
Open Source Kernel Enhancements
for Low Latency Sockets using Busy Poll
Stacking the Latency Deck in Your Favor

As companies move to rack- and even
warehouse-scale architectures, the laten-
cy of the slowest node on the network
often becomes the limiting factor in how
fast data is served to consumers. As com-
panies look to solve this so-called “long
tail” effect of network latency, the tradi-
tional answer has been a proprietary
network fabric such as InfiniBand* or
RDMA over Ethernet such as iWARP* or
RoCE.* These solutions offer excellent low
latency performance but require applica-
tions to be customized and rewritten to
take advantage of RDMA networks rather
than standard Ethernet sockets.

Recently, Intel developed a solution for
IT administrators needing low latency
networking performance without having
to modify applications or administer a
proprietary fabric. At a high level, the
design of Intel’s proposed solution, dub-
bed Busy Poll Sockets (BPS), is an en-
hanced native protocol stack consisting
of two components: a low latency receive
path and top-down, busy-wait polling to

Introduction
Low Latency Networking without Customized Applications

Historically, the need for low latency networking performance has been primarily
within the domains of high speed Financial Services Industries (FSI) or High Perfor-
mance Computing (HPC). Now, with the scale-up of distributed applications in cloud
service industries and the proliferation of low-latency storage technologies such as
SSDs and cache-based storage, network latency is becoming an important perfor-
mance factor for many more computing sectors.

replace latency-inducing interrupts for
incoming packets. BPS does not require
any application customization; it can be
enabled at a global system level or as a
socket option for specific applications.
Unlike other proprietary low latency solu-
tions that run in specialized user-mode
implementations, and may be prone to
issues, BPS is fully implemented in the
native Linux* kernel.

Busy Poll Sockets has been shown to
provide significant latency performance
benefits over interrupt and NAPI driven
polling sockets (see “Performance Re-
sults,” pg. 4). With the help and positive
feedback of the Open Source Linux*
community, BPS was accepted for inclu-
sion into the publicly available Linux* 3.11
kernel. It is expected to be included in
future releases of major Linux* distribu-
tions and is currently being tested by
major cloud service providers whose
implementations remain secret.

Julie Cummings
Eliezer Tamir

Intel Corporation

 “Busy Poll Sockets

enhances the native

Linux* networking stack

by providing the socket

layer code the ability

to directly poll an

Ethernet device’s

receive (RX) queue.”

WHITE PAPER
Open Source
Kernel Enhancements
Network Connectivity

Busy Poll Sockets (BPS) Design
Busy Poll Sockets enhances the native
Linux* networking stack by providing the
socket layer code the ability to directly
poll an Ethernet device’s receive (RX)
queue. This eliminates the cost of the in-
terrupt and context switch and, with pro-
per tuning, can achieve results very close
to the latency of the hardware itself (see
“Performance Results,” pg. 4).

Figures 1 and 2 illustrate the differences
in the standard receive path and one
enhanced by BPS.

Table of Contents

Introduction . 1

Busy Poll Sockets (BPS) Design 2

Busy Poll Sockets Technical Details 2

Usage and
Recommended Tuning Settings 3

Performance Results 4

Conclusions . 4

Configurations . 4

Busy Poll Sockets Technical Details
Changes to Linux* Kernel

The following lists the changes made to
the Linux* protocol stack by the BPS*
kernel patches.

• A global hash table allowing look up of
a struct napi by a unique id was added.

• A field to track the napi_id was added to
struct skbuf and struct sock. Use this to
track which NAPI is needed to poll for a
specific socket. The device driver marks
every incoming skb with this id. This is
propagated to the sk when the socket is
looked up in the protocol handler.

• When the socket code does not find any
more data on the socket queue, it now
may call ndo_busy_poll to crank the de-
vice’s receive queue and feed incoming
packets to the stack directly from the
context of the socket.

• Sockets with socket option SO_BUSY_
POLL set will be busy polled. Net.core.
busy_read sets the default value of the
SO_BUSY_POLL socket option. To eable
busy polling globally sysctl.net.core.busy_
read must be set. To enable busy polling
selectively, set SO_BUSY_POLL on the
desired sockets and set sysctl.net.core.
busy_poll to the recommended value.

• Sysctl value sysctl.net. busy_read con-
trols how long (in µs) to spin waiting for
packets on the device queue for socket
reads. Setting to 0 globally disables busy-
polling. This sets the default value of the
SO_BUSY_POLL socket option.

• A sysctl value (sysctl.net.core.busy_poll)
controls how long (in µs) to spin waiting
for packets on the device queue for
socket poll and selects.

Locking Changes
Locking between napi poll
and ndo_busy_poll

Since what needs to be locked between
a device’s NAPI poll and ndo_busy_poll
is highly device- and/or configuration-
dependent, this is handled inside the
Ethernet driver. For example, when pack-
ets for high priority connections are sent
to separate rx queues, locking may not

Figure 1—Traditional Receive Path Flow Figure 2—Busy Poll Sockets Receive Flow

1. App checks for receive
2. Check device driver for pending packet

(poll starts)
3. Meanwhile, packet received to NIC
4. Driver processes pending packet

• Bypasses context switch & interrupt
5. Driver passes to Protocol
6. App received data thru sockets

API Repeat

1. App checks for receive
2. No immediate receive, thus block
3. Packet received and Interrupt generated

• Interrupt subject to Interrupt Rate
and Interrupt Balancing

4. Driver passes to Protocol
5. Protocol/Sockets wakes App
6. App received data thru sockets

API Repeat

Application

Sockets

Protocols

Device driver

NIC

1

2

3

3

4

5

6

Application

Sockets

Protocols

Device driver

NIC

1

2

3

3

4

5

6

Application

Sockets

Protocols

Device driver

NIC

1

2

3

3

4

5

6

Application

Sockets

Protocols

Device driver

NIC

1

2

3

3

4

5

6

Application

Sockets

Protocols

Device driver

NIC

1

2

3

3

4

5

6

Application

Sockets

Protocols

Device driver

NIC

1

2

3

3

4

5

6

Open Source Kernel Enhancements

2

even be needed between napi poll and
ndo_busy_poll. For BPS-enabled drivers,
only the RX queue is locked—ndo_busy_
poll does not touch the interrupt state or
the TX queues.

• If a queue is actively polled by a socket
(on another CPU) napi poll will not ser-
vice it, and waits until the queue can be
locked and cleaned before doing an
napi_complete().

• If a socket can’t lock the queue because
another CPU has it, either from napi or
from another socket polling on the queue,
the socket code can busy-wait on the
socket’s skb queue.

• Ndo_busy_poll does not have prefer-
ential treatment for the data from the
calling socket vs. data from others. If an-
other CPU is polling, data on this socket’s
queue is seen when it arrives.

• Ndo_busy_poll is called with local BHs
disabled so it won’t race on the same
CPU with net_rx_action, which calls the
napi poll method.

Locking of napi_hash
The napi hash mechanism uses RCU.
napi_by_id() must be called under
rcu_read_lock().

After a call to napi_hash_del(), caller
must take care to wait an rcu grace pe-
riod before freeing the memory contain-
ing the napi struct. (The Intel driver
already has this because the queue vec-
tor structure uses rcu to protect the
statistics counters in it.)

Usage and
Recommended Tuning Settings
Requirements

• Intel® Ethernet Converged Network
Adapter X520 or Intel® Ethernet Con-
verged Network Adapter X540

• Supported inbox Intel driver. Currently
supported driver: ixgbe (10Gb Ethernet).

• Linux* kernel with Busy Poll Sockets
support such as 3.11 or later. By
default, the CONFIG_NET_RX_BUSY_
POLL kernel setting should be confi-
gured to enable BPS.

Enabling

• Only sockets with socket option SO_
BUSY_POLL set are busy polled. Net.
core.busy_read sets the default value of
the SO_BUSY_POLL socket option so, to
enable busy polling globally, sysctl.net.
core.busy_read must be set. To en-
able busy polling selectively, set SO_
BUSY_POLL on the desired sockets
and set sysctl.net.core.busy_poll to the
recommended value.

• Sysctl value net.core.busy_read controls
how long (in µs) to spin waiting for pack-
ets on the device queue for socket
reads. The default is 0, so this must be
set higher to enable the BPS feature.
This sets the default value of the SO_
BUSY_POLL socket option. Can be set or
overridden per socket by setting socket
option SO_BUSY_POLL. Recommended
value is 50.

• Sysctl value net.core.busy_poll (default:
0 (off)) controls how long (in µs) to spin
waiting for packets on the device queue
for socket poll and select. The default is
0, so this must be set higher to enable
the BPS feature for poll and select. The
recommended value depends on the
number of sockets polled—for several
sockets 50, for several hundred—100.
For more than that, use epoll.

Tuning and Configuration
• Set the interrupt coalescing (ethtool -C

setting for rx-usecs) on the network
device in the neighborhood of 100 to
lower the interrupt rate to limit the
number of context switches caused by
interrupts.

• Use ethtool -K to disable GRO and LRO on
the network device to avoid out of order
packets on the receive queue. Usually,
this only an issue for mixed bulk and low
latency traffic. If there is a concern with
large packet performance, try enabling
GRO for traffic on carefully ordered
queues.

• Bind application threads and the network
device IRQs to separate CPU cores but
note that both sets of cores should be
on the same CPU NUMA node as the net-
work device. If the app and the IRQ run

on the same core, a small penalty may
be incurred. If interrupt coalescing is set
to a low value, that penalty can be quite
large.

• If you suspect that machine memory is
not configured properly, use numademo
to make sure that the CPU-to-memory
bandwidth is acceptable. Numademo
128m memcpy local copy numbers should
be more than 8GB/s on a properly
configured machine.

• I/O Memory Management Unit (IOMMU)
support should be disabled for optimal
performance and may already be dis-
abled by default in your Linux* distribu-
tion.

Cautions

• CPU Utilization

BPS implements a busy polling method
that inherently causes greater CPU uti-
lization on the core doing the poll. The
busy polling also prevents the CPU from
sleeping to save power, possibly incurring
greater power usage. These are common
tradeoffs in the world of low latency op-
timization. Intel recommends that appli-
cations be tested to determine the best
trade-off of CPU utilization and low la-
tency performance.

• Application Threads
If there are more application threads
than cores, performance degradation
from context switches van occur. For
optimal performance follow the recom-
mended process pinning guidelines.

• Virtualization/SR-IOV
There are no known issues with BPS
in virtualized and/or Single Root-IO
Virtualization (SR-IOV) enabled environ-
ments, but they have not been tested by
Intel. Any virtualization in an environ-
ment will incur some latency perfor-
mance penalty, so latency sensitive
applications should avoid virtualized
environments when possible.

• Epoll support
Poll and select functionality are cur-
rently supported but epoll support is
planned for a later release.

3

Open Source Kernel Enhancements

3

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

UDP half round trip time TCP half round trip time

Ti
m

e
(u

s)

Netperf Latency results

Busy Poll enabled Busy Poll disabled

Performance Results

Test Configuration

The standard open-source network
benchmark Netperf* (http://www.netperf.
org) was used to measure the latency per-
formance of Busy Poll Sockets with Intel®
X520 CNAs.

Figure 3—Netperf Latency Results

Conclusions

Intel Corporation’s open source contribu-
tion to the performance of sockets-based
communication has shown significant per-
formance improvements over the stan-
dard Linux* stack while maintaining the
benefits and stability of the native Linux*

For more information on Intel Open Source Kernel Enhancements, visit www.intel.com/go/ethernet

4

kernel. With no need for changes to appli-
cations or user-space accelerations, Busy
Poll Sockets offers an attractive alterna-
tive to proprietary solutions and special-
ized hardware and software.

Hardware Configuration:

Server: Supermicro* 6026TT-BTF

CPU: Intel Xeon® Processor E5-2690

Hyperthreading: Off

Turbo mode: On

C1E Support: Off

Memory: 128 GB

CNA: Intel Ethernet Converged Network
Adapter X520

Network Configuration: Back-to-Back,
Direct Attach, No Switch

Software Configuration:

Linux* 3.11 rc-4

Busy Poll Enabled Settings:

• sysctl.net.core.busy_read=50

• sysctl.net.core.busy_poll=50

• X520 rx-usecs=100

Busy Poll* Disabled Settings:

• sysctl.net.core.busy_read=50

• sysctl.net.core.busy_poll=50

• X520 rx-usecs=100

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU
PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DI-RECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifi-
cations. Current characterized errata are available on request.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725,
or go to: http://www.intel.com/design/literature.htm.
Copyright ©2013 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others
where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Configurations: Intel internal measurements using open source benchmark Netperf, Linux* 3.11 rc-4 kernel, & Intel Xeon® Processors E5-2690. Please reference hardware and software configurations listed above
for configuration details. For more information, go to http://www.intel.com/performance.
Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruc-
tion sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Open Source Kernel Enhancements

