F5).
Visual	Studio	then	compiles	and	runs	the	application	which	displays	the	text	in	a	console	window.

If	you	select	Start	Debugging	(F5)	from	the	Debug	menu	instead,	the	console	window	displaying	Hello
World	will	close	as	soon	as	the	main	function	is	finished.	To	prevent	this	you	can	add	a	call	to	the
cin::get	function	at	the	end	of	main.	This	function,	belonging	to	the	console	input	stream,	will	read
input	from	the	keyboard	until	the	return	key	is	pressed.

#include	<iostream>
using	namespace	std;
int	main()
{
		cout	<<	"Hello	World";
		cin.get();
}

Console	Compilation
As	an	alternative	to	using	an	IDE	you	can	also	compile	source	files	from	a	terminal	window	as	long	as
you	have	a	C++	compiler.1	For	example,	on	a	Linux	machine	you	can	use	the	GNU	C++	compiler,	which
is	available	on	virtually	all	Unix	systems,	including	Linux	and	the	BSD	family,	as	part	of	the	GNU
Compiler	Collection	(GCC).	This	compiler	can	also	be	installed	on	Windows	by	downloading	MinGW
or	on	Mac	as	part	of	the	Xcode	development	environment.

To	use	the	GNU	compiler	you	type	its	name	"g++"	in	a	terminal	window	and	give	it	the	input	and
output	filenames	as	arguments.	It	then	produces	an	executable	file,	which	when	run	gives	the	same	result
as	one	compiled	under	Windows	in	Visual	Studio.

g++	MyApp.cpp	-o	MyApp.exe
./MyApp.exe
Hello	World



Comments
Comments	are	used	to	insert	notes	into	the	source	code.	They	have	no	effect	on	the	end	program	and	are
meant	only	to	enhance	the	readability	of	the	code,	both	for	you	and	for	other	developers.	C++	has	two
kinds	of	comment	notations	-	single-line	and	multi-line.	The	single-line	comment	starts	with	//	and	extends
to	the	end	of	the	line.

//	single-line	comment

The	multi-line	comment	may	span	more	than	one	line	and	is	delimited	by	/*	and	*/.

/*	multi-line	comment	*/

Keep	in	mind	that	whitespace	characters	–	such	as	comments,	spaces,	and	tabs	–	are	generally	ignored
by	the	compiler.	This	allows	you	a	lot	of	freedom	in	how	to	format	your	code.

________________
1http://www.stroustrup.com/compilers.html

http://www.stroustrup.com/compilers.html


CHAPTER	3

Variables

Variables	are	used	for	storing	data	during	program	execution.

Data	Types
Depending	on	what	data	you	need	to	store	there	are	several	kinds	of	built-in	data	types.	These	are	often
called	fundamental	data	types	or	primitives.	The	integer	(whole	number)	types	are	short,	int,	long,
and	long	long.	The	float,	double	and	long	double	types	are	floating-point	(real	number)
types.	The	char	type	holds	a	single	character	and	the	bool	type	contains	either	a	true	or	false	value.

Data	Type Size	(byte) Description

char 1 Integer	or	character

short 2 	

int 4 Integer

long 4	or	8 	

long	long 8 	

float 4 	

double 8 Floating-point	number

long	double 8	or	16 	

bool 1 Boolean	value

In	C++,	the	exact	size	and	range	of	data	types	are	not	fixed.	Instead	they	are	dependent	on	the	system
for	which	the	program	is	compiled.	The	sizes	shown	in	the	table	above	are	those	found	on	most	32-bit
systems	and	are	given	in	C++	bytes.	A	byte	in	C++	is	the	minimum	addressable	unit	of	memory,	which	is
guaranteed	to	be	at	least	8	bits,	but	might	also	be	16	or	32	bits	depending	on	the	system.	By	definition,	a
char	in	C++	is	1	byte	in	size.	Furthermore,	the	int	type	will	have	the	same	size	as	the	processor’s	word
size,	so	for	a	32-bit	system	the	integers	will	be	32	bits	in	size.	Each	integer	type	in	the	table	must	also	be
at	least	as	large	as	the	one	preceding	it.	The	same	applies	to	floating-point	types	where	each	one	must
provide	at	least	as	much	precision	as	the	preceding	one.



Declaring	Variables
To	declare	(create)	a	variable	you	start	with	the	data	type	you	want	the	variable	to	hold	followed	by	an
identifier,	which	is	the	name	of	the	variable.	The	name	can	consist	of	letters,	numbers	and	underscores,
but	it	cannot	start	with	a	number.	It	also	cannot	contain	spaces	or	special	characters	and	must	not	be	a
reserved	keyword.

int	myInt;					//	correct	int	_myInt32;	//	correct
int	32Int;					//	incorrect	(starts	with	number)
int	Int	32;				//	incorrect	(contains	space)
int	Int@32;				//	incorrect	(contains	special	character)
int	new;							//	incorrect	(reserved	keyword)

Assigning	Variables
To	assign	a	value	to	a	declared	variable	the	equal	sign	is	used,	which	is	called	the	assignment	operator
(=).

myInt	=	50;

The	declaration	and	assignment	can	be	combined	into	a	single	statement.	When	a	variable	is	assigned
a	value	it	then	becomes	defined.

int	myInt	=	50;

At	the	same	time	that	the	variable	is	declared	there	is	an	alternative	way	of	assigning,	or	initializing,
it	by	enclosing	the	value	in	parentheses.	This	is	known	as	constructor	initialization	and	is	equivalent	to
the	statement	above.

int	myAlt	(50);

If	you	need	to	create	more	than	one	variable	of	the	same	type	there	is	a	shorthand	way	of	doing	it	using
the	comma	operator	(,).

int	x	=	1,	y	=	2,	z;

Once	a	variable	has	been	defined	(declared	and	assigned),	you	can	use	it	by	simply	referencing	the
variable’s	name:	for	example,	to	print	it.

std::cout	<<	x	<<	y;	//	"12"

Variable	Scope
The	scope	of	a	variable	refers	to	the	region	of	code	within	which	it	is	possible	to	use	that	variable.
Variables	in	C++	may	be	declared	both	globally	and	locally.	A	global	variable	is	declared	outside	of	any



code	blocks	and	is	accessible	from	anywhere	after	it	has	been	declared.	A	local	variable,	on	the	other
hand,	is	declared	inside	of	a	function	and	will	only	be	accessible	within	that	function	after	it	has	been
declared.	The	lifetime	of	a	local	variable	is	also	limited.	A	global	variable	will	remain	allocated	for	the
duration	of	the	program,	while	a	local	variable	will	be	destroyed	when	its	function	has	finished	executing.

int	globalVar;																//	global	variable
int	main()	{	int	localVar;	}		//	local	variable

The	default	values	for	these	variables	are	also	different.	Global	variables	are	automatically
initialized	to	zero	by	the	compiler,	whereas	local	variables	are	not	initialized	at	all.	Uninitialized	local
variables	will	therefore	contain	whatever	garbage	is	already	present	in	that	memory	location.

int	globalVar;	//	initialized	to	0

int	main()
{
		int	localVar;	//	uninitialized
}

Using	uninitialized	variables	is	a	common	programming	mistake	that	can	produce	unexpected	results.
It	is	therefore	a	good	idea	to	always	give	your	local	variables	an	initial	value	when	they	are	declared.

int	main()
{
		int	localVar	=	0;	//	initialized	to	0
}

Integer	Types
There	are	four	integer	types	you	can	use	depending	on	how	large	a	number	you	need	the	variable	to	hold.

char		myChar		=	0;	//	-128			to	+127
short	myShort	=	0;	//	-32768	to	+32767
int			myInt			=	0;	//	-2^31		to	+2^31-1
long		myLong		=	0;	//	-2^31		to	+2^31-1

C++11	standardized	a	fifth	integer	type,	long	long,	which	is	guaranteed	to	be	at	least	64-bits	large.
Many	compilers	started	to	support	this	data	type	well	before	the	C++11	standard	was	complete,	including
the	Microsoft	C++	compiler.

long	long	myL2	=	0;	//	-2^63	to	+2^63-1

To	determine	the	exact	size	of	a	data	type	you	can	use	the	sizeof	operator.	This	operator	returns	the
number	of	bytes	that	a	data	type	occupies	in	the	system	you	are	compiling	for.

std::cout	<<	sizeof(myChar)		//	1	byte	(per	definition)
										<<	sizeof(myShort)	//	2
										<<	sizeof(myInt)			//	4



										<<	sizeof(myLong)		//	4
										<<	sizeof(myL2);			//	8

Fixed-sized	integer	types	were	added	in	C++11.	These	types	belong	to	the	std	namespace	and	can	be
included	through	the	cstdint	standard	library	header.

#include	<cstdint>
using	namespace	std;
int8_t		myInt8		=	0;	//	8	bits
int16_t	myInt16	=	0;	//	16	bits
int32_t	myInt32	=	0;	//	32	bits
int64_t	myInt64	=	0;	//	64	bits

Signed	and	Unsigned	Integers
By	default,	all	the	number	types	in	Microsoft	C++	are	signed	and	may	therefore	contain	both	positive	and
negative	values.	To	explicitly	declare	a	variable	as	signed	the	signed	keyword	can	be	used.

signed	char		myChar		=	0;	//	-128	to	+127
signed	short	myShort	=	0;	//	-32768	to	+32767
signed	int			myInt			=	0;	//	-2^31		to	+2^31-1
signed	long		myLong		=	0;	//	-2^31		to	+2^31-1
signed	long	long	myL2=	0;	//	-2^63		to	+2^63-1

If	you	only	need	to	store	positive	values	you	can	declare	integer	types	as	unsigned	to	double	their
upper	range.

unsigned	char		myChar		=	0;	//	0	to	255
unsigned	short	myShort	=	0;	//	0	to	65535
unsigned	int			myInt			=	0;	//	0	to	2^32-1
unsigned	long		myLong		=	0;	//	0	to	2^32-1
unsigned	long	long	myL2=	0;	//	0	to	2^64-1

The	signed	and	unsigned	keywords	may	be	used	as	standalone	types,	which	are	short	for
signed	int	and	unsigned	int.

unsigned	uInt;	//	unsigned	int
signed	sInt;			//	signed	int

Similarly,	the	short	and	long	data	types	are	abbreviations	of	short	int	and	long	int.

short	myShort;	//	short	int
long	myLong;			//	long	int

Numeric	Literals



In	addition	to	standard	decimal	notation,	integers	can	also	be	assigned	by	using	octal	or	hexadecimal
notation.	Octal	literals	use	the	prefix	“0”	and	hexadecimal	literals	start	with	“0x.”	Both	numbers	below
represent	the	same	number,	which	in	decimal	notation	is	50.

int	myOct	=	062;		//	octal	notation	(0)
int	myHex	=	0x32;	//	hexadecimal	notation	(0x)

As	of	C++14	there	is	a	binary	notation,	which	uses	“0b”	as	its	prefix.	This	version	of	the	standard
also	added	a	digit	separator	(')	which	can	make	it	easier	to	read	long	numbers.	The	binary	number	below
represents	50	in	decimal	notation.

int	myBin	=	0b0011'0010;	//	binary	notation	(0b)

Floating-Point	Types
The	floating-point	types	can	store	real	numbers	with	different	levels	of	precision.

float	myFloat;												//	~7	digits
double	myDouble;										//	~15	digits
long	double	myLongDouble;	//	typically	same	as	double

The	precision	shown	above	refers	to	the	total	number	of	digits	in	the	number.	A	float	can	accurately
represent	about	7	digits,	whereas	a	double	can	handle	around	15	of	them.	Trying	to	assign	more	than	7
digits	to	a	float	means	that	the	least	significant	digits	will	get	rounded	off.

myFloat	=	12345.678;	//	rounded	to	12345.68

Floats	and	doubles	can	be	assigned	by	using	either	decimal	or	exponential	notation.	Exponential
(scientific)	notation	is	used	by	adding	E	or	e	followed	by	the	decimal	exponent.

myFloat	=	3e2;	//	3*10^2	=	300

Literal	Suffixes
An	integer	literal	(constant)	is	normally	treated	as	an	int	by	the	compiler,	or	a	larger	type	if	needed	to	fit
the	value.	Suffixes	can	be	added	to	the	literal	to	change	this	evaluation.	With	integers	the	suffix	can	be	a
combination	of	U	and	L,	for	unsigned	and	long	respectively.	C++11	also	added	the	LL	suffix	for	the	long
long	type.	The	order	and	casing	of	these	letters	do	not	matter.

int	i	=	10;
long	l	=	10L;
unsigned	long	ul	=	10UL;

A	floating-point	literal	is	treated	as	a	double	unless	otherwise	specified.	The	F	or	f	suffix	can	be	used
to	specify	that	a	literal	is	of	the	float	type	instead.	Likewise,	the	L	or	l	suffix	specifies	the	long	double
type.



float	f	=	1.23F;
double	d	=	1.23;
long	double	ld	=	1.23L;

The	compiler	implicitly	converts	literals	to	whichever	type	is	necessary,	so	this	type	distinction	for
literals	is	usually	not	necessary.	If	the	F	suffix	is	left	out	when	assigning	to	a	float	variable,	the	compiler
may	give	a	warning	since	the	conversion	from	double	to	float	involves	a	loss	of	precision.

Char	Type
The	char	type	is	commonly	used	to	represent	ASCII	characters.	Such	character	constants	are	enclosed	in
single	quotes	and	can	be	stored	in	a	variable	of	char	type.

char	c	=	'x';	//	assigns	120	(ASCII	for	'x')

The	conversion	between	the	number	stored	in	the	char	and	the	character	shown	when	the	char	is
printed	occurs	automatically.

std::cout	<<	c;	//	prints	'x'

For	another	integer	type	to	be	displayed	as	a	character	it	has	to	be	explicitly	cast	to	char.	An	explicit
cast	is	performed	by	placing	the	desired	data	type	in	parentheses	before	the	variable	or	constant	that	is	to
be	converted.

int	i	=	c;												//	assigns	120
std::cout	<<	i;							//	prints	120
std::cout	<<	(char)i;	//	prints	'x'

Bool	Type
The	bool	type	can	store	a	Boolean	value,	which	is	a	value	that	can	only	be	either	true	or	false.	These
values	are	specified	with	the	true	and	false	keywords.

bool	b	=	false;	//	true	or	false	value



CHAPTER	4

Operators

A	numerical	operator	is	a	symbol	that	makes	the	program	perform	a	specific	mathematical	or	logical
manipulation.	The	numerical	operators	in	C++	can	be	grouped	into	five	types:	arithmetic,	assignment,
comparison,	logical	and	bitwise	operators.

Arithmetic	Operators
There	are	the	four	basic	arithmetic	operators,	as	well	as	the	modulus	operator	(%)	which	is	used	to	obtain
the	division	remainder.

int	x	=	3	+	2;	//	5	//	addition
				x	=	3	-	2;	//	1	//	subtraction
				x	=	3	*	2;	//	6	//	multiplication
				x	=	3	/	2;	//	1	//	division
				x	=	3	%	2;	//	1	//	modulus	(division	remainder)

Notice	that	the	division	sign	gives	an	incorrect	result.	This	is	because	it	operates	on	two	integer
values	and	will	therefore	truncate	the	result	and	return	an	integer.	To	get	the	correct	value,	one	of	the
numbers	must	be	explicitly	converted	to	a	floating-point	number.

float	f	=	3	/	(float)2;	//	1.5

Assignment	Operators
The	second	group	is	the	assignment	operators.	Most	importantly,	the	assignment	operator	(=)	itself,	which
assigns	a	value	to	a	variable.

Combined	Assignment	Operators
A	common	use	of	the	assignment	and	arithmetic	operators	is	to	operate	on	a	variable	and	then	to	save	the
result	back	into	that	same	variable.	These	operations	can	be	shortened	with	the	combined	assignment



operators.

x	+=	5;	//	x	=	x+5;
x	-=	5;	//	x	=	x-5;
x	*=	5;	//	x	=	x*5;
x	/=	5;	//	x	=	x/5;
x	%=	5;	//	x	=	x%5;

Increment	and	Decrement	Operators
Another	common	operation	is	to	increment	or	decrement	a	variable	by	one.	This	can	be	simplified	with
the	increment	(++)	and	decrement	(--)	operators.

x++;	//	x	=	x+1;
x--;	//	x	=	x-1;

Both	of	these	can	be	used	either	before	or	after	a	variable.

x++;	//	post-increment
x--;	//	post-decrement
++x;	//	pre-increment
--x;	//	pre-decrement

The	result	on	the	variable	is	the	same	whichever	is	used.	The	difference	is	that	the	post-operator
returns	the	original	value	before	it	changes	the	variable,	while	the	pre-operator	changes	the	variable	first
and	then	returns	the	value.

int	x,	y;
x	=	5;	y	=	x++;	//	y=5,	x=6
x	=	5;	y	=	++x;	//	y=6,	x=6

Comparison	Operators
The	comparison	operators	compare	two	values	and	return	either	true	or	false.	They	are	mainly	used	to
specify	conditions,	which	are	expressions	that	evaluate	to	either	true	or	false.

bool	b	=	(2	==	3);	//	false	//	equal	to
					b	=	(2	!=	3);	//	true		//	not	equal	to
					b	=	(2	>	3);		//	false	//	greater	than
					b	=	(2	<	3);		//	true		//	less	than
					b	=	(2	>=	3);	//	false	//	greater	than	or	equal	to
					b	=	(2	<=	3);	//	true		//	less	than	or	equal	to

Logical	Operators



The	logical	operators	are	often	used	together	with	the	comparison	operators.	Logical	and	(&&)	evaluates
to	true	if	both	the	left	and	right	sides	are	true,	and	logical	or	(||)	is	true	if	either	the	left	or	right	side	is
true.	For	inverting	a	Boolean	result	there	is	the	logical	not	(!)	operator.	Note	that	for	both	“logical	and”
and	“logical	or”	the	right-hand	side	will	not	be	evaluated	if	the	result	is	already	determined	by	the	left-
hand	side.

bool	b	=	(true	&&	false);	//	false	//	logical	and
					b	=	(true	||	false);	//	true		//	logical	or
					b	=	!(true);									//	false	//	logical	not

Bitwise	Operators
The	bitwise	operators	can	manipulate	individual	bits	inside	an	integer.	For	example,	the	“bitwise	or”
operator	(|)	makes	the	resulting	bit	1	if	the	bits	are	set	on	either	side	of	the	operator.

int	x	=	5	&	4;		//	101	&	100	=	100	(4)		//	and
x	=	5	|	4;						//	101	|	100	=	101	(5)		//	or
x	=	5	^	4;						//	101	^	100	=	001	(1)		//	xor
x	=	4	<<	1;					//	100	<<	1		=1000	(8)		//	left	shift
x	=	4	>>	1;					//	100	>>	1		=		10	(2)		//	right	shift
x	=	~4;									//	~00000100	=	11111011	(-5)	//	invert

The	bitwise	operators	also	have	combined	assignment	operators.

int	x=5;	x	&=	4;	//	101	&	100	=	100	(4)	//	and
				x=5;	x	|=	4;	//	101	|	100	=	101	(5)	//	or
				x=5;	x	^=	4;	//	101	^	100	=	001	(1)	//	xor
				x=5;	x	<<=	1;//	101	<<	1		=1010	(10)//	left	shift
				x=5;	x	>>=	1;//	101	>>	1		=		10	(2)	//	right	shift

Operator	Precedence
In	C++,	expressions	are	normally	evaluated	from	left	to	right.	However,	when	an	expression	contains
multiple	operators,	the	precedence	of	those	operators	decides	the	order	in	which	they	are	evaluated.	The
order	of	precedence	can	be	seen	in	the	following	table,	where	the	operator	with	the	lowest	precedence
will	be	evaluated	first.	This	same	basic	order	also	applies	to	many	other	languages,	such	as	C,	Java,	and
C#.



To	give	an	example,	logical	and	(&&)	binds	weaker	than	relational	operators,	which	in	turn	bind
weaker	than	arithmetic	operators.

bool	b	=	2+3	>	1*4	&&	5/5	==	1;	//	true

To	make	things	clearer,	parentheses	can	be	used	to	specify	which	part	of	the	expression	will	be
evaluated	first.	As	seen	in	the	table,	parentheses	are	among	the	operators	with	lowest	precedence.

bool	b	=	((2+3)	>	(1*4))	&&	((5/5)	==	1);	//	true



CHAPTER	5

Pointers

A	pointer	is	a	variable	that	contains	the	memory	address	of	another	variable,	called	the	pointee.

Creating	Pointers
Pointers	are	declared	as	any	other	variable,	except	that	an	asterisk	(*)	is	placed	between	the	data	type
and	the	pointer’s	name.	The	data	type	used	determines	what	type	of	memory	it	will	point	to.

int*	p;	//	pointer	to	an	integer
int	*q;	//	alternative	syntax

A	pointer	can	point	to	a	variable	of	the	same	type	by	prefixing	that	variable	with	an	ampersand,	in
order	to	retrieve	its	address	and	assign	it	to	the	pointer.	The	ampersand	is	known	as	the	address-of
operator	(&).

int	i	=	10;
p	=	&i;	//	address	of	i	assigned	to	p

Dereferencing	Pointers
The	pointer	above	now	contains	the	memory	address	to	the	integer	variable.	Referencing	the	pointer	will
retrieve	this	address.	To	obtain	the	actual	value	stored	in	that	address	the	pointer	must	be	prefixed	with	an
asterisk,	known	as	the	dereference	operator	(*).

std::cout	<<	"Address	of	i:	"	<<		p;	//	ex.	0017FF1C
std::cout	<<	"Value	of	i:	"			<<	*p;	//	10

When	writing	to	the	pointer,	the	same	method	is	used.	Without	the	asterisk	the	pointer	is	assigned	a
new	memory	address,	and	with	the	asterisk	the	actual	value	of	the	variable	pointed	to	will	be	updated.

p	=	&i;		//	address	of	i	assigned	to	p
*p	=	20;	//	value	of	i	changed	through	p

If	a	second	pointer	is	created	and	assigned	the	value	of	the	first	pointer	it	will	then	get	a	copy	of	the



first	pointer’s	memory	address.

int*	p2	=	p;	//	copy	of	p	(copies	address	stored	in	p)

Pointing	to	a	Pointer
Sometimes	it	can	be	useful	to	have	a	pointer	that	can	point	to	another	pointer.	This	is	done	by	declaring	a
pointer	with	two	asterisks	and	then	assigning	it	the	address	of	the	pointer	that	it	will	reference.	This	way
when	the	address	stored	in	the	first	pointer	changes,	the	second	pointer	can	follow	that	change.

int**	r	=	&p;	//	pointer	to	p	(assigns	address	of	p)

Referencing	the	second	pointer	now	gives	the	address	of	the	first	pointer.	Dereferencing	the	second
pointer	gives	the	address	of	the	variable	and	dereferencing	it	again	gives	the	value	of	the	variable.

std::cout	<<	"Address	of	p:	"	<<	r;			//	ex.	0017FF28	std::cout	<<	
"Address	of	i:	"	<<	*r;		//	ex.	0017FF1C	std::cout	<<	"Value	of	i:	
"			<<	**r;	//	20

Dynamic	Allocation
One	of	the	main	usages	of	pointers	is	to	allocate	memory	during	run-time	–	so	called	dynamic	allocation.
In	the	examples	so	far,	the	programs	have	only	had	as	much	memory	available	as	has	been	declared	for
the	variables	at	compile-time.	This	is	referred	to	as	static	allocation.	If	any	additional	memory	is	needed
at	run-time,	the	new	operator	has	to	be	used.	This	operator	allows	for	dynamic	allocation	of	memory,
which	can	only	be	accessed	through	pointers.	The	new	operator	takes	either	a	primitive	data	type	or	an
object	as	its	argument,	and	it	will	return	a	pointer	to	the	allocated	memory.

int*	d	=	new	int;	//	dynamic	allocation

An	important	thing	to	know	about	dynamic	allocation	is	that	the	allocated	memory	will	not	be	released
like	the	rest	of	the	program	memory	when	it	is	no	longer	required.	Instead,	it	has	to	be	manually	released
with	the	delete	keyword.	This	allows	you	to	control	the	lifetime	of	a	dynamically	allocated	object,	but
it	also	means	that	you	are	responsible	for	deleting	it	once	it	is	no	longer	needed.	Forgetting	to	delete
memory	that	has	been	allocated	with	the	new	keyword	will	give	the	program	memory	leaks,	because	that
memory	will	stay	allocated	until	the	program	shuts	down.

delete	d;	//	release	allocated	memory

Null	Pointer
A	pointer	should	be	set	to	zero	when	it	is	not	assigned	to	a	valid	address.	Such	a	pointer	is	called	a	null
pointer.	Doing	this	will	allow	you	to	check	whether	the	pointer	can	be	safely	dereferenced,	because	a
valid	pointer	will	never	be	zero.



For	example,	although	the	previous	pointer	has	had	its	memory	released,	its	stored	address	still	points
to	a	now	inaccessible	memory	location.	Trying	to	dereference	such	a	pointer	will	cause	a	run-time	error.
To	help	prevent	this,	the	deleted	pointer	should	be	set	to	zero.	Note	that	trying	to	delete	an	already	deleted
null	pointer	is	safe.	However,	if	the	pointer	has	not	been	set	to	zero,	attempting	to	delete	it	again	will
cause	memory	corruption	and	possibly	crash	the	program.

delete	d;
d	=	0;	//	mark	as	null	pointer
delete	d;	//	safe

Since	you	may	not	always	know	whether	a	pointer	is	valid,	a	check	should	be	made	whenever	a
pointer	is	dereferenced	to	make	sure	that	it	is	not	zero.

if	(d	!=	0)	{	*d	=	10;	}	//	check	for	null	pointer

The	constant	NULL	can	also	be	used	to	signify	a	null	pointer.	NULL	is	typically	defined	as	zero	in
C++,	making	the	choice	of	which	to	use	a	matter	of	preference.	The	constant	is	defined	in	the	stdio.h
standard	library	file,	which	is	included	through	iostream.

#include	<iostream>
//	...
if	(d	!=	NULL)	{	*d	=	10;	}	//	check	for	null	pointer

C++11	introduced	the	keyword	nullptr	to	distinguish	between	0	and	a	null	pointer.	The	advantage	of
using	nullptr	is	that	unlike	NULL,	it	will	not	implicitly	convert	to	an	integer	type.	The	literal	has	its	own
type,	nullptr_t,	which	can	only	be	implicitly	converted	to	pointer	and	bool	types.

int*	p	=	nullptr;	//	ok
int		i	=	nullptr;	//	error
bool	b	=	nullptr;	//	ok	(false)

nullptr_t	mynull	=	nullptr;	//	ok



CHAPTER	6

References

References	allow	a	programmer	to	create	a	new	name	for	a	variable.	They	provide	a	simpler,	safer	and
less	powerful	alternative	to	pointers.

Creating	References
A	reference	is	declared	in	the	same	way	as	a	regular	variable,	except	that	an	ampersand	is	appended
between	the	data	type	and	the	variable	name.	Furthermore,	at	the	same	time	as	the	reference	is	declared	it
must	be	initialized	with	a	variable	of	the	specified	type.

int	x	=	5;
int&	r	=	x;	//	r	is	an	alias	to	x
int	&s	=	x;	//	alternative	syntax

Once	the	reference	has	been	assigned,	or	seated,	it	can	never	be	reseated	to	another	variable.	The
reference	has	in	effect	become	an	alias	for	the	variable	and	can	be	used	exactly	as	though	it	was	the
original	variable.

r	=	10;	//	assigns	value	to	r/x

References	and	Pointers
A	reference	is	similar	to	a	pointer	that	always	points	to	the	same	thing.	However,	while	a	pointer	is	a
variable	that	points	to	another	variable,	a	reference	is	only	an	alias	and	does	not	have	an	address	of	its
own.

int*	ptr	=	&x;	//	ptr	assigned	address	to	x

Reference	and	Pointer	Guideline
Generally,	whenever	a	pointer	does	not	need	to	be	reassigned	a	reference	should	be	used	instead,	because
a	reference	is	safer	than	a	pointer	since	it	must	always	refer	to	a	variable.	This	means	that	there	is	no	need



to	check	if	a	reference	refers	to	null,	as	should	be	done	with	pointers.	It	is	possible	for	a	reference	to	be
invalid	–	for	example	when	a	reference	refers	to	a	null	pointer	–	but	it	is	much	easier	to	avoid	this	kind	of
mistake	with	references	than	it	is	with	pointers.

int*	ptr	=	0;	//	null	pointer
int&	ref	=	*ptr;
ref	=	10;					//	segmentation	fault	(invalid	memory	access)

Rvalue	Reference
With	C++11	came	a	new	kind	of	reference	called	an	rvalue	reference.	This	reference	can	bind	and	modify
temporary	objects	(rvalues),	such	as	literal	values	and	function	return	values.	An	rvalue	reference	is
formed	by	placing	two	ampersands	after	the	type.

int&&	ref	=	1	+	2;	//	rvalue	reference

The	rvalue	reference	extends	the	lifetime	of	the	temporary	object	and	allows	it	to	be	used	like	an
ordinary	variable.

ref	+=	3;
cout	<<	ref;	//	"6"

The	benefit	of	rvalue	references	is	that	they	allow	unnecessary	copying	to	be	avoided	when	dealing
with	temporary	objects.	This	offers	greater	performance,	particularly	when	handling	larger	types,	such	as
strings	and	objects.



CHAPTER	7

Arrays

An	array	is	a	data	structure	used	for	storing	a	collection	of	values	that	all	have	the	same	data	type.

Array	Declaration	and	Allocation
To	declare	an	array	you	start	as	you	would	a	normal	variable	declaration,	but	in	addition	append	a	set	of
square	brackets	following	the	array’s	name.	The	brackets	contain	the	number	of	elements	in	the	array.	The
default	values	for	these	elements	are	the	same	as	for	variables	–	elements	in	global	arrays	are	initialized
to	their	default	values	and	elements	in	local	arrays	remain	uninitialized.

int	myArray[3];	//	integer	array	with	3	elements

Array	Assignment
To	assign	values	to	the	elements	you	can	reference	them	one	at	a	time	by	placing	the	element’s	index
inside	the	square	brackets,	starting	with	zero.

myArray[0]	=	1;
myArray[1]	=	2;
myArray[2]	=	3;

Alternatively,	you	can	assign	values	at	the	same	time	as	the	array	is	declared	by	enclosing	them	in
curly	brackets.	The	specified	array	length	may	optionally	be	left	out	to	let	the	array	size	be	decided	by	the
number	of	values	assigned.

int	myArray[3]	=	{	1,	2,	3	};
int	myArray[]	=	{	1,	2,	3	};

Once	the	array	elements	are	initialized	they	can	be	accessed	by	referencing	the	index	of	the	element
you	want.

std::cout	<<	myArray[0];	//	1



Multi-dimensional	Arrays
Arrays	can	be	made	multi-dimensional	by	adding	more	sets	of	square	brackets.	As	with	single-
dimensional	arrays,	they	can	either	be	filled	in	one	at	a	time	or	all	at	once	during	the	declaration.

int	myArray[2][2]	=	{	{	0,	1	},	{	2,	3	}	};
myArray[0][0]	=	0;
myArray[0][1]	=	1;

The	extra	curly	brackets	are	optional,	but	including	them	is	good	practice	since	it	makes	the	code
easier	to	understand.

int	mArray[2][2]	=	{	0,	1,	2,	3	};	//	alternative

Dynamic	Arrays
Because	the	arrays	above	are	made	up	of	static	(non-dynamic)	memory,	their	size	must	be	determined
before	execution.	Therefore,	the	size	needs	to	be	a	constant	value.	In	order	to	create	an	array	with	a	size
that	is	not	known	until	run-time	you	need	to	use	dynamic	memory,	which	is	allocated	with	the	new
keyword	and	must	be	assigned	to	a	pointer	or	reference.

int*	p	=	new	int[3];	//	dynamically	allocated	array

An	array	in	C++	behaves	as	a	constant	pointer	to	the	first	element	in	the	array.	The	referencing	of
array	elements	can	therefore	be	made	just	as	well	with	pointer	arithmetic.	By	incrementing	the	pointer	by
one	you	move	to	the	next	element	in	the	array,	because	changes	to	a	pointer’s	address	are	implicitly
multiplied	by	the	size	of	the	pointer’s	data	type.

*(p+1)	=	10;	//	p[1]	=	10;

Array	Size
Just	as	with	any	other	pointer,	it	is	possible	to	exceed	the	valid	range	of	an	array	and	thereby	rewrite
some	adjacent	memory.	This	should	always	be	avoided	since	it	can	lead	to	unexpected	results	or	crash	the
program.

int	myArray[2]	=	{	1,	2	};
myArray[2]	=	3;	//	out	of	bounds	error

To	determine	the	length	of	a	regular	(statically	allocated)	array,	the	sizeof	operator	can	be	used.

int	length	=	sizeof(myArray)	/	sizeof(int);	//	2

This	method	cannot	be	used	for	dynamically	allocated	arrays.	The	only	way	to	determine	the	size	of
such	an	array	is	through	the	variable	used	in	its	allocation.



int	size	=	3;
int*	p	=	new	int[size];	//	dynamically	allocated	array

When	you	are	done	using	a	dynamic	array	you	must	remember	to	delete	it.	This	is	done	using	the
delete	keyword	with	an	appended	set	of	square	brackets.

delete[]	p;	//	release	allocated	array



CHAPTER	8

String

The	stringclass	in	C++	is	used	to	store	string	values.	Before	a	string	can	be	declared	the	string	header
must	first	be	included.	The	standard	namespace	can	also	be	included	since	the	string	class	is	part	of	that
namespace.

#include	<string>
using	namespace	std;

Strings	can	then	be	declared	like	any	other	data	type.	To	assign	a	string	value	to	a	string	variable,
delimit	the	literals	by	double	quotes	and	assign	them	to	the	variable.	The	initial	value	can	also	be
assigned	through	constructor	initialization	at	the	same	time	as	the	string	is	declared.

string	h	=	"Hello";
string	w	("	World");

String	Combining
The	plus	sign,	known	as	the	concatenation	operator	(+)	in	this	context,	is	used	to	combine	two	strings.	It
has	an	accompanying	assignment	operator	(+=)	to	append	a	string.

string	a	=	h	+	w;	//	Hello	World
h	+=	w;											//	Hello	World

The	concatenation	operator	will	work	as	long	as	one	of	the	strings	it	operates	on	is	a	C++	string.

string	b	=	"Hello"	+	w;	//	ok

It	is	not	able	to	concatenate	two	C	strings	or	two	string	literals.	To	do	this,	one	of	the	values	has	to	be
explicitly	cast	to	a	string.

char	*c	=	"World";														//	C-style	string
b	=	(string)c	+	c;														//	ok
b	=	"Hello"	+	(string)"	World";	//	ok

String	literals	will	also	be	implicitly	combined	if	the	plus	sign	is	left	out.



b	=	"Hel"	"lo";	//	ok

Escape	Characters
A	string	literal	can	be	extended	to	more	than	one	line	by	putting	a	backslash	sign	(\)	at	the	end	of	each
line.

string	s	=	"Hello	\	World";

To	add	a	new	line	to	the	string	itself,	the	escape	character	“\n”	is	used.

s	=	"Hello	\n	World";

This	backslash	notation	is	used	to	write	special	characters,	such	as	tab	or	form	feed	characters.

Additionally,	any	one	of	the	128	ASCII	characters	can	be	expressed	by	writing	a	backslash	followed
by	the	ASCII	code	for	that	character,	represented	as	either	an	octal	or	hexadecimal	number.

"\07F"				//	octal	character	(0-07F)
"\0x177"	//	hexadecimal	character	(0-0x177)

As	of	C++11,	escape	characters	can	be	ignored	by	adding	a	“R”	before	the	string	along	with	a	set	of
parentheses	within	the	double	quotes.	This	is	called	a	raw	string	and	can	be	used,	for	instance,	to	make
file	paths	more	readable.

string	escaped	=	"c:\\Windows\\System32\\cmd.exe";
string	raw	=	R"(c:\Windows\System32\cmd.exe)";

String	Compare
The	way	to	compare	two	strings	is	simply	by	using	the	equal	to	operator	(==).	This	will	not	compare	the
memory	addresses	of	the	strings,	as	is	the	case	of	C	strings.

string	s	=	"Hello";
bool	b	=	(s	==	"Hello");	//	true



String	Functions
The	string	class	has	a	lot	of	functions.	Among	the	most	useful	ones	are	the	length	and	size
functions,	which	both	return	the	number	of	characters	in	the	string.	Their	return	type	is	size_t,	which	is
an	unsigned	data	type	used	to	hold	the	size	of	an	object.	This	is	simply	an	alias	for	one	of	the	built-in	data
types,	but	which	one	it	is	defined	as	varies	between	compilers.	The	alias	is	defined	in	the	crtdefs.h
standard	library	file,	which	is	included	through	iostream.

size_t	i	=	s.length();	//	5,	length	of	string
i	=	s.size();									//	5,	same	as	length()

Another	useful	function	is	substr	(substring),	which	requires	two	parameters.	The	second
parameter	is	the	number	of	characters	to	return	starting	from	the	position	specified	in	the	first	parameter.

s.substr(0,2);	//	"He"

A	single	character	can	also	be	extracted	or	changed	by	using	the	array	notation.

char	c	=	s[0];	//	'H'

String	Encodings
A	string	enclosed	within	double	quotes	produces	an	array	of	the	char	type,	which	can	only	hold	256
unique	symbols.	To	support	larger	character	sets	the	wide	character	type	wchar_t	is	provided.	String
literals	of	this	type	are	created	by	prepending	the	string	with	a	capital	“L”.	The	resulting	array	can	be
stored	using	the	wstring	class.	This	class	works	like	the	basic	string	class	but	uses	the	wchar_t	character
type	instead.

wstring	s1	=	L"Hello";
wchar_t	*s2	=	L"Hello";

Fixed-size	character	types	were	introduced	in	C++11,	namely	char16_t	and	char32_t.	These	types
provide	definite	representations	of	the	UTF-16	and	UTF-32	encodings	respectively.	UTF-16	string
literals	are	prefixed	with	“u”	and	can	be	stored	using	the	u16string	class.	Likewise,	UTF-32	string	literals
are	prefixed	with	“U”	and	are	stored	in	the	u32string	class.	The	prefix	“u8”	was	also	added	to	represent	a
UTF-8	encoded	string	literal.

string	s3	=	u8"UTF-8	string";
u16string	s4	=	u"UTF-16	string";
u32string	s5	=	U"UTF-32	string";

Specific	Unicode	characters	can	be	inserted	into	a	string	literal	using	the	escape	character	“\u”
followed	by	a	hexadecimal	number	representing	the	character.

string	s6	=	u8"An	asterisk:	\u002A";



CHAPTER	9

Conditionals

Conditional	statements	are	used	to	execute	different	code	blocks	based	on	different	conditions.

If	Statement
The	if	statement	will	only	execute	if	the	expression	inside	the	parentheses	is	evaluated	to	true.	In	C++,
this	does	not	have	to	be	a	Boolean	expression.	It	can	be	any	expression	that	evaluates	to	a	number,	in
which	case	zero	is	false	and	all	other	numbers	are	true.

if	(x	<	1)	{
			cout	<<	x	<<	"	<	1";
}

To	test	for	other	conditions,	the	if	statement	can	be	extended	by	any	number	of	else	if	clauses.

else	if	(x	>	1)	{
			cout	<<	x	<<	"	>	1";
}

The	if	statement	can	have	one	else	clause	at	the	end,	which	will	execute	if	all	previous	conditions	are
false.

else	{
			cout	<<	x	<<	"	==	1";
}

As	for	the	curly	brackets,	they	can	be	left	out	if	only	a	single	statement	needs	to	be	executed
conditionally.	However,	it	is	considered	good	practice	to	always	include	them	since	they	improve
readability.

if	(x	<	1)
			cout	<<	x	<<	"	<	1";
else	if	(x	>	1)
			cout	<<	x	<<	"	>	1";
else
			cout	<<	x	<<	"	==	1";



Switch	Statement
The	switch	statement	checks	for	equality	between	an	integer	and	a	series	of	case	labels,	and	then	passes
execution	to	the	matching	case.	It	may	contain	any	number	of	case	clauses	and	it	can	end	with	a	default
label	for	handling	all	other	cases.

switch	(x)
{
				case	0:	cout	<<	x	<<	"	is	0";	break;
				case	1:	cout	<<	x	<<	"	is	1";	break;
				default:	cout	<<	x	<<	"	is	not	1	or	2";	break;
}

Note	that	the	statements	after	each	case	label	end	with	the	break	keyword	to	skip	the	rest	of	the
switch.	If	the	break	is	left	out,	execution	will	fall	through	to	the	next	case,	which	can	be	useful	if	several
cases	need	to	be	evaluated	in	the	same	way.

Ternary	Operator
In	addition	to	the	if	and	switch	statements	there	is	the	ternary	operator	(?:)	that	can	replace	a	single
if/else	clause.	This	operator	takes	three	expressions.	If	the	first	one	is	true	then	the	second	expression	is
evaluated	and	returned,	and	if	it	is	false,	the	third	one	is	evaluated	and	returned.

x	=	(x	<	0.5)	?	0	:	1;	//	ternary	operator	(?:)

C++	allows	expressions	to	be	used	as	stand-alone	code	statements.	Because	of	this	the	ternary
operator	cannot	just	be	used	as	an	expression,	but	also	as	a	statement.

(x	<	0.5)	?	x	=	0	:	x	=	1;	//	alternative	syntax

The	programming	term	expression	refers	to	code	that	evaluates	to	a	value,	whereas	a	statement	is	a
code	segment	that	ends	with	a	semicolon	or	a	closing	curly	bracket.



CHAPTER	10

Loops

There	are	three	looping	structures	available	in	C++,	all	of	which	are	used	to	execute	a	specific	code
block	multiple	times.	Just	as	with	the	conditional	if	statement,	the	curly	brackets	for	the	loops	can	be	left
out	if	there	is	only	one	statement	in	the	code	block.

While	Loop
The	while	loop	runs	through	the	code	block	only	if	its	condition	is	true,	and	will	continue	looping	for	as
long	as	the	condition	remains	true.	Bear	in	mind	that	the	condition	is	only	checked	at	the	start	of	each
iteration	(loop).

int	i	=	0;
while	(i	<	10)	{	cout	<<	i++;	}	//	0-9

Do-while	Loop
The	do-while	loop	works	in	the	same	way	as	the	while	loop,	except	that	it	checks	the	condition	after	the
code	block.	It	will	therefore	always	run	through	the	code	block	at	least	once.	Notice	that	this	loop	ends
with	a	semicolon.

int	j	=	0;
do	{	cout	<<	j++;	}	while	(j	<	10);	//	0-9

For	Loop
The	for	loop	is	used	to	run	through	a	code	block	a	specific	number	of	times.	It	uses	three	parameters.	The
first	one	initializes	a	counter	and	is	always	executed	once	before	the	loop.	The	second	parameter	holds
the	condition	for	the	loop	and	is	checked	before	each	iteration.	The	third	parameter	contains	the	increment
of	the	counter	and	is	executed	at	the	end	of	each	loop.

for	(int	k	=	0;	k	<	10;	k++)	{	cout	<<	k;	}	//	0-9



The	for	loop	has	several	variations.	For	starters,	the	first	and	third	parameters	can	be	split	into
several	statements	by	using	the	comma	operator.

for	(int	k	=	0,	m	=	0;	k	<	10;	k++,	m--)	{
			cout	<<	k+m;	//	0x10
}

There	is	also	the	option	of	leaving	out	any	one	of	the	parameters.

for	(;;)	{
			cout	<<	"infinite	loop";
}

C++11	introduced	a	range-based	for	loop	syntax	for	iterating	through	arrays	and	other	container	types.
At	each	iteration	the	next	element	in	the	array	is	bound	to	the	reference	variable,	and	the	loop	continues
until	it	has	gone	through	the	entire	array.

int	a[3]	=	{1,	2,	3};
for	(int	&i	:	a)	{
			cout	<<i;	//	"123"
}

Break	and	Continue
There	are	two	jump	statements	that	can	be	used	inside	loops:	break	and	continue.	The	break
keyword	ends	the	loop	structure,	and	continue	skips	the	rest	of	the	current	iteration	and	continues	at
the	beginning	of	the	next	iteration.

for	(int	i	=	0;	i	<	10;	i++)
{
				break;				//	end	loop
				continue;	//	start	next	iteration
}

Goto	Statement
A	third	jump	statement	that	may	be	useful	to	know	of	is	goto,	which	performs	an	unconditional	jump	to	a
specified	label.	This	instruction	is	generally	never	used	since	it	tends	to	make	the	flow	of	execution
difficult	to	follow.

goto	myLabel;	//	jump	to	label
myLabel:						//	label	declaration



CHAPTER	11

Functions

Functions	are	reusable	code	blocks	that	will	only	execute	when	called.

Defining	Functions
A	function	can	be	created	by	typing	void	followed	by	the	function’s	name,	a	set	of	parentheses	and	a
code	block.	The	void	keyword	means	that	the	function	will	not	return	a	value.	The	naming	convention
for	functions	is	the	same	as	for	variables	–	a	descriptive	name	with	each	word	initially	capitalized,
except	for	the	first	one.

void	myFunction()
{
		cout	<<	"Hello	World";
}

Calling	Functions
The	function	above	will	simply	print	out	a	text	message	when	it	is	called.	To	invoke	it	from	the	main
function	the	function’s	name	is	specified	followed	by	a	set	of	parentheses.

int	main()
{
		myFunction();	//	"Hello	World"
}

Function	Parameters
The	parentheses	that	follow	the	function	name	are	used	to	pass	arguments	to	the	function.	To	do	this	the
corresponding	parameters	must	first	be	added	to	the	function	declaration	in	the	form	of	a	comma
separated	list.



void	myFunction(string	a,	string	b)
{
		cout	<<	a	+	"	"	+	b;
}

A	function	can	be	defined	to	take	any	number	of	parameters,	and	they	can	have	any	data	types.	Just
ensure	the	function	is	called	with	the	same	types	and	number	of	arguments.

myFunction("Hello",	"World");	//	"Hello	World"

To	be	precise,	parameters	appear	in	function	definitions,	while	arguments	appear	in	function	calls.
However,	the	two	terms	are	sometimes	used	interchangeably.

Default	Parameter	Values
It	is	possible	to	specify	default	values	for	parameters	by	assigning	them	a	value	inside	the	parameter	list.

void	myFunction(string	a,	string	b	=	"Earth")
{
		cout	<<	a	+	"	"	+	b;
}

Then,	if	that	argument	is	unspecified	when	the	function	is	called	the	default	value	will	be	used	instead.
For	this	to	work	it	is	important	that	the	parameters	with	default	values	are	to	the	right	of	those	without
default	values.

myFunction("Hello");	//	"Hello	Earth"

Function	Overloading
A	function	in	C++	can	be	defined	multiple	times	with	different	arguments.	This	is	a	powerful	feature
called	function	overloading	that	allows	a	function	to	handle	a	variety	of	parameters	without	the
programmer	using	the	function	needing	to	be	aware	of	it.

void	myFunction(string	a,	string	b)	{	cout	<<	a+"	"+b;	}
void	myFunction(string	a)											{	cout	<<	a;	}
void	myFunction(int	a)														{	cout	<<	a;	}

Return	Statement
A	function	can	return	a	value.	The	void	keyword	is	then	replaced	with	the	data	type	the	function	will
return,	and	the	return	keyword	is	added	to	the	function’s	body	followed	by	an	argument	of	the	specified
return	type.



int	getSum(int	a,	int	b)
{
				return	a	+	b;
}

Return	is	a	jump	statement	that	causes	the	function	to	exit	and	return	the	specified	value	to	the	place
where	the	function	was	called.	For	example,	the	function	above	can	be	passed	as	an	argument	to	the	output
stream	since	the	function	evaluates	to	an	integer.

cout	<<	getSum(5,	10);	//	15

The	return	statement	can	also	be	used	in	void	functions	to	exit	before	the	end	block	is	reached.

void	dummy()	{	return;	}

Note	that	although	the	main	function	is	set	to	return	an	integer	type,	it	does	not	have	to	explicitly	return
a	value.	This	is	because	the	compiler	will	automatically	add	a	return	zero	statement	to	the	end	of	the	main
function.

int	main()	{	return	0;	}

Forward	Declaration
An	important	thing	to	keep	in	mind	in	C++	is	that	functions	must	be	declared	before	they	can	be	called.
This	does	not	mean	that	the	function	has	to	be	implemented	before	it	is	called.	It	only	means	that	the
function’s	header	needs	to	be	specified	at	the	beginning	of	the	source	file,	so	that	the	compiler	knows	that
the	function	exists.	This	kind	of	forward	declaration	is	known	as	a	prototype.

void	myFunction(int	a);	//	prototype	int	main()
{
		myFunction(0);
}
void	myFunction(int	a)	{}

The	parameter	names	in	the	prototype	do	not	need	to	be	included.	Only	the	data	types	must	be
specified.

void	myFunction(int);

Pass	by	Value
In	C++,	variables	of	both	primitive	and	object	data	types	are	by	default	passed	by	value.	This	means	that
only	a	copy	of	the	value	or	object	is	passed	to	the	function.	Therefore,	changing	the	parameter	in	any	way
will	not	affect	the	original,	and	passing	a	large	object	will	be	very	slow.

#include	<iostream>



#include	<string>
using	namespace	std;

void	change(int	i)	{	i	=	10;	}
void	change(string	s)	{	s	=	"Hello	World";	}

int	main()
{
		int	x	=	0;					//	value	type	change(x);				//	value	is	passed
		cout	<<	x;					//	0

		string	y	=	"";	//	reference	type
		change(y);					//	object	copy	is	passed
		cout	<<	y;					//	""
}

Pass	by	Reference
Alternatively,	to	instead	pass	a	variable	by	reference	you	just	need	to	add	an	ampersand	before	the
parameter’s	name	in	the	function’s	definition.	When	arguments	are	passed	by	reference,	both	primitive
and	object	data	types	can	be	changed	or	replaced	and	the	changes	will	affect	the	original.

void	change(int&	i)	{	i	=	10;	}

int	main()
{
		int	x	=	0;	//	value	type
		change(x);	//	reference	is	passed
		cout	<<	x;	//	10
}

Pass	by	Address
As	an	alternative	to	passing	by	reference,	arguments	may	also	be	passed	by	address	using	pointers.	This
passing	technique	serves	the	same	purpose	as	passing	by	reference,	but	uses	pointer	syntax	instead.

void	change(int*	i)	{	*i	=	10;	}

int	main()
{
		int	x	=	0;		//	value	type
		change(&x);	//	address	is	passed
		cout	<<	x;		//	10
}



Return	by	Value,	Reference	or	Address
In	addition	to	passing	variables	by	value,	reference	or	address,	a	variable	may	also	be	returned	in	one	of
these	ways.	Most	commonly,	a	function	returns	by	value,	in	which	case	a	copy	of	the	value	is	returned	to
the	caller.

int	byVal(int	i)	{	return	i	+	1;	}

int	main()
{
		int	a	=	10;
		cout	<<	byVal(a);	//	11
}

To	return	by	reference	instead,	an	ampersand	is	placed	after	the	function’s	return	type.	The	function
must	then	return	a	variable	and	may	not	return	an	expression	or	literal,	as	can	be	done	when	using	return
by	value.	The	variable	returned	should	never	be	a	local	variable,	since	the	memory	to	these	variables	is
released	when	the	function	ends.	Instead,	return	by	reference	is	commonly	used	to	return	an	argument	that
has	also	been	passed	to	the	function	by	reference.

int&	byRef(int&	i)	{	return	i;	}

int	main()
{
		int	a	=	10;
		cout	<<	byRef(a);	//	10
}

To	return	by	address	the	dereference	operator	is	appended	to	the	function’s	return	type.	This	return
technique	has	the	same	two	restrictions	as	when	returning	by	reference	–	the	address	of	a	variable	must	be
returned	and	that	returned	variable	must	not	be	local	to	the	function.

int*	byAdr(int*	i)	{	return	i;	}

int	main()
{
			int	a	=	10;
			cout	<<	*byAdr(&a);	//	10
}

Inline	Functions
A	thing	to	keep	in	mind	when	using	functions	is	that	every	time	a	function	is	called,	a	performance
overhead	occurs.	To	potentially	remove	this	overhead	you	can	recommend	that	the	compiler	inlines	the
calls	to	a	specific	function	by	using	the	inline	function	modifier.	This	keyword	is	best	suited	for	small
functions	that	are	called	inside	loops.	It	should	not	be	used	on	larger	functions	since	inlining	these	can



severely	increase	the	size	of	the	code,	which	will	instead	decrease	performance.

inline	int	myInc(int	i)	{	return	i++;	}

Note	that	the	inline	keyword	is	only	a	recommendation.	The	compiler	may	in	its	attempts	to
optimize	the	code	choose	to	ignore	this	recommendation	and	it	may	also	inline	functions	that	do	not	have
the	inline	modifier.

Auto	and	Decltype
Two	new	keywords	were	introduced	in	C++11:	auto	and	decltype.	Both	of	these	keywords	are	used	for
type	deduction	during	compilation.	The	auto	keyword	works	as	a	placeholder	for	a	type	and	instructs	the
compiler	to	automatically	deduce	the	type	of	the	variable	based	on	its	initializer.

auto	i	=	5;					//	int
auto	d	=	3.14;		//	double
auto	b	=	false;	//	bool

Auto	translates	to	the	core	type	of	the	initializer,	which	means	that	any	reference	and	constant
specifiers	are	dropped.

int&	iRef	=	i;
auto	myAuto	=	iRef;	//	int

Dropped	specifiers	can	be	manually	reapplied	as	needed.	The	ampersand	here	creates	a	regular
(lvalue)	reference.

auto&	myRef	=	iRef;	//	int&

Alternatively,	two	ampersands	can	be	used.	This	normally	designates	an	rvalue	reference,	but	in	the
case	of	auto	it	makes	the	compiler	automatically	deduce	either	an	rvalue	or	an	lvalue	reference,	based	on
the	given	initializer.

int	i	=	1;
auto&&	a	=	i;	//	int&	(lvalue	reference)
auto&&	b	=	2;	//	int&&	(rvalue	reference)

The	auto	specifier	may	be	used	anywhere	a	variable	is	declared	and	initialized.	For	instance,	the	type
of	the	for	loop	iterator	below	is	set	to	auto,	since	the	compiler	can	easily	deduce	the	type.

#include	<vector>
using	namespace	std;
//	...
vector<int>	myVector	{	1,	2,	3	};
for	(auto&	x	:	myVector)	{	cout	<<	x;	}	//	"123"

Prior	to	C++11	there	was	no	range-based	for	loop	or	auto	specifier.	Iterating	over	a	vector	then
required	a	more	verbose	syntax.



for(vector<int>::size_type	i	=	0;	i	!=	myVector.size();	i++)	{
				cout	<<	myVector[i];	//	"123"
}

The	decltype	specifier	works	similar	to	auto,	except	it	deduces	the	exact	declared	type	of	a	given
expression,	including	references.	This	expression	is	specified	in	parentheses.

decltype(3)	b	=	3;	//	int&&

In	C++14,	auto	may	be	used	as	the	expression	for	decltype.	The	keyword	auto	is	then	replaced	with
the	initializing	expression,	allowing	the	exact	type	of	the	initializer	to	be	deduced.

decltype(auto)	=	3;	//	int&&

Using	auto	is	often	the	simpler	choice	when	an	initializer	is	available.	Decltype	is	mainly	used	to
forward	function	return	types,	without	having	to	consider	whether	it	is	a	reference	or	value	type.

decltype(5)	getFive()	{	return	5;	}	//	int

C++11	added	a	trailing	return	type	syntax,	which	allows	a	function’s	return	value	to	be	specified	after
the	parameter	list,	following	the	arrow	operator	(->).	This	enables	the	parameter	to	be	used	when
deducing	the	return	type	with	decltype.	The	use	of	auto	in	this	context	in	C++11	just	means	that	trailing
return	type	syntax	is	being	used.

auto	getValue(int	x)	->	decltype(x)	{	return	x;	}	//	int

The	ability	to	use	auto	for	return	type	deduction	was	added	in	C++14.	This	enabled	the	core	return
type	to	be	deduced	directly	from	the	return	statement,

auto	getValue(int	x)	{	return	x;	}	//	int

Moreover,	auto	can	be	used	together	with	decltype	to	deduce	the	exact	type	following	the	rules	of
decltype.

decltype(auto)	getRef(int&	x)	{	return	x;	}	//	int&

The	main	use	for	type	deduction	is	to	reduce	the	verbosity	of	the	code	and	improve	readability,
particularly	when	declaring	complicated	types	where	the	type	is	either	difficult	to	know	or	difficult	to
write.	Keep	in	mind	that	in	modern	IDEs	you	can	hover	over	a	variable	to	check	its	type,	even	if	the	type
has	been	automatically	deduced.

Lambda	Functions
C++11	adds	the	ability	to	create	lambda	functions,	which	are	unnamed	function	objects.	This	provides	a
compact	way	to	define	functions	at	their	point	of	use,	without	having	to	create	a	named	function
somewhere	else.	The	following	example	creates	a	lambda	that	accepts	two	int	arguments	and	returns	their
sum.

auto	sum	=	[](int	x,	int	y)	->	int



{
		return	x	+	y;
};

cout	<<	sum(2,	3);	//	"5"

Including	the	return	type	is	optional	if	the	compiler	can	deduce	the	return	value	from	the	lambda.	In
C++11	this	required	the	lambda	to	contain	just	a	single	return	statement,	whereas	C++14	extended	return
type	deduction	to	any	lambda	function.	Note	that	the	arrow	operator	(->)	is	also	omitted	when	leaving	out
the	return	type.

auto	sum	=	[](int	x,	int	y)	{	return	x	+	y;	};

C++11	requires	lambda	parameters	to	be	declared	with	concrete	types.	This	requirement	was	relaxed
in	C++14,	allowing	lambdas	to	use	auto	type	deduction.

auto	sum	=	[](auto	x,	auto	y)	{	return	x	+	y;	};

Lambdas	are	typically	used	for	specifying	simple	functions	that	are	only	referenced	once,	often	by
passing	the	function	object	as	an	argument	to	another	function.	This	can	be	done	using	a	function	wrapper
with	a	matching	parameter	list	and	return	type,	as	in	the	following	example.

#include	<iostream>
#include	<functional>
using	namespace	std;

void	call(int	arg,	function<void(int)>	func)	{
		func(arg);
}

int	main()	{
	auto	printSquare	=	[](int	x)	{	cout	<<	x*x;	};
	call(2,	printSquare);	//	"4"
}

All	lambdas	start	with	a	set	of	square	brackets,	called	the	capture	clause.	This	clause	specifies
variables	from	the	surrounding	scope	that	can	be	used	within	the	lambda	body.	This	effectively	passes
additional	arguments	to	the	lambda,	without	the	need	to	specify	these	in	the	parameter	list	of	the	function
wrapper.	The	previous	example	can	therefore	be	rewritten	in	the	following	way.

void	call(function<void()>	func)	{	func();	}

int	main()	{
	int	i	=	2;
	auto	printSquare	=	[i]()	{	cout	<<	i*i;	};
	call(printSquare);	//	"4"
}

The	variable	is	here	captured	by	value	and	so	a	copy	is	used	within	the	lambda.	Variables	can	also	be
captured	by	reference	using	the	familiar	ampersand	prefix.	Note	that	the	lambda	is	here	defined	and	called



in	the	same	statement.

int	a	=	1;
[&a](int	x)	{	a	+=	x;	}(2);
cout	<<	a;	//	"3"

It	is	possible	to	specify	a	default	capture	mode,	to	indicate	how	any	unspecified	variable	used	inside
the	lambda	is	to	be	captured.	A	[=]	means	the	variables	are	captured	by	value	and	[&]	captures	them	by
reference.	Variables	captured	by	value	are	normally	constant,	but	the	mutable	specifier	can	be	used	to
allow	such	variables	to	be	modified.

int	a	=	1,	b	=	1;
[&,	b]()	mutable	{	b++;	a	+=	b;	}();
cout	<<	a	<<	b;	//	"31"

As	of	C++14,	variables	may	also	be	initialized	inside	the	capture	clause.	If	there	is	no	variable	with
the	same	name	in	the	outer	scope,	the	variable’s	type	will	be	deduced	as	if	by	auto.

int	a	=	1;
[&,	b	=	2]()	{	a	+=	b;	}();
cout	<<	a;	//	"3"



CHAPTER	12

Class

A	class	is	a	template	used	to	create	objects.	To	define	one	the	class	keyword	is	used	followed	by	a
name,	a	code	block	and	a	semicolon.	The	naming	convention	for	classes	is	mixed	case,	meaning	that	each
word	should	be	initially	capitalized.

class	MyRectangle	{};

Class	members	can	be	declared	inside	the	class;	the	two	main	kinds	are	fields	and	methods.	Fields
are	variables	and	they	hold	the	state	of	the	object.	Methods	are	functions	and	they	define	what	the	object
can	do.

class	MyRectangle
{
			int	x,	y;
};

Class	Methods
A	method	belonging	to	a	class	is	normally	declared	as	a	prototype	inside	of	the	class,	and	the	actual
implementation	is	placed	after	the	class’s	definition.	The	method’s	name	outside	the	class	then	needs	to	be
prefixed	with	the	class	name	and	the	scope	resolution	operator	in	order	to	designate	to	which	class	the
method	definition	belongs.

class	MyRectangle
{
				int	x,	y;
				int	getArea();
};

int	MyRectangle::getArea()	{	return	x	*	y;	}

Inline	Methods



If	the	method	is	short	and	you	want	to	recommend	to	the	compiler	that	the	function’s	code	should	be
inserted	(inlined)	into	the	caller’s	code,	one	way	to	do	this	would	be	to	use	the	inline	keyword	in	the
method’s	definition.

inline	int	MyRectangle::getArea()	{	return	x	*	y;	}

A	more	convenient	way	is	to	simply	define	the	method	inside	of	the	class.	This	will	implicitly
recommend	to	the	compiler	that	the	method	should	be	inlined.

class	MyRectangle
{
				int	x,	y;
				int	getArea()	{	return	x	*	y;	}
};

Object	Creation
The	class	definition	is	now	complete.	In	order	to	use	it	you	first	have	to	create	an	object	of	the	class,	also
called	an	instance.	This	can	be	done	in	the	same	way	as	variables	are	declared.

int	main()
{
				MyRectangle	r;	//	object	creation
}

Accessing	Object	Members
Before	the	members	that	this	object	contains	can	be	accessed,	they	first	need	to	be	declared	as	public	in
the	class	definition,	by	using	the	public	keyword	followed	by	a	colon.

class	MyRectangle
{
public:
				int	x,	y;
				int	getArea()	{	return	x	*	y;	}
};

The	members	of	this	object	can	now	be	reached	using	the	dot	operator	(.)	after	the	instance	name.

r.x	=	10;
r.y	=	5;
int	z	=	r.getArea();	//	50	(5*10)

Any	number	of	objects	can	be	created	based	on	a	class,	and	each	one	of	them	will	have	its	own	set	of
fields	and	methods.



MyRectangle	r2;	//	another	instance	of	MyRectangle
r2.x	=	25;					//	not	same	as	r.x

When	using	an	object	pointer,	the	arrow	operator	(->)	allows	access	to	the	object’s	members.	This
operator	behaves	like	the	dot	operator,	except	that	it	dereferences	the	pointer	first.	It	is	used	exclusively
with	pointers	to	objects.

MyRectangle	r;
MyRectangle	*p	=	&r;	//	object	pointer

p->getArea();
(*p).getArea();						//	alternative	syntax

Forward	Declaration
Classes,	just	like	functions,	must	be	declared	before	they	can	be	referenced.	If	a	class	definition	does	not
appear	before	the	first	reference	to	that	class,	a	class	prototype	can	be	specified	above	the	reference
instead.

class	MyClass;	//	class	prototype

This	forward	declaration	allows	the	class	to	be	referenced	in	any	context	that	does	not	require	the
class	to	be	fully	defined.

class	MyClass;	//	class	prototype
MyClass*	p;	//	allowed
MyClass	f(MyClass&);	//	allowed

MyClass	o;	//	error,	definition	required
sizeof(MyClass);	//	error,	definition	required

Note	that	even	with	a	prototype,	you	still	cannot	create	an	object	of	a	class	before	it	has	been	defined.



CHAPTER	13

Constructor

In	addition	to	fields	and	methods,	a	class	can	contain	a	constructor.	This	is	a	special	kind	of	method	used
to	construct,	or	instantiate,	the	object.	It	always	has	the	same	name	as	the	class	and	does	not	have	a	return
type.	To	be	accessible	from	another	class	the	constructor	needs	to	be	declared	in	a	section	marked	with
the	public	access	modifier.

class	MyRectangle
{
		public:
				int	x,	y;	MyRectangle();
};

MyRectangle::MyRectangle()	{	x	=	10;	y	=	5;	}

When	a	new	instance	of	this	class	is	created	the	constructor	method	will	be	called,	which	in	this	case
assigns	default	values	to	the	fields.

int	main()
{
				MyRectangle	s;
}

Constructor	Overloading
As	with	any	other	method	the	constructor	can	be	overloaded.	This	will	allow	an	object	to	be	created	with
different	argument	lists.

class	MyRectangle
{
		public:
				int	x,	y;	MyRectangle();	MyRectangle(int,	int);
};

MyRectangle::MyRectangle()	{	x	=	10;	y	=	5;	}
MyRectangle::MyRectangle(int	a,	int	b)	{	x	=	a;	y	=	b;	}



For	example,	with	the	two	constructors	defined	above	the	object	can	be	initialized	either	with	no
arguments	or	with	two	arguments,	which	will	be	used	to	assign	the	fields.

//	Calls	parameterless	constructor
MyRectangle	r;

//	Calls	constructor	accepting	two	integers
MyRectangle	t(2,3);

C++11	added	the	ability	for	constructors	to	call	other	constructors.	Using	this	feature	the
parameterless	constructor	created	earlier	is	here	redefined	to	call	the	second	constructor.

MyRectangle::MyRectangle():	MyRectangle(10,	5);

This	keyword
Inside	the	constructor,	as	well	as	in	other	methods	belonging	to	the	object	–	so	called	instance	methods–
a	special	keyword	called	this	can	be	used.	This	is	a	pointer	to	the	current	instance	of	the	class.	It	can	be
useful	if,	for	example,	the	constructor’s	parameter	names	are	the	same	as	the	field	names.	The	fields	can
then	still	be	accessed	by	using	the	this	pointer,	even	though	they	are	overshadowed	by	the	parameters.

MyRectangle::MyRectangle(int	x,	int	y)
{
				this->x	=	x;	this->y	=	y;
}

Field	Initialization
As	an	alternative	to	assigning	fields	inside	the	constructor,	they	may	also	be	assigned	by	using	the
constructor	initialization	list.	This	list	starts	with	a	colon	after	the	constructor	parameters,	followed	by
calls	to	the	field’s	own	constructors.	This	is	actually	the	recommended	way	of	assigning	fields	through	a
constructor,	because	it	gives	better	performance	than	assigning	the	fields	inside	the	constructor.

MyRectangle::MyRectangle(int	a,	int	b)	:	x(a),	y(b)	{}

Fields	can	also	be	assigned	an	initial	value	in	their	class	definition,	a	convenient	feature	that	was
added	in	C++11.	This	value	is	automatically	assigned	when	a	new	instance	is	created,	before	the
constructor	is	run.	As	such,	this	assignment	can	be	used	to	specify	a	default	value	for	a	field	that	may	be
overridden	in	the	constructor.

class	MyRectangle
{
		public:
				//	Class	member	initialization
						int	x	=	10;
						int	y	=	5;



};

Default	Constructor
If	no	constructors	are	defined	for	a	class	the	compiler	will	automatically	create	a	default	parameter	less
constructor	when	the	program	compiles.	Because	of	this,	a	class	can	be	instantiated	even	if	no	constructor
has	been	implemented.	The	default	constructor	will	only	allocate	memory	for	the	object.	It	will	not
initialize	the	fields.	In	contrast	to	global	variables,	fields	in	C++	are	not	automatically	initialized	to	their
default	values.	The	fields	will	contain	whatever	garbage	is	left	in	their	memory	locations	until	they	are
explicitly	assigned	values.

Destructor
In	addition	to	constructors,	a	class	can	also	have	an	explicitly	defined	destructor.	The	destructor	is	used
to	release	any	resources	allocated	by	the	object.	It	is	called	automatically	before	an	object	is	destroyed,
either	when	the	object	passes	out	of	scope	or	when	it	is	explicitly	deleted	for	objects	created	with	the
new	operator.	The	name	of	the	destructor	is	the	same	as	the	class	name,	but	preceded	by	a	tilde	(~).	A
class	may	only	have	one	destructor	and	it	never	takes	any	arguments	or	returns	anything.

class	Semaphore
{
		public:
				bool	*sem;

				Semaphore()		{	sem	=	new	bool;	}
				~Semaphore()	{	delete	sem;	}
};

Special	Member	Functions
The	default	constructor	and	the	destructor	are	both	special	member	functions	that	the	compiler	will
automatically	provide	for	any	class	that	do	not	explicitly	define	them.	Two	more	such	methods	are	the
copy	constructor	and	the	copy	assignment	operator	(operator	=).	With	the	C++11	standard	came	ways	of
controlling	whether	to	allow	these	special	member	functions	or	not	through	the	delete	and	default
specifiers.	The	delete	specifier	forbids	the	calling	of	a	function,	while	the	default	specifier	explicitly
states	that	the	compiler-generated	default	will	be	used.

class	A
{
		public:
				//	Explicitly	include	default	constructor
		A()	=	default;



		A(int	i);

		//	Disable	copy	constructor
		A(const	A&)	=	delete;

		//	Disable	copy	assignment	operator
		A&	operator=(const	A&)	=	delete;
};

Object	Initialization
C++	provides	a	number	of	different	ways	to	create	objects	and	initialize	their	fields.	The	following	class
will	be	used	to	illustrate	these	methods.

class	MyClass
{
public:
int	i;
		MyClass()	=	default;
		MyClass(int	x)	:	i(x)	{}
};

Direct	Initialization
The	object	creation	syntax	that	has	been	used	so	far	is	called	direct	initialization.	This	syntax	can	include
a	set	of	parentheses	which	are	used	to	pass	arguments	to	a	constructor	in	the	class.	If	the	parameterless
constructor	is	used,	the	parentheses	are	left	out.

//	Direct	initialization
MyClass	a(5);	MyClass	b;

Value	Initialization
An	object	can	also	be	value	initialized.	The	object	is	then	created	by	using	the	class	name	followed	by	a
set	of	parentheses.	The	parentheses	can	supply	constructor	arguments,	or	remain	empty	to	construct	the
object	using	the	parameterless	constructor.	A	value	initialization	creates	only	a	temporary	object,	which	is
destroyed	at	the	end	of	the	statement.	To	preserve	the	object	it	must	either	be	copied	to	another	object	or
assigned	to	a	reference.	Assigning	the	temporary	object	to	a	reference	will	maintain	the	object	until	that
reference	goes	out	of	scope.

//	Value	initialization
const	MyClass&	a	=	MyClass();
MyClass&&	b	=	MyClass();



A	value	initialized	object	is	almost	identical	to	one	created	by	using	default	initialization.	A	minor
difference	is	that	non-static	fields	will	in	some	cases	be	initialized	to	their	default	values	when	using
value	initialization.

Copy	Initialization
If	an	existing	object	is	assigned	to	an	object	of	the	same	type	when	it	is	declared,	the	new	object	will	be
copy	initialized.	This	means	that	each	member	of	the	existing	object	will	be	copied	to	the	new	object.

//	Copy	initialization
MyClass	a	=	MyClass();
MyClass	b(a);
MyClass	c	=	b;

This	works	because	of	the	implicit	copy	constructor	that	the	compiler	provides,	which	is	called	for
these	kinds	of	assignments.	The	copy	constructor	takes	a	single	argument	of	its	own	type,	and	then
constructs	a	copy	of	the	specified	object.	Note	that	this	behavior	is	different	from	many	other	languages,
such	as	Java	and	C#.	In	those	languages	initializing	an	object	with	another	object	will	only	copy	the
object’s	reference,	and	not	create	a	new	object	copy.

New	Initialization
An	object	can	be	initialized	through	dynamic	memory	allocation	by	using	the	new	keyword.	Dynamically
allocated	memory	must	be	used	through	a	pointer	or	reference.	The	new	operator	returns	a	pointer,	so	to
assign	it	to	a	reference	it	needs	to	be	dereferenced	first.	Keep	in	mind	that	dynamically	allocated	memory
must	be	explicitly	freed	once	it	is	no	longer	needed.

//	New	initialization
MyClass*	a	=	new	MyClass();	MyClass&	b	=	*new	MyClass();
//	...
delete	a,	b;

Aggregate	Initialization
There	is	a	syntactical	shortcut	available	when	initializing	an	object	called	aggregate	initialization.	This
syntax	allows	fields	to	be	set	by	using	a	brace-enclosed	list	of	initializers,	in	the	same	way	as	can	be
done	with	arrays.	Aggregate	initialization	can	only	be	used	when	the	class	type	does	not	include	any
constructors,	virtual	functions	or	base	classes.	The	fields	must	also	be	public,	unless	they	are	declared	as
static.	Each	field	will	be	set	in	the	order	they	appear	in	the	class.

//	Aggregate	initialization
MyClassa	=	{	2	};	//	iis	2



Uniform	Initialization
The	uniform	initialization	was	introduced	in	C++11	to	provide	a	consistent	way	to	initialize	types	that
works	the	same	for	any	type.	This	syntax	looks	the	same	as	aggregate	initialization,	without	the	use	of	the
equal	sign.

//	Uniform	initialization
MyClass	a	{	3	};	//	i	is	3

This	initialization	syntax	works	not	just	for	classes	but	for	any	type,	including	primitives,	strings,
arrays,	and	standard	library	containers	such	as	vector.

#include	<string>
#include	<vector>
using	namespace	std;

int	i	{	1	};
string	s	{"Hello"};
int	a[]	{	1,	2	};
int	*p=	new	int	[2]	{	1,	2	};
vector<string>	box	{	"one",	"two"	};

Uniform	initialization	can	be	used	to	call	a	constructor.	This	is	done	automatically	by	passing	along
the	proper	arguments	for	that	constructor.

//	Call	parameterless	constructor
MyClass	b	{};

//	Call	copy	constructor
MyClass	c	{	b	};

A	class	can	define	an	initializer-list-constructor.	This	constructor	is	called	during	uniform
initialization	and	takes	priority	over	other	forms	of	construction,	provided	that	the	type	specified	for	the
initializer_list	template	matches	the	type	of	the	brace-enclosed	list	of	arguments.	The	argument	list	can	be
any	length	but	all	elements	must	be	of	the	same	type.	In	the	following	example	the	type	of	the	list	is	int	and
so	the	integer	list	used	to	construct	this	object	is	passed	to	the	constructor.	These	integers	are	then
displayed	using	a	range-based	for	loop.

#include	<iostream>
using	namespace	std;

class	NewClass
{
	public:
		NewClass(initializer_list<int>	args)
		{
				for	(auto	x	:	args)
						cout	<<	x	<<	"	";
		}



};

int	main()
{
		NewClass	a	{	1,	2,	3	};	//	"1	2	3"
}



CHAPTER	14

Inheritance

Inheritance	allows	a	class	to	acquire	the	members	of	another	class.	In	the	example	below,	Square	inherits
from	Rectangle.	This	is	specified	after	the	class	name	by	using	a	colon	followed	by	the	public
keyword,	and	the	name	of	the	class	to	inherit	from.	Rectangle	then	becomes	a	base	class	of	Square,	which
in	turn	becomes	a	derived	class	of	Rectangle.	In	addition	to	its	own	members,	Square	gains	all	accessible
members	in	Rectangle,	except	for	its	constructors	and	destructor.

class	Rectangle
{
		public:
				int	x,	y;
				int	getArea()	{	return	x	*	y;	}
};

class	Square	:	public	Rectangle	{};

Upcasting
An	object	can	be	upcast	to	its	base	class,	because	it	contains	everything	that	the	base	class	contains.	An
upcast	is	performed	by	assigning	the	object	to	either	a	reference	or	a	pointer	of	its	base	class	type.	In	the
example	below,	a	Square	object	is	upcast	to	Rectangle.	When	using	Rectangle’s	interface	the	Square
object	will	be	viewed	as	a	Rectangle,	so	only	Rectangle’s	members	can	be	accessed.

Square	s;
Rectangle&	r	=	s;		//	reference	upcast
Rectangle*	p	=	&s;	//	pointer	upcast

A	derived	class	can	be	used	anywhere	a	base	class	is	expected.	For	example,	a	Square	object	can	be
passed	as	an	argument	to	a	function	that	expects	a	Rectangle	object.	The	derived	object	will	then
implicitly	be	upcast	to	its	base	type.

void	setXY(Rectangle&	r)	{	r.x	=	2;	r.y	=	3;	}

int	main()
{



		Square	s;
		setXY(s);
}

Downcasting
A	Rectangle	reference	that	points	to	a	Square	object	can	be	downcast	back	to	a	Square	object.	This
downcast	has	to	be	made	explicit	since	downcasting	an	actual	Rectangle	to	a	Square	is	not	allowed.

Square&	a	=	(Square&)	r;		//	reference	downcast
Square&	b	=	(Square&)	*p;	//	pointer	downcast

Constructor	Inheritance
To	make	sure	the	fields	in	the	base	class	are	properly	initialized,	the	parameterless	constructor	of	the	base
class	is	automatically	called	when	an	object	of	the	derived	class	is	created.

class	B1
{
	public:
		int	x;
		B1()	:	x(5)	{}
};

class	D1	:	public	B1	{};

int	main()
{
	//	Calls	parameterless	constructors	of	D1	and	B1
	D1	d;
	cout	<<	d.x;	//	"5"
}

This	call	to	the	base	constructor	can	be	made	explicitly	from	the	derived	constructor,	by	placing	it	in
the	constructor’s	initialization	list.	This	allows	arguments	to	be	passed	along	to	the	base	constructor.

class	B2
{
	public:
		int	x;
		B2(int	a)	:	x(a)	{}
};

class	D2	:	public	B2
{



	public:
		D2(int	i)	:	B2(i)	{}	//	call	base	constructor
};

An	alternative	solution	in	this	case	is	to	inherit	the	constructor.	As	of	C++11,	this	can	be	done	through
a	using	statement.

class	D2	:	public	B2
{
	public:
		using	B2::B2;	//	inherit	all	constructors
		int	y{0};
};

Note	that	the	base	class	constructor	cannot	initialize	fields	defined	in	the	derived	class.	Therefore,
any	fields	declared	in	the	derived	class	should	initialize	themselves.	This	is	done	here	using	the	uniform
notation.

Multiple	Inheritance
C++	allows	a	derived	class	to	inherit	from	more	than	one	base	class.	This	is	called	multiple	inheritance.
The	base	classes	are	specified	in	a	comma-separated	list.

class	Person	{}
class	Employee	{}

class	Teacher:	public	Person,	public	Employee	{}

Multiple	inheritance	is	not	commonly	used	since	most	real-world	relationships	can	be	better
described	by	single	inheritance.	It	also	tends	to	significantly	increase	the	complexity	of	the	code.



CHAPTER	15

Overriding

A	new	method	in	a	derived	class	can	redefine	a	method	in	a	base	class	in	order	to	give	it	a	new
implementation.

Hiding	Derived	Members
In	the	example	below,	Rectangle’s	getArea	method	is	redeclared	in	Triangle	with	the	same	signature.
The	signature	includes	the	name,	parameter	list	and	return	type	of	the	method.

class	Rectangle
{
	public:
		int	x,	y;
		int	getArea()	{	return	x	*	y;	}
};

class	Triangle	:	public	Rectangle
{
	public:
		Triangle(int	a,	int	b)	{	x	=	a;	y	=	b;	}
		int	getArea()	{	return	x	*	y	/	2;	}
};

If	a	Triangle	object	is	created	and	the	getArea	method	is	invoked,	then	Triangle’s	version	of	the
method	will	get	called.

Triangle	t	=	Triangle(2,3);
t.getArea();	//	3	(2*3/2)	calls	Triangle’s	version

However,	if	the	Triangle	is	upcast	to	a	Rectangle	then	Rectangle’s	version	will	get	called	instead.

Rectangle&	r	=	t;
r.getArea();	//	6	(2*3)	calls	Rectangle’s	version

That	is	because	the	redefined	method	has	only	hidden	the	inherited	method.	This	means	that	Triangle’s
implementation	is	redefined	downwards	in	the	class	hierarchy	to	any	child	classes	of	Triangle,	but	not



upwards	to	the	base	class.

Overriding	Derived	Members
In	order	to	redefine	a	method	upwards	in	the	class	hierarchy	–	what	is	called	overriding	–	the	method
needs	to	be	declared	with	the	virtual	modifier	in	the	base	class.	This	modifier	allows	the	method	to
be	overridden	in	derived	classes.

class	Rectangle
{
	public:
		int	x,	y;
		virtual	int	getArea()	{	return	x	*	y;	}
};

Calling	the	getArea	method	from	Rectangle’s	interface	will	now	invoke	Triangle’s	implementation.

Rectangle&	r	=	t;
r.getArea();	//	3	(2*3/2)	calls	Triangle’s	version

C++11	added	the	override	specifier,	which	indicates	that	a	method	is	intended	to	replace	an	inherited
method.	Using	this	specifier	allows	the	compiler	to	check	that	there	is	a	virtual	method	with	that	same
signature.	This	prevents	the	possibility	of	accidentally	creating	a	new	virtual	method.

virtual	float	getArea()	override	{}	//	error	-	no	base	class	method	
to	override

Another	specifier	introduced	in	C++11	is	final.	This	specifier	prevents	a	virtual	method	from	being
overridden	in	derived	classes.	It	also	prevents	derived	classes	from	using	that	same	method	signature.

class	Base
{
		virtual	void	foo()	final	{}
}

class	Derived
{
		void	foo()	{}	//	error:	Base::foo	marked	as	final
}

The	final	specifier	can	also	be	applied	to	a	class	to	prevent	any	class	from	inheriting	it.

class	B	final	{}
class	D	:	B	{}	//	error:	B	marked	as	final

Base	Class	Scoping



It	is	still	possible	to	access	a	redefined	method	from	a	derived	class	by	typing	the	class	name	followed	by
the	scope	resolution	operator.	This	is	called	base	class	scoping	and	can	be	used	to	allow	access	to
redefined	methods	that	are	any	number	of	levels	deep	in	the	class	hierarchy.

class	Triangle	:	public	Rectangle
{
	public:
		Triangle(int	a,	int	b)	{	x	=	a;	y	=	b;	}
		int	getArea()	{	return	Rectangle::getArea()	/	2;	}
};



CHAPTER	16

Access	Levels

Every	class	member	has	an	accessibility	level	that	determines	where	the	member	will	be	visible.	There
are	three	of	them	available	in	C++:	public,	protected	and	private.	The	default	access	level	for
class	members	is	private.	To	change	the	access	level	for	a	section	of	code,	an	access	modifier	is	used
followed	by	a	colon.	Every	field	or	method	that	comes	after	this	label	will	have	the	specified	access
level,	until	another	access	level	is	set	or	the	class	declaration	ends.

class	MyClass
{
		int	myPrivate;
	public:
		int	myPublic;
		void	publicMethod();
};

Private	Access
All	members	regardless	of	their	access	level	are	accessible	in	the	class	in	which	they	are	declared,	the
enclosing	class.	This	is	the	only	place	where	private	members	can	be	accessed.

class	MyClass
{
		//	Unrestricted	access
		public:	int	myPublic;

		//	Defining	or	derived	class	only
		protected:	int	myProtected;

		//	Defining	class	only
		private:	int	myPrivate;
		void	test()
		{
				myPublic				=	0;	//	allowed
				myProtected	=	0;	//	allowed
				myPrivate			=	0;	//	allowed



		}
};

Protected	Access
A	protected	member	can	also	be	accessed	from	inside	a	derived	class,	but	it	cannot	be	reached	from	an
unrelated	class.

class	MyChild	:	public	MyClass
{
		void	test()
		{
				myPublic				=	0;	//	allowed
				myProtected	=	0;	//	allowed
				myPrivate			=	0;	//	inaccessible
		}
};

Public	Access
Public	access	gives	unrestricted	access	from	anywhere	in	the	code.

class	OtherClass
{
		void	test(MyClass&	c)
		{
				c.myPublic				=	0;	//	allowed
				c.myProtected	=	0;	//	inaccessible
				c.myPrivate			=	0;	//	inaccessible
		}
};

Access	Level	Guideline
As	a	guideline,	when	choosing	an	access	level	it	is	generally	best	to	use	the	most	restrictive	level
possible.	This	is	because	the	more	places	a	member	can	be	accessed,	the	more	places	it	can	be	accessed
incorrectly,	which	makes	the	code	harder	to	debug.	Using	restrictive	access	levels	will	also	make	it
easier	to	modify	the	class	without	breaking	the	code	for	any	other	programmers	using	that	class.

Friend	Classes	and	Functions



A	class	can	be	allowed	to	access	the	private	and	protected	members	of	another	class	by	declaring	the
class	a	friend.	This	is	done	by	using	the	friend	modifier.	The	friend	is	allowed	to	access	all	members
in	the	class	where	the	friend	is	defined,	but	not	the	other	way	around.

class	MyClass
{
		int	myPrivate;

		//	Give	OtherClass	access
		friend	class	OtherClass;
};

class	OtherClass
{
		void	test(MyClass	c)	{	c.myPrivate	=	0;	}	//	allowed
};

A	global	function	can	also	be	declared	as	a	friend	to	a	class	in	order	to	gain	the	same	level	of	access.

class	MyClass
{
		int	myPrivate;

		//	Give	myFriend	access
		friend	void	myFriend(MyClass	c);
};

void	myFriend(MyClass	c)	{	c.myPrivate	=	0;	}	//	allowed

Public,	Protected	and	Private	Inheritance
When	a	class	is	inherited	in	C++	it	is	possible	to	change	the	access	level	of	the	inherited	members.	Public
inheritance	allows	all	members	to	keep	their	original	access	level.	Protected	inheritance	reduces	the
access	of	public	members	to	protected.	Private	inheritance	restricts	all	inherited	members	to	private
access.

class	MyChild	:	private	MyClass
{
		//	myPublic	is	private
		//	myProtected	is	private
		//	myPrivate	is	private
};

Private	is	the	default	inheritance	level,	although	public	inheritance	is	the	one	that	is	nearly	always
used.



CHAPTER	17

Static

The	static	keyword	is	used	to	create	class	members	that	exist	in	only	one	copy,	which	belongs	to	the
class	itself.	These	members	are	shared	among	all	instances	of	the	class.	This	is	different	from	instance
(non-static)	members,	which	are	created	as	new	copies	for	each	new	object.

Static	Fields
A	static	field	(class	field)	cannot	be	initialized	inside	the	class	like	an	instance	field.	Instead	it	must	be
defined	outside	of	the	class	declaration.	This	initialization	will	only	take	place	once,	and	the	static	field
will	then	remain	initialized	throughout	the	life	of	the	application.

class	MyCircle
{
	public:
		double	r;									//	instance	field	(one	per	object)
		static	double	pi;	//	static	field	(only	one	copy)
};

double	MyCircle::pi	=	3.14;

To	access	a	static	member	from	outside	the	class,	the	name	of	the	class	is	used	followed	by	the	scope
resolution	operator	and	the	static	member.	This	means	that	there	is	no	need	to	create	an	instance	of	a	class
in	order	to	access	its	static	members.

int	main()
{
		double	p	=	MyCircle::pi;
}

Static	Methods
In	addition	to	fields,	methods	can	also	be	declared	as	static,	in	which	case	they	can	also	be	called
without	having	to	define	an	instance	of	the	class.	However,	because	a	static	method	is	not	part	of	any



instance	it	cannot	use	instance	members.	Methods	should	therefore	only	be	declared	static	if	they
perform	a	generic	function	that	is	independent	of	any	instance	variables.	Instance	methods	on	the	other
hand,	in	contrast	to	static	methods,	can	use	both	static	and	instance	members.

class	MyCircle
{
	public:
		double	r;									//	instance	variable	(one	per	object)
		static	double	pi;	//	static	variable	(only	one	copy)

		double	getArea()	{	return	pi	*	r	*	r;	}
		static	double	newArea(double	a)	{	return	pi	*	a	*	a;	}
};

int	main()
{
		double	a	=	MyCircle::newArea(1);
}

Static	Local	Variables
Local	variables	inside	a	function	can	be	declared	as	static	to	make	the	function	remember	the
variable.	A	static	local	variable	is	only	initialized	once	when	execution	first	reaches	the	declaration,	and
that	declaration	is	then	ignored	every	subsequent	time	the	execution	passes	through.

int	myFunc()
{
		static	int	count	=	0;	//	holds	#	of	calls	to	function
		count++;
}

Static	Global	Variables
One	last	place	where	the	static	keyword	can	be	applied	is	to	global	variables.	This	will	limit	the
accessibility	of	the	variable	to	only	the	current	source	file,	and	can	therefore	be	used	to	help	avoid
naming	conflicts.

//	Only	visible	within	this	source	file
static	int	myGlobal;



CHAPTER	18

Enum

Enum	is	a	user-defined	type	consisting	of	a	fixed	list	of	named	constants.	In	the	example	below,	the
enumeration	type	is	called	Color	and	contains	three	constants:	Red,	Green	and	Blue.

enum	Color	{	Red,	Green,	Blue	};

The	Color	type	can	be	used	to	create	variables	that	may	hold	one	of	these	constant	values.

int	main()
{
				Color	c	=	Red;
}

Enum	constants	may	be	prefixed	with	the	enum	name	for	added	clarity.	However,	these	constants	are
always	unscoped,	and	so	care	must	be	taken	to	avoid	naming	conflicts.

Color	c	=	Color::Red;

Enum	Example
The	switch	statement	provides	a	good	example	of	when	enumerations	can	be	useful.	Compared	to	using
ordinary	constants,	the	enumeration	has	the	advantage	that	it	allows	the	programmer	to	clearly	specify
what	values	a	variable	should	contain.

switch(c)
{
				case	Red:			break;
				case	Green:	break;
				case	Blue:		break;
}

Enum	Constant	Values
Usually	there	is	no	need	to	know	the	underlying	values	that	the	constants	represent,	but	in	some	cases	it



can	be	useful.	By	default,	the	first	constant	in	the	enum	list	has	the	value	zero	and	each	successive	constant
is	one	value	higher.

enum	Color
{
				Red			//	0
				Green	//	1
				Blue		//	2
};

These	default	values	can	be	overridden	by	assigning	values	to	the	constants.	The	values	can	be
computed	and	do	not	have	to	be	unique.

enum	Color
{
				Red			=	5,								//	5
				Green	=	Red,						//	5
				Blue		=	Green	+	2	//	7
};

Enum	Conversions
The	compiler	can	implicitly	convert	an	enumeration	constant	to	an	integer.	However,	converting	an	integer
back	into	an	enum	variable	requires	an	explicit	cast,	since	this	conversion	makes	it	possible	to	assign	a
value	that	is	not	included	in	the	enum’s	list	of	constants.

int	i	=	Red;
Color	c	=	(Color)i;

Enum	Scope
An	enum	does	not	have	to	be	declared	globally.	It	can	also	be	placed	within	a	class	as	a	class	member,	or
locally	within	a	function.

class	MyClass
{
				enum	Color	{	Red,	Green,	Blue	};
};

void	myFunction()
{
				enum	Color	{	Red,	Green,	Blue	};
}



Strongly	Typed	Enums
The	enum	class	was	introduced	in	C++11	to	provide	a	safer	alternative	to	the	regular	enum.	These	new
enums	are	defined	in	the	same	way	as	regular	enums,	with	the	addition	of	the	class	keyword.

enum	class	Speed
{
				Fast,
				Normal,
				Slow
};

With	the	new	enum	the	specified	constants	belong	within	the	scope	of	the	enum	class	name,	as
opposed	to	the	outer	scope	as	for	regular	enums.	To	access	an	enum	class	constant,	it	must	therefore	be
qualified	with	the	enum	name.

Speed	s	=	Speed::Fast;

The	underlying	integral	type	of	the	regular	enum	is	not	defined	by	the	standard	and	may	vary	between
implementations.	In	contrast,	a	class	enum	always	uses	the	int	type	by	default.	This	type	can	be	overridden
to	another	integer	type,	as	seen	below.

enum	class	MyEnum	:	unsigned	short	{};

One	last	important	advantage	of	enum	classes	is	their	type	safety.	Unlike	regular	enums,	enum	classes
are	strongly	typed	and	will	therefore	not	convert	implicitly	to	integer	types.

if	(s	==	Speed::Fast)	{}	//	ok
if	(s	==	0)	{}											//	error



CHAPTER	19

Struct	and	Union

Struct
A	struct	in	C++	is	equivalent	to	a	class,	except	that	members	of	a	struct	default	to	public	access,	instead
of	private	access	as	in	classes.	By	convention,	structs	are	used	instead	of	classes	to	represent	simple	data
structures	that	mainly	contain	public	fields.

struct	Point
{
				int	x,	y;	//	public
};

class	Point
{
				int	x,	y;	//	private
};

Declarator	List
To	declare	objects	of	a	struct	the	normal	declaration	syntax	can	be	used.

Point	p,	q;	//	object	declarations

Another	alternative	syntax	often	used	with	structs	is	to	declare	the	objects	when	the	struct	is	defined
by	placing	the	object	names	before	the	final	semicolon.	This	position	is	known	as	the	declarator	list	and
can	contain	a	comma-separated	sequence	of	declarators.

struct	Point
{
				int	x,	y;
}	r,	s;	//	object	declarations

Aggregate	initialization	is	also	commonly	used	with	structs,	since	this	syntactical	shortcut	only	works
for	simple	aggregate	types	with	public	fields.	For	compilers	supporting	C++11,	the	uniform	initialization



syntax	is	preferred,	as	it	removes	the	distinction	between	initialization	of	aggregate	and	non-aggregate
types.

int	main()
{
		//	Aggregate	initialization
		Point	p	=	{	2,	3	};

		//	Uniform	initialization
		Point	q	{	2,	3	};
}

Union
Although	similar	to	struct,	the	union	type	is	different	in	that	all	fields	share	the	same	memory	position.
Therefore,	the	size	of	a	union	is	the	size	of	the	largest	field	it	contains.	For	example,	in	the	case	below
this	is	the	integer	field	which	is	4	bytes	large.

union	Mix
{
				char	c;		//	1	byte
				short	s;	//	2	bytes
				int	i;			//	4	bytes
}	m;

This	means	that	the	union	type	can	only	be	used	to	store	one	value	at	a	time,	because	changing	one
field	will	overwrite	the	value	of	the	others.

int	main()
{
				m.c	=	0xFF;	//	set	first	8	bits
				m.s	=	0;				//	reset	first	16	bits
}

The	benefit	of	a	union,	in	addition	to	efficient	memory	usage,	is	that	it	provides	multiple	ways	of
viewing	the	same	memory	location.	For	example,	the	union	below	has	three	data	members	that	allow
access	to	the	same	group	of	4	bytes	in	multiple	ways.

union	Mix
{
				char	c[4];																		//	4	bytes
				struct	{	short	hi,	lo;	}	s;	//	4	bytes
				int	i;																						//	4	bytes
}	m;

The	integer	field	will	access	all	4	bytes	at	once.	With	the	struct	2	bytes	can	be	viewed	at	a	time,	and
by	using	the	char	array	each	byte	can	be	referenced	individually.



int	main()
{
m.i=0xFF00F00F;	//	11111111	00000000	11110000	00001111
m.s.lo;									//	11111111	00000000
m.s.hi;									//																			11110000	00001111
m.c[3];									//	11111111
m.c[2];									//										00000000
m.c[1];									//																			11110000
m.c[0];									//																												00001111}

Anonymous	Union
A	union	type	can	be	declared	without	a	name.	This	is	called	an	anonymous	union	and	defines	an	unnamed
object	whose	members	can	be	accessed	directly	from	the	scope	where	it	is	declared.	An	anonymous	union
cannot	contain	methods	or	non-public	members.

int	main()
{
				union	{	short	s;	};	//	defines	an	unnamed	union	object	s	=	15;
}

An	anonymous	union	that	is	declared	globally	must	be	made	static.

static	union	{};
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Operator	Overloading

Operator	overloading	allows	operators	to	be	redefined	and	used	where	one	or	both	of	the	operands	are	of
a	user-defined	class.	When	done	correctly,	this	can	simplify	the	code	and	make	user-defined	types	as	easy
to	use	as	the	primitive	types.

Operator	Overloading	Example
In	the	example	below	there	is	a	class	called	MyNum	with	an	integer	field	and	a	constructor	for	setting	that
field.	The	class	also	has	an	addition	method	that	adds	two	MyNum	objects	together	and	returns	the	result
as	a	new	object.

class	MyNum
{
	public:
		int	val;
		MyNum(int	i)	:	val(i)	{}

		MyNum	add(MyNum	&a)
		{	return	MyNum(	val	+	a.val	);	}
}

Two	MyNum	instances	can	be	added	together	using	this	method.

MyNum	a	=	MyNum(10),	b	=	MyNum(5);
MyNum	c	=	a.add(b);

Binary	Operator	Overloading
What	operator	overloading	does	is	simplify	this	syntax	and	thereby	provide	a	more	intuitive	interface	for
the	class.	To	convert	the	add	method	to	an	overload	for	the	addition	sign,	replace	the	name	of	the	method
with	the	operator	keyword	followed	by	the	operator	that	is	to	be	overloaded.	The	whitespace	between
the	keyword	and	the	operator	can	optionally	be	left	out.



MyNum	operator	+	(MyNum	&a)
{	return	MyNum(	val	+	a.val	);	}

Since	the	class	now	overloads	the	addition	sign,	this	operator	can	be	used	to	perform	the	calculation
needed.

MyNum	c	=	a	+	b;

Keep	in	mind	that	the	operator	is	only	an	alternative	syntax	for	calling	the	actual	method.

MyNum	d	=	a.operator	+	(b);

Unary	Operator	Overloading
Addition	is	a	binary	operator,	because	it	takes	two	operands.	The	first	operand	is	the	object	from	which
the	method	is	called,	and	the	second	operand	is	that	which	is	passed	to	the	method.	When	overloading	a
unary	operator,	such	as	prefix	increment	(++),	there	is	no	need	for	a	method	parameter	since	these
operators	only	affect	the	object	from	which	they	are	called.

With	unary	operators,	a	reference	of	the	same	type	as	the	object	should	always	be	returned.	This	is
because	when	using	a	unary	operator	on	an	object,	programmers	expect	the	result	to	return	the	same	object
and	not	just	a	copy.	On	the	other	hand,	when	using	a	binary	operator,	programmers	expect	a	copy	of	the
result	to	be	returned	and	therefore	return	by	value	should	be	used.

MyNum&	operator++()	//	++	prefix
{	++val;	return	*this;	}

Not	all	unary	operators	should	return	by	reference.	The	two	postfix	operators	–	post-increment	and
post-decrement	–	should	instead	return	by	value,	because	the	postfix	operations	are	expected	to	return	the
state	of	the	object	before	the	increment	or	decrement	occurs.	Note	that	the	postfix	operators	have	an
unused	int	parameter	specified.	This	parameter	is	used	to	distinguish	them	from	the	prefix	operators.

MyNum	operator++(int)	//	postfix	++
{
		MyNum	t	=	MyNum(val);
		++val;
		return	t;
}

Overloadable	Operators
C++	allows	overloading	of	almost	all	operators	in	the	language.	As	can	be	seen	in	the	table	below,	most
operators	are	of	the	binary	type.	Only	a	few	of	them	are	unary,	and	some	special	operators	cannot	be
categorized	as	either.	There	are	also	some	operators	that	cannot	be	overloaded	at	all.

Binary	operators Unary	operators



+	-	*	/	% +	-	!	~	&	*	++	--

=	+	=	-	=	*	=	/	=	%	= Special	operators

&	=	 	̂=	|	=	<<	=	>>	= (	)	[	]	delete	new

==	!=	>	<	>	=	<	= Not	overloadable

&	|	 	̂<<	>>	&&	|| .	.*	::	?:	#	##	sizeof

–>	–	>*	, 	
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Custom	Conversions

Custom	type	conversions	can	be	defined	to	allow	an	object	to	be	constructed	from	or	converted	to	another
type.	In	the	following	example,	there	is	a	class	called	MyNum		with	a	single	integer	field.	With	conversion
constructors	it	is	possible	to	allow	integer	types	to	be	implicitly	converted	to	this	object’s	type.

class	MyNum
{
		public:
				int	value;
};

Implicit	Conversion	Constructor
For	this	type	conversion	to	work,	a	constructor	needs	to	be	added	that	takes	a	single	parameter	of	the
desired	type,	in	this	case	an	int.

class	MyNum
{
		public:
				int	value;
				MyNum(int	i)	{	value	=	i;	}
};

When	an	integer	is	assigned	to	an	object	of	MyNum	this	constructor	will	implicitly	be	called	to
perform	the	type	conversion.

MyNum	A	=	5;	//	implicit	conversion

This	means	that	any	constructor	that	takes	exactly	one	argument	can	be	used	both	for	constructing
objects	and	for	performing	implicit	type	conversions	to	that	object	type.

MyNum	B	=	MyNum(5);	//	object	construction
MyNum	C(5);									//	object	construction

These	conversions	will	work	not	only	for	the	specific	parameter	type,	but	also	for	any	type	that	can	be
implicitly	converted	to	it.	For	example,	a	char	can	be	implicitly	converted	to	an	int	and	can	therefore



be	implicitly	changed	into	a	MyNum	object	as	well.

MyNum	D	=	'H';	//	implicit	conversion	(char->int->MyNum)

Explicit	Conversion	Constructor
To	help	prevent	potentially	unintended	object	type	conversions	it	is	possible	to	disable	the	second	use	of
the	single	parameter	constructor.	The	explicit	constructor	modifier	is	then	applied,	which	specifies
that	the	constructor	may	only	be	used	for	object	construction,	and	not	for	type	conversion.

class	MyNum
{
		public:
				int	value;
				explicit	MyNum(int	i)	{	value	=	i;	}
};

The	explicit	constructor	syntax	must	therefore	be	used	to	create	a	new	object.

MyNum	A	=	5;								//	error
MyNum	B(5);									//	allowed
MyNum	C	=	MyNum(5);	//	allowed

Conversion	Operators
Custom	conversion	operators	allow	conversions	to	be	specified	in	the	other	direction:	from	the	object’s
type	to	another	type.	The	operator	keyword	is	then	used,	followed	by	the	target	type,	a	set	of	parentheses,
and	a	method	body.	The	body	returns	a	value	of	the	target	type,	in	this	case	int.

class	MyNum
{
		public:
				int	value;
				operator	int()	{	return	value;	}
};

When	objects	of	this	class	are	evaluated	in	an	int	context,	this	conversion	operator	will	be	called	to
perform	the	type	conversion.

MyNum	A	{	5	};
int	i	=	A;	//	5

Explicit	Conversion	Operators



The	C++11	standard	added	explicit	conversion	operators	to	the	language.	Similar	to	explicit	constructors,
the	inclusion	of	the	explicit	keyword	prevents	the	conversion	operator	from	being	implicitly	called.

class	True
{
		explicit	operator	bool()	const	{
				return	true;
		}
};

The	class	above	provides	a	safe	bool	that	prevents	its	objects	from	mistakenly	being	used	in	a
mathematical	context	through	the	bool	conversion	operator.	In	the	example	below,	the	first	comparison
results	in	a	compile	error	since	the	bool	conversion	operator	cannot	be	implicitly	called.	The	second
comparison	is	allowed	because	the	conversion	operator	is	explicitly	called	through	the	type	cast.

True	a,	b;
if	(a	==	b)	{}													//	error
if	((bool)a	==	(bool)b)	{}	//	allowed

Bear	in	mind	that	contexts	requiring	a	bool	value,	such	as	the	condition	for	an	if	statement,	counts	as
explicit	conversions.

if	(a)	{}	//	allowed
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Namespaces

Namespaces	are	used	to	avoid	naming	conflicts	by	allowing	entities,	such	as	classes	and	functions,	to	be
grouped	under	a	separate	scope.	In	the	example	below	there	are	two	classes	that	belong	to	the	global
scope.	Since	both	classes	share	the	same	name	and	scope	the	code	will	not	compile.

class	Table	{};
class	Table	{};	//	error:	class	type	redefinition

One	way	to	solve	this	problem	would	be	to	rename	one	of	the	conflicting	classes.	Another	solution	is
to	group	one	or	both	of	them	under	a	different	namespace	by	enclosing	each	in	a	namespace	block.	The
classes	then	belong	to	different	scopes	and	so	will	no	longer	cause	a	naming	conflict.

namespace	furniture
{
				class	Table	{};
}

namespace	html
{
				class	Table	{};
}

Accessing	Namespace	Members
To	access	a	member	of	a	namespace	from	outside	that	namespace	the	member’s	fully	qualified	name
needs	to	be	specified.	This	means	that	the	member	name	has	to	be	prefixed	with	the	namespace	it	belongs
to,	followed	by	the	scope	resolution	operator.

int	main()
{
				furniture::Table	fTable;
				html::Table	hTable;
}



Nesting	Namespaces
It	is	possible	to	nest	namespaces	any	number	of	levels	deep	to	further	structure	the	program	entities.

namespace	furniture
{
				namespace	wood	{	class	Table	{};	}
}

Ensure	that	the	nested	namespace	members	are	qualified	with	the	full	namespace	hierarchy	when	using
them	from	another	namespace.

furniture::wood::Table	fTable;

Importing	Namespaces
To	avoid	having	to	specify	the	namespace	every	time	one	of	its	members	is	used,	the	namespace	can	be
imported	into	the	global	or	local	scope	with	the	help	of	a	using	declaration.	This	declaration	includes	the
using	namespace	keywords	followed	by	the	namespace	to	be	imported.	It	can	be	placed	either
locally	or	globally.	Locally,	the	declaration	will	only	be	in	scope	until	the	end	of	the	code	block,	while	at
the	global	scope	it	will	apply	to	the	whole	source	file	following	its	declaration.

using	namespace	html;				//	global	namespace	import
int	main()
{
				using	namespace	html;	//	local	namespace	import
}

Keep	in	mind	that	importing	a	namespace	into	the	global	scope	defeats	the	main	purpose	of	using
namespaces,	which	is	to	avoid	naming	conflicts.	Such	conflicts	however	are	mainly	an	issue	in	projects
that	use	several	independently	developed	code	libraries.

Namespace	Member	Import
If	you	want	to	avoid	both	typing	the	fully	qualified	name	and	importing	the	whole	namespace	there	is	a
third	alternative	available.	That	is	to	only	import	the	specific	members	that	are	needed	from	the
namespace.	This	is	done	by	declaring	one	member	at	a	time	with	the	using	keyword	followed	by	the
fully	qualified	namespace	member	to	be	imported.

using	html::Table;	//	import	a	single	namespace	member

Namespace	Alias



Another	way	to	shorten	the	fully	qualified	name	is	to	create	a	namespace	alias.	The	namespace
keyword	is	then	used	followed	by	an	alias	name,	to	which	the	fully	qualified	namespace	is	assigned.

namespace	myAlias	=	furniture::wood;	//	namespace	alias

This	alias	can	then	be	used	instead	of	the	namespace	qualifier	that	it	represents.

myAlias::Table	fTable;

Note	that	both	the	namespace	member	imports	and	the	namespace	aliases	may	be	declared	both
globally	and	locally.

Type	Alias
Aliases	can	also	be	created	for	types.	A	type	alias	is	defined	using	the	typedef	keyword	followed	by
the	type	and	the	alias.

typedef	my::name::MyClass	MyType;

The	alias	can	then	be	used	as	a	synonym	for	the	specified	type.

MyType	t;

Typedef	does	not	only	work	for	existing	types,	but	can	also	include	a	definition	of	a	user-defined	type
–	such	as	a	class,	struct,	union	or	enum.

typedef	struct	{	int	len;	}	Length;
Length	a,	b,	c;

C++11	added	a	using	statement	that	provides	a	more	intuitive	syntax	for	aliasing	types.	With	this
syntax	the	keyword	using	is	followed	by	the	alias	name	and	then	assigned	the	type.	Unlike	typedef	the
using	statement	also	allows	templates	to	be	aliased.

using	MyType	=	my::name::MyClass;

Aliases	are	not	commonly	used	since	they	tend	to	obfuscate	the	code.	However,	if	used	properly	a
type	alias	can	simplify	a	long	or	confusing	type	name.	Another	function	they	provide	is	the	ability	to
change	the	definition	of	a	type	from	a	single	location.

Including	Namespace	Members
Keep	in	mind	that	in	C++	merely	importing	a	namespace	does	not	provide	access	to	the	members	included
in	that	namespace.	In	order	to	access	the	namespace	members	the	prototypes	also	have	to	be	made
available,	for	example	by	using	the	appropriate	#include	directives.

//	Include	input/output	prototypes
#include	<iostream>



//	Import	standard	library	namespace	to	global	scope	using	namespace	
std;
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Constants

A	constant	is	a	variable	that	has	a	value	which	cannot	be	changed	once	the	constant	has	been	assigned.
This	allows	the	compiler	to	enforce	that	the	variable’s	value	is	not	changed	anywhere	in	the	code	by
mistake.

Constant	Variables
A	variable	can	be	made	into	a	constant	by	adding	the	const	keyword	either	before	or	after	the	data	type.
This	modifier	means	that	the	variable	becomes	read-only,	and	it	must	therefore	be	assigned	a	value	at	the
same	time	as	it	is	declared.	Attempting	to	change	the	value	anywhere	else	results	in	a	compile-time	error.

const	int	var	=	5;
int	const	var2	=	10;	//	alternative	order

Constant	Pointers
When	it	comes	to	pointers,	const	can	be	used	in	two	ways.	First,	the	pointer	can	be	made	constant,
which	means	that	it	cannot	be	changed	to	point	to	another	location.

int	myPointee;
int*	const	p	=	&myPointee;	//	pointer	constant

Second,	the	pointee	can	be	declared	constant.	This	means	that	the	variable	pointed	to	cannot	be
modified	through	this	pointer.

const	int*	q	=	&var;	//	pointee	constant

It	is	possible	to	declare	both	the	pointer	and	the	pointee	as	constant	to	make	them	both	read-only.

const	int*	const	r	=	&var;	//	pointer	&	pointee	constant

Note	that	constant	variables	may	not	be	pointed	to	by	a	non-constant	pointer.	This	prevents
programmers	from	accidentally	rewriting	a	constant	variable	using	a	pointer.



int*	s	=	&var;	//	error:	const	to	non-const	assignment

Constant	References
References	can	be	declared	constant	in	the	same	way	as	pointers.	However,	since	reseating	a	reference	is
never	allowed,	declaring	the	reference	as	const	would	be	redundant.	It	only	makes	sense	to	protect	the
referee	from	change.

const	int&	y	=	var;	//	referee	constant

Constant	Objects
Just	as	with	variables,	pointers	and	references,	objects	can	also	be	declared	constant.	Take	the	following
class	as	an	example.

class	MyClass
{
		public:	int	x;
		void	setX(int	a)	{	x	=	a;	}
};

A	constant	object	of	this	class	cannot	be	reassigned	to	another	instance.
The	constness	of	an	object	also	affects	its	fields	and	prevent	them	from	being	changed.

const	MyClass	a,	b;
a	=	b;				//	error:	object	is	const
a.x	=	10;	//	error:	object	field	is	const

Constant	Methods
Because	of	this	last	restriction,	a	constant	object	may	not	call	a	non-constant	method	since	such	methods
are	allowed	to	change	the	object’s	fields.

a.setX(2);	//	error:	cannot	call	non-const	method

They	may	only	call	constant	methods,	which	are	methods	that	are	marked	with	the	const	modifier
before	the	method	body.

int	getX()	const	{	return	x;	}	//	constant	method

This	const	modifier	means	that	the	method	is	not	allowed	to	modify	the	state	of	the	object	and	can
therefore	safely	be	called	by	a	constant	object	of	the	class.	More	specifically,	the	const	modifier
applies	to	the	this	pointer	that	is	implicitly	passed	to	the	method.	This	effectively	restricts	the	method
from	modifying	the	object’s	fields	or	calling	any	non-constant	methods	in	the	class.



Constant	Return	Type	and	Parameters
In	addition	to	making	a	method	constant,	the	return	type	and	method	parameters	may	also	be	made	read-
only.	For	example,	if	a	field	is	returned	by	reference	instead	of	by	value	from	a	constant	method	it	is
important	that	it	is	returned	as	a	constant	in	order	to	maintain	the	constness	of	the	object.	Not	all	C++
compilers	will	be	able	to	catch	this	subtle	mistake.

const	int&	getX()	const	{	return	x;	}

Constant	Fields
Both	static	and	instance	fields	in	a	class	can	be	declared	constant.	A	constant	instance	field	must	be
assigned	its	value	using	the	constructor	initialization	list.	This	is	the	same	as	the	preferred	way	of
initializing	regular	(non-constant,	non-static)	fields.

class	MyClass
{
	public:
		int	i;
		const	int	c;
		MyClass()	:	c(5),	i(5)	{}
}

A	constant	static	field	has	to	be	defined	outside	of	the	class	declaration,	in	the	same	way	as	non-
constant	static	fields.	The	exception	to	this	is	when	the	constant	static	field	is	of	an	integer	data	type.	Such
a	field	may	also	be	initialized	within	the	class	at	the	same	time	as	the	field	is	declared.

class	MyClass
{
	public:
		static	int	si;
		const	static	double	csd;
		const	static	int	csi	=	5;
};
int	MyClass::si	=	1.23;
const	double	MyClass::csd	=	1.23;

Constant	Expressions
The	keyword	constexpr	was	introduced	in	C++11	to	indicate	a	constant	expression.	Like	const	it	can	be
applied	to	variables	to	make	them	constant,	causing	a	compilation	error	if	any	code	attempts	to	modify	the
value.

constexpr	int	myConst	=	5;



myConst	=	3;	//	error:	variable	is	const

Unlike	const	variables,	which	may	be	assigned	at	runtime,	a	constant	expression	variable	will	be
computed	at	compile	time.	Such	a	variable	can	therefore	always	be	used	where	a	compile-time	constant	is
needed,	such	as	in	an	array	and	enum	declarations.	Prior	to	C++11,	this	was	only	allowed	for	constant
integer	and	enumeration	types.

int	myArray[myConst	+	1];

Functions	and	class	constructors	may	also	be	defined	as	constant	expressions,	which	is	not	allowed
with	const.	Using	constexpr	on	a	function	limits	what	the	function	is	allowed	to	do.	In	short,	the	function
must	consist	of	a	single	return	statement,	and	it	can	only	reference	other	constexpr	functions	and	global
constexpr	variables.	C++14	relaxes	these	constraints,	allowing	constexpr	functions	to	contain	other
executable	statements.

constexpr	int	getDefaultSize(int	multiplier)
{
		return	3	*	multiplier;
}

The	return	value	for	a	constexpr	function	is	guaranteed	to	be	evaluated	at	compile	time	only	when	its
arguments	are	constant	expressions	and	the	return	value	is	used	where	a	compile-time	constant	is
necessary.

//	Compile-time	evaluation
int	myArray[getDefaultSize(10)];

If	the	function	is	called	without	constant	arguments,	it	returns	a	value	at	runtime	just	like	a	regular
function.

//	Run-time	call
int	mul	=	10;
int	size	=	getDefaultSize(mul);

Constructors	can	be	declared	with	constexpr,	to	construct	a	constant	expression	object.	Such	a
constructor	must	be	trivial.

class	Circle
{
public:
				int	r;
				constexpr	Circle(int	x)	:	r(x)	{}
};

When	called	with	a	constant	expression	argument,	the	result	will	be	a	compile-time	generated	object
with	read-only	fields.	With	other	arguments	it	will	behave	as	an	ordinary	constructor.

//	Compile-time	object
constexpr	Circle	c1(5);

//	Run-time	object



int	x	=	5;
Circle	c2(x);

Constant	Guideline
In	general,	it	is	a	good	idea	to	always	declare	variables	as	constants	if	they	do	not	need	to	be	modified.
This	ensures	that	the	variables	are	not	changed	anywhere	in	the	program	by	mistake,	which	in	turn	will
help	to	prevent	bugs.	There	is	also	a	performance	gain	by	allowing	the	compiler	the	opportunity	to	hard-
code	constant	expressions	into	the	compiled	program.	This	allows	the	expression	to	be	evaluated	only
once	–	during	compilation	–	rather	than	every	time	the	program	runs.



CHAPTER	24

Preprocessor

The	preprocessor	is	a	text	substitution	tool	that	modifies	the	source	code	before	the	compilation	takes
place.	This	modification	is	done	according	to	the	preprocessor	directives	that	are	included	in	the	source
files.	The	directives	are	easily	distinguished	from	normal	programming	code	in	that	they	all	start	with	a
hash	sign	(#).	They	must	always	appear	as	the	first	non-whitespace	character	on	a	line,	and	they	do	not
end	with	a	semicolon.	The	following	table	shows	the	preprocessor	directives	available	in	C++	along
with	their	functions.

Directive Description

#include File	include

#define Macro	definition

#undef Macro	undefine

#ifdef If	macro	defined

#ifndef If	macro	not	defined

#if If

#elif Else	if

#else Else

#endif End	if

#line Set	line	number

#error Abort	compilation

#pragma Set	compiler	option

Including	Source	Files
The	#include	directive	inserts	the	contents	of	a	file	into	the	current	source	file.	Its	most	common	use	is
to	include	header	files,	both	user-defined	and	library	ones.	Library	header	files	are	enclosed	between
angle	brackets	(<>).	This	tells	the	preprocessor	to	search	for	the	header	in	the	default	directory	where	it
is	configured	to	look	for	standard	header	files.

#include	<iostream>	//	search	library	directory

Header	files	that	you	create	for	your	own	program	are	enclosed	within	double	quotes	("").	The



preprocessor	will	then	search	for	the	file	in	the	same	directory	as	the	current	file.	In	case	the	header	is	not
found	there,	the	preprocessor	will	then	search	among	the	standard	header	files.

#include	"MyFile.h"	//	search	current,	then	default

The	double	quoted	form	can	also	be	used	to	specify	an	absolute	or	relative	path	to	the	file.

#include	"C:\MyFile.h"	//	absolute	path
#include	"..\MyFile.h"	//	relative	path

Define
Another	important	directive	is	#define,	which	is	used	to	create	compile-time	constants,	also	called
macros.	After	this	directive,	the	name	of	the	constant	is	specified	followed	by	what	it	will	be	replaced	by.

#define	PI	3.14	//	macro	definition

The	preprocessor	will	go	through	and	change	any	occurrences	of	this	constant	with	whatever	comes
after	it	in	its	definition	until	the	end	of	the	line.

float	f	=	PI;	//	f	=	3.14

By	convention,	constants	should	be	named	in	uppercase	letters	with	each	word	separated	by	an
underscore.	That	way	they	are	easy	to	spot	when	reading	the	source	code.

Undefine
A	#define	directive	should	not	be	used	to	directly	override	a	previously	defined	macro.	Doing	so	will
give	a	compiler	warning.	In	order	to	change	a	macro,	it	first	needs	to	be	undefined	using	the	#undef
directive.	Attempting	to	undefine	a	macro	that	is	not	currently	defined	will	not	generate	a	warning.

#undef	PI	//	undefine
#undef	PI	//	allowed

Predefined	Macros
There	are	a	number	of	macros	that	are	predefined	by	the	compiler.	To	distinguish	them	from	other	macros,
their	names	begin	and	end	with	two	underscores.	These	standard	macros	are	listed	in	the	following	table.

Directive Description

__FILE__ Name	and	path	for	the	current	file.

__LINE__ Current	line	number.

__DATE__ Compilation	date	in	MM	DD	YYYY	format.



__TIME__ Compilation	time	in	HH:MM:SS	format.

__func__ Name	of	the	current	function.	Added	in	C++11.

A	common	use	for	predefined	macros	is	to	provide	debugging	information.	To	give	an	example,	the
following	error	message	includes	the	file	name	and	line	number	where	the	message	occurs.

cout	<<	"Error	in	"	<<	__FILE__	<<	"	at	line	"	<<	__LINE__;

Macro	Functions
Macros	can	be	made	to	take	arguments.	This	allows	them	to	define	compile-time	functions.	For	example,
the	following	macro	function	gives	the	square	of	its	argument.

#define	SQUARE(x)	((x)*(x))

The	macro	function	is	called	just	as	if	it	was	a	regular	C++	function.	Keep	in	mind	that	for	this	kind	of
function	to	work,	the	arguments	must	be	known	at	compile	time.

int	x	=	SQUARE(2);	//	4

Note	the	extra	parentheses	in	the	macro	definition	that	are	used	to	avoid	problems	with	operator
precedence.	Without	the	parentheses	the	following	example	would	give	an	incorrect	result,	as	the
multiplication	would	then	be	carried	out	before	the	addition.

#define	SQUARE(x)	x*x

int	main(void)	{
		int	x	=	SQUARE(1+1);	//	1+1*1+1	=	3
}

To	break	a	macro	function	across	several	lines	the	backslash	character	can	be	used.	This	will	escape
the	newline	character	that	marks	the	end	of	a	preprocessor	directive.	For	this	to	work	there	must	not	be
any	whitespace	after	the	backslash.

#define	MAX(a,b)		\
a>b	?	\
a:b

Although	macros	can	be	powerful,	they	tend	to	make	the	code	more	difficult	to	read	and	debug.
Macros	should	therefore	only	be	used	when	they	are	absolutely	necessary	and	should	always	be	kept
short.	C++	code	such	as	constant	variables,	enum	classes,	and	constexpr	functions	can	often	accomplish
the	same	goal	more	efficiently	and	safely	than	#define	directives	can.

#define	DEBUG	0
const	bool	DEBUG	=	0;

#define	FORWARD	1
#define	STOP	0
#define	BACKWARD	-1



enum	class	DIR	{	FORWARD	=	1,	STOP	=	0,	BACKWARD	=	-1	};

#define	MAX(a,b)	a>b	?	a:b
constexpr	int	MAX(int	a,	int	b)	{	return	a>b	?	a:b;	}

Conditional	Compilation
The	directives	used	for	conditional	compilation	can	include	or	exclude	part	of	the	source	code	if	a	certain
condition	is	met.	First,	there	is	the	#if	and	#endif	directives,	which	specifies	a	section	of	code	that
will	only	be	included	if	the	condition	after	the	#if	directive	is	true.	Note	that	this	condition	must
evaluate	to	a	constant	expression.

#define	DEBUG_LEVEL	3

#if	DEBUG_LEVEL	>	2
	//	...
#endif

Just	as	with	the	C++	if	statement,	any	number	of	#elif	(else	if	)	directives	and	one	final	#else
directive	can	be	included.

#if	DEBUG_LEVEL	>	2
	//	...
#elif	DEBUG_LEVEL	==	2
	//	...
#else
	//	...
#endif

Conditional	compilation	also	provides	a	useful	means	of	temporarily	commenting	out	large	blocks	of
code	for	testing	purposes.	This	often	cannot	be	done	with	the	regular	multiline	comment	since	they	cannot
be	nested.

#if	0
	/*	Removed	from	compilation	*/
#endif

Compile	if	Defined
Sometimes,	a	section	of	code	should	only	be	compiled	if	a	certain	macro	has	been	defined,	irrespective	of
its	value.	For	this	purpose	two	special	operators	can	be	used:	defined	and	!defined	(not	defined).

#define	DEBUG

#if	defined	DEBUG
	//	...



#elif	!defined	DEBUG
	//	...
#endif

The	same	effect	can	also	be	achieved	using	the	directives	#ifdef	and	#ifndef	respectively.	For
instance,	the	#ifdef	section	is	only	compiled	if	the	specified	macro	has	been	previously	defined.	Note
that	a	macro	is	considered	defined	even	if	it	has	not	been	given	a	value.

#ifdef	DEBUG
	//	...
#endif

#ifndef	DEBUG
	//	...
#endif

Error
When	the	#error	directive	is	encountered	the	compilation	is	aborted.	This	directive	can	be	useful	to
determine	whether	or	not	a	certain	line	of	code	is	being	compiled.	It	can	optionally	take	a	parameter	that
specifies	the	description	of	the	generated	compilation	error.

#error	Compilation	aborted

Line
A	less	commonly	used	directive	is	#line,	which	can	change	the	line	number	that	is	displayed	when	an
error	occurs	during	compilation.	Following	this	directive	the	line	number	will	as	usual	be	increased	by
one	for	each	successive	line.	The	directive	can	take	an	optional	string	parameter	that	sets	the	filename	that
will	be	shown	when	an	error	occurs.

#line	5	"myapp.cpp"

Pragma
The	last	standard	directive	is	#pragma,	or	pragmatic	information.	This	directive	is	used	to	specify
options	to	the	compiler;	and	as	such,	they	are	vendor	specific.	To	give	an	example,	#pragma	message
can	be	used	with	many	compilers	to	output	a	string	to	the	build	window.	Another	common	argument	for
this	directive	is	warning,	which	changes	how	the	compiler	handles	warnings.

//	Show	compiler	message
#pragma	message(	"Hello	Compiler"	)



//	Disable	warning	4507
#pragma	warning(disable	:	4507)

Attributes
A	new	standardized	syntax	was	introduced	in	C++11	for	providing	compiler	specific	information	in	the
source	code,	so-called	attributes.	Attributes	are	placed	within	double	square	brackets	and	may,	depending
on	the	attribute,	be	applied	to	any	code	entities.	To	give	an	example,	a	standard	attribute	added	in	C++14
is	[[deprecated]],	which	indicates	that	use	of	a	code	entity	has	become	discouraged.

//	Mark	as	deprecated
[[deprecated]]	void	foo()	{}

This	attribute	allows	the	compiler	to	emit	a	warning	whenever	such	an	entity	is	used.	A	message	can
be	included	in	this	warning,	to	describe	why	the	entity	has	been	deprecated.

[[deprecated("foo()	is	unsafe,	use	bar()	instead")]]
void	foo()	{}



CHAPTER	25

Exception	Handling

Exception	handling	allows	programmers	to	deal	with	unexpected	situations	that	may	occur	in	a	program.

Throwing	Exceptions
When	a	function	encounters	a	situation	that	it	cannot	recover	from	it	can	generate	an	exception	to	signal
the	caller	that	the	function	has	failed.	This	is	done	using	the	throw	keyword	followed	by	whatever	it	is
the	function	wants	to	signal.	When	this	statement	is	reached,	the	function	will	stop	executing	and	the
exception	will	propagate	up	to	the	caller	where	it	can	be	caught,	using	a	try-catch	statement.

nt	divide(int	x,	int	y)
{
		if	(y	==	0)	throw	0;
		return	x	/	y;
}

Try-catch	statement
The	try-catch	statement	consists	of	a	try	block	containing	code	that	may	cause	exceptions	and	one	or	more
catch	clauses	to	handle	them.	In	the	above	case	an	integer	is	thrown	and	so	a	catch	block	needs	to	be
included	that	handles	this	type	of	exception.	The	thrown	expression	will	get	passed	as	an	argument	to	this
exception	handler,	where	it	can	be	used	to	determine	what	has	gone	wrong	with	the	function.	Note	that
when	the	exception	has	been	handled,	the	execution	will	then	continue	running	after	the	try-catch	blocks
and	not	after	the	throw	statement.

try	{
		divide(10,0);
}
catch(int&	e)	{
		std::cout	<<	"Error	code:	"	<<	e;
}

An	exception	handler	can	catch	a	thrown	expression	by	either	value,	reference	or	pointer.	However,



catching	by	value	should	be	avoided	since	this	causes	an	extra	copy	to	be	made.	Catching	by	reference	is
generally	preferable.	If	the	code	in	the	try	block	can	throw	more	types	of	exceptions	then	more	catch
clauses	need	to	be	added	to	handle	them	as	well.	Keep	in	mind	that	only	the	handler	that	matches	the
thrown	expression	will	be	executed.

catch(char&	e)	{
		std::cout	<<	"Error	char:	"	<<	e;
}

To	catch	all	types	of	exceptions	an	ellipsis	(...)	can	be	used	as	the	parameter	of	catch.	This	default
handler	must	be	placed	as	the	last	catch	statement	since	no	handler	placed	after	it	will	ever	be	executed.

catch(...)	{	std::cout	<<	"Error";	}

Re-throwing	Exceptions
If	an	exception	handler	is	not	able	to	recover	from	an	exception	it	can	be	re-thrown	by	using	the	throw
keyword	with	no	argument	specified.	This	will	pass	the	exception	up	the	caller	stack	until	another	try-
catch	block	is	encountered.	Be	careful	however,	because	if	an	exception	is	never	caught	the	program	will
terminate	with	a	run-time	error.

int	main()
{
		try	{
				try	{	throw	0;	}
				catch(...)	{	throw;	}	//	re-throw	exception
		}
		catch(...)	{	throw;	}			//	run-time	error
}

Exception	Specification
Functions	are	by	default	allowed	to	throw	exceptions	of	any	type.	To	specify	the	exception	types	that	a
function	may	throw	the	throw	keyword	can	be	appended	to	the	function	declaration.	The	throw
keyword	is	followed	by	a	comma	separated	list	of	the	allowed	types,	if	any,	enclosed	in	parentheses.

void	error1()	{}												//	may	throw	any	exceptions
void	error2()	throw(...)	{}	//	may	throw	any	exceptions
void	error3()	throw(int)	{}	//	may	only	throw	int
void	error4()	throw()	{}				//	may	not	throw	exceptions

This	kind	of	exception	specification	is	very	different	from	the	one	used	in	for	example	Java,	and
overall	there	is	very	little	reason	to	specify	exceptions	in	C++.	The	compiler	will	not	enforce	the
specified	exceptions	in	any	way	and	it	will	not	be	able	to	make	any	optimizations	because	of	them.

Use	of	throw	for	exception	specification	was	deprecated	in	C++11	and	replaced	by	a	noexcept



specifier.	Similar	to	throw(),	this	specifier	indicates	that	a	function	is	intended	not	to	throw	any
exceptions.	The	main	difference	is	that	noexcept	enables	certain	compiler	optimizations,	because	the
specifier	allows	the	program	to	terminate	without	unwinding	the	call	stack	if	for	any	reason	an	exception
still	occurs.

void	foo()	noexcept	{}	//	may	not	throw	exceptions

Exception	Class
As	previously	mentioned,	any	data	type	can	be	thrown	in	C++.	However,	the	standard	library	does
provide	a	base	class	called	exception	which	is	specifically	designed	to	declare	objects	to	be	thrown.
It	is	defined	in	the	exception	header	file	and	is	located	under	the	std	namespace.	As	seen	below,	the
class	can	be	constructed	with	a	string	that	becomes	the	exception’s	description.

#include	<exception>
void	make_error()
{
		throw	std::exception("My	Error	Description");
}

When	catching	this	exception	the	object’s	function	what	can	be	used	to	retrieve	the	description.

try	{	make_error();	}
catch	(std::exception	e)	{
		std::cout	<<	e.what();
}



CHAPTER	26

Type	Conversions

Converting	an	expression	from	one	type	to	another	is	known	as	type-conversion.	This	can	be	done	either
implicitly	or	explicitly.

Implicit	Conversions
An	implicit	conversion	is	performed	automatically	by	the	compiler	when	an	expression	needs	to	be
converted	into	one	of	its	compatible	types.	For	example,	any	conversions	between	the	primitive	data
types	can	be	done	implicitly.

long	a	=	5;			//	int	implicitly	converted	to	long
double	b	=	a;	//	long	implicitly	converted	to	double

These	implicit	primitive	conversions	can	be	further	grouped	into	two	kinds:	promotion	and	demotion.
Promotion	occurs	when	an	expression	gets	implicitly	converted	into	a	larger	type	and	demotion	occurs
when	converting	an	expression	to	a	smaller	type.	Because	a	demotion	can	result	in	the	loss	of	information,
these	conversions	will	generate	a	warning	on	most	compilers.	If	the	potential	information	loss	is
intentional,	the	warning	can	be	suppressed	by	using	an	explicit	cast.

//	Promotion
long			a	=	5;		//	int	promoted	to	long
double	b	=	a;		//	long	promoted	to	double

//	Demotion
int		c	=	10.5;	//	warning:	possible	loss	of	data
bool	d	=	c;				//	warning:	possible	loss	of	data

Explicit	Conversions
The	first	explicit	cast	is	the	one	inherited	from	C,	commonly	called	the	C-style	cast.	The	desired	data
type	is	simply	placed	in	parentheses	to	the	left	of	the	expression	that	needs	to	be	converted.

int		c	=	(int)10.5;	//	double	demoted	to	int



char	d	=	(char)c;			//	int	demoted	to	char

C++	casts
The	C-style	cast	is	suitable	for	most	conversions	between	the	primitive	data	types.	However,	when	it
comes	to	conversions	between	classes	and	pointers	it	can	be	too	powerful.	In	order	to	get	greater	control
over	the	different	types	of	conversions	possible	C++	introduced	four	new	casts,	called	named	casts	or
new-style	casts.	These	casts	are:	static,	reinterpret,	const	and	dynamic	cast.

static_cast<new_type>	(expression)
reinterpret_cast<new_type>	(expression)
const_cast<new_type>	(expression)
dynamic_cast<new_type>	(expression)

As	seen	above,	their	format	is	to	follow	the	cast’s	name	with	the	new	type	enclosed	in	angle	brackets
and	thereafter	the	expression	to	be	converted	in	parentheses.	These	casts	allow	more	precise	control	over
how	a	conversion	should	be	performed,	which	in	turn	makes	it	easier	for	the	compiler	to	catch	conversion
errors.	In	contrast,	the	C-style	cast	includes	the	static,	reinterpret	and	const	cast	in	one	operation.	That
cast	is	therefore	more	likely	to	execute	subtle	conversion	errors	if	used	incorrectly.

Static	Cast
The	static	cast	performs	conversions	between	compatible	types.	It	is	similar	to	the	C-style	cast,	but	is
more	restrictive.	For	example,	the	C-style	cast	would	allow	an	integer	pointer	to	point	to	a	char.

char	c	=	10;							//	1	byte
int	*p	=	(int*)&c;	//	4	bytes

Since	this	results	in	a	4-byte	pointer	pointing	to	1	byte	of	allocated	memory,	writing	to	this	pointer
will	either	cause	a	run-time	error	or	will	overwrite	some	adjacent	memory.

*p	=	5;	//	run-time	error:	stack	corruption

In	contrast	to	the	C-style	cast,	the	static	cast	will	allow	the	compiler	to	check	that	the	pointer	and
pointee	data	types	are	compatible,	which	allows	the	programmer	to	catch	this	incorrect	pointer
assignment	during	compilation.

int	*q	=	static_cast<int*>(&c);	//	compile-time	error

Reinterpret	Cast
To	force	the	pointer	conversion,	in	the	same	way	as	the	C-style	cast	does	in	the	background,	the
reinterpret	cast	would	be	used	instead.

int	*r	=	reinterpret_cast<int*>(&c);	//	forced	conversion



This	cast	handles	conversions	between	certain	unrelated	types,	such	as	from	one	pointer	type	to
another	incompatible	pointer	type.	It	will	simply	perform	a	binary	copy	of	the	data	without	altering	the
underlying	bit	pattern.	Note	that	the	result	of	such	a	low-level	operation	is	system-specific	and	therefore
not	portable.	It	should	be	used	with	caution	if	it	cannot	be	avoided	altogether.

Const	Cast
The	third	C++	cast	is	the	const	cast.	This	one	is	primarily	used	to	add	or	remove	the	const	modifier	of	a
variable.

const	int	myConst	=	5;
int	*nonConst	=	const_cast<int*>(&a);	//	removes	const

Although	const	cast	allows	the	value	of	a	constant	to	be	changed,	doing	so	is	still	invalid	code	that
may	cause	a	run-time	error.	This	could	occur	for	example	if	the	constant	was	located	in	a	section	of	read-
only	memory.

*nonConst	=	10;	//	potential	run-time	error

Const	cast	is	instead	used	mainly	when	there	is	a	function	that	takes	a	non-constant	pointer	argument,
even	though	it	does	not	modify	the	pointee.

void	print(int	*p)	{	std::cout	<<	*p;	}

The	function	can	then	be	passed	a	constant	variable	by	using	a	const	cast.

print(&myConst);	//	error:	cannot	convert
																	//	const	int*	to	int*

print(nonConst);	//	allowed

C-style	and	New-Style	Casts
Keep	in	mind	that	the	C-style	cast	can	also	remove	the	const	modifier,	but	again	since	it	does	this
conversion	behind	the	scenes	the	C++	casts	are	preferable.	Another	reason	to	use	the	C++	casts	is	that
they	are	easier	to	find	in	the	source	code	then	the	C-style	cast.	This	is	important	because	casting	errors
can	be	difficult	to	discover.	A	third	reason	for	using	the	C++	casts	is	that	they	are	unpleasant	to	write.
Since	explicit	conversion	in	many	cases	can	be	avoided,	this	was	done	intentionally	so	that	programmers
would	look	for	a	different	solution.

Dynamic	Cast
The	fourth	and	final	C++	cast	is	the	dynamic	cast.	This	one	is	only	used	to	convert	object	pointers	and
object	references	into	other	pointer	or	reference	types	in	the	inheritance	hierarchy.	It	is	the	only	cast	that



makes	sure	that	the	object	pointed	to	can	be	converted,	by	performing	a	run-time	check	that	the	pointer
refers	to	a	complete	object	of	the	destination	type.	For	this	run-time	check	to	be	possible	the	object	must
be	polymorphic.	That	is,	the	class	must	define	or	inherit	at	least	one	virtual	function.	This	is	because	the
compiler	will	only	generate	the	needed	run-time	type	information	for	such	objects.

Dynamic	Cast	Examples
In	the	example	below,	a	MyChild	pointer	is	converted	into	a	MyBase	pointer	using	a	dynamic	cast.
This	derived-to-base	conversion	succeeds,	because	the	Child	object	includes	a	complete	Base	object.

class	MyBase	{	public:	virtual	void	test()	{}	};
class	MyChild	:	public	MyBase	{};

int	main()
{
		MyChild	*child	=	new	MyChild();
		MyBase		*base	=	dynamic_cast<MyBase*>(child);	//	ok
}

The	next	example	attempts	to	convert	a	MyBase	pointer	to	a	MyChild	pointer.	Since	the	Base
object	does	not	contain	a	complete	Child	object	this	pointer	conversion	will	fail.	To	indicate	this,	the
dynamic	cast	returns	a	null	pointer.	This	gives	a	convenient	way	to	check	whether	or	not	a	conversion	has
succeeded	during	run-time.

MyBase		*base	=	new	MyBase();
MyChild	*child	=	dynamic_cast<MyChild*>(base);

if	(child	==	0)	std::cout	<<	"Null	pointer	returned";

If	a	reference	is	converted	instead	of	a	pointer,	the	dynamic	cast	will	then	fail	by	throwing	a
bad_cast	exception.	This	needs	to	be	handled	using	a	try-catch	statement.

#include	<exception>
//	...
try	{	MyChild	&child	=	dynamic_cast<MyChild&>(*base);	}
catch(std::bad_cast	&e)
{
		std::cout	<<	e.what();	//	bad	dynamic_cast
}

Dynamic	or	Static	Cast
The	advantage	of	using	a	dynamic	cast	is	that	it	allows	the	programmer	to	check	whether	or	not	a
conversion	has	succeeded	during	run-time.	The	disadvantage	is	that	there	is	a	performance	overhead
associated	with	doing	this	check.	For	this	reason	using	a	static	cast	would	have	been	preferable	in	the



first	example,	because	a	derived-to-base	conversion	will	never	fail.

MyBase	*base	=	static_cast<MyBase*>(child);	//	ok

However,	in	the	second	example	the	conversion	may	either	succeed	or	fail.	It	will	fail	if	the	MyBase
object	contains	a	MyBase	instance	and	it	will	succeed	if	it	contains	a	MyChild	instance.	In	some
situations	this	may	not	be	known	until	run-time.	When	this	is	the	case	dynamic	cast	is	a	better	choice	than
static	cast.

//	Succeeds	for	a	MyChild	object
MyChild	*child	=	dynamic_cast<MyChild*>(base);

If	the	base-to-derived	conversion	had	been	performed	using	a	static	cast	instead	of	a	dynamic	cast	the
conversion	would	not	have	failed.	It	would	have	returned	a	pointer	that	referred	to	an	incomplete	object.
Dereferencing	such	a	pointer	can	lead	to	run-time	errors.

//	Allowed,	but	invalid
MyChild	*child	=	static_cast<MyChild*>(base);

//	Incomplete	MyChild	object	dereferenced
(*child);



CHAPTER	27

Templates

Templates	provide	a	way	to	make	a	class,	function,	or	variable	operate	with	different	data	types	without
having	to	rewrite	the	code	for	each	type.

Function	Templates
The	example	below	shows	a	function	that	swaps	two	integer	arguments.

void	swap(int&	a,	int&	b)
{
		int	tmp	=	a;
		a	=	b;
		b	=	tmp;
}

To	convert	this	method	into	a	function	template	that	can	work	with	any	type	the	first	step	is	to	add	a
template	parameter	declaration	before	the	function.	This	declaration	includes	the	template	keyword
followed	by	the	keyword	class	and	the	name	of	the	template	parameter,	both	enclosed	between	angle
brackets.	The	name	of	the	template	parameter	may	be	anything,	but	it	is	common	to	name	it	with	a	capital
T.

template<class	T>

Alternatively,	the	keyword	typename	can	be	used	instead	of	class.	They	are	both	equivalent	in
this	context.

template<typename	T>

The	second	step	in	creating	a	function	template	is	to	replace	the	data	type	that	will	be	made	generic
with	the	template	parameter.

template<class	T>
void	swap(T&	a,	T&	b)
{
		T	tmp	=	a;
		a	=	b;



		b	=	tmp;
}

Calling	Function	Templates
The	function	template	is	now	complete.	To	use	it	swap	can	be	called	as	if	it	was	a	regular	function,	but
with	the	desired	template	argument	specified	in	angle	brackets	before	the	function	arguments.	Behind	the
scenes,	the	compiler	will	instantiate	a	new	function	with	this	template	parameter	filled	in,	and	it	is	this
generated	function	that	will	be	called	from	this	line.

int	a	=	1,	b	=	2;
swap<int>(a,b);	//	calls	int	version	of	swap

Every	time	the	function	template	is	called	with	a	new	type,	the	compiler	will	instantiate	another
function	using	the	template.

bool	c	=	true,	d	=	false;
swap<bool>(c,d);	//	calls	bool	version	of	swap

In	this	example,	the	swap	function	template	may	also	be	called	without	specifying	the	template
parameter.	This	is	because	the	compiler	can	automatically	determine	the	type,	because	the	function
template’s	arguments	use	the	template	type.	However,	if	this	is	not	the	case,	or	if	there	is	a	need	to	force
the	compiler	to	select	a	specific	instantiation	of	the	function	template,	the	template	parameter	would	then
need	to	be	explicitly	specified	within	angle	brackets.

int	e	=	1,	f	=	2;
swap(e,f);	//	calls	int	version	of	swap

Multiple	Template	Parameters
Templates	can	be	defined	to	accept	more	than	one	template	parameter	by	adding	them	between	the	angle
brackets.

template<class	T,	class	U>
void	swap(T&	a,	U&	b)
{
		T	tmp	=	a;
		a	=	b;
		b	=	tmp;
}

The	second	template	parameter	in	the	example	above	allows	swap	to	be	called	with	two	arguments
of	different	types.

int	main()
{



		int	a	=	1;
		long	b	=	2;
		swap<int,	long>(a,b);
}

Class	Templates
Class	templates	allow	class	members	to	use	template	parameters	as	types.	They	are	created	in	the	same
way	as	function	templates.

template<class	T>
class	myBox
{
	public:
		T	a,	b;
};

Unlike	function	templates,	a	class	template	must	always	be	instantiated	with	explicitly	specified
template	parameters.

myBox<int>	box;

Another	thing	to	remember	when	using	class	templates	is	that	if	a	method	is	defined	outside	of	the
class	template	that	definition	must	also	be	preceded	by	the	template	declaration.

template<class	T>
class	myBox
{
	public:
		T	a,	b;
		void	swap();
};

template<class	T>
void	myBox<T>::swap()
{
		T	tmp	=	a;
		a	=	b;
		b	=	tmp;
}

Notice	that	the	template	parameter	is	included	in	the	swap	template	function	definition	after	the	class
name	qualifier.	This	specifies	that	the	function’s	template	parameter	is	the	same	as	the	template	parameter
of	the	class.



Non-Type	Parameters
In	addition	to	type	parameters,	templates	can	also	have	regular	function-like	parameters.	As	an	example,
the	int	template	parameter	below	is	used	to	specify	the	size	of	an	array.

template<class	T,	int	N>
class	myBox
{
	public:
		T	store[N];
};

When	this	class	template	is	instantiated,	both	a	type	and	an	integer	have	to	be	included.

myBox<int,	5>	box;

Default	Types	and	Values
Class	template	parameters	can	be	given	default	values	and	types.

template<class	T	=	int,	int	N	=	5>

To	use	these	defaults	the	angle	brackets	just	need	to	be	left	empty	when	instantiating	the	class
template.

myBox<>	box;

Note	that	default	template	parameters	may	not	be	used	in	function	templates.

Class	Template	Specialization
If	there	is	a	need	to	define	a	different	implementation	for	a	template	when	a	specific	type	is	passed	as	the
template	parameter,	a	template	specialization	can	be	declared.	For	example,	in	the	following	class
template	there	is	a	print	method	that	outputs	the	value	of	a	template	variable.

#include	<iostream>

template<class	T>
class	myBox
{
	public:
		T	a;
		void	print()	{	std::cout	<<	a;	}
};



When	the	template	parameter	is	a	bool	the	method	should	print	out	“true”	or	“false”	instead	of	“1”	or
“0”.	One	way	to	do	this	would	be	to	create	a	class	template	specialization.	A	reimplementation	of	the
class	template	is	then	created	where	the	template	parameter	list	is	empty.	Instead,	a	bool	specialization
parameter	is	placed	after	the	class	template’s	name	and	this	data	type	is	used	instead	of	the	template
parameter	throughout	the	implementation.

template<>
class	myBox<bool>
{
	public:
		bool	a;
		void	print()	{	std::cout	<<	(a	?	"true"	:	"false");	}
};

When	this	class	template	is	instantiated	with	a	bool	template	type,	this	template	specialization	will
be	used	instead	of	the	standard	one.

int	main()
{
		myBox<bool>	box	=	{	true	};
		box.print();	//	"true"
}

Note	that	there	is	no	inheritance	of	members	from	the	standard	template	to	the	specialized	template.
The	whole	class	will	have	to	be	redefined.

Function	Template	Specialization
Since	there	is	only	one	function	that	is	different	between	the	templates	in	the	example	above,	a	better
alternative	would	be	to	create	a	function	template	specialization.	This	kind	of	specialization	looks	very
similar	to	the	class	template	specialization,	but	is	only	applied	to	a	single	function	instead	of	the	whole
class.

#include	<iostream>

template<class	T>
class	myBox
{
	public:
	T	a;

		template<class	T>	void	print()	{
				std::cout	<<	a;
		}

		template<>	void	print<bool>()	{
				std::cout	<<	(a	?	"true"	:	"false");



		}
};

This	way	only	the	print	method	has	to	be	redefined	and	not	the	whole	class.

int	main()
{
		myBox<bool>	box	=	{	true	};
		box.print<bool>();	//	"true"
}

Notice	that	the	template	parameter	has	to	be	specified	when	the	specialized	function	is	invoked.	This
is	not	the	case	with	the	class	template	specialization.

Variable	Templates
In	addition	to	function	and	class	templates,	C++14	allows	variables	to	be	templated.	This	is	achieved
using	the	regular	template	syntax.

template<class	T>
constexpr	T	pi	=	T(3.1415926535897932384626433L);

Together	with	the	constexpr	specifier,	this	template	allows	the	value	of	the	variable	to	be	computed	at
compile	time	for	a	given	type,	without	having	to	type	cast	the	value.

int	i	=	pi<int>;					//	3
float	f	=	pi<float>;	//	3.14...

Variadic	Templates
C++11	allows	template	definitions	to	take	a	variable	number	of	type	arguments.	This	feature	can	be	used
as	a	replacement	for	variadic	functions.	To	illustrate,	consider	the	following	variadic	function,	which
returns	the	sum	of	any	number	of	ints	passed	to	it.

#include	<iostream>
#include	<initializer_list>
using	namespace	std;

int	sum(initializer_list<int>	numbers)
{
		int	total	=	0;
		for(auto&	i	:	numbers)	{	total	+=	i;	}
		return	total;
}

The	initializer_list	type	indicates	that	the	function	accepts	a	brace-enclosed	list	as	its	argument,	so	the



function	must	be	called	in	this	manner.

int	main()
{
		cout	<<	sum(	{	1,	2,	3	}	);	//	"6"
}

The	next	example	changes	this	function	into	a	variadic	template	function.	Such	a	function	is	traversed
recursively	rather	than	iteratively,	so	once	the	first	argument	has	been	handled	the	function	calls	itself
with	the	remaining	arguments.

The	variadic	template	parameter	is	specified	using	the	ellipsis	(...)	operator,	followed	by	a	name.
This	defines	a	so-called	parameter	pack.	The	parameter	pack	is	here	bound	to	a	parameter	in	the	function
(...	rest),	and	then	unpacked	into	separate	arguments	(rest	...)	when	the	function	calls	itself	recursively.

int	sum()	{	return	0;	}	//	end	condition

template<class	T0,	class	...	Ts>
decltype(auto)	sum(T0	first,	Ts	...	rest)
{
		return	first	+	sum(rest	...);
}

This	variadic	template	function	can	be	called	as	a	regular	function,	with	any	number	of	arguments.	In
contrast	to	the	previously	defined	variadic	function,	this	template	function	accepts	arguments	of	any	type.

int	main()
{
		cout	<<	sum(1,	1.5,	true);	//	"3.5"
}



CHAPTER	28

Headers

When	a	project	grows	it	is	common	to	split	the	code	up	into	different	source	files.	When	this	happens	the
interface	and	implementation	are	generally	separated.	The	interface	is	placed	in	a	header	file,	which
commonly	has	the	same	name	as	the	source	file	and	a	.h	file	extension.	This	header	file	contains	forward
declarations	for	the	source	file	entities	that	need	to	be	accessible	to	other	compilation	units	in	the	project.
A	compilation	unit	consists	of	a	source	file	(.cpp)	plus	any	included	header	files	(.h	or	.hpp).

Why	to	Use	Headers
C++	requires	everything	to	be	declared	before	it	can	be	used.	It	is	not	enough	to	simply	compile	the
source	files	in	the	same	project.	For	example,	if	a	function	is	placed	in	MyFunc.cpp,	and	a	second	file
named	MyApp.cpp	in	the	same	project	tries	to	call	it,	the	compiler	will	report	that	it	cannot	find	the
function.

//	MyFunc.cpp
void	myFunc()	{}

//	MyApp.cpp
int	main()
{
		myFunc();	//	error:	myFunc	identifier	not	found
}

To	make	this	work	the	function’s	prototype	has	to	be	included	in	MyApp.cpp.

//	MyApp.cpp
void	myFunc();	//	prototype

int	main()
{
		myFunc();					//	ok
}



Using	Headers
This	can	be	made	more	convenient	if	the	prototype	is	placed	in	a	header	file	named	MyFunc.h	and	this
header	is	included	in	MyApp.cpp	through	the	use	of	the	#include	directive.	This	way	if	any	changes
are	made	to	MyFunc	there	is	no	need	to	update	the	prototypes	in	MyApp.cpp.	Furthermore,	any	source	file
that	wants	to	use	the	shared	code	in	MyFunc	can	just	include	this	one	header.

//	MyFunc.h
void	myFunc();	//	prototype

//	MyApp.cpp
#include	"MyFunc.h"

What	to	Include	in	Headers
As	far	as	the	compiler	is	concerned	there	is	no	difference	between	a	header	file	and	a	source	file.	The
distinction	is	only	conceptual.	The	key	idea	is	that	the	header	should	contain	the	interface	of	the
implementation	file	–	that	is,	the	code	that	other	source	files	will	need	to	use.	This	may	include	shared
constants,	macros,	and	type	aliases.

//	MyApp.h	-	Interface
#define	DEBUG	0
const	double	E	=	2.72;
typedef	unsigned	long	ulong;

As	already	mentioned,	the	header	can	contain	prototypes	of	the	shared	functions	defined	in	the	source
file.

void	myFunc();	//	prototype

Additionally,	shared	classes	are	typically	specified	in	the	header,	while	their	methods	are
implemented	in	the	source	file.

//	MyApp.h	class	MyClass
{
		public:
				void	myMethod();
};

//	MyApp.cpp
void	MyClass::myMethod()	{}

As	with	functions,	it	is	necessary	to	forward	declare	global	variables	before	they	can	be	referenced	in
a	compilation	unit	outside	the	one	containing	their	definition.	This	is	done	by	placing	the	shared	variable
in	the	header	and	marking	it	with	the	keyword	extern.	This	keyword	indicates	that	the	variable	is
initialized	in	another	compilation	unit.	Functions	are	extern	by	default,	so	function	prototypes	do	not	need
to	include	this	specifier.	Keep	in	mind	that	global	variables	and	functions	may	be	declared	externally



multiple	times	in	a	program,	but	they	may	be	defined	only	once.

//	MyApp.h
extern	int	myGlobal;

//	MyApp.cpp
int	myGlobal	=	0;

It	should	be	noted	that	the	use	of	shared	global	variables	is	discouraged.	This	is	because	the	larger	a
program	becomes,	the	more	difficult	it	is	to	keep	track	of	which	functions	access	and	modify	these
variables.	The	preferred	method	is	to	instead	pass	variables	to	functions	only	as	needed,	in	order	to
minimize	the	scope	of	those	variables.

The	header	should	not	include	any	executable	statements,	with	two	exceptions.	First,	if	a	shared	class
method	or	global	function	is	declared	as	inline,	that	function	must	be	defined	in	the	header.	Otherwise,
calling	the	inline	function	from	another	source	file	will	give	an	unresolved	external	error.	Note	that	the
inline	modifier	suppresses	the	single	definition	rule	that	normally	applies	to	code	entities.

//	MyApp.h
inline	void	inlineFunc()	{}

class	MyClass
{
		public:
										void	inlineMethod()	{}
};

The	second	exception	is	shared	templates.	When	encountering	a	template	instantiation,	the	compiler
needs	to	have	access	to	the	implementation	of	that	template,	in	order	to	create	an	instance	of	it	with	the
type	arguments	filled	in.	The	declaration	and	implementation	of	templates	are	therefore	generally	put	into
the	header	file	all	together.

//	MyApp.h
template<class	T>
class	MyTemp	{	/*	...	*/	}

//	MyApp.cpp
MyTemp<int>	o;

Instantiating	a	template	with	the	same	type	in	many	compilation	units	leads	to	significant	redundant
work	done	by	the	compiler	and	linker.	To	prevent	this	C++11	introduced	extern	template	declarations.	A
template	instantiation	marked	as	extern	signals	to	the	compiler	not	to	instantiate	the	template	in	this
compilation	unit.

//	MyApp.cpp
MyTemp<int>	b;	//	instantiation	is	done	here

//	MyFunc.cpp
extern	MyTemp<int>	a;	//	supress	redundant	instantiation

If	a	header	requires	other	headers	it	is	common	to	include	those	files	as	well,	to	make	the	header	stand



alone.	This	ensures	that	everything	needed	is	included	in	the	correct	order,	solving	potential	dependency
problems	for	every	source	file	that	requires	the	header.

//	MyApp.h
#include	<cstddef.h>	//	include	size_t
void	mySize(std::size_t);

Note	that	since	headers	mainly	contain	declarations,	any	extra	headers	included	should	not	affect	the
size	of	the	program,	although	they	may	slow	down	compilation.

Include	Guards
An	important	thing	to	bear	in	mind	when	using	header	files	is	that	a	shared	code	entity	may	only	be
defined	once.	Consequently,	including	the	same	header	file	more	than	once	will	likely	result	in
compilation	errors.	The	standard	way	to	prevent	this	is	to	use	a	so-called	include	guard.	An	include
guard	is	created	by	enclosing	the	start	of	the	header	in	a	#ifndef	section	that	checks	for	a	macro
specific	to	that	header	file.	Only	when	the	macro	is	not	defined	is	the	file	included	and	the	macro	is	then
defined,	which	effectively	prevents	the	file	from	being	included	again.

//	MyApp.h
#ifndef	MYAPP_H
#define	MYAPP_H
//	...
#endif	//	MYAPP_H
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C-style	cast
Custom	type	conversions

explicit	conversion
implicit	conversion
operator	keywords

		D
Dynamic	allocation
Dynamic	cast

		E
Enum

class	keyword
constant	values
conversions
scope
switch	statement

Exception	handling
exceptions	types
re-throw	exceptions
std	namespace
throw	keyword
try-catch	statement
what()	function

Explicit	conversions

		F,	G
Functions

arguments
auto	keyword
calling	functions
decltype	keyword
default	value
definition
inline	function
jump	statement
lambda	functions
overloading
parameters
passed	by	address
passed	by	reference
passed	by	value
prototype	declaration
return	by	address
return	by	reference
return	by	value
return	statement

		H
Headers

#include	directive
include	guards
inline	modifier
MyApp.cpp
MyFunc	cpp



shared	classes
templates

		I,	J,	K
Implicit	conversions
Inheritance

constructor
downcast
multiple
upcast

Integrated	Development	Environment	(IDE)
IntelliSense
Iostream	header

		L,	M
Loop	statements

break	and	continue	statements
do-while	loop
goto	statements
for	loop
while	loop

		N
Namespaces

alias
declaration
include	directives
member	import
members	access
nesting
type	alias

Null	pointer
Numerical	operators

arithmetic
assignment
bitwise
combined	assignment
comparison
definition
increment	and	decrement
logical

		O
Operator	overloading

binary
unary

Operator	precedence
Overloadable	operators
Overriding

base	class	scoping
final	modifier
Rectangle	getArea	method
Triangle	getArea	method
virtual	method

		P,	Q
Pointer

creation
definition



dereference	operator
dynamic	allocation
null	pointer

Preprocessor
attributes
#define	directive
#elif	directives
#else	directives
#endif	directives
#error	directives
#ifdef	directives
#if	directives
#ifndef	directives
#include	directive
#line	directives
macro	functions
#pragma	directives
predefined	macros
#undef	directive

		R
References

creation
pointers
rvalue

Reinterpret	cast

		S
Solution	Explorer	pane
Static	cast
Static	fields
Static	global	variables
Static	local	variables
Static	methods
String

combination
comparsion
encodings
escape	characters
functions

Struct
declarator	list

		T
Templates

calling	function
class	templates
class	template	specialization
default	values	and	types
function
function	specialization
multiple	template	parameters
non-type	parameters
swap	function
template	parameter
template	specialization
variable	function
variadic	function

Type-conversion
const	cast
C-style	cast



dynamic	cast
explicit
implicit
reinterpret	cast
static	cast

		U
Union	type

		V,	W,	X,	Y,	Z
Variables

assignment	operator
Boolean	value
char	type
constructor	initialization
data	types/primitives
declaring	variables
floating-point	types
global	variable
hexadecimal	literals
integer	types
literal	suffixes
local	variable
Octal	literals
signed	integers
unsigned	integers
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