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Preface

This handbook is intended as a background and reference book primarily for elec-
tromagnetic compatability (EMC) engineers, but others seeking specific or general 
information on antennas, as well as circuit design engineers and quality assurance 
managers, will also find it very useful. The treatment is essentially practical, but it 
aims to be authoritative and reliable. Postgraduate students studying electromag-
netic theory, antennas and propagation, and EMC topics will also find this book 
invaluable in understanding the concepts of EM radiation.

This handbook explains the principles of antenna theory, without going into 
great mathematical detail. The reader is expected to have attained an academic 
level of Higher National Diploma (HND) or have had some practical experience 
as a test engineer in the EMC field.

The required characteristics of an antenna depend on the application. In general, 
for EMC applications, the larger the bandwidth, the fewer the number of antennas 
required to cover the total frequency range.

For emission testing and radio monitoring site surveys, the antenna should be 
omnidirectional and capable of receiving electric and magnetic fields of any polar-
ization. Other practical considerations, such as using receivers that cover the same 
frequency ranges as the antennas, may also influence the antenna selection. Portabil-
ity, weight, and size are obviously also very important considerations for site surveys.

For immunity and susceptibility testing, the antenna should also be broadband, 
but it has to be capable of handling high power, since it has to produce high electric 
or magnetic fields.

For shielding or screening effectiveness measurements, the transmitting antenna 
should be capable of handling high power, so that the required dynamic range can 
be produced. Both receiver and transmitter antennas should also be highly direc-
tional, so that only the field through the material under test is measured. However, 
at the low end of the frequency range, single element antennas cannot produce 
directional beams.

This book is written in such a way that each section in a chapter can be referred 
to independently, and, for instance, the reader does not have to read a chapter from 
the beginning in order to find the definition of a particular symbol. The details of 
each symbol are given after each equation. Although this may seem repetitious to 
the reader reading the book from the beginning, this approach is invaluable to the 
reader seeking to refer to a particular topic, not wishing to spend time looking up 
the meaning of symbols used in equations and formulas. Each chapter is also writ-
ten so as to be fairly self-contained, although this was not always possible.
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Reference to textbooks is given with the particular page or section number. This 
enables the reader to quickly access the particular topic, and the author considers 
this a welcome departure from references made to entire books, with the reader 
required to find the relevant section.

This book uses SI units throughout, and lists all the abbreviations and acronyms 
commonly used. The SI units avoid the use of the solidus (forward slash or division 
sign), and instead the use of negative indices is recommended. However, the solidus 
is commonly used in some cases, and has been retained in these cases.

Chapter 1 explains the main properties of an antenna in a qualitative manner, 
and is useful for the engineer not familiar with antennas or the jargon used. Chapters 
2 and 3 assist engineers in the revision of the mathematics required for the theo-
retical side of engineering. These were requested by colleagues who felt that math 
textbooks were too complicated, and gave too much irrelevant detail that were not 
applicable to EM theory. These chapters are written in such a way that they can be 
omitted by those familiar with mathematics or by those who do not wish to study 
the theoretical aspects of antennas.

Chapters 4, 5, and 6 describe antennas that are classified according to frequency. 
They give the theoretical basis for the antennas, and also describe the practical 
aspects, so that engineers can deduce the electrical properties of an antenna by 
examination of the physical characteristics of the antenna. These chapters are fol-
lowed by Chapter 7 on standard horns. These are used to calibrate antennas used 
for measurements. Chapters 8 and 9 provide an introduction to EMC measurements 
and the theory and applications of measurement sites and enclosures.

Finally, the appendices contain lists of acronyms, preferred scientific prefixes, 
scientific constants, conductivities, dielectric constants, conversions between deci-
bels relative to one millivolt (dBmV) and volts or watts, symbols, the periodic table 
in alphabetic order, and frequency wavebands.

Every care has been taken in the preparation of the manuscript. However the 
author would appreciate any comments on the topics covered, or errors in the text, 
be they typographical or factual.
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C h a p t e r  1

Introduction to Antennas

This chapter deals with antennas, without considering the theoretical aspects in any 
great depth. This enables EMC engineers to understand the main characteristics of 
an antenna in a qualitative manner, without recourse to the intricacies of Maxwell’s 
equations. It also gives approximate formulas to enable engineers to obtain some 
key parameters, if other parameters are known. The main features required of an 
antenna for EMC and radio monitoring applications are also discussed.

An antenna is a device for radiating or receiving an electromagnetic radio signal. 
It transfers energy between a transmission line and free space, that is, it transforms 
a guided wave to a free space wave.

The term antenna is used as a generic term for both wire antennas such as 
dipoles, and for aperture antennas such as horns, reflectors, and so forth. However, 
its use is sometimes restricted to aperture antennas in the upper RF and microwave 
regions, that is, above about 300 MHz, whereas the term aerial is sometimes used 
at the lower frequencies.

1.1 Requirements of an Antenna for EMC

The important features required of an antenna depend on the application. For 
emission testing and radio monitoring site surveys, the antenna should ideally be 
omnidirectional, broadband, and capable of receiving electric and magnetic fields 
of any polarization. Other practical considerations, such as using receivers which 
cover the same frequency ranges as the antennas, may also influence the antenna 
selection. Portability, weight, and size are obviously also very important consider-
ations for site surveys.

For immunity and susceptibility testing, the antenna should also be broadband, 
but it has to be capable of handling high power, since it has to produce high electric 
or magnetic fields.

For shielding or screening effectiveness measurements, the transmitting antenna 
should be capable of handling high power, and have high gain, so that the required 
dynamic range can be produced. Both receiving and transmitting antennas should 
also have narrow beamwidths, so that only the field through the material under 
test is measured.

In general, for EMC applications, the larger the bandwidth, the fewer the num-
ber of antennas required to cover the total frequency range.
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1.1.1 Types of Antennas

Antennas can be broadly classified by the directions in which they radiate or 
receive electromagnetic radiation. They can be isotropic, omnidirectional, or 
highly directional.

An isotropic antenna is a hypothetical antenna which radiates uniformly in all 
directions, so that the electric field at any point on a sphere (with the antenna at 
its center) has the same magnitude. Figure 1.1 depicts the radiation obtained from 
an isotropic antenna. This cannot be realized in practice, since in order to radiate 
uniformly in all directions an isotropic antenna would have to be a point source. 
The nearest approximation to an isotropic antenna is a Hertzian dipole, which is a 
dipole that is very small in terms of wavelength. The length of a Hertzian dipole is 
about one hundredths of the wavelength at its operating frequency, and its pattern 
is still not isotropic.

An omnidirectional antenna is one that radiates uniformly in one plane. Exam-
ples of omnidirectional antennas are monopoles, dipoles, and biconicals. Figure 
1.2 shows the radiation from a vertical dipole. The radiation is uniform in the 
horizontal plane, and in the vertical plane the cross section of the radiation is in 
the form of two circles.

A directional antenna is one that radiates most of its power in one particu-
lar direction. Examples of directional antennas are horns, reflector systems, log-
periodics, and Yagis. Figure 1.3 shows the radiation from a reflector antenna. For 
a circularly symmetrical reflector, the radiation pattern is the same in all planes.

Figure 1.1 An isotropic antenna radiating uniformly in all directions.
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1.2 Main Characteristics of an Antenna

An antenna is chosen for its use in a particular application, by consideration of its 
main physical, as well as its electrical, characteristics. We also need to ensure that 
the antenna performs in the desired manner in the particular measurement system.

An antenna can be characterized by the following factors, not all of which are 
meaningful to all antenna types:

• Its radiation resistance;
• Its radiation pattern;
• The beamwidth and gain of its main lobe;
• The position and magnitude of its sidelobes;

Figure 1.2 An omnidirectional dipole antenna.

Physical axis of reflector
coincident with boresight

Figure 1.3 A directional reflector antenna.
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• The magnitude of its backlobe;
• Its bandwidth;
• Its aperture;
• Its antenna correction factor (ACF);
• The polarization of the electric field that it transmits or receives;
• The power that it can handle.

There are two principal planes in which the antenna characteristics are measured. 
These are known as the azimuth and elevation planes, and can be considered as the 
horizontal and vertical planes, respectively, for land based antennas. The angles 
in the azimuth plane are conventionally denoted by the Greek letter phi (ϕ), and 
in the elevation plane they are denoted by the Greek letter theta (θ). In some cases 
however, the azimuth angles are denoted by θ and elevation angles by ϕ.

Some characteristics such as beamwidth and sidelobes are the same in both 
planes for symmetrical antennas, such as circular waveguide horns and reflectors. 
Other characteristics such as the gain on boresight (i.e., where the azimuth and 
elevation planes intersect) can only have a single value. In general, for unsymmetrical 
antennas the characteristics are different in the two principal planes, with a gradual 
transition in the intervening region between these two planes.

1.2.1 Radiation Resistance

We can consider an antenna as a load terminating the transmission line that feeds it. 
In the ideal case, this load will have an impedance that is purely resistive, that is, the 
load will not have any reactive component, such as an inductance or capacitance. In 
practice, the impedance of an antenna is made up of a self-impedance and a mutual 
impedance [1, p. 29]. The self-impedance is the impedance that would be measured 
at the terminals of the antenna when it is in free space, given no other antennas or 
reflecting objects in the vicinity. When the antenna is sufficiently isolated from other 
objects, this mutual impedance tends to zero. On the other hand, in some antennas 
such as the Yagi array, the operation depends on the mutual coupling between the 
driven element and the other parasitic passive elements. The self-impedance (Za) 
consists of a real part which is the resistance (Ra), and an imaginary part which is 
the self-reactance (Xa). In antennas such as the loop or dipole, the resistance and 
the reactance are in series. The self-impedance is given by

 Za = Ra + jXa  (1.1)

The antenna resistance, Ra, accounts for the power absorbed by the antenna 
and appearing at its terminals. This power is mainly reradiated by the antenna, 
but a small amount is dissipated by it in the form of ohmic losses in the antenna 
structure. The resistance of the antenna can thus be visualized as a sum of radia-
tion resistance Ra and an ohmic loss resistor Ro, which dissipates a power of Po. 
This ohmic power loss contributes to the loss of efficiency of the antenna and is of 
the order of fractions of a decibel [2. p. 39]. The rest of the power is radiated and 
is associated with a radiation resistance Rr. Thus the actual power Pr radiated by 
the antenna is given by
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 Pr = I2Rr  (1.2)

where I is the current.
At RF and lower frequencies, this concept of radiation resistance can be used 

because it is possible to define a unique driving point at which the antenna can 
be dissociated from the feed network and represented as a separate network. The 
magnitude of the impedances depends on the position of the driving point. In cases 
where the driving point is arbitrary, the equivalent circuit of the antenna can be 
either a series or parallel inductance-capacitance-resistance (LCR) network. In this 
case the radiation and ohmic resistances appear in parallel [2. p. 39]. Radiation 
resistances vary from 73Ω for a resonant dipole to 0.01Ω for a high-frequency (HF) 
notch antenna [1, p. 29].

1.2.1.1 Tuning Circuits

When the antenna has the same impedance as the transmission line that feeds it, 
the antenna is said to be matched to the line. When this occurs maximum power 
is transferred from the transmission line to the antenna. In general however, the 
impedance of the antenna is not the same as that of the transmission line. When 
the transmission line has a purely resistive impedance and the antenna has an 
impedance that contains a different resistive value, as well as a reactive part, the 
optimum transfer of power can be achieved by the use of tuning circuits between 
the transmission line and the antenna. In principle, these circuits consist of an LCR 
circuit in which the capacitance of the capacitor is altered in order to provide the 
maximum transfer of power.

1.2.2 Radiation Pattern

The antenna is a reciprocal device, that is, it radiates or receives electromagnetic 
energy in the same way. Thus, although the radiation pattern is identified with an 
antenna that is transmitting power, the same properties would apply to the antenna 
if it was receiving power. Any difference between the received or radiated powers can 
be attributed to the difference between the feed networks and the equipment associ-
ated with the receiver and transmitter. The antenna radiates the greatest amount of 
power along its boresight, and it also receives power most efficiently in this direction.

The radiation pattern is a very important characteristic of an antenna. It enables 
us to get a clearer idea of the key features of an antenna which cannot be obtained 
from the textual technical description of the antenna. For instance, when the sid-
elobe level of an antenna is quoted, this level pertains to the near-in lobes, and the 
average level of the two lobes is quoted, thus any asymmetry in the radiation pattern 
cannot be deduced. In textual technical descriptions, the level, position and number 
of other sidelobes are rarely quoted. In EMC measurements these other lobes and 
the positions of nulls can be very important, and knowledge of their details can 
enable the engineer to determine if a low level of received signal is attributable to a 
null, or if there is genuinely a low level in a particular direction.

The radiation pattern of an antenna is peculiar to the type of antenna and 
its electrical characteristics, as well as its physical dimensions. It is measured at 
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a constant distance in the far field of the antenna. The radiation pattern of an 
antenna is usually plotted in terms of relative power. The power at boresight, that 
is, at the position of maximum radiated power, is usually plotted at 0 dB, and thus 
the power at all other positions appear as negative values. In other words the radi-
ated power is normalized to the power at boresight. If the power had been plotted 
in linear units, the normalized power would be one at boresight. The main reason 
for using decibels instead of linear power is because the power at the nulls is often 
of the order of 10,000 times less than the power on boresight and thus the scale 
would have to be very large to cover the whole range of power values.

The radiation pattern is usually measured in the two principal planes, the azi-
muth and the elevation planes. The radiated power is plotted against the angle made 
with the boresight direction.

If the antenna is not physically symmetrical about each of its principal planes, 
then we would also expect its radiation pattern in these planes to be unsymmetrical.

The radiation pattern can be plotted using rectangular/Cartesian or polar coor-
dinates. The rectangular plots can be read more accurately (since the angular scale 
can be expanded), but the polar plots give a more pictorial representation and are 
thus easier to visualize; rather like an analogue clock, or plan position indicator 
(PPI) used in many radar sets.

1.2.2.1 Rectangular/Cartesian Plots

These are standard x-y plots where the axes are plotted at right angles to each 
other. The vertical, or y-axis, is used for the dependant variable, and the x-axis 
is used for the independent variable. The y-coordinate is called the ordinate, and 
the x-coordinate is called the abscissa. In a radiation plot, the angle with respect 
to boresight is varied and the magnitude of the radiated power is measured; thus 
the angle is the independent variable, and the power radiated is the dependent 
variable. The magnitudes of the powers are the ordinates and the angles are the 
abscissae. It is important to remember that the power radiated is measured in 
the far field. The graph paper used to plot radiation patterns is not standard in 
the mathematical sense. The x- and y-axes are not numbered in ascending order 
from the origin of coordinates, as in the case of standard graph paper. All values, 
whether negative or positive, are shown without a sign. A typical rectangular plot 
of an antenna radiation pattern is shown in Figure 1.4. The y-axis can show two 
sets of scales, one graduated from 0 to 4 dB, and another scale from 0 to 8 dB. 
Scales of 40 dB and 80 dB are obtained by multiplying the scales by 10. It should 
be noted that the zero is at the top, and thus the numbers below should really be 
shown as negative values of −4 dB and −8 dB. Similarly the x-axis can show three 
sets of angular scales of 5 degrees, 30 degrees, and 180 degrees on either side of 
the zero. These show the angles measured clockwise and counterclockwise from 
the boresight position, and in standard mathematical convention, these would be 
denoted by positive and negative signs, but on radiation graph paper the signs are 
omitted. Thus the radiation pattern can be plotted over 10 degrees, 60 degrees, 
or the whole 360 degrees. The engineer or technician who performs the measure-
ments usually encircles or marks the scale used by ticking the relevant boxes in 
the key for each of the axes.
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1.2.2.2 Polar Plots

In a polar plot the angles are plotted radially from boresight, and the intensity or 
power is plotted along the radius, as shown in Figure 1.5. This gives a pictorial 
representation of the radiation pattern of the antenna, and is easier to visualize 
than the rectangular plots. However, since the scale of the angular positions can-
not be increased (i.e., they can only be plotted to scale from zero to 360 degrees), 
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Figure 1.4 Rectangular plot of an antenna radiation pattern.
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Figure 1.5 Polar plot of an antenna radiation pattern.
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the accuracy cannot be increased as in the case of rectangular plots. The scale of 
the intensity or power however can be varied as in the case of rectangular plots. 
On polar plots, each circle represents a contour plot where the power has the same 
magnitude and is shown relative to the power at boresight. Since the power is, in 
general, a maximum value at boresight, these levels will always be less than the 
power at boresight and should thus be shown as negative values. However they are 
usually written without a sign, and should be assumed to be negative, contrary to 
standard arithmetic convention. Figure 1.5 shows levels from 0 dB to 25 dB in 5 dB 
steps. Some polar plots start at +10 dB as the maximum, go through the zero dB, 
and then down to −30 dB. In almost all cases the signs are omitted.

1.2.3 Main Lobe

The main lobe of an antenna is in the direction of maximum radiation. This is not 
necessarily on the physical main axis of the antenna, but this is generally the case 
for most antennas used for EMC applications. The characteristics of an antenna, 
such as the beamwidth and gain, are related to the main lobe alone. The peak of the 
main lobe is called the boresight of the antenna, and the radiation pattern is often 
positioned so that its boresight is coincident with the zero angular position of the 
graph, even when the antenna is not physically symmetrical. Figure 1.6 shows the 
radiation pattern of a symmetrical antenna.

1.2.3.1 Beamwidth—Half Power and 10 dB

The beamwidth only pertains to the main beam of the antenna and not the sid-
elobes. The beamwidth of an antenna is, in general, inversely proportional to its 
physical size; so that the larger the antenna, the smaller its beamwidth for the same 
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Figure 1.6 Rectangular plot of the radiation pattern of a symmetrical antenna.
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frequency. If the antenna does not have the same dimensions in all planes, the 
plane containing the largest dimension will have the narrowest beamwidth. Thus, 
for a rectangular horn, as shown in Figure 1.7, the beamwidth in the horizontal, 
or azimuth plane AA′, is narrower than that in the vertical or elevation plane, BB′. 
The planes AA′ and BB′ are also known as the H (magnetic) and E (electric) planes 
respectively, for this type of antenna.

Definition of Beamwidth
The beamwidth of an antenna is commonly defined in two ways. The most well 
known definition is the 3-dB beamwidth, or half-power beamwidth (HPBW), but 
the 10-dB beamwidth is also used, especially for antennas with very narrow beams.

A

A'
B

B'

(a)

(b)

(c)

A A'

B

B'

(H plane)

(E plane)

(d)

Figure 1.7 Main lobe of a rectangular pyramidal horn showing the beams in the principal 
planes. (a) Main lobe of a rectangular pyramidal horn; (b) side view showing the vertical or E 
plane beamwidth; (c) plan view showing the horizontal or H plane beamwidth; (d) Front view of 
the beams.
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The 3-dB beamwidth (or half-power beamwidth) of an antenna is taken as the 
width in degrees (or sometimes in radians) at the points on either side of main beam 
where the radiated power is half the maximum value.

In Figure 1.8, the 3-dB level where the power is half that of the power at boresight 
occurs at points K and L on the radiation pattern. The difference in degrees can be 
read off the x-axis as 25 degrees, and this is the HPBW. The 10-dB beamwidth is 
the width in degrees (or sometimes in radians) at the points on either side of main 
beam where the radiated power is 10 dB, that is, one tenth of the maximum value.

The points on the radiation pattern of Figure 1.8 where the power is 10 dB (i.e., 
one tenth) below the power on boresight are at points M and N. The difference in 
degrees between these points is 44 degrees. Thus we say that the 10-dB beamwidth 
is 44 degrees.

1.2.3.2 Boresight Directivity/Gain

The terms directivity (or directive gain) and gain are often used synonymously but 
in fact they are not the same. The gain allows for the efficiency of the antenna, 
whereas the directivity does not. For instance, if we say that the linear directivity is 
100 and the efficiency is 95%, then the gain of the antenna would be 95. In other 
words, the gain of the antenna is the product of the directivity and the efficiency. 
In general, the gain of the antenna is that quoted in the specification, and so we 
shall refer to this characteristic instead of the directivity.

The term gain is not the same as that of, for instance, an amplifier. An antenna 
is not usually an active device. We can think of an antenna as concentrating the 
electromagnetic energy in one particular direction, similar to the way in which the 
reflector of a torch concentrates the light from a lightbulb into a narrow, bright 
beam. The total light output is the same whether or not the reflector is present; but 
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Figure 1.8 A radiation pattern showing the 3- and 10-dB beamwidths.
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with the reflector the light is concentrated in just one direction, depending on the 
type and position of the reflector.

The IEEE distinguishes between the directivity of an antenna and the directivity 
in free space. They are explained in a qualitative manner in this chapter.

Directive Gain of an Antenna
This is defined as 4π times the ratio of the radiation intensity in a given direction 
to the total power radiated by the antenna. The factor of 4π relates to the total 
number of angles (in solid angles or steradians) at a point in three dimensions, just 
as 2π gives us the total number of angles (in radians) at a point in one plane. This 
can be considered as a measure of the ability of the antenna to concentrate the 
energy (that would normally be radiated over 4π solid angles or steradians) into a 
smaller number of angles.

Directive Gain in Physical Media
This definition of the gain of an antenna relates the power radiated by the antenna 
to that radiated by an isotropic antenna (that radiates equally in all directions) and 
is quoted as a linear ratio, or in dBi (for isotropic). When we say that the gain of 
an antenna is, for instance, 20 dBi (100 in linear terms), we mean that an isotropic 
antenna would have to radiate 100 times more power to give the same intensity at 
the same distance as that directional antenna.

The gain G as a linear ratio is defined as:

G =
power radiated on boresight{ }

power radiated by an isotrpic antenna{ }

The gain GdB expressed in decibels is defined as

 GdB = 10log10(G)  (1.3)

To convert the gain in dB to the gain G as a linear ratio, the following formula 
is used:

 G = 10(GdB /10)  (1.4)

The gains of antennas vary between about 2 dBi for a dipole to around 70 dBi 
for a ground station satellite antenna. These represent linear gain ratios of 1.58 and 
10,000,000 respectively, compared to an isotropic antenna.

Relative and Absolute Gain
The radiation pattern of an antenna shows the power on boresight as 0 dB and the 
power in other directions as negative values. The gain in all directions is plotted 
relative to the gain on boresight. In order to find the absolute gain in any particular 
direction the gain on boresight must be known. If this gain is in decibels then this 
value can just be added to the gain at any point to give the absolute gain. However, 
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if the boresight gain is given as a linear ratio then this has to be converted to dB 
using the formula:

 GdB = 10log10  {the gain as a linear ratio}  (1.5)

The absolute gain on boresight is measured by comparison with a standard gain 
antenna. A standard gain antenna is a reference one that has its gain calculated or 
measured to a high degree of accuracy.

1.2.4 Sidelobe

The sidelobes are, strictly speaking, any of the maxima marked A, B, C, D, and 
so forth in Figure 1.9. However, in practice only the near-in lobes marked A are 
referred to as sidelobes. Sometimes, the irregularities in the main beam of the radia-
tion pattern mean that there are small peaks, such as those marked F in Figure 1.9, 
that could be mistaken for sidelobes. For this reason, the sidelobes are sometimes 
defined as the peaks where the difference between the peak and an adjacent trough 
is at least 3 dB. The sidelobes are characterized by their level below the boresight 
gain and their angular position relative to boresight.

1.2.4.1 Sidelobe Level

The sidelobe level is usually quoted as the level below the boresight gain. Since 
the radiation pattern is plotted with the boresight gain at 0 dB, the sidelobe level 
should be quoted in negative dB. However the sidelobe level is usually quoted as a 
positive quantity. Where the sidelobe levels are different, the average level is taken. 
The absolute level of the sidelobe can only be calculated if the absolute boresight 
gain is known.

3
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An aperture antenna such as a reflector can be illuminated by its feed in several 
ways. If we say that it is uniformly illuminated, we mean that the magnitude of 
electric field across its aperture has a constant value and the phase at each point is 
the same. This type of illumination will produce a radiation pattern with the nar-
rowest beamwidth, but this is accompanied by the highest level of sidelobe. Adjust-
ment of the phase and/or magnitude of the illumination can result in reduction of 
the sidelobe level but this usually also broadens the beamwidth.

For an antenna that is symmetrical about its main physical axis, the radiation 
pattern is, in general, also symmetrical. Thus the level of the sidelobes on opposite 
sides of the main beam would be the same. If the antenna is not physically sym-
metrical about its principal axis, then we would also expect its radiation pattern to 
be unsymmetrical. The level of the sidelobes on either side of the main beam would 
also be different if the antenna was unsymmetrical. The radiation pattern shown in 
Figure 1.9 is that of a symmetrical antenna, and thus both the main sidelobe levels 
are the same at a level of −14 dB.

1.2.4.2 Sidelobe Position

The angular position of the sidelobes relative to the position of the main beam is 
usually quoted in degrees rather than radians. For a physically symmetrical antenna, 
where the radiation pattern is not symmetrical, the average of the two angular 
positions is taken as the sidelobe angular position. Figure 1.9 shows the radiation 
pattern of an antenna that is symmetrical about its physical axis. The sidelobes are 
at equal angles of 43 degrees off boresight.

1.2.5 Front-to-Back Ratio

The front-to-back ratio is a measure of the ability of a directional antenna to con-
centrate the beam in the required forward direction. In linear terms, it is defined 
as the ratio of the maximum power in the main beam (boresight) to that in the 
backlobe. It is usually expressed in decibels as the difference between the levels on 
boresight and at 180 degrees off boresight. In Figure 1.10, the backlobe is shown 
at the 180 degree position as being 35 dB below the level at boresight. In linear 
terms, this means that the level of the backlobe is 3,162 times less than the level on 
boresight. In decibels, the front-to-back ratio is a difference of +35 dB, in this case, 
but the sign is usually omitted.

1.2.6 Bandwidth

The bandwidth of an antenna is a measure of its ability to radiate or receive different 
frequencies. The bandwidth is the range of frequencies that the antenna can receive 
(or radiate) with a power efficiency of 50% (0.5) or more, or a voltage efficiency 
of 70.7% (that is, 0.5). A wide bandwidth is achieved at the expense of gain. In 
other words, if the antenna had the same size but a narrower bandwidth, its gain 
would be higher. The operating frequency range is specified by quoting the upper 
and lower frequency, but bandwidth is often quoted as a relative value.
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The bandwidth is commonly expressed in one of two ways; either as a percent-
age or as a fraction or multiple of an octave. (An octave is a band of frequencies, 
between one frequency and the frequency that is double or half the first frequency: 
for instance, we have an octave between 10 MHz and 20 MHz.) When it is expressed 
as a percentage bandwidth, its center frequency should be quoted, and the percent-
age expressed relative to this center frequency. When it is expressed in octaves, its 
lower and upper frequencies should also be quoted.

1.2.6.1 Percentage Bandwidth

When the bandwidth is expressed in terms of a percentage, it is defined by the fol-
lowing relation

 
Bw = Δf

f
⎛
⎝⎜

⎞
⎠⎟
× 100  (1.6)

where f is the frequency at the center of the band and Δf is the difference between 
the lowest and highest frequency of operation.

Example: An antenna can be used over the frequency range from 1 to 2 GHz. 
Express this as a percentage bandwidth.

Solution: First we take the difference between its upper and lower frequencies, which 
is 1 GHz. The center frequency in this case is the average of 1 and 2 GHz, that 
is, 1.5 GHz. Thus Δf is 1 GHz and f is 1.5 GHz. Using (1.6), we get Bw = 66.7%.
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Figure 1.10 An antenna radiation pattern showing the backlobe.
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The bandwidth of the antenna can be described as 66.7% at 1.5 GHz, or 1.5 
GHz ± 33.35%, or 1.5 GHz ± 0.5 GHz.

1.2.6.2 Bandwidth as a Fraction or Multiple of an Octave

When the bandwidth is expressed in terms of a fraction or multiple of an octave, it 
is defined by the following relation

 
Bw = log2

fhigh

flow

⎛

⎝⎜
⎞

⎠⎟
 (1.7)

where fhigh is the highest frequency of operation and flow is the lowest frequency 
of operation.

Many calculators do not have logs to the base 2. In these cases we can still 
obtain logs to this base by using the following formula

 
log2

fhigh

flow

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

log10

fhigh

flow

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
log10 2

 (1.8)

Example: An antenna is quoted as having an operating frequency range from 500 
MHz to 9 GHz. What is its frequency bandwidth in octaves?

Solution: The ratio of the upper frequency to its lower frequency is 18. If we do not 
have a calculator that can give us logs to a base of 2, and we want to find the log218, 
we must divide log1018 by the log102. The result is 4.17 octaves to two decimal places.

1.2.7 Aperture Size

The aperture of an antenna governs the size of its beamwidth. In general, the larger 
the aperture, the narrower the beamwidth, and the higher the gain at a given fre-
quency. The aperture size can be defined in two ways; either in terms of the actual 
physical size, in meters or feet, or in terms of wavelength. For instance, if we say 
that an antenna has an aperture of two wavelengths, then its actual physical size 
depends on its operating frequency. At a frequency of 1 GHz, the physical aperture 
is 60 cm, whereas at 10 GHz, its physical aperture is only 6 cm. It is more mean-
ingful to refer to an antenna size in terms of its operating wavelength when the 
antenna is a narrowband or single frequency one, because its beamwidth and gain 
are directly related to the aperture in terms of its operating wavelength. In this case 
we have to calculate its wavelength to find its physical dimensions. However, in the 
case of broadband antennas, its physical size is more appropriate because there is 
a range of operating wavelengths.

1.2.8 Antenna Correction Factors

When an EMC engineer performs a site survey, for instance, they want to measure 
the maximum electric field strength or intensity at a particular location. However, 
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the receiver reading is displayed in terms of voltage or decibels relative to one volt 
(dBV). The engineer has to convert this value to the electric field intensity that is 
actually present at the position at which the antenna has been placed. In order to 
obtain this value, the engineer has recourse to a set of tables or graphs showing 
the relationship between the receiver reading and the electric field intensity for that 
particular antenna, covering its operating frequency range. This correction factor 
is sometimes just called the antenna factor.

The IEEE dictionary defines the antenna correction factor as a term or factor 
which is applied to the reading of the receiver to enable the reading to be converted 
to the field strength in either volts per meter (electric field strength) or amperes per 
meter (magnetic field strength). This factor takes into account:

• The effective height/length of the antenna;
• The loss in the balun matching network between the antenna and the balun;
• The loss due to the mismatch between the balun matching network and the 

transmission line connecting the balun to the receiver;
•  The loss due to the total length of the transmission line cables between the 

antenna and the receiver.

To be more accurate, the antenna factor should also take into account the 
proximity of the antenna to ground and the frequency of measurement. The unit of 
antenna factor is m–1 in linear terms and it is the ratio of the electric field strength 
at the antenna and the voltage reading of the receiver. Thus, the antenna factor Af 
is given by

 
Af = E

V
 (1.9)

However, we are usually given the antenna factor in dB, and the gain of the 
antenna is also given in dB. We must add the antenna factor to the gain of the 
antenna. Then, we must convert this value Af in dB to a linear value using the fol-
lowing formula;

 
Af = 10(Af /20)  (1.10)

This linear value, Af, is the number by which we must multiply the receiver reading 
to obtain the true electric field at the antenna location.

1.2.9 Polarization

Although this could apply equally to the magnetic or electric polarization, it is used 
almost exclusively to describe the shape and orientation of the locus of the extrem-
ity of the electric field vector as it varies with time at a fixed point in space. This 
locus could be a straight line, an ellipse, or a circle.
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1.2.9.1 Linear Polarization

In the case of linear polarization, the electric field varies sinusoidally in one plane, 
as depicted in Figure 1.11. This shows the variation with time at a fixed point in 
space. It is important to realize that a similar variation with distance also exists. 
Figure 1.11 shows the case for vertical polarization. Note that the extremity of the 
electric field vector at any fixed point in space is a straight line with a maximum 
value that is equal to twice the amplitude of the sine curve that depicts the varia-
tion of the electric field with time.

Horizontal polarization is shown in Figure 1.12. The electric field can also be 
polarized at any other angle between 0 and 90 degrees to the horizontal. However, 
in general the only other angle commonly used is 45 degrees. This is known as 
slant polarization.

The polarization of a receiving antenna must match that of the incident radiation 
to detect the maximum field. If the angles are not the same, only the component 
that is parallel to the plane of incident polarization will be detected. If we have a 
vertically polarized antenna, and the incident radiation is slant polarized, the mag-
nitude of its component in the vertical plane will be reduced by a factor of cos(45 
degrees). Thus only 1/√2 or 0.707 of the electric field will be received. Since the 
radiated power is proportional to the square of the electric field, the power received 
will only be half (0.7072) of the incident power.
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Time

Figure 1.11 Variation of an electric field with time at a fixed point in space for vertical 
polarization.
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Figure 1.12 Variation of an electric field with time at a fixed point in space for horizontal 
polarization.
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1.2.9.2 Elliptical or Circular Polarization

Circular polarization is a special case of elliptical polarization, and thus elliptical 
and circular polarizations are considered together in this section.

The axial ratio is the ratio of the major to minor axis. When this ratio is equal 
to one that is, the major and minor axes are equal, we have circular polarization. 
Whereas when it is infinite it means that the minor axis is zero, in essence, we have 
linear polarization.

It should be noted that the axial ratio, ξ, is not the same as the mathematical 
definition of the ellipticity of an ellipse. The ellipticity El varies between 0 and 1. 
The ellipticity El and axial ratio are related by the following equation:

 
E1 = 1 − 1

x  (1.11)

Circular polarization is a difficult concept to visualize. The electric field vector 
at each point in space sweeps out a circle, through each period in time. Circular 
polarization can be generated by two electric vectors of equal magnitude that are 
orthogonal (at right angles) and are also in-phase quadrature, that is, in the time 
domain they are 90 degrees out of phase with each other. Consider the two elec-
tric vectors depicted in Figure 1.13(a), showing the variation of the electric field in 
two directions, y and x, that are perpendicular to each other. At a time denoted 
by point A, the electric field is at a maximum, say of value one in the x-direction, 
and zero in the y-direction. Thus, the resultant is one in the x-direction, as shown 
in Figure 1.13(c). One eighth of a period later, the electric fields in both the x- and 
y-directions are 0.707, as depicted in Figure 1.13(b). The resultant is (using Pythago-
ras’ theorum) (0.707)2 + (0.707)2 , which is equal to one, but note that this is at 
an angle of 45 degrees to the resultant at A. This is at 45 degrees to both the y- and 
x-directions. At intermediate positions between A and B the resultant is still one, 
but at angles between 0 degrees and 45 degrees to the resultant at A. At C, a further 
one eighth of a period later, the electric field is zero in the x-direction, but it has 
the maximum magnitude of one in the y-direction. Thus, the resultant is now one 
in the y-direction, which is at right angles to the resultant vector at A. If we look 
at successive times, we can see that the resultant vector retains a value of one, but 
presents successively increasing angles with the initial resultant vector at A, until a 
whole period later at H when the resultant vector has a value and angle coincident 
with the resultant at A. Thus, we can see that in the time interval representing one 
period in time, the electric field has maintained its magnitude of one, but has rotated 
through 360 degrees, or one revolution.

In the case of elliptical polarization, the electric field vectors may also be orthogo-
nal (perpendicular to each other) and in-phase quadrature, but they may not have 
the same magnitude. Elliptical polarization may also result if the orthogonal electric 
fields have the same magnitudes, but they have a phase relationship that is not 90 or 
270 degrees. Other cases of elliptical polarization could be the result of orthogonal 
electric fields that are of unequal magnitudes and not in-phase quadrature. Figure 
1.14 shows two examples of elliptical polarization. In Figure 1.14(a), the major 
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axis is vertical, whereas in Figure 1.14(b) the major axis is horizontal. If the ratio 
of the major to minor axis in either of these cases is infinity, this would mean that 
the minor axis has a magnitude of zero, and we would have linear polarization of 
vertical or horizontal orientation.

Sense of Polarization
In the example shown in Figure 1.13, the electric field vector rotates in a clockwise 
direction. We call this clockwise rotation of the electric field vector right-hand circu-
lar polarization (RHCP). If the resultant vector were to move in a counterclockwise 
direction, the wave would be a left-handed circular polarized (LHCP) wave. An 
LHCP wave would have resulted if either of the component electric field vectors had 
started half a period later. For instance if the vertical electric field had commenced 
with the field shown at E, the vertical electric field an eighth of a period later would 
have been 0.707 in the negative y-direction, that is, downwards. This would give a 
resultant of magnitude one at 45 degrees between the positive x- and the negative 
y-directions. The resultant electric field has rotated in the counterclockwise direction.

(a)

A

B

C

D

E

F

G

H

(b)

(c)

x

D E F
H I

y

Time

+y

-y

-x+x

z
A B C

G

Figure 1.13 Circular polarization produced by two-plane polarized orthogonal waves 
in-phase quadrature. (a)Two plane polarized waves at right angles and in-phase quadrature, (b) 
summation of vectors at time B, (c) resultants of the two electric vectors over one period.
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1.2.10 Relationships Between the Key Parameters

The characteristics of an antenna are not always quoted by the manufacturers. 
In general though, we can usually deduce the unknown parameters if sufficient 
information is given. These formulas do not take into consideration losses in the 
receiving system, and apply only to ideal conditions. The formulas also assume that 
the aperture of the antenna is very large in terms of the wavelength at the operat-
ing frequency.

1.2.10.1 Gain from Beamwidth

The gain of an antenna depends on the individual gains in the elevation and azi-
muth planes. The gains in these planes are inversely proportional to the half-power 
beamwidths. The narrower the beamwidth, the higher the gain.

The rectangular aperture could be a horn or any other aperture. The formulas 
for both are given here, for completeness, although the EMC engineer will most 
probably only encounter horns in the general course of measurements.

Rectangular Aperture with Uniform Illumination
For a uniformly illuminated aperture, the sidelobe level is 13 dB below the main 
beam. The linear gain for this type of rectangular aperture, assuming 100 % effi-
ciency, is given by [3, p. 14]

 
G = 41,300

q1q2( )  (1.12)

where θ1 and θ2 are the half-power beamwidths (in degrees) in the two orthogo-
nal planes.

Conical Log Spiral
The linear or numeric directivity, with respect to a circularly polarized isotropic 
source of a conical log spiral with a small cone angle, can be calculated from the 
HPBWs in the orthogonal planes from the formula [4, p. 493]

 
D = 32,000

q1f1( )  (1.13)
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Figure 1.14 Two cases of elliptical polarization (a) Major axix vertical (b) Major axix horizontal
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where θ1 and ϕ1 are the HPBWs in the two orthogonal planes in degrees and D is 
the linear directivity.

Rectangular Horn
In the case of a rectangular horn, the illumination across the aperture is not uni-
form, and the efficiency is of the order of 60%. In the H plane, which is along the 
larger dimension a, the electric field has a half-sinusoidal variation, as shown in 
Figure 1.15, and the sidelobe level is 26 dB below the main beam. The sidelobe level 
in the E plane, or along the narrow dimension b, is 13 dB. The linear gain of the 
horn on boresight, is given by

 
G = 31,000

q1q2( )  (1.14)

where θ1 and θ2 are the HPBWs in degrees in the E and H planes (i.e., along the a 
and b dimensions).

Circular Aperture with uniform illumination
For an antenna with a circular aperture and uniform illumination, the beamwidths 
are the same in all the planes, and the sidelobe level is 18 dB below boresight. The 
linear gain G of a circular aperture antenna, assuming 100% efficiency, is given by

 
G = 52,000

q2( )  (1.15)

where θ is the beamwidth in degrees in each of the planes.

Circular Aperture with Nonuniform Illumination
If the circular aperture has nonuniform illumination, such that there is a 10-dB 
taper across the aperture (i.e., the variation between the center and edge is 10 dB) 

a

b

Figure 1.15 Electric field variations across a rectangular waveguide supporting the fundamental 
mode.
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then the sidelobe level is reduced to 26 dB below that of the main beam. In this 
case, the efficiency of the antenna is also reduced to about 50 %, and the linear 
gain is given by

 
G = 26,000

q2( )  (1.16)

1.2.10.2 Beamwidth from Aperture Size and Shape

The beamwidth of an antenna is different in each plane, except for antennas with 
circular symmetry about boresight. Even in the case of circular symmetrical reflec-
tors, the beamwidths are not necessarily the same in all planes. The larger the 
dimension in a particular plane, the narrower the beamwidth is in that plane.

Beamwidth of a Rectangular Horn
For a rectangular horn, the broad dimension is known as the H plane, the electric 
field in this plane is not uniform, and has a variation as is shown in Figure 1.15. This 
variation produces a sidelobe level of 26 dB below that of the main beam. Because 
this dimension is larger than the E plane, or narrow dimension, the beamwidth in 
this plane is smaller. The HPBW [5, p.9] in degrees is given by

 
qB = 67l

a
 (1.17)

where λ is the wavelength, and a is the dimension of the broadside of the waveguide. 
The wavelength and the broadside dimension can be measured in meters, centime-
ters, or inches, as long as the units used for λ and the dimension a are the same.

In most cases, we are quoted the frequency rather than the wavelength. It is 
therefore more convenient to use a formula involving the frequency, such as

 
qB = 20,100

aF
 (1.18)

where F is the frequency in MHz and, in this case, the dimension a must be in meters.
For the E plane (the narrow dimension b of the waveguide), the sidelobes are 

only 13 dB below that of the main beam, and the beamwidth is wider than that in 
the H plane. The equivalent formulas for the beamwidth are

 
qE = 56l

b
 (1.19)

where λ is the wavelength, and b is the narrow dimension of the waveguide. The 
wavelength and the broadside dimension can be measured in meters, centimeters, 
or inches, as long as the units used for λ and the dimension b are the same.

In most cases, we are quoted the frequency rather than the wavelength. It is 
therefore more convenient to use a formula involving the frequency, such as
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qE = 16,800

bF
 (1.20)

where F is the frequency in MHz and b is in meters.

Example: A standard-gain rectangular waveguide horn operating at 10 GHz has an 
aperture of 36 cm × 20 cm. Calculate the beamwidths in each of its principal planes.

Solution: The principal planes referred to in this case are the E and H planes. The 
dimensions a and b will be 0.36m and 0.2m, and the frequency is 10,000 MHz. 
Using (1.18) we get the H plane beamwidth as

qB = 20,100
0.36 × 10,000

This gives a beamwidth of 5.6 degrees in the H plane.
Similarly, using (1.20) gives an E plane beamwidth of 8.4 degrees. Note that 

these values are for ideal antennas and do not allow for efficiencies of less than 
60%. In practice, the efficiency would be less than 60%, and the measurement 
would introduce further errors, so that the actual beamwidth obtained could be 
about 1.5 times the calculated value.

1.2.10.3 Gain from Aperture Size and Shape

The gain of an antenna depends on the shape and size of the aperture, as well as 
the electric field distribution across the radiating aperture. The electric field distri-
bution is commonly referred to as aperture illumination.

Rectangular Horn
The maximum linear gain is on boresight, and is thus where the E and H planes 
intersect. For a rectangular horn, the illumination across the aperture is not uni-
form. This reduces the efficiency of the horn to about 60%, but this nonuniform 
illumination produces lower sidelobe levels, typically of the order of 26 dB below 
the main beam. In addition, it should be noted that the broadband ridged waveguide 
horns, in common usage, will not have a gain as high as a normal smooth-walled 
rectangular pyramid horn. The ridged waveguide horn sacrifices the higher gain 
for its wider bandwidth characteristic.

For a horn of dimensions a and b, the linear gain G is given by

 
G = 8ab

l2
 (1.21)

where λ is the wavelength.
Note that the units used for the dimensions a and b, can be expressed in any form, 

that is, metric or imperial, as long as the same units are also used for the wavelength.
In most cases, we are quoted the frequency rather than the wavelength. It is 

therefore more convenient to use a formula involving the frequency. Moreover, 
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instead of calculating the linear gain, it could be calculated in decibels referred to 
isotropic (dBi) as

 
GdB = 10log10

abF2

11,250
⎧
⎨
⎩

⎫
⎬
⎭

 (1.22)

where a and b are the dimensions of the aperture of the waveguide in meters, and 
F is the frequency in MHz.

If the dimensions of the waveguide are given in centimeters, and the frequency 
in MHz, the gain in dBi can be calculated from the following formula

 
GdB = 10log10

abF2

1.125
⎧
⎨
⎩

⎫
⎬
⎭

 (1.23)

Rectangular Aperture with Uniform Illumination
For a uniformly illuminated aperture, the efficiency can approach 100%, but the 
sidelobe level is also high; typically of the order of 13 dB below the level of the 
main beam.

The linear gain G for a uniformly illuminated aperture, with 100% efficiency, 
and dimensions a and b, is given by

 
G = 16ab

l2
 (1.24)

Note that the units used for the dimensions a and b can be expressed in any form, 
as long as the same units are also used for the wavelength.

In most cases, we are quoted the frequency rather than the wavelength. It is 
therefore more convenient to use a formula involving the frequency. We could also 
calculate the gain in dBi, instead of the linear gain

 
GdB = 10log10

16abF2

90,000
⎧
⎨
⎩

⎫
⎬
⎭

 (1.25)

where a and b are the dimensions of the aperture of the waveguide in meters and 
F is the frequency in MHz.

If the dimensions of the waveguide are given in centimeters, and the frequency 
in MHz, the gain in dBi can be calculated from the following formula

 
GdB = 10log10

16abF2

9
⎧
⎨
⎩

⎫
⎬
⎭

 (1.26)

Circular Aperture
The circular aperture could be a parabola or any other aperture, such as a cir-
cular horn. The formulas for both are given here for completeness, although the 
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EMC engineer will most likely only encounter parabolas in the general course 
of measurements.

Circular Aperture with Uniform Illumination
For an aperture with uniform illumination, such as a parabola, the efficiency may 
be as high as 100%, but the sidelobe level is of the order of 13 dB below the level 
of the main beam.

The linear gain G for a uniformly illuminated aperture, with 100% efficiency, 
and diameter a, is given by

 
G = 10ab

l2  (1.27)

Note that the units used for the dimension a can be expressed in any form, metric 
or imperial, as long as the same units are also used for the wavelength.

In most cases, we are quoted the frequency rather than the wavelength. It is 
therefore more convenient to use a formula involving the frequency. We could also 
calculate the gain in dBi, instead of the linear gain.

 
GdB = 10log10

(aF)2

9,000
⎧
⎨
⎩

⎫
⎬
⎭

 (1.28)

where a is the diameter of the aperture of the parabola in meters and F is the fre-
quency in MHz.

If the diameter of the parabola is given in centimeters and the frequency in 
MHz, the gain in dBi can be calculated from the following formula

 
GdB = 10log10 10

(aF)2

9
⎧
⎨
⎩

⎫
⎬
⎭

 (1.29)

Circular Aperture with Nonuniform Illumination
A circular aperture having an illumination taper can be used to give a reduced 
sidelobe level. In this case, the illumination at the center is higher than that at the 
edges. For instance, if we say that the taper is 10 dB, we mean that the power at 
the edges of the parabola is 10 dB (or 10 times) lower than that at the edges. The 
sidelobe level is reduced to 26 dB below that of the main beam, but the efficiency 
is also reduced to the order of 50%.

The linear gain G for a uniformly illuminated aperture, with 100% efficiency, 
and diameter a, is given by

 
G = 5a2

l2  (1.30)

Note that the units used for the dimension a can be expressed in any form, metric 
or imperial, as long as the same units are also used for the wavelength.
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In most cases, we are quoted the frequency rather than the wavelength. It is 
therefore more convenient to use a formula involving the frequency. We could also 
calculate the gain in dBi, instead of the linear gain.

 
GdB = 10log10

(aF)2

18,000
⎧
⎨
⎩

⎫
⎬
⎭

 (1.31)

where a is the diameter of the aperture of the parabola in meters and F is the fre-
quency in MHz.

If the diameter of the parabola is given in centimeters, and the frequency in 
MHz, the gain in dBi can be calculated from the following formula

 
GdB = 10log10

(aF)2

1.8
⎧
⎨
⎩

⎫
⎬
⎭

 (1.32)
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C h a p t e r  2

Basic Math for EMC Engineers

This chapter gives an overview of the mathematics required by engineers in the 
EMC field. It is not intended as a replacement for mathematics textbooks, but as a 
revision course, with emphasis being on the application of mathematical principles 
to the theoretical aspects of the book. The topics are also explained in a qualita-
tive manner, so that the concepts may be understood without recourse to rigorous 
mathematical treatments. If the reader intends to pursue EM theory, it is strongly 
recommended that this chapter is studied before proceeding with Chapter 3.

2.1 Angles

The angle between two lines is defined as the amount that one line must be rotated 
in order to be superimposed onto the other line. Angles can be measured in degrees 
or radians. In navigation and geography, angles are measured exclusively in degrees, 
whereas in mathematics, science, and engineering, both degrees and radians are used.

2π radians = 360°

1 radian = 180/π degrees

Since π is approximately equal to 3.142

1 radian = 57.3°

2.1.1 Convention for Angles

There are two main conventions used for angles; namely the ones used in (a) naviga-
tion, and (b) mathematics. It is important to appreciate the difference between the 
two conventions, since the mathematical convention is used for radiation patterns, 
but the EMC engineer may encounter the navigational convention in the military 
field when dealing with emissions or susceptibility. To convert from mathematical 
angles Dm to navigational angles Dn, we use

 Dn = 90° − Dm      for 0° < Dm < 90°  (2.1)

for mathematical angles between 0° and 90°

 Dn = 450° − Dm      for 90° < Dm < 360°  (2.2)

for angles between 90° and 360°.
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2.1.1.1 Convention for Navigation

In navigation, the angles are called bearings, and they are referenced to the geo-
graphic north. The bearings are measured as positive angles (using three digits) in 
a clockwise direction from the geographic north, and they vary from 0° to 360°. 
Thus north is 000° or 360°, east is 090°, south is 180°, and west is 270°, as shown 
in Figure 2.1(a).

2.1.1.2 Convention for Mathematics

In mathematics, the angles are referenced to the positive x-axis, so that when the 
angle A, shown in Figure 2.1(b), is 0° or 360°, the direction is parallel to the x-axis; 
angle A = 90° is along the y-axis, A = 180° is along the negative x-axis, and A = 
270° is along the negative y-axis. Mathematicians also use angles greater than 360°, 
so that A = 450° is the same as 90°, (along the y-axis) and so on.

The angles are divided into four sectors called quadrants. The first quadrant 
contains angles between 0° and 90°, the second quadrant contains angles between 
90° and 180°, the third quadrant contains angles between 180° and 270°, and the 
fourth quadrant contains angles between 270° and 360°. These are shown in Fig-
ure 2.1(b).

2.2 Basic Trigonometry

The basic trigonometric functions are defined by the projections of lines onto the 
x- and y-axes, as shown in Figure 2.2(a). They can also be represented by the sides 
of a right-angled triangle, like the triangle depicted in Figure 2.2(b).

The variations of the trigonometric functions are plotted in Figure 2.3. We can 
see that sinA is positive in the first and second quadrants, cosA is positive in the 
first and last quadrant, and tanA is positive in the first and third quadrant. Sum-
marising, we can say that all the functions are positive in the first quadrant, sinA 
is positive in the second quadrant, tanA is positive in the third quadrant, and cosA 
is positive in the last quadrant, as shown in Figure 2.3(d). The positive values of the 
trigonometric functions can be remembered by the mnemonic “all silly tomcats” 
reading counterclockwise from zero in the direction of increasing angles, or by the 
acronym ACTS reading clockwise from the first quadrant.

2.2.1 Reciprocal Trigonometric Functions

The reciprocal trigonometric functions are secant (sec), cosecant (cosec) and cotan-
gent (cot), and are respectively defined as

 
secA = 1

cosA
 (2.3)

 
cosecA = 1

sinA
 (2.4)

 
cotA =

1
tanA

 (2.5)
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Figure 2.1 Convention for angles used in navigation and mathematics. (a) Bearings used for 
navigation, and (b) convention used in mathematics.



30 Basic Math for EMC Engineers

x

y

Projection of OP
on x-axis

Projection of OP
on y-axis

P

O

b
(hypotenuse) a

(opposite)

c
(adjacent)

sinA =

cosA =

tanA =

a
b

c
b

a
c

A

cosA = projection of OP on x-axis

length of OP

tanA =
projection of OP on y-axis

projection of OP on x-axis

sinA =
projection of OP on y-axis

length of OP

(a)

(b)

A

C

B
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2.2.2 Inverse Trigonometric Functions

These are not the same as the reciprocal trigonometric functions, and refer to the 
angles whose trigonometric functions are the stated values. On calculators and in 
program code, they are often denoted by sin–1, asin, or arcsin in the case of sine 
functions, with similar annotation for the other functions. For example, if we know 
that the sine of an angle (sin A) is 0.5, and we want to calculate the angle, we would 
key in the number 0.5 on the calculator and then press the sin–1 or the asin key to 
get the result of 30° (assuming that the calculator is in degree mode).

2.2.2.1 Common Trigonometric Identities

 sin2 A + cos2 A = 1  (2.6)

 sec2 A = 1 + tan2 A  (2.7)

 cosec2 A = 1 + cot2 A  (2.8)

Note that the powers of trigonometric functions are written as cos2A, cos3A, and 
so forth, and not (cosA)2 or (cosA)3.

2.2.2.2 The Cosine Formula

The cosine formula is useful for calculating the angle in the case of any acute-angled 
triangle as shown in Figure 2.4(a), if the sides are known. Alternatively the side 
opposite a known angle can be calculated if the other two sides are known. The 
cosine formula is given by

 a2 = b2 + c2 − 2bc(cosA)  (2.9)

Similar formulas for calculating b or c can be used, as shown in Figure 2.4. The 
sides c and b may be inclined at an angle A, which is greater than 90° (in the case 
of an obtuse-angled triangle, as shown in Figure 2.4(b)); but the formula of (2.9) 
still applies. In the case of angles between 90° and 180°, the cosine is negative, so 
that the last term in (2.9) becomes positive.

The cosine formula is useful for calculating the magnitude of vectors that are 
inclined at an angle of A. The lengths of the sides b and c are chosen to be the rela-
tive lengths of two vectors inclined at an angle A, and the resultant is represented 
by the length of the third side a.

2.2.2.3 The Sine Formula

The sine formula is given by

 

a
sinA

= b
sinB

= c
sinC  (2.10)



2.3 Powers, Indices, and Logarithms 33

The sides a, b and c are the sides opposite angles A, B, and C, as shown in Figure 
2.4 This formula is useful for calculating the magnitudes and/or angles between 
vectors that are represented by the sides of any triangle.

2.3 Powers, Indices, and Logarithms

Powers, indices, and logarithms are all ways of expressing the same concept. When 
we have a number A = x3, we say that x is raised to the power of 3. We could also 
say the index of the base x is 3, or that the logarithm of A to the base x is 3, which is 
written as logxA = 3. We use the standard convention of omitting the positive sign if 
the power is positive. If the power is negative, then the number is equal to the recip-
rocal of the positive power, that is, if A = x–3, then we can say that it is also equal 
to 1/x3. We can take the logarithm of a number to any base. If we take it to a base 
of 10, it is called a common logarithm, or log, and when no base has been stated 
it is usually assumed to be a base of 10. It is also convenient to use logarithms to a 

b

c

BA

C

a

b

c
BA

C
a

(a)

(b)

a
sinA

b
sinB

c
sinC

= = a = b + c 2bc− cosA

b = a + c 2ac− cosB

c = a + b 2ab− cosC
2

22

2

222

2

2

Sine formula Cosine formula

Figure 2.4 Sine and cosine formulas for acute and obtuse angled triangles. (a) Acute-angled 
triangle, and (b) obtuse-angled triangle.
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base of e (where e = 2.718) and these are called natural, or Naperian, logarithms 
and written as ln. Logarithms are used because of the ease with which numbers can 
be multiplied and divided once they are converted into logarithms. The rules that 
apply to operations of multiplying, dividing, and squaring of indices are described 
in the following sections.

2.3.1 Multiplication of Numbers

Consider two numbers, A = x2 and B = x3. If we rewrite them in their full form (A = 
x multiplied by itself twice and B = x multiplied by itself three times) and then take 
their product, we get x multiplied by itself five times, that is, x5. Note that we could 
get this result by adding the indices 2 and 3. The general rule for the multiplication 
of two of more numbers (that can be expressed as powers to the same base) is to 
sum their indices or powers, as is shown by

 x2 × x3 × x4 = x(2+3+4) = x9  (2.11)

In the case of logs, when we multiply numbers, we add the logarithms.

 logx(AB) = logx A + logx B  (2.12)

The rule for multiplication applies whether the indices are positive or negative 
integers, or fractions, as the following example illustrates.

 x2 × x−3.5 × x4 = x(2−3.5+4) = x2.5  (2.13)

Note that since negative indices can be written as the reciprocals of positive indices, 
(2.13) can also be written in the following way

 
x2 × 1

x3.5 × x4 = x(2−3.5+4) = x2.5  (2.14)

Note that the index of the denominator is subtracted from the indices of the numerator.
In the case of logs, the following rule applies:

 
logx

A
B

⎛
⎝

⎞
⎠ = logx A − logx B  (2.15)

When we raise numbers to a power, we multiply the indices. This is demon-
strated by the following rule:

 x3( )4 = x3×4 = x12  (2.16)

In the case of logarithms, we can say that the following rule applies:
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 logx A2( ) = 2logx A  (2.17)

Logs were used to multiply and divide large numbers in the days before the 
availability of handheld electronic calculators. Tables of logs and antilogs to the 
base ten (and base e) were available. Let us consider two numbers, 30 and 50. If we 
want to find their product we can multiply them in the normal way, but alterna-
tively, we could put them in logarithmic form, add the logs together, and then find 
the antilog of their sum. The log of 30 is 1.477, and the log of 50 is 1.699, giving 
the sum of 3.176. Taking the antilog of 3.176 we get the result 1500. However, in 
engineering we use the decibel (abbreviated to dB) to express the relative magni-
tudes of two quantities such as transmitted and received powers. The ratios could 
be several orders of magnitude (106 or more), and decibels are a convenient form of 
writing these large ratios. The decibel is defined as ten times the log of a number. 
Thus, 30 expressed in decibels is 14.77. Note that since 10 = 101, the log of 10 is 
one but 10 expressed in decibels is 10. If we have a power P1 that is 10 times larger 
than another power P2, then the ratio of P1 to P2 is ten, and in decibels we say that 
the ratio of P1 to P2 is +10 dB. However, if we consider the ratio of P2 to P1, we get 
0.1 or 10–1, which is −10 dB. Summarizing, we can state the following

 
10log

p1

p2

⎛
⎝⎜

⎞
⎠⎟
= −10log

p2

p1

⎛
⎝⎜

⎞
⎠⎟

 (2.18)

It is common practice to relate a power to 1 mW. In this case the power P1 is 
divided by 1 mW, and then expressed in decibels, called decibels referred to one 
milliwatt (dBmW). For instance, if P1 is 10W, the ratio of P1 to 1 mW is 10000 or 
104, and expressed in decibels it would give us +40. However, if we were to be told 
that a power of +40 dB existed, we would not be able to state the absolute value of 
P1, since all we could deduce would be that the relative power was 10,000 times 
greater than another power level. To ascertain the actual value of P1 we would have 
to specify that it has a value of +40 dBmW (which is usually shortened to dBm); 
this tells us that it is 104 greater than 1 mW (i.e., that it is 10W).

If we had a level of −40 dBm, we know that this power is 10–4 or 104 less than 
1 mW, and is therefore 0.1 μW. We will always get a negative number of decibels 
when we take the log of a number less than one. Of course, decibels are not just 
multiples of ten, they could be any number. It is useful to remember that the num-
ber in decibels is ten times the power to which 10 is raised. Thus, +3 dBm is 10+0.3 
mW, which is 1.9995 times greater than 1 mW (i.e., 2 mW approximately). Thus, 
for every +3 dB, the power doubles. Similarly, for every −3dB, the power is halved. 
Approximate conversions between decibels referred to one milliwatt and milliwatts 
are shown in Table 2.1. Accurate conversion tables are given in Appendix F.

Table 2.1 Approximate Relationship Between dBm and mW

dBm −15 −12 −10 −9 −6 −3 0 +3 +6 +9 +10

mW 0.03 0.06 0.1 0.13 0.25 0.5 1 2 4 8 10
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2.3.2 Relationship Between dBm and dBmV

There is often confusion between decibels expressed as a power ratio (e.g., dBm) 
and decibels expressed as a voltage ratio (e.g., dBmV). The decibel was first intro-
duced as 10 times the log of a power ratio, so that when it is used for voltages, we 
must remember that the power P is proportional to the square of the voltage V (P 
= V2/R) Thus, the following relationship applies:

 
10log

p1

p2

⎛
⎝⎜

⎞
⎠⎟
= −10log

V1

V2

⎛
⎝⎜

⎞
⎠⎟

2

 (2.19)

Using the rule of (2.16), we can see that raising the ratio of voltages to a power 
of 2 results in the index being twice that of the ratio of the powers. Thus the value 
in decibels will be 20 times the index of 10 for the voltage ratios, but only 10 times 
the index of 10 for power ratios. In the case of voltage ratios, we can therefore say 
that for every +20 dB the voltage ratio increases by a factor of 10, and for every +6 
dB the voltage ratio doubles. The level of voltages encountered in EMC is relatively 
low, so the voltages are usually related to 1 mV. Thus, in decibels, they are expressed 
in decibels referred to one millivolt (dBmV). Table 2.2 gives an approximate conver-
sion between dBmV and mV. Accurate conversion tables are given in Appendix F.

The conversion between dBμV and mV is given in Appendix F. The larger dBμV 
levels are used for many military and susceptibility measurements, whereas dBμV 
are levels more commonly used in commercial applications

2.4 Real and Complex Numbers

Consider a quadratic (an equation with a squared term or a product of two variables 
such as x2 or xy) of the form

 y = x2 − 4  (2.20)

We can plot it and obtain the curve of Figure 2.5(a). The solution(s) occurs 
when the curve crosses the x-axis (i.e., when y = 0). We can see that we have the 
two solutions, or roots, at x = +2 and −2.

We could also solve it analytically, by factorisation when y = 0.

x2 − 4 = 0

(x − 2)(x + 2) = 0

x = +2 or −2

Table 2.2 Approximate Relationship Between dBmV and mV

dBmV −30 −24 −20 −18 −12 −6 0 +6 +12 +18 +20

mV 0.03 0.06 0.1 0.13 0.25 0.5 1 2 4 8 10
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Figure 2.5 Graphs of quadratic functions. (a) y = x2 − 4 showing real roots, and (b) y = x2 + 4 
showing no real roots.
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In either solution, we get real roots.
Now let us consider the quadratic

 y = x2 + 4  (2.21)

When we plot the quadratic, we can see from Figure 2.5 (b), that it does not 
cross the x-axis. Thus it does not have any real roots. We cannot factorize it, but 
we can solve it algebraically by using the formula for obtaining the roots of a qua-
dratic expressed in the form ax2 + bx + c. The roots of such an equation are given by

 
x = −b ± b2 − 4ac

2a
 (2.22)

where

a is coefficient of the x2 term,

b is coefficient of the x term,

and c is coefficient of the constant (number).

In (2.21), a is equal to 1, b is equal to zero, and c is equal to 4. Inserting these 
values into the formula of (2.22) we get

 
x = −0 ± 02 − 16

2
= ± −16

2
 (2.23)

We cannot take the square root of a negative quantity (since the product of two 
negative or positive numbers would always be positive), however if we write −16 as 
the product of −1 and +16, then the solution can be written as

x = ±4 −1
2

= ±2 −1

The square root of −1 is denoted by the letter i or j. In general, mathematicians 
tend to use i, and physicists and engineers tend to use j (j is also called an operator 
sometimes). Thus, the roots of (2.21) are +2j and −2j and these are imaginary num-
bers. In order to depict these roots we define a complex plane which represents the 
real numbers on the x-axis and the imaginary numbers on the y-axis. This type of 
diagram is sometimes called an Argand diagram (after J. R. Argand) and is shown 
in Figure 2.6. In the quadratic equation (2.21), the roots do not have any real parts, 
and thus they appear on the y-axis (or imaginary axis) of Figure 2.6 where x (the 
magnitude of the real part) is zero.

In general, the solution of quadratics results in roots that are real or complex. 
The complex roots have both real and imaginary parts, of the form x + jy. For 
example if we consider the equation below

 y = x2 + 4x + 5  (2.24)
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The roots occur when y = 0, and using the formula of (2.22) we get the follow-
ing values for x

x = −4 ± 16 − 20
2

x = −2 + j or − 2 − j

These are shown in the Argand diagram (Figure 2.6) by encircled crosses.
In the case of higher order equations (such as cubics of the form y = ax3 + bx2 

+ x + c), the roots could be a mixture of real and complex roots.
We can also represent complex numbers in polar form, by a position vector (see 

Section 2.5 on scalars and vectors) of length R, which makes at an angle ϕ with the 
positive direction of the x-axis, as depicted in Figure 2.7. The vector is uniquely 
described by the quantity Rejϕ. The x-coordinate (or abscissa) is given by Rcosϕ, 
and the y-coordinate (or ordinate) on the imaginary axis is given by jRsinϕ. The 
length of R represents the magnitude of the vector and is also called the modulus, 
or absolute value. The modulus value is conventionally denoted by vertical lines on 
either side of R, as ⎪R⎪. The modulus can be calculated by applying Pythagoras’ 
theorem to give us

 
R = x2 + y2( )  (2.25)

x

x

x-axis
(real)

jy -axis
(imag)

(−2 + )j

(−2j )

(−2 −j )

(+2j)

x

x

Figure 2.6 Argand diagram.
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The angle ϕ, which the vector R makes with the x-axis, is called the argument, 
and can be calculated by simple trigonometry since

 
tanf = y

x
 (2.26)

so that ϕ is given by

 
f = tan−1 y

x
⎛
⎝⎜

⎞
⎠⎟

 (2.27)

Note that when ϕ = π/2, or 90°, there is no real part, only an imaginary part, 
and R is vertical or parallel to the y-axis. We can see this algebraically as well, since 
according to the identity of L. Euler (1707–1783),

 e± jq = cosq ± j sinq  (2.28)

 
Re± jq = R cos

p
2
+ jR sin

p
2

 (2.29)

and cos π/2 = 0, whereas sin π/2 = 1; so that

Re±p /2 = jR

Similarly when ϕ = 0°, ej0 =1, so that Rej0 = R. The evaluation of the position 
vector for other angles ϕ, can be undertaken in a similar manner by calculating the 
trigonometric functions in the respective quadrants.

2.4.1 Addition of Complex Numbers

When we add complex numbers, we must add the real parts together and the imagi-
nary parts to each other. We cannot add real parts to the imaginary parts. Thus if 
we have two complex numbers, P and Q, such that P = 3 + 5j and Q = 6 + 8j, P + 
Q = 9 + 13j. This property of complex numbers is utilized in what is known as stub 
matching of components to transmission lines.

If we have a load which has susceptance (1/reactance) of +jB in parallel with 
its conductance of Gl = 0.2S (siemens), and we want to connect it to a line whose 
characteristic impedance is 50W (i.e., a characteristic admittance of 0.2S), we would 
get a standing wave since the load does not have the same impedance as the trans-
mission line. This would result in a loss of power transfer, and is some cases could 
lead to voltage breakdown in high-power systems. In order to match the load to the 
line, we would connect a stub, which is a short-circuited line, in parallel with the 
transmission line, as near to the load as possible. The conductance of the load can 
be varied by adjusting the position of the stub so that the conductance presented 
to the line equals 0.2S. The susceptance of the stub can be varied by adjusting its 
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φ

Figure 2.7 Polar representations of complex numbers. (a) In general, R has real and imaginary 
parts. (b) When ϕ =90, R is imaginary. (c) When ϕ = 0, R is real.

length so that its susceptance is equal and opposite to that of the load (i.e. it is −jB). 
Thus, the resultant susceptance is zero, and the conductance is 0.2S. The load now 
presents an impedance that is the same as that of the transmission line, so that it is 
matched, and maximum power transfer can be effected.
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2.4.2 Complex Conjugate

The complex conjugate of a number has the same real part as the number, but its 
imaginary part has a sign opposite to that of the number. For instance, if we have 
a complex number S = (a + jb), its complex conjugate is (a − jb) and is denoted by 
using an asterisk as a superscript after the letter (S*). Conjugate matching is used 
to match two components that do not have purely resistive impedances.

2.5 Scalars and Vectors

A scalar quantity is one that has magnitude but no direction. Examples of scalars are 
mass, resistance, time, and power. A vector quantity has magnitude and direction. 
Examples of vectors are weight, force, current, magnetic field, and electric field.

2.5.1 Position Vector

A vector may be used to indicate the position of a point in space or in a plane, rela-
tive to another point (usually the origin of co-ordinates). The vector R in Figure 
2.8(a) denotes the position of the point (x,y).

2.5.2 Vector Addition and Subtraction

Vectors can be added by using a parallelogram or triangle rule. The vectors are rep-
resented by scaled lines, whose lengths are proportional to the relative magnitudes 
and whose directions represent the directions in which the vectors act. Usually one 
vector is considered to be the reference vector and the second vector is drawn at an 
angle representing the relative angles between the two vectors. When more than two 
vectors are to be added, two are first chosen to add together and then the resultant 
is added to the third, and so on.

2.5.2.1 Parallelogram Rule

Consider two vectors, A and B, representing the adjacent sides of a parallelogram 
shown in Figure 2.8(b); the lengths of the sides correspond to the relative magni-
tudes of the vectors, and the angle between them is the angle between the directions 
of the vectors. Note that their directions are both away from their common point 
of intersection. A parallelogram is constructed by drawing a line through the end 
of vector A parallel to vector B, and a line through the end of vector B parallel to 
vector A. The resultant is a vector R represented by the diagonal (through the point 
O) of the parallelogram, and is denoted by the double arrow.

2.5.2.2 Triangle Rule

In this case, the vectors to be added represent two sides of the triangle, shown in 
Figure 2.8(c), but note that their directions are cyclic, so that the direction of vec-
tor A is towards their common point, whereas the direction of vector B is away 
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from their common point. The resultant R of the two vectors is represented by the 
third side of the triangle, and its direction is anticyclic to the direction of the two 
component vectors. The length of the resultant is measured and the appropriate 
scale applied to calculate its magnitude. The angle which the resultant makes with 
either of the component vectors can be measured with a protractor.

A more accurate method of finding the magnitude and direction of the resultant 
is by calculation, using the cosine formula of (2.9) to calculate the length of the 
resultant, and then the sine formula of (2.10) to calculate its direction.

(a)

(b)

(c)

x

y (x, y)

O

R

A

α

α α

α
φ

φ φ

φ

B
R

A

B R

A A

B
B

R
R

Figure 2.8 Rules for the addition of vectors. (a) R is the position vector for the point (x,y). (b) 
Parallelogram rule for vector addition. (c) Triangle rule for vector addition.
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2.5.3 Vector Multiplication

Vectors can be multiplied in two different ways. We can take their

1. Scalar or dot product,
2. Vector or cross product.

2.5.3.1 Scalar or Dot Product

The dot product of two vectors A and B is written with a dot between them, and 
is defined as

 A ⋅ B = B ⋅ A = ABcosq = BAcosq  (2.30)

where
A and B (in bold characters) are vector quantities,

A and B (with normal attributes) are scalars,

and θ is the angle between the vectors A and B.

Note that the dot product of the two vectors is a scalar, and is the product of 
the magnitude of one vector and the resolute of the other one (the component of the 
other one resolved in the direction parallel to the first), as shown in Figure 2.9(a). 
It follows that when θ is zero, the two vectors are parallel and the dot product is 
equal to the product of the magnitudes of the two vectors. We can see that this 
is the case algebraically, since cos θ is equal to 1, when θ is zero. When θ is 90°, 
the two vectors are perpendicular and the resolute of one in the direction parallel 
to the other is zero; and this results in the product also being zero. In physics, we 
encounter many cases of the dot product of vectors. For instance, we may have an 
object such as a train, which is constrained to travel in a straight line subjected 
to a force F is applied at an angle θ, as shown in Figure 2.9(b), the resolute of the 
force in the direction of motion of the train is F cos θ. When θ = 0°, cos θ = 1, and 
the resolute has its maximum value of F; whereas when θ = 90°, cos θ = 0, and the 
resolute has its minimum value of zero, that is, the force F does not contribute to 
the tractive force of the locomotive.

2.5.3.2 Vector or Cross Product

The vector product of two vectors A and B is written with a cross (or multiplication 
sign) between them, and is defined as

 A × B = kABsinq = −kBAsinq  (2.31)

The cross product is the product of one vector and the resolute of the other in 
the direction perpendicular to the first and in the plane containing the two vectors, 
and k is the unit vector (see Section 3.1). The resolute of A perpendicular to B is 
A sin θ, if θ is the angle between the vectors. The product is a vector whose direc-
tion is perpendicular to the plane containing the two vectors, and governed by the 
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right-hand rule. The vector product A × B is in the opposite direction to the vector 
product B × A. In Figure 2.9(c) we can see that if we take the vector product of A 
× B we move in an counterclockwise direction from A to B, and thus the resultant 
is in the upward direction; whereas if we take the vector product of B × A we move 
in a clockwise direction from B to A, and thus the resultant is in the downward 
direction. If we say that A × B is positive, then B × A is negative. The unit vector 
k is used to show that the resultant vector is in the direction of the z-axis, whereas 
−k denotes a vector in the negative z-direction.

(c)

(a)

(b)
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B
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A x B = kAB sin θ

B x A =−kBA sin θ

A sin θ
θ
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θ

θ

Figure 2.9 Scalar and vector product of vectors. (a) Scalar or dot product. (b) Effect of the force 
depends on the angle θ. (c) Vector or cross product of vectors.
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We encounter the vector product in the Poynting’s power flux vector, which 
is the product of the electric field intensity E, and the magnetic field intensity H. 
Poynting’s power flux vector gives us the power density (power per unit area) at a 
particular location and is given by

 P = E × H  (2.32)

where P is in watts per square meters (W m–2), E is in volts per meter (V m–1), and 
H is in amperes per meter, (A m–1). E and H are often written in V/m and A/m.

2.5.4 Phasors

A phasor is a rotating vector representing a quantity which rotates in time rather 
than in space, at an angular velocity equal to the phase velocity of the quantity. In 
engineering, we use phasors to represent sinusoidal variations such as voltages, and 
the length of the phasor is proportional to the amplitude of the variation. If the volt-
age is mains AC power at 50 Hz, one cycle takes 1/50 of a thousandth of a second 
(or 0.02 sec) and thus the phasor would take 0.02 sec to complete one revolution, 
or 2π radians. In one second it would sweep out 50 revolutions, or 100π radians, 
so we can say that the angular velocity ω is 100π radians per second (since ω = 
2πf). At any time t, the vector sweeps out an angle ωt. If we have more than one 
voltage at the same angular velocity, but with relative phase differences, then we 
can depict both the phasors on the same diagram. Since both the vectors are rotat-
ing at the same velocity, the relative phase difference will be the same whether they 
are stationary or rotating; so we shall keep them stationary. If we have a sinusoi-
dal variation, as shown in Figure 2.10(b), then the length of the vector shows the 
amplitude or maximum value in each cycle. Consider the circuit of Figure 2.10(a), 
which shows an inductor in series with a resistor connected to a sinusoidally vary-
ing voltage source. We want to calculate the total voltage Vt across the inductor 
and resistor. The voltage waveforms across the inductor and resistor respectively 
are shown in Figure 2.10(b, c) with amplitudes of V1 and V2. In the case of a pure 
inductor, the voltage V2 would lead the voltage V1 by exactly 90°, but in the general 
case we shall consider V2 leading V1 by a phase of ϕ. These voltages can be repre-
sented on a phasor diagram by two straight lines scaled to represent the relative 
amplitudes of V1 and V2; separated by an angle ϕ. The vector V1 is taken as the 
reference phasor, and since V2 leads V1 by a phase of ϕ degrees, V2 is drawn at an 
angle of +ϕ. The resultant is found by using the laws of vector addition. The use 
of vectors as phasors is a very useful tool for analysing the voltages and currents 
which are subjected to sinusoidal variations. We would normally find the resultant 
of two sinusoidal variations by adding the sine waves on a point-by-point basis. 
If we have V1 = V2 = 1 (each representing one unit) and ϕ equal to 60°, we would 
get the waveform of Figure 2.10(d), which has an amplitude of 1.732, and a phase 
of 30° compared with the voltage across the resistor. In order to find the resultant 
using phasors, we can draw a scaled drawing, as shown in Figure 2.10(e), and by 
using the parallelogram or triangular rule, we can directly measure the angle (30°) 
and length of the resultant (1.732 units). Alternatively, we could draw a sketch of 
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Figure 2.10 Addition of waveforms using algebraic addition and phasors. (a) Circuit of an 
inductor in series with a resistor, (b) V sin ωt, (c) V sin (ωt + ϕ), (d) V sin ωt + V sin (ωt + ϕ), and 
(e) addition of waveforms using vectors as phasors.
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the three vectors, then use the cosine rule to calculate the length of the resultant, 
and the sine rule to calculate the angle of the resultant.

2.6 Fourier Analysis and Transforms

Fourier analysis was first suggested by J. B. J. Fourier (1768–1830). He showed that 
a square wave could be decomposed into a sum of sine waves. Fourier transforms 
are used to transform a function from one domain to another, such as from the 
time to the frequency domains.

2.6.1 Fourier Analysis

Consider a square wave of frequency f (= ω/2π) as shown in Figure 2.11(a). This 
wave has a period T equal to 2π/ω. If we add together a sine wave of the same fre-
quency and a sine wave of three times the frequency but one third of the amplitude 
(sin3ωt)/3, as shown in Figures 2.11(b, c), we would get the resultant wave of Fig-
ure 2.11(d). This looks similar to the square wave, but is not a very good approxi-
mation. If we add another sine wave of five times the frequency and one fifth of 
the amplitude (sin5ωt)/5, we would get the plot of Figure 2.11(e). As we add more 
terms, we get nearer to the shape of a square wave. To get an exact square wave 
function f(ωt) we have to add an infinite number of terms of the series, given by 
the following summation

 
f (ωt) = 4

π
sin(2n − 1)ωt

(2n − 1)ωt
n=1

∞

∑  (2.33)

where ω is the angular frequency in radians per second.
Note that each term is an odd multiple of the frequency of the first term sinωt, 

and the amplitudes are reciprocals of the odd numbers. The first term is called the 
fundamental, and the other terms are known as higher-order harmonics. The sec-
ond term has three times the frequency of the fundamental, and is therefore known 
as the third harmonic. If we add together the first eight terms of the above series 
we get a fairly good approximation to the square wave. The resultant is shown in 
Figure 2.11(f) and is given by the following sum:

 
f (wt) = 4

p sinwt + 1
3

sin3wt + 1
5

sin5wt +… + 1
15

sin15wt⎛
⎝

⎞
⎠  (2.34)

Most periodic and many other nonperiodic waveforms can be decomposed into 
a summation of periodic sine and cosine waves.

2.6.2 Fourier Transforms

We have seen how the square wave can be decomposed into a summation of sine 
waves. The waves of Figure 2.11 show us the variation of the intensity or displacement 
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Figure 2.11 Fourier analysis of a square wave. (a) Square wave of frequency f = ω/2π and 
amplitude 1, (b) sine wave of frequency f = ω/2π and amplitude 1, (c) sine wave of frequency 
f = 3ω/2π and amplitude 1/3, (d) summation of the first two terms sin ωt + (sin 3ωt)/3, (e) 
summation of the first three terms sin ωt + (sin 3ωt)/3 + (sin 5ωt)/5, (f) summation of the first 
eight terms.

with time (i.e., the pattern in the time domain). If we were to look at the variation 
of the intensity with frequency for a sine wave, we would get a single line at a fre-
quency f (= ω/2π) and the length of the line would be equal to the amplitude (the 
maximum value of the intensity). This type of plot, which shows us the variation 
in the frequency domain, is called the frequency spectrum and is shown in Figure 
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2.12(a). The Fourier transform has transformed a time domain plot into the fre-
quency domain. In the case of the square wave, if we were to look at its spectrum 
we would get a series of lines with the slope of the amplitudes equal to −6 dB per 
octave (the amplitude is halved each time the frequency is doubled). The time and 
frequency domain plots are shown in Figure 2.12(b). For a square pulse, we would 
get the time and frequency domain plots of Figure 2.12(c). In antenna technology, 
we use the Fourier transform to transform the illumination across an antenna to the 
electric field variation in the far field. For example, if we have a uniform illumination 
(constant electric field and no phase variation) across an antenna, this is the same 
as the square pulse shown in Figure 2.12(c), and its Fourier transform is given by

 
f (q) = sinu

u
 (2.35)

where

u = (πasinθ)/λ,

a is the width of the aperture of the antenna,

and θ is the angle measured from the normal to the aperture.

The radiation pattern, which is the variation of power (proportional to the 
square of the electric field) with angle θ, is given by

 
F(q) = sin2 u

u2  (2.36)

The exact number, height, and position of the sidelobes depend on the size of 
the electrical aperture, a/λ, that is, the size in terms of the wavelength. In Figure 
2.12(d), we have the radiation pattern for an antenna that is 10 wavelengths long. 
Note that the y-scale shows the power in decibels, and is therefore a logarithmic scale.

Other uses for Fourier transforms are in measuring the frequency content of 
transients and pulses so that their effect on equipment can be estimated.

2.7 Parameters

We must distinguish between the strict definition of parameters used by mathema-
ticians and the parameters used by engineers.

2.7.1 Mathematical Definition of Parameters

A parameter is defined by mathematicians as a third variable on which the other 
two variables depend. For instance, instead of writing the equation of a circle as

 x2 + y2 = a2  (2.37)
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Figure 2.12 Fourier transforms. (a) Fourier transform of a sine wave, (b) Fourier transform of 
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or

 y = a2 − x2  (2.38)

each of the variables can be written in terms of another variable θ.

 x = acosq  (2.39)

 y = asinq  (2.40)

Equations (2.39) and (2.40) are known as parametric equations, and θ is known 
as the parameter. These are depicted in Figure 2.13(a).

We can see that if we were to square (2.39) and (2.40) and add them together, 
we would get the following

 x2 + y2 = a2 cos2 q + a2 sin2 q  (2.41)

This is the same as the equation of the circle given by (2.37), since

 cos2 q + sin2 q = 1  (2.42)

2.7.2 Parameters Used by Engineers

Engineers tend to use the term parameter in a different way. If we consider the 
equation of a circle, (2.37), the value of a determines the radius of the circle, and it 
can take on any constant magnitude for each series of x and y values. If we give it a 
number of fixed values, we would get a series of concentric circles, which have the 
origin of coordinates as their center, as shown in Figure 2.13(b). We can now say 
that we are plotting y against (or vs. for versus) x with a as a parameter. If we were 
to increase a in infinitesimally small steps from an initial value of zero, we would 
get a solid disc since the circles of increasing radii would be touching.

In EMC engineering, we encounter many cases of variables that are dependent 
on two or more other variables. For instance, we have the shielding effectiveness 
(SE) of a material dependent on the frequency as well as on the conductivity. We 
could choose the conductivity as the independent variable (x-axis) and plot the SE 
against conductivity for a number of fixed frequencies to get different plots on the 
same graph. We would then say that frequency is the parameter.

2.8 Fundamental Units and Dimensions

All physical quantities can be expressed as a combination of the fundamental or basic 
units, also called SI (Système International) base units. The relationship between a 
physical quantity and the fundamental units is called its dimension. These funda-
mental units are shown in Table 2.3.
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Figure 2.13 Parameters used by mathematicians and engineers. (a) Parametric equations are x = 
cos θ, and y = a sin θ, where θ is the parameter. (b) Plots of y = a2 − x2 with a as a parameter.

Table 2.3 Fundamental or SI Base Units

Physical Quantity Name of Base Unit Unit Symbol Dimension

Mass kilogram kg m M

Length meter m l L

Time second s t T

Current amperes A I I 

Thermodynamic temperature degrees kelvin K T K
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Table 2.4 Dimensions of Commonly Used Physical Quantities

Physical Quantity Name of Unit Unit Symbol Fundamental Units

Acceleration meters per second 
squared

m s–2 α LT–2

Angular frequency radians/s radians/s ω T–1

Capacitance farad F C M–1L–2T4I1

Charge coulomb C Q IT

Conductance/susceptance siemen S G M–1L–2T3I2 (same as 
admittance)

Conductivity siemen–meter S–m σ M–1L–3T3I2

Current ampere A I I

Current density amperes per square 
meter

A m–2 J IL–2

Dielectric constant no units no units εr ε/εo (same as relative 
permittivity)

Distance or length meter m d L

Electric field intensity volts per meter V m–1 E MLT–3I–1

Energy joule J E or We ML2T–2

Force newton N F MLT–2

Frequency hertz Hz f T–1

Impedance ohm W R ML2T–3I–2 (same as 
resistance)

Inductance henry H L ML2T–2I–2

Length meter m l L

Mass kilogram kg m M

Magnetic field intensity amperes per meter A m–1 H IL–1

Magnetic flux density tesla T B MT–2I–1

Permeability henries per meter H m–1 μ MLT–2I–2

Permittivity farads per meter F m–1 ε M–1L–3T4I2

Power watts W P ML2T–3

Power density watts per meter W m–2 Pd MT–3

Relative permeability no units no units μr μ/μo

Relative permittivity no units no units εr εεo (same as dielectric 
constant)

Resistance/reactance ohm Ω R ML2T–3I–2 (same as 
impedance)

Resistivity ohm–meter Ω–m ρ ML3T–3I–2

Skin depth meter m δ L

Time second s t T

Velocity meters per second m s–1 v LT–1

Voltage volt V V ML2T–3I–1

Wavelength meter m λ L
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Consider the units of energy, for instance. Energy can be defined as the prod-
uct of force and distance. Force, in its turn, can be defined by Newton’s law as 
the product of mass and acceleration. Since acceleration is the rate of change of 
velocity, its dimensions are LT–2 (i.e., its SI base units are m s–1), and thus we get 
energy = ML2T–2 for the dimension of energy. Since the energy is in joules, this 
gives us the fundamental units of the joule. Note that joule is written with a lower 
case initial letter, although it is a proper name; whereas the unit J is denoted by an 
uppercase letter.

The dimensions for power in watts can be derived from the units for energy, 
since power is the number of joules per second. The dimensions of power are there-
fore ML2T–3. The dimensions for voltage in volts can be derived from the units for 
power, since power is the product of volts and amps. The dimensions of volts are 
therefore ML2T–3I–1. The dimensions of inductance in henries can be derived in a 
similar manner, since, according to Lenz’s law, the inductance is induced electro-
motive force (EMF) divided by the rate of change of current. Thus the dimensions 
of henries are ML2T–2I–2.

The dimensions of SI units most commonly used in EMC engineering are listed 
in Table 2.4.

2.8.1 Checking Formulas by Dimensions

Reducing a physical quantity to fundamental units is useful in verifying the correct-
ness of formulas or in resolving ambiguities. For instance, formulas often contain 
the symbols μ and ε for relative permeability and permittivity, respectively, when 
these should have the subscript r (i.e., μr and εr).

We can also understand the physical meaning of formulas if we can derive 
their dimensions. For instance, if we consider the product of the electric and mag-
netic field intensities we know from Table 2.4 that electric field has the dimensions 
of MLT–3I–1, and magnetic field has the dimensions of IL–1; thus the product has 
dimensions given by

E × H = MLT−3I−1IL-1

which gives us the following

E × H = MT−3

Referring to Table 2.4, we can see that these are the same as the units for power 
density and E × H is known as Poynting’s power flux vector. It is left to the reader 
to verify that the dimensions for (me)  are the same as those for resistance.
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C h a p t e r  3

Antenna Theory

This chapter deals with more advanced vector algebra, which is required to under-
stand Maxwell’s equations and the theoretical aspects of antennas. It is strongly 
recommended that Chapter 2 be studied by engineers who are not conversant with 
mathematics or would like to revise the application of their knowledge to the theo-
retical understanding of antennas. This chapter is written in such a way as to be 
self-contained, and it can be entirely omitted by the reader who does not wish to 
study antenna theory. Although Maxwell’s equations are quoted, they are explained 
qualitatively with greater emphasis being placed on the boundary conditions appli-
cable to conducting surfaces. The concepts of a vector power density and radiation 
resistance of wire antennas are introduced. The derivation of the far-field distance 
for wire and aperture antennas is also included. Vectors are denoted by bold letters 
and scalars are denoted by normal characters.

3.1 Unit Vectors

We have seen, in Chapter 2, how we can draw vectors to scale and then construct 
parallelograms or triangles in order to calculate the sum of two vectors. Instead of 
saying that we have a vector A in a particular direction, we can say that we have a 
scalar F in the direction of a unit vector r. The vector A can then be considered to 
be the dot product of the scalar F and the unit vector r.

In rectangular coordinates, unit vectors are represented by i, j, and k along the 
x-, y-, and z-axes, respectively. Unit vectors are sometimes denoted with a circum-
flex above (e.g., î, ĵ, and ƙ).

In cylindrical polar coordinates, unit vectors are represented by ar, aθ, and az 
along the radial direction, the direction of angular rotation θ, and along the z-axis 
normal to the plane containing ar and aθ, respectively. In spherical polar coordinates 
aϕ is used instead of az, where ϕ is the angle of rotation in the x-y plane. The unit 
vectors in rectangular and polar coordinates are depicted in Figure 3.1.

Unit vectors are used to express any vector in terms of three unit vectors. If we 
want to multiply vectors, we first write them in terms of three unit vectors and then 
multiply them together. For example if we want to calculate their cross product, we 
write them in the following manner

 

A × B =  iAx + jAy + kAz( ) × iBx + jBy + kBz( )
A × B = iAx × iBx + iAx × jBy + iAx × kBz + jAy × iBx + jAy

× jBy + jAy × kBz + kAz × iBx + kAz × jBy + kAz × kBz

 (3.1)
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Figure 3.1 Unit vectors in (a) right-handed rectangular coordinates, and (b) polar coordinates.

Since we have iAx and iBx in the same direction, that is, the angle between them 
is zero, their cross product is zero. The same holds true for the cross product of jAy 
and jBy, and the cross product of kAz and kBz.

We also know that the cross product of iAx and jBy gives us a vector kAxBy 
along the z-axis. On the other hand, the cross product of kAz and jBy gives us a 
vector iAzBy along the negative x-axis; that is, it is equal to −iAzBy

The same applies to the other cross products. Thus the following relation-
ships apply:

 

iAx × iBx = 0 jAy × jBy = 0 kAz × kBz = 0

iAx × jBy = −kAxBy iAx × kBz = −jAxBz jAy × iBx = −kAyBx
jAy × kBz = iAyBz kAz × iBx = jAzBx kAz × jBy = −iAzBy

 (3.2)
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Thus the cross product of A and B can be written as the sum of the following 
three vectors:

 
A × B = i AyBz − AzBy( ) − j AxBz − AzBx( ) + k AxBy − AyBx( )  (3.3)

This cross product can also be written in the form of a matrix as

 

A × B =
i j k
Ax Ay Az

Bx By Bz

 (3.4)

3.2 Scalar and Vector Fields

In Chapter 2, we have encountered scalars and vectors which have fixed magni-
tudes and directions. We now consider scalar and vector fields. In this case, we have 
scalars and vectors which are functions of position (i.e., they are point functions). 
Their magnitudes and/or directions depend on position. Scalar point functions 
define scalar fields, and vector point functions define vector fields.

3.2.1 Spatial Rates of Change of Scalar and Vector Fields

There are three types of rates of change:

1. Gradient, or grad;
2. Divergence, or div;
3. Curl or rot.

These rates of change can be expressed in terms of a vector operator called del 
or nabla, which is represented by the symbol ∇. The operator is defined by the fol-
lowing relationship

 
∇ = i

∂
∂x

+ j
∂
∂y

+ k ∂
∂z  (3.5)

It should be noted that del is not a vector but an operator, and operates on a 
scalar or vector.

The gradient, divergence, and curl of scalar and vector fields are invariant, that 
is, they are independent of the coordinate system.

3.2.2 Gradient of a Scalar Field

If we have a scalar point function ϕ, then at a point P surrounded by a surface S 
and enclosing a volume V, we can define the gradient of ϕ as a vector showing the 
direction and magnitude of the maximum space variation at any point in space. In 
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rectangular coordinates, the gradient of the function is the sum of the individual 
gradients along each of the three mutually perpendicular axes and is given by

 
gradf = i

∂f
∂x

+ j
∂f
∂y

+ k ∂f
∂z  (3.6)

We can also write the gradient in terms of the operator del as ∇ϕ.
For example, if we have a series of equipotentials (between two electrodes), the 

equipotentials will be parallel but not necessarily planar if the electrodes are not 
planar, as shown in Figure 3.2. The voltage potential is a scalar quantity, but the 
rate of change with distance, of the voltage potential is the electric field and this is 
a vector. The gradient is defined as the maximum rate of increase in the direction 
normal to the equipotentials.

(a)

Equipotentials

Nonplanar
electrode

GradV = VV V+ +
x zy

n

Unit vector normal to equipotentials

i j k

(b)

The elements of length are

dr, r dθ, r sin θ dφ

grad V =
VV V

+ +
r φθ

1
r

1

r sin θ
a

θ φaar

z

y

x

θ

φ

rz = r cos θ

a

θ

φa
a

r

x = r sin θ cos φ

y = r sin θ sin φ

Figure 3.2 The gradient of a scalar field in (a) rectangular coordinates, and (b) spherical polar 
coordinates.
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In the general case for rectangular coordinates, the voltage gradient will have 
components along each of the x-, y-, and z-axes, and is given by

 
gradV = i

∂V
∂x

+ j
∂V
∂y

+ k ∂V
∂z

 (3.7)

This can also be written in terms of the operator del as ∇V.
In polar coordinates, the elements of length are dr, rdθ, and r sinθdϕ, and 

gradV is given by

 
gradV = ar

∂V
∂r

+ aq
1
r
∂V
∂f + aq

1
r sinq

∂V
∂f

 (3.8)

3.2.3 Divergence of a Vector Field

In the field of electromagnetism, we encounter magnetic fluxes which diverge from 
magnetic poles. The divergence of the magnetic flux would be defined, in this case, 
as the total flux coming out of (or diverging from) unit volume as the volume shrinks 
to zero. The divergence is given as

 

div A = lim lim
vol→0

flux∫
dVuv∫

 (3.9)

In general, the divergence can be defined as the normal surface integral over a 
surface as the volume tends to zero.

 

div φ = c
A • dS

s!∫
dVuv∫

 (3.10)

The vector dS is the product of the scalar area dS and the unit vector n normal 
to the surface element dS. The element dS must be small enough so that it can be 
considered as a plane area and so that A varies negligibly over it. The dot product 
of A and dS is then taken in the usual manner by multiplying dS and Acosθ if the 
angle between the vector A, and the normal to the elemental surface is θ, as shown 
in Figure 3.3.

The integral of this dot product is sometimes called the normal surface integral 
of A over dS, and is the numerator of (3.10). Note that the divergence of a vector field 
is a scalar. This bears a resemblance to the dot product of vectors, which is a scalar.

The integral in the numerator of (3.10) is sometimes written as a double integral. 
This is because we can consider the vector A to be integrated over the element of 
area dS, multiplied by the vector dS and then the dot product is integrated over the 
total surface S [1, p. 725]. The divergence is often written in terms of the operator 
del or nabla, as ∇ ∙ V.
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In rectangular coordinates, we can also write the divergence of a vector in dif-
ferential form as

 
divA = lim

vol→0

∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
⎛
⎝⎜

⎞
⎠⎟

 (3.11)

In polar coordinates div A is given by

 
divA = 1

r2

∂
∂r

r2Ar( ) + 1
r sinq

∂
∂q sinqAq( ) + 1

r sinq
∂Af

∂f
 (3.12)

3.2.4 Curl of a Vector

The curl was a term first used by James Clerk Maxwell [2], who took an idea that 
William Thomson (better known as Lord Kelvin) had of calculating a vector from 
another vector. The curl of a physical field defines its rotation or vorticity. This 
is one of the most difficult concepts to interpret physically. It is best explained in 
terms of a physical phenomenon we can observe in everyday life [3, pp. 2–4]. Con-
sider an object floating downstream on the surface in the y-direction, as shown 
in Figure 3.4(a). If the stream is flowing in the y-direction with no eddies and has 
uniform velocity across its width (in the x-direction) the object would move in the 
y-direction alone. However, in the general case there are eddies caused by the varia-
tion in the velocities of the stream in the x- and z-directions. These variations cause 

div A in rectangular coordinates =
A + +
x zy

(r A ) A+ +1
r

1
r sin θ

Unit vector normal to surface

n A

θ
Surface dS

div A in spherical polar coordinates is given by

A Ax y z

r
2

2 1
r sin θ θ(sin θ A )

θ φ
φ

r
div A =

Figure 3.3 The divergence of a vector field: div V in rectangular coordinates  

=
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
; div A in spherical polar coordinates 

= 1
r 2

∂
∂r

r 2Ar( ) + 1
r sinq

∂
∂q sinqAq( ) + 1

r sinq
∂Af

∂f
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the object to turn. For simplicity, let us consider variations in the velocities in the 
x- and y-directions only for an object floating on the surface. The components of 
the velocities at corner P in the x- and y-directions (along PS and PQ) are vx and vy, 
respectively. The velocity gradients of these components in the y- and x-directions 
are ∂vx/∂y and ∂vy/∂x, and assuming these gradients are positive, the velocities 
along QR and SR will be vx + ∂vx / ∂y( )dy  and vy + ∂vy / ∂x( )dx . The differences 
in the velocities along the opposite sides of the object cause the object to turn. The 
direction of rotation will depend on which velocity gradient is the larger. If ∂vy/∂x 
is the larger gradient, the object will turn in a counterclockwise direction looking 
down on the x-y plane.

(b)

Curl v

y

z

Curl vydxv
x

zv +z

dzv
z

yv +y

dyv
y

zv +z
dzv

z
xv +x
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dz
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vz

vy

vx

x x

dx

dx
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Curl v
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z

P Q
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vx dyv
y

xv +x

dxv
x

yv +y

dy
dx

Figure 3.4 The curl of a vector field: (a) Curlxν component of Curl ν and (b) Curlxν and Curlyν 
component of Curl ν.
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The curlzν is defined [3] as the vector in the positive z-direction that is the result 
of this counterclockwise rotation in the x-y plane. We can see that this is the same 
direction that is defined by the right-hand screw rule, that is, if we turn a screw in 
an counterclockwise direction looking down on the x-y plane, it would move in the 
positive z-direction. The curlzν is given by

 
curlzn = k

∂vy
∂x

−
∂vx
∂y

⎛
⎝⎜

⎞
⎠⎟  (3.13)

where k is the unit vector in the positive z-direction. We can similarly define curlxν 
and curlyν along the positive x- and y-axes, as shown in Figure 3.4(b). The total curl 
of the vector is the sum of these three individual curls, and is given by

 
curl n = i

∂vz
∂y

−
∂vy
∂z

⎛
⎝⎜

⎞
⎠⎟
− j

∂vz
∂x

−
∂vx
∂z

⎛
⎝⎜

⎞
⎠⎟ + k

∂vy
∂x

−
∂vx
∂y

⎛
⎝⎜

⎞
⎠⎟

 (3.14)

Note the similarity between this vector and the cross product of two vectors 
that we encountered in Chapter 2 and Section 3.1. The curl can also be written in 
terms of the del operator as the cross product of del and the velocity vector v, and the 
right-hand side of (3.14) can be written as a matrix; thus we have the curl given by

 

∇ × v =

i j k
∂
∂x

∂
∂y

∂
∂z

vx vy vz

 (3.15)

In the spherical polar coordinate system, the curl in each direction is given by

 
curlrA =

ar
r sinq

∂
∂q sinqAq( ) −

∂Af

∂f
⎡
⎣⎢

⎤
⎦⎥

 (3.16)

 
curlqA =

ar
r sinq

∂
∂q sinqAq( ) −

∂Af

∂f
⎡
⎣⎢

⎤
⎦⎥

 (3.17)

 
curlfA =

af
r

∂
∂r

rAf( ) − ∂Ar

∂q
⎡
⎣⎢

⎤
⎦⎥

 (3.18)

3.3 Maxwell’s Equations

Maxwell’s equations are based on the previous work of Gauss, Faraday, Biot, and 
Savart. He expressed their laws in concise terms, and also introduced the idea of 
a displacement current. This explains the magnetic field caused by the buildup of 
electric charges, (as in the case of the plates of a capacitor) in a similar way to the 
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magnetic field caused by the flow of electrons in a conductor. Until Maxwell’s time, 
it was assumed that a magnetic field could only be produced by a conduction cur-
rent (i.e., electrons flowing in a conductor). This ruled out a magnetic field being 
produced in a region of zero conductivity. Maxwell assumed that any change in an 
electrostatic field produced an attendant magnetic field and vice versa. This magnetic 
field is related to the electrostatic field change in the same way as the magnetic field 
is related to the change of conduction current. Thus, if we have a static charge on 
an insulator, such as an ebonite disk, and if we rotate the disk we will have what 
is known as displacement current, and a magnetic field will be produced. It was 
not until 1889 (after Maxwell’s death in 1879) that Rowland showed that displace-
ment current was the result of electrostatic buildup of charge on the electrodes of 
a capacitor. The electrostatic lines of force precede the charges and the attendant 
magnetic field.

Maxwell’s equations are sometimes called the EM field equations, because only 
the first two are attributable to Maxwell. However, all four are normally called 
Maxwell’s equations and are denoted as such in this book.

In the EMC field we are mainly concerned with the electric and magnetic fields 
in free space, that is, in source-free media.

3.3.1 Maxwell’s First Equation

This equation is based on Ampere’s law, which states that the line integral of the 
magnetic field intensity is equal to the total current enclosed (i.e. the sum of the 
conduction and displacement currents), and is given by

 
H • dl!∫ = Iconduction + Idisplacement

 (3.19)

where H is the magnetic field intensity in amperes per meter (A m–1), and dl is an 
elementary length in meters (m).

The conduction and displacement currents can be written in terms of the con-
duction and displacement current densities Jc and Jd, respectively, and the area. 
Thus, (3.19) can be written as

 
H • dl!∫ = Jc + Jd( )dS

S
∫  (3.20)

where Jc is the conduction current density in A m–2, Jd is the displacement current 
density in A m–2, and dS is the element of area perpendicular to the current flow 
in square meters (m2).

The conduction current density Jc is in turn related to the electric field intensity 
by the following relation Jc = σE, where Jc is the conduction current density in A m–2, 
σ is conductivity in S m–1 and E is the electric field intensity in V m–1.

The displacement current density Jd is equal to the rate of change (with time) 
of the electric flux (or displacement) density D. Thus we can say that Jd is given by

 
Jd = ∂D

∂t  (3.21)
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where Jd is the displacement current density in amperes per square meter (A m–2), 
and D is the electric flux density in coulombs per square meter (C m–2).

The electric flux density can be written in terms of the electric field as

 D = eE  (3.22)

where ε is the permittivity in farads per meter (F m–1) and E is the electric field in 
volts per meter (V m–1).

We can write (3.20) as

 
H • dl!∫ = sE + ∂

∂t
(eE)Jd

⎛
⎝

⎞
⎠ dS∫  (3.23)

Stokes’ theorem states that the curl of a vector is the maximum value of the 
line integral around an elementary surface as the surface shrinks to zero. Thus the 
curl is given by

 
curl A = lim

S→0

A • dl!∫
dS  (3.24)

Applying Stokes’ theorem to (3.23) we get

 
curl H • dS

S
∫ = sE + ∂

∂t
(eE)⎛

⎝
⎞
⎠ dS

S
∫  (3.25)

If we assume that the surface becomes very small, dS → ΔS, curl H and E can 
be considered to be approximately uniform over this area and almost independent 
of the area. Equation (3.25) can be written as

 
curl H = sE + e ∂E

∂t
 (3.26)

This is Maxwell’s first equation in differential vector form.
We can also write this equation in scalar differential form for each component 

of the magnetic field intensity H, using the definition of the component of a curl 
given by (3.13).

 

∂Hz

∂y
−
∂Hy

∂z
= e

∂Ex
∂t

+ sEx

∂Hx

∂z
−
∂Hz

∂x
= e

∂Ey
∂t

+ sEy
∂Hy

∂x
−
∂Hx

∂y
= e

∂Ez
∂t

+ sEz

 (3.27)



3.3 Maxwell’s Equations 67

In integral form, the first equation is given by (3.23) and it can be stated as: 
The magnetomotive force around a closed path is equal to the conduction current 
plus the time derivative of the electric flux density through any surface bounded 
by the path [3, p. 204].

3.3.2 Maxwell’s Second Equation

This equation is based on Faraday’s law, which states that a magnetic flux of Φ 
induces an electromotive force (EMF) in a conductor. This induced EMF has a 
magnitude ⎪V⎪ that is proportional to the rate of change of the flux Φ, and this 
is given by

 
V = − df

dt
 (3.28)

The negative sign indicates that the voltage opposes the flux causing it.
This voltage V is also equal to the line integral of the electric field E over the 

length of the conductor. This integral is found by taking the dot product of E and 
dl, and then integrating over the whole length of the conductor. Thus we have

 
V = E • dl∫  (3.29)

where E is the electric field in volts per meter (V m–1) and dl is the elemental length 
of the total loop. Thus we can say that

 
E • dl!∫ = − dφdt

 (3.30)

where ϕ is the magnetic flux in webers. The flux is related to the flux density by 
the following relation

 
φ = B • dS∫  (3.31)

where B is the magnetic flux density in tesla (webers per square meter) and dS is 
the vector area, that is, the area normal to the flux density B.

Combining the above two equations, we get

 
E • dl

perimeter
!∫ = − d

dt
surface
∫ (B • dS)  (3.32)

which is sometimes quoted as Maxwell’s second equation in integral form, and it 
can be stated that the EMF around a closed path is equal to the time derivative of 
the magnetic displacement through any surface bounded by the path [3, p. 106]. By 
analogy with electric current, we can call the time derivative of the magnetic flux 
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the magnetic current. Thus, we can state Maxwell’s second equation as: The elec-
tric voltage around a closed path is equal to the magnetic current through the path.

To derive Maxwell’s equation in differential form, we use Stokes’ theorem which 
states that the curl of a vector is the maximum value of the line integral around an 
elementary surface as the surface shrinks to zero. Thus the curl is given by

 
curl A = lim

S→0

A • dl!∫
dS  (3.33)

Using Stokes’ theorem for a vector E we can therefore write the right-hand side 
of (3.32) in the following form

 
E • dl

perimeter
!∫ = − curlE • dS

surface
∫  (3.34)

Combining (3.32) and (3.34) we get

 
curlE • dS

s
∫ = − ∂

∂t
B • dS

S
∫  (3.35)

If we assume that the surface becomes very small, that is dS → ΔS, the curls E 
and B are approximately constant over this area. Equation (3.35) thus reduces to

 
curlE • ΔS = ∂

∂t
(B • ΔS)  (3.36)

Since ΔS is independent of time, we can rewrite (3.36) in the following form

curlE • ΔS = ΔS ∂
∂t

(B)

This gives us Maxwell’s second equation in differential form as

 
curlE = − ∂B

∂t
 (3.37)

where E is the electric field in volts per meter (V m–1) and B is the magnetic flux 
density in tesla (Wb m–2).

3.3.3 Maxwell’s Third Equation

Maxwell’s third equation is based on Gauss’ theorem, which states that the total 
outward flux is proportional to the total charge enclosed. From the definition of 
divergence, given by (3.9), we have
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divA = lim
vol→0

flux∫
dVuVu

∫

In the case of Gauss’ theorem, we have to consider the divergence of the electric 
flux density D. Writing the total outward flux in terms of this divergence we have

 

total flux = divD dVu
Vu

∫ = r dVu
Vu

∫  (3.38)

If we consider a volume that has an infinitesimal size of ΔVu, we can assume 
that the charge distribution ρ is constant over it, and (3.38) can be written as

divD dVu
ΔVu

∫ = r dVu
ΔVu

∫

which reduces to Maxwell’s third equation, namely

 divD = r  (3.39)

where D is the electric flux density or charge per unit area (= εE) in coulombs per 
square meter (C m–2), ε  is the permittivity in farads per meter (F m–1),  E is the 
electric field intensity in volts per meter (V m–1) and ρ is the charge distribution 
per unit volume in coulombs per meter (C m–3).

In integral form this equation can be written as

 

D • dS
S
∫ = rdVu

Vu

∫  (3.40)

where S is a closed surface. It can be stated that the total electric displacement 
through the surface enclosing a volume is equal to the total charge within the vol-
ume [3, p. 104].

3.3.4 Maxwell’s Fourth Equation

Maxwell’s fourth equation is the magnetic flux equivalent of the electric flux defined 
by the third equation. The divergence of the magnetic flux density B is equal to the 
distribution of the magnetic poles enclosed. Maxwell’s fourth equation states that 
the divergence of B is zero. We would expect this to be the case since there are no 
free north or south magnetic poles. A north pole would travel to the south pole of 
a magnet and a south pole would travel to the north pole. Thus the poles would 
always appear in pairs and the resultant magnetic pole strength would be zero. 
Maxwell’s fourth equation can be written in differential vector form as

 divB = 0  (3.41)
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where B is the magnetic flux density in tesla (Wb m–2)
In integral form this equation can be written as

 
B • dS

S
∫ = 0  (3.42)

where S is a closed surface. It can be stated that the net magnetic flux emerging 
through any closed surface is zero [3, p. 104].

3.4 Boundary Conditions

We must consider what happens to the fields at the interfaces between two media. 
The conditions that govern these fields are known as boundary conditions. In gen-
eral, the media are dielectrics, but in the EMC field the media are usually free space 
and a conductor. Let us first define a conductor. A conducting medium is defined as 
one in which an electric field or voltage potential is always accompanied by a move-
ment of electric charges carried by free electrons. There can be no static charge in a 
perfect conductor, since any electric field causes the electric charges to redistribute 
themselves until the electric field is zero [3, p. 2]. However all conductors have a 
finite conductivity, and at high frequencies the electric field penetrates the conductor 
to a depth that is inversely proportional to the conductivity. The electric field decays 
exponentially and asymptotically approaches zero as it penetrates the conductor. 
As the conductivity approaches infinity (i.e., that of a perfect conductor) the depth 
of penetration gets smaller and the current forms a thinner skin on the surface of 
the conductor. The skin depth is the distance from the surface of the conductor 
at which the electric field is equal to 1/e (1/2.718) of its magnitude at the surface.

We shall consider the tangential and normal components of the E and H fields 
in each medium on either side of the interface, as shown in Figure 3.5.

3.4.1 Tangential Component of the Electric Field

The tangential component of the electric field is continuous if both the media are 
dielectrics, as shown in Figure 3.5. This means that the tangential component of 
the E field is the same inside each media near the interface, that is, we can say that

 Et1 = Et2  (3.43)

where Et1 is the tangential electric field in medium 1 in voltage per meter (V m–1) 
and Et2 is the tangential electric field in medium 2 in voltage per meter (V m–1).

3.4.1.1 Tangential Component of the Electric Field for Conductors

If the second medium is a perfect conductor, the tangential component of the elec-
tric field Et2 is zero. We know that this must be the case since the electric field is 
the voltage per unit length, and the voltage applied across a perfect conductor will 
immediately fall to zero. This is to be expected from Ohm’s law (V = IR), since the 
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resistance is zero for a perfect conductor and thus the voltage will also be zero. 
Since the tangential electric field is zero just inside the conductor, it must also be 
zero just outside the conductor in order to satisfy (3.43).

For conductors with finite conductivity, the electric field falls to zero at a dis-
tance inside the conductor which depends on the frequency, permeability, and con-
ductivity of the conductor.

3.4.2 Tangential Component of the Magnetic Field

The tangential component of the magnetic field H is continuous if both the media 
are dielectrics, and so long as the current density and the electric flux density are 
finite. This means that the tangential component of the H field is the same inside 
each media near the interface, that is, we can say that

 Ht1 = Ht2  (3.44)

where Ht1 is the tangential magnetic field in medium 1 in amperes per meter (A m–1) 
and Ht2 is the tangential magnetic field in medium 2 in amperes per meter (A m–1).

3.4.2.1 Tangential Component of the Magnetic Field at the Interface with 
a Conductor

If the second medium is a perfect conductor, the tangential magnetic field is zero 
just inside the conductor surface, but it is not zero just outside the interface in the 
first medium. This would appear to violate the condition of (3.44), but this is not 
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Figure 3.5 Boundary conditions at the interface of two media: (a) for the tangential E and H 
fields, and (b) for the normal D and B fields.
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the case since the equation is only true for finite values of the current density. In 
the case of a perfect conductor, the finite current flows on the surface as a sheet 
of zero thickness. This makes the current density (which is the current per unit 
area) infinite, since the area we are considering is the product of the depth into the 
conductor and the distance on the surface perpendicular to the direction of flow 
of the current. We can define the surface current density Js as the current per unit 
width of the conducting surface. The tangential component of the magnetic field 
just outside the surface of the conductor is equal to this surface current density. 
This relationship is given by

 Js = n × Ht1  (3.45)

where Js is the surface current density in amperes per meter (A m–1), Ht1 is the tan-
gential magnetic field in medium 1, in amperes per meter (A m–1), and n is the unit 
vector normal to the surface. The surface current density is induced on the surface 
of the conductor by the EM field.

In general, the tangential magnetic field at the interface between a dielectric 
and a conductor can be stated to be discontinuous by an amount equal to the sur-
face current density (or current per unit width) of the conductor surface, that is, 
we can say that

 Js = Ht1 − Ht2  (3.46)

3.4.3 Normal Component of the Electric Field

Let us consider the normal component of the electric flux density D. The difference 
between the normal components of the electric flux density D is equal to the surface 
charge density; that is, we can say that the normal component of the electric flux 
density is discontinuous by an amount equal to the surface charge density. This is 
given by the following relation

 Dn1 − Dn1 = rs  (3.47)

where Dn1 and Dn2 are the normal electric flux densities in mediums 1 and 2, in 
coulombs per square meter (C m–2) in medium 2, and ρs is the surface charge den-
sity in coulombs per square meter (C m–2).

Since D = εE, we can write (3.47) as

 e1En1 − e2En2 = rs  (3.48)

where ε1 and ε2 are the permittivities in medium 1 and 2, respectively, in farads per 
meter (F m–1) and En1 and En2 are the electric field intensities in medium 1 and 2, 
respectively, in volts per meter (V m–1).

3.4.3.1 Normal Component of the Electric Field for a Charge-Free Boundary

In a charge-free boundary, the surface charge density ρσ is zero, so the electric flux 
density is continuous, and (3.47) can be written as
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Dn1 = Dn2

and (3.48) reduces to
En1 = En2

where ε1 and ε2 are the permittivities in medium 1 and 2, respectively, in farads per 
meter (F m–1), and En1 and En2 are the electric field intensities in medium 1 and 2, 
respectively, in volts per meter (V m–1).

3.4.3.2 Normal Component of the Electric Field at the Interface with a Conductor

If the second medium is a perfect conductor, Dn2 is zero, so that Dn1 = ρs, where 
Dn1 is the electric flux density in coulombs per square meter (C m–2) in medium 
2, and ρs is the surface charge density, also in coulombs per square meter (C m–2).

The surface charge density is induced on the surface of the conductor by the 
EM field. Since the tangential component of the electric field in medium 2 is zero, 
it follows that at the interface of a dielectric and a perfect conductor, the resultant 
electric field in the dielectric is normal to the interface.

3.4.4 Normal Component of the Magnetic Field

The normal component of the magnetic flux density is continuous at the bound-
ary of two dielectric media. This means that  Bn1 = Bn2, where Bn1 and Bn2 are the 
magnetic flux densities (in tesla) in mediums 1 and 2, respectively. Since the mag-
netic flux density is equal to the product of the magnetic field and the magnetic 
permeability, we can say that

 m1Hn1 = m1Hn2  (3.49)

where Hn1 and Hn2 are the magnetic fields in amperes per meter (A m–1) in medium 
1 and 2, respectively, and μ1 and μ2 are the magnetic permeabilities in henries per 
meter (H m–1) in mediums 1 and 2, respectively.

3.4.4.1 Normal Component of the Magnetic Field for Conductors

In the case of the boundary between a conductor and a dielectric, the magnetic 
permeability of the conductor is much larger than that of a dielectric, so the normal 
component of the magnetic field inside the conductor will be much smaller than 
that in the dielectric. This means that μ2 >> μ1. Thus, it follows from (3.49) that the 
normal component of the magnetic field inside the conductor (Hn2) is much smaller 
than that in the dielectric (Hn1).

3.5 Fields Due to a Radiating Dipole

In order to derive the EM fields of a radiating dipole, we can imagine it to be made up 
of elementary dipoles attached end to end. Each elementary dipole can be considered 
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to be fed by a current which radiates and results in electric and magnetic fields in 
the free space surrounding it.

3.5.1 Field Due to a Current Element

Let us consider a current element, as shown in Figure 3.6, that is short enough for 
the current I to be uniform across it. The element is also assumed to a thin wire, so 
that the current flows longitudinally through it and there are no components of the 
current in its transverse cross section, that is, there are no radial or azimuthal cur-
rents. We usually want to calculate the fields at a radial distance from the element so 
it is better to use spherical polar coordinates rather than rectangular coordinates. If 
the current through the element is alternating, then the current has a magnitude of I 
cos ωt. There is a finite time for the EM wave to travel from the element to a point 
P at a distance r. If the velocity of the EM wave is v meters per second, the time for 
the wave to reach P will be r/v seconds. This means that there will be a phase delay 
of ωr/v radians, if the angular frequency is ω radians per seconds.

The only component of the magnetic field is that given by the right-hand screw 
rule. This is the component in the ϕ-direction in the plane transverse to the cur-
rent element.

In the case of the electric field, we would not expect to have a component of the 
electric field in the transverse plane perpendicular to the vertical element (since this 
would be at right angles to the electric polarization vector). Thus the components 
of the E field would be in the θ- and the radial r-directions only.

The instantaneous values of the component fields can be derived by applying 
Maxwell’s equations [3, p. 304], and are given by the following expressions
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In (3.50), the first term on the right-hand side is the radiation field or distant 
field term, and the second term is the induction field term. The radiation field term 
is not present for steady (DC) currents, and takes account of the finite time of propa-
gation of a EM wave, which does not apply in the DC case. It contributes to the 
flow of energy away from the element, whereas the induction field term contributes 
to energy which is stored in the field during one quarter of the cycle and returned 
during the next quarter. We can see that the radiated field term is inversely propor-
tional to the distance r, whereas the induction field term is inversely proportional 
to the square of the distance. This means that the induction field decays rapidly as 
the distance increases and becomes negligible compared with the radiation field at 
large values of r.

In the electrostatic case, ω → 0, and thus the 1/r and 1/r3 terms in (3.51) as well 
as the 1/r3 term in (3.52) will be zero (since sinω(t − r/v) = 0). This leaves us with 
the 1/r2 terms only for Eθ and Er.

3.5.2 Fields at Large Distances from Wire Antennas

At large distances, the terms that are inversely proportional to the square and 
cube of the distance will be reduced to very small magnitudes, and thus they can 
be ignored. This means that the radial component of the electric field Er can be 
ignored. The second and third terms of Eθ and the second term of Hϕ can also be 
ignored. We can therefore write the electric and magnetic fields at large distances 
from the dipole in terms of the Eθ and Hϕ, which are given by
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3.6 Power Flux Density for a Plane Wave

The power flux density is a vector known as Poynting’s power flux vector, and its 
direction is in the direction of propagation of the EM wave. In the case of a plane 
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wave, the electric and magnetic fields are perpendicular to each other, and the 
plane containing these vectors is perpendicular to the direction of propagation of 
the wave, as shown in Figure 3.7(a).

The power density, Pd, is defined as the vector or cross product of the electric 
and magnetic field intensities, and is given by

Pd = E × X

The magnitude of the power flux density is given by the real part of this product, 
since this is the only part that contributes to the power. The magnitude is given by

 Pd = Re E × X( )  (3.55)
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Figure 3.7 Power flux density: (a) Poynting’s power flux vector Pd, and (b) calculation of total 
power radiated over a sphere.
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where Re stands for the real part of the expression in the brackets, E is the ampli-
tude of electric field in volts per meter (V m–1) and H is the amplitude of magnetic 
field in amperes per meter (A m–1).

For sinusoidally alternating fields, the magnitude of the average (in time) 
Poynting’s power flux vector is half the magnitude of that given by (3.55). This is 
because the root mean square (RMS) of the electric and magnetic fields is 1/ 2  
of their amplitudes, or peak values. The average power density Pd(ave) is given by

Pd(ave) =
1
2

Re E × H∗( )

where Pd(ave) is the average power density in watts per square meter (W m–2), E is the 
amplitude of electric field in volts per meter (V m–1), and H is the amplitude of the 
magnetic field in amperes per meter (A m–1). To calculate the total average power 
radiated in the far field, we take the average power density (i.e., the product of the 
expressions for Hϕ and Eθ given by (3.53) and (3.54)) and integrate it over a sphere. 
In order to perform this integration, we consider an elemental thin annular shell 
on a sphere, as shown in Figure 3.7. Its width is rdθ and its circumference is 2πr 
sin θ, and thus its area is 2πr2 sinθdθ. The total average power radiated is found 
by integrating this annular shell with respect to θ, from 0 to π in order to get the 
area over the whole sphere. Note that we only need to consider the amplitudes of 
Hϕ and Eθ and thus the total average power Pave is given by
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since sin3θ can be written as sinθ(1 − cos3θ), we can integrate this expression more 
readily to give
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Evaluation of the expression in square brackets yields 4/3, and thus the average 
power is given by
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For free-space propagation, the velocity v is equal to the speed of light c, which 
is in turn equal to 1/ (m0e0) . Additionally, ε = ε0, ω = 2πf, and c = f/λ. Thus the 
total average power is given by
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This is the total average power radiated by a current element carrying a uni-
form current along its length. This current element is called a doublet, or a Hertz-
ian dipole. In practice, a Hertzian dipole cannot be realized; although a very short 
dipole of <λ/10 is a fairly good approximation. The current along the length of a 
radiating wire and a triangular distribution of current is a better approximation 
for a short dipole. This would give an average current equal to half the maximum, 
and thus I2/4 should be substituted for I2 in (3.58), giving the total average power as
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3.7 Wave Impedance for a Plane Wave

We can think of an EM wave having an impedance in the same way as a transmis-
sion line has a characteristic impedance. The wave impedance ξ, is usually called 
the intrinsic impedance and is defined as the ratio of the electric and magnetic field 
intensities. We can see that dimensionally this would be the case, since the units of 
the electric and magnetic fields are volts per meter (V/m–1) and amperes per meter 
(A/m–1), so the units of their ratio gives us impedance. The electric and magnetic 
fields are very complex near the antenna, but in the far field the fields are given by 
the expressions of (3.53) and (3.54).
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For free space, ε = ε0 and v = c = 1/ (m0e0) .
Thus the free-space wave impedance ξo, given by (3.60), can be written as
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3.8 Radiation Resistance

The total average power given by (3.58) is equivalent to the familiar expression of 
I2R/2 for average power in the case of a sinusoidally alternating current. In this case, 
since the element is radiating, we call its resistance the radiation resistance. Thus, 
we get an expression for the radiation resistance of the current element given by
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Inserting the values of 4π × 10–7 and 1/(36π × 109) for μ0 and ε0, respectively, 
in (3.62), we get the following expression R = 80p2 (dl / l)2  for the radiation resis-
tance of a current element dl, through which a constant current I flows.
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If we assume that the current distribution is triangular as a more realistic situ-
ation, we get the expression for the power density given by (3.59), and hence the 
radiation resistance is given by
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This is a fairly good approximation for dipoles of less than λ/4. The correspond-
ing expression for short monopoles of length <λ/8 is given by
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Note that in this case the length l is twice the physical length of the monopole, 
since if we have a monopole on an infinite ground plane it has an image, and there-
fore its length appears to be doubled.

3.9 Far Field of Antennas

The distance from an antenna at which a plane wave can be assumed to exist depends 
on the whether we have a wire or an aperture antenna.

3.9.1 Far Field for Wire Antennas

We can define the far-field distance as the distance from the dipole at which the 
magnitude of the induction field is equal to the radiated field. Comparing the ampli-
tudes of these two terms given by (3.50) we get
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where the velocity v is the speed of light c, and ω is the angular velocity in radians 
per second and is therefore equal to 2πf. Also, since f = c/λ, (3.65) reduces to r = 
λ/2π which is the distance from wire antennas at which the intrinsic impedance 
of the wave has a purely resistive value of 120π. This is the impedance of a plane 
wave; and thus, this is also the distance at which a plane wave can be assumed to 
exist. In practice, the far-field distance is taken as double this value, that is, λ/π is 
usually taken as the far-field distance.

3.9.2 Far Field for Aperture Antennas

Aperture antennas, such as horns and reflectors, tend to operate at higher frequen-
cies, mainly in the microwave region above 300 MHz. In this region, the approach 
is similar to that used in optics, and the far field is known as the Fraunhofer region. 
Let us consider a point along the axis as the center of a family of spheres, with radii 
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that increase in steps of λ/2 from R, to R + nλ/2, where n is an integer. The spheres 
divide the aperture into a series of annular regions, three of which are shown in 
Figure 3.8(a, b). In the perspective view, for reasons of clarity, the plane of the 
aperture is shown transparent and the outer spherical sections are shown in outline.

We can see that as we move away from the aperture, the size of the Fresnel zones 
increase, and the number of the zones decrease. The limit of the Fresnel region is 
taken as the distance at which the whole aperture (of diameter D) is just one Fresnel 
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Figure 3.8 Fresnel zones and Fraunhofer region: (a) Cross sectional and front views of spheres 
with center P, (b) perspective view of Fresnel zones, and (c) calculation of the Fraunhofer 
distance.
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zone. This means that if the distance P along the axis is R, the distance from P to 
the edge of the aperture is (R + λ/2). Using Pythagoras’ theorem, we get
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For D > λ, λ2 is negligible compared with D2, and hence we can say that

 
R = D2

4l  (3.66)

Distances less than D2/4λ are considered to be in the Fresnel region; however 
D2/4λ is not the point at which the Fraunhofer region starts, since the path dif-
ference between the center and the edge of the aperture is λ/2. The Fraunhofer, or 
far field, is considered to be the point at which the path differences between points 
on the aperture are negligible. The Fraunhofer region is usually taken as 2D2/λ or 
4D2/λ. If we compare the ratio of the gain at each of these two distances with that 
at infinity G0 [4, p. 188] we get

at 2D2/λ, the ratio of G to G0 is 0.94;

at 4D2/λ, the ratio of G to G0 is 0.99.

Thus, the distance 4D2/λ more accurately represents the far-field distance for an aper-
ture antenna, although the 2D2/λ is often the distance used for EMC measurements.
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C h a p t e r  4

Antennas for Frequencies Below 1 MHz

This chapter describes the antennas used at frequencies from 50 Hz to 1 MHz. The 
mechanism of radiation is explained qualitatively, and effective height and length 
is defined. Electric and magnetic wave impedances are introduced, and the differ-
ence between receiving and transmitting antennas is explained by considering the 
dipole as an example. At frequencies below 1 MHz the wavelength is greater than 
300m, and thus the antennas used have to be small fractions of a wavelength in 
order to have antennas of manageable proportions. The physical distances involved 
(between the antenna and the DUT) are also a few meters, which mean that the 
electrical distances (distances in terms of wavelength) are small fractions. This 
leads to measurements being performed in the near field of antennas. Under these 
conditions, the radiation pattern (which is the radiated power in the far field) is not 
relevant. The antennas used at these frequencies tend to be simple wire antennas 
such as dipoles, monopoles, and loops. The dipoles are generally used for receiv-
ing, whereas monopoles and loops are used for receiving as well as transmitting. 
The antennas also tend to have preamplifiers that are used to overcome the loss 
experienced between the antenna and the receiver or transmitter. This loss is a 
result of connecting a balanced antenna to an unbalanced line (such as a coaxial 
line), as well as a result of the impedance mismatch between the antenna and the 
transmission line to which it is connected. This chapter also explains the concept 
of radiation power factors and describes the circuits used to balance and match the 
antenna to the transmission line.

4.1 Mechanism of Radiation

When an electron is suddenly accelerated or decelerated, the effect of its field takes 
a finite time to reach a distant point. This time depends on the distance and the 
velocity of the light. If the electron is subjected to a sinusoidally alternating accel-
eration the field also changes in a similar manner. Since the magnitude of the field 
depends on the acceleration experienced by the electron, it depends on the frequency 
f of the alternating current [1]. At higher frequencies (i.e., in the kHz range and 
above) the charge distribution on the antenna reverses sign more rapidly than the 
collapsing field lines near the antenna. This reversing field repels the collapsing field 
and pushes it away, so that the latter forms closed loops that expand as they travel 
away from the antenna at the speed of light. In the induction field near a vertical 
dipole, the electric field lines are in the vertical plane, as shown in Figure 4.1(a), 



84 Antennas for Frequencies Below 1 MHz

and the magnetic field is in the horizontal plane. Beyond this region the radiated 
field is shown in Figure 4.1(b–e) at every quarter of a cycle [2].

4.2 Near and Far Fields of Antennas

Near the antenna where interference effects predominate, the resultant wave is of a 
complex nature, and the power density (the power per unit area) does not decrease 
monotonically (i.e., it does not decrease consistently) as the distance from the antenna 
increases, but follows an oscillatory pattern. This is detailed in Chapter 7. Because 
of this dependence of the field on distance, standards specify the distance at which 
measurements have to be performed. This also explains why the measurements of 

Radiated
field

Radiated
field

Induction
field

Electric field

Magnetic field

(a)

(b) (c)

(d) (e)

Figure 4.1 Mechanism of radiation: (a) induction field near a radiating dipole, (b) radiated field 
at ωt = 0, (c) radiated field at ωt = π/2, (d) radiated field at ωt = π, (e) radiated field at ωt = 3π/2.
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power at 3m and 10m do not follow the inverse square law. The near field is reactive, 
as explained in Chapter 3, and the space is occupied mainly by stored energy in the 
electric and magnetic fields. In the far field where a plane wave exists, the electric 
and magnetic fields are perpendicular to each other and to the direction of propa-
gation of the wave. Figure 4.2 shows a plane wave propagating in the z-direction 
with the electric field in the y-direction. It shows the spatial distribution (the varia-
tion with distance) of the electric and magnetic fields at a fixed instant in time. It is 
important to remember that these fields also vary with time in a similar sinusoidal 
way, which results in the propagation of the wave, as in the case of shallow water 
waves in a ripple tank. The electric and magnetic fields are in time phase with each 
other, unlike the situation in circuits containing inductors and capacitors where the 
phase between the fields is 90°.

4.3 Wave Impedance

In the near field of an antenna, the intrinsic impedance of the wave is larger or smaller 
than it is beyond the Fresnel region, in the far field. The intrinsic wave impedance 
in the far field is that of a plane wave, that is, 120π or 377Ω. However, in the near 
field (distances < λ/2π for wire antennas), the intrinsic wave impedance ξ depends 
on the type of radiator. In the near field of magnetic sources such as loops, the wave 
impedance ξH at a distance r is approximately equal to 240π2r/λ, whereas in the 
near field of electric sources such as monopoles and dipoles, the wave impedance 
ξE is approximately equal to 60λ/r. We can see that at r = λ/2π the wave imped-
ance for both fields is equal to 120π. The intrinsic wave impedances for electric 
and magnetic sources are shown in Figure 4.3 for distances in terms λ/2π. Thus, 1 
on the x-axis represents a distance of λ/2π. The solid curves show the theoretical 
values of the electric and magnetic wave impedances ξE and ξH, whereas the dotted 
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Figure 4.2 Plane wave in free space.
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curves show the actual impedances. It can be seen that, in the case of the dotted 
curves, the impedances asymptotically approach 377Ω at a point beyond the value 
of 1, at a value approaching 2, that is, a physical distance of λ/π. It will also be seen 
that in the near field of magnetic sources the wave has a low impedance, whereas 
the near field of electric sources the wave has a high impedance. Low wave imped-
ances induce high currents, whereas high wave impedances induce low currents. 
EMC standards specify the type of field required at different frequencies. Further 
details are given in Chapter 9.

4.4 Difference Between Receiving and Transmitting Antennas

The reciprocity theorem states that an antenna has the same characteristics whether 
it is radiating or receiving. These characteristics are the impedance, radiation pat-
tern, and so forth. However one of the main differences between a radiating and 
receiving antenna is the orientation of the antenna’s radiation pattern for optimum 
transmission and reception [3, p. 546]. The optimum pattern is used in transmission 
to direct the signal in a given direction(s). If there is noise in a particular direction, 
then increasing the directivity of the antenna in that direction will increase the signal-
to-noise ratio in that direction. However, in reception, the optimum condition is 
not the maximum received power but the highest signal-to-noise ratio. If the noise 
is coming from the same direction as the signal, then increasing the directivity in 
that particular direction will not increase the signal-to-noise ratio, since both the 
signal and the noise will be increased.

Another important difference between a transmitting and receiving antenna 
is the distribution of current along the length. In the case of a thin transmitting 
dipole that is fed centrally, the current distribution is approximately sinusoidal, as 
shown in Figure 4.4(a). The thinner the antenna, the closer the approximation to 
a sinusoidal distribution is. The instantaneous currents I1 and I2 in the upper and 
lower arms of the dipole respectively, are given by
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 I1 = Imax1 sin b(H − z)  (4.1)

 I2 = Imax2 sin b(H + z)  (4.2)

where Imax1 and Imax2 are the maximum values or amplitudes of the currents in the 
upper and lower arms of the dipole, H is the half length of the dipole and β is the 
phase constant or wave number 2π/λ.

The input impedance Za of the dipole is approximately given by

 Za = − jZ0 cot(bH)  (4.3)

where Z0 is the characteristic impedance given by

 
Z0 = 120 loge

2H
a

⎛
⎝

⎞
⎠ − 1

⎡
⎣⎢

⎤
⎦⎥  (4.4)

where a is the radius of the conductor of the dipole.
In the case of a receiving dipole, the current distribution is a function of the 

length, the direction of the arrival of the incident wave, and the impedance of the 
load connected to the dipole. In most cases the load is the receiver. The current does 
not approximate a sinusoidal current distribution, except in the case of resonant 
half-wave dipoles. We can think of the receive dipole as an unsymmetrically-fed 
dipole. Consider the dipole of Figure 4.4(b), which is fed at a point at a distance h 
from the center. If we ignore the radiation resistance and assume that the total input 
impedance is made up of the sum of the impedances of the two sections of lengths 
(H − h) and (H + h), then the total impedance is given by

h
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Figure 4.4 Current distribution on (a) transmit and (b) receive antennas.
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Ztotal = Z(H+h) + Z(H−h)

 (4.5)

where

 
Z(H−h) =

1
2
jZ01 cot b(H − h)  (4.6)

and

 
Z(H+h) =

1
2
jZ01 cot b(H + h)  (4.7)

where Z01 and Z02 are the characteristic impedances of the two sections. As Z01 
gets larger, Z02 gets smaller. If we assume that these characteristic impedances are 
approximately equal, they will each be equal to Z0 given by (4.4).

4.5 Small Antennas

At frequencies below 1 MHz, where the wavelength is greater than 300m, anten-
nas have electrical sizes (the size in terms of wavelength) that are fractions, that is, 
magnitudes that are << 1. These fractions are usually taken as < λ/8 for monopoles 
and < λ/4 for dipoles. The antennas are called small antennas, although their physi-
cal size may be several meters. Another definition of a small antenna by Weiner, 
[8, p. 6–1] is one that occupies a small fraction of a radiansphere. A radiansphere 
is defined as a sphere of radius λ/2π. It will noted that this is the far field distance 
for wire antennas we encountered in Chapter 3, where the magnitude of the induc-
tion and radiation fields are equal. Within this sphere the stored field predominates, 
whereas outside this sphere the radiation field predominates.

4.6 Baluns

The transmission line connecting an antenna to the receiver or transmitter is usually 
a coaxial line. When a dipole is connected to a coaxial line, one arm is connected 
to the inner conductor and the other arm is connected to the outer conductor. Since 
the arms are not coupled to the line in the same way, an imbalance occurs. If the 
dipole is fed by a two-wire line, there would be no imbalance, since the two-wire 
parallel line is connected to each arm of the dipole in the same way. However, the 
loss experienced by two-wire lines makes them unsuitable, except at very low fre-
quencies. Let us consider a coaxial line feeding a dipole, as shown in Figure 4.5(a). 
The currents I1 and I2 that flow along the inner and outer conductors are equal 
and opposite. At a fixed point in time, I1 is flowing down the inner conductor (and 
the right arm of the dipole) and I2 is flowing up the inside of the cylindrical outer 
conductor [3, p. 539]. The current I2 flows to the top of the outer conductor, and at 
point A it divides into two, with I3 flowing down the outside of the conductor, and 
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I2 and I3 flowing along the left arm of the dipole. The equivalent circuit is shown in 
Figure 4.5(b). The magnitude of the current I3 depends on the impedance to ground, 
Zg, provided by this path along the outer conductor. In order to make I3 as small 
as possible, we use a balun, which ideally balances the line by canceling this out-
side current [5, p. 365]. In practice, I3 is made as small as possible by making Zg as 
large as practicable. Balun is an abbreviation of balanced-unbalanced. The balun 
can consist of a quarter-wave line in the form of a skirt of effective length equal to a 
quarter of a wavelength, as shown in Figure 4.5(c). The skirt is a concentric cylinder 
whose lower end is connected to the outer conductor at point C. The impedance 
between points A and B depends on the Q of the shorted quarter-wave section. In 
theory, if the section is exactly an effective quarter wave, this impedance would be 
infinite; in practice, it can be set to a very high value for a band of frequencies. This 
type of balun is sometimes called a Bazooka balun [5, p. 366].

In another arrangement for a balun, shown in Figure 4.5(d), the outer conductor 
feeds the left arm of the dipole, and the inner conductor is connected to the right 
arm of the dipole. A transmission line of approximately a quarter of a wavelength 
is attached between the right arm and the outer conductor at C. These baluns are 
relatively narrow band. Ferrite devices can be used to increase the bandwidth, as in 
the case of the combined balun-transformer described in Section 4.8.

4.7 Radiation Power Factor

A term called the radiation power factor was introduced by Weiner [4] in 1947. It 
is defined as the reciprocal of the Q factor of the combination of the reactance of 
the antenna Xa and its effective radiation resistance Re. The radiation power factor 
PFrad of the antenna is the ratio of Re to Xa and is given by
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Figure 4.5 Baluns between coaxial lines and dipoles: (a) Coaxial line feeding a dipole without 
a balun, (b) equivalent circuit of the dipole and coaxial line without a balun, (c) a bazooka balun 
consisting of an outer concentric skirt, (d) a coaxial balun.
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PFrad =

Re

Xa

 (4.8)

This radiation power factor is << 1, and is proportional to the size of the antenna. 
It limits the operating efficiency of the antenna. The radiation efficiency of a trans-
mitting antenna represents the percentage of available power from a transmitter 
that is radiated into free space. In the case of receiving antennas, it is the percentage 
of power from free space that is delivered to the receiver, and is a measure of the 
ability of the received signal to overcome the noise level in the circuitry. A small 
dipole behaves like a capacitor, whereas a small loop behaves like an inductor. The 
equivalent circuits of a small dipole and a small loop are shown in Figure 4.6.

In the case of a small dipole, the antenna has a capacitive reactance 1/ωC, and 
the power it radiates can be assumed to be coming from a small inductance La in 
parallel with a much larger resistance Ra. The inductance La has a reactance that is 
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Figure 4.6 Equivalent circuits for (a) small dipole, and (b) a loop.



4.7 Radiation Power Factor 91

<< 1/ωC. The combination of the resistance Ra and the inductance La is an imped-
ance Ze which is given by

 

1
Za

= 1
jwLa

+ 1
Ra

Za =
jwLaRa

Ra + jwLa

Za =
jwLa

1 + jwLa /Ra

 (4.9)

Since jωLa is much smaller than the resistance Ra, using the binomial expan-
sion (1 + x)–1 ≏ (1 − x), we get

 
Za = jwLa 1 −

jwLa
Ra

⎛
⎝⎜

⎞
⎠⎟

 (4.10)

 
Za = jwLa −

j2w2La
2

Ra

 (4.11)

Since j2 = −1, (4.11) can be written as

Za = jwLa +
w2La

2

Ra

The total antenna impedance Za is this impedance Ze in series with the capaci-
tance C, and is given by

Za = 1
jwC + jwLa +

w2La
2

Ra

since jωL << 1/jωC, it can be ignored. The total antenna impedance Za is therefore 
given by

 
Za = 1

wC +
w2La

2

Ra

 (4.12)

The first term on the left-hand side of (4.12) is the effective reactance Xe and 
the second term is the effective resistance Re. The radiation power factor PFrad is 
the ratio of the resistive to the reactive parts, and is given by

 
PFrad =

w3La
2C

Ra

 (4.13)
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Thus we can see that the radiation power factor is proportional to the cube of 
the frequency.

4.7.1 Operating Efficiency

The operating efficiency is defined as the ratio of the radiation power factor and 
the combination of the radiation and loss power factors. The operating efficiency 
ηop  is given by

 
hop =

PFrad

PFrad + PFloss
 (4.14)

Using the binomial expansion, (4.14) can be rewritten as

 
hop = 1 −

PFloss

PFrad

+
PFloss

PFrad

⎡
⎣⎢

⎤
⎦⎥

2

 (4.15)

To a first approximation, the third term of (4.15) can be ignored. Thus we can 
see that the smaller the ratio of PFloss and PFrad, the greater is the operating effi-
ciency. Small antennas have high loss and low radiation power factors, and hence 
their operating efficiency is small.

As the size of antennas increase, their operating efficiencies also increase. Tun-
ing units with reactances opposite to the reactance of the antenna are used, so that 
the tuning units used for dipoles and loops consist mainly of inductors and capaci-
tors, respectively.

For passive antennas operating over narrow frequency bands, adjustable tun-
ing units (step or continuous) are used and the relative bandwidth is less than the 
radiation power factor PFrad. The efficiency is limited by the PFloss which is the dis-
sipative loss in the antenna and the tuning circuit. In broadband operation, fixed 
tuning units are used. The relative bandwidth is much greater than PFrad and the 
efficiency is limited by the ability of the passive network to match the antenna to 
the receiver or transmitter.

4.8 Matching Antennas

The antenna can be regarded as a transformer that matches the impedance of a 
transmission line (usually 50Ω for a coaxial line) to 377Ω for a plane wave in free 
space. The antenna must be matched to (have the same impedance as) the charac-
teristic impedance of the transmission line feeding it or connecting it to the receiver. 
If the antenna is not matched, maximum power transfer will not take place. The 
antenna can be matched to the transmission line by inserting a transformer or tun-
ing circuit between them. In the case of an electric dipole, which has a capacitive 
impedance, a transformer with double-inductive tuning is a common device used 
for tuning a dipole [4, Figure 6-1] as shown in Figure 4.7(a). A combined balun 
transformer incorporating a ferrite core, such as that shown in Figure 4.7(b), can 
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be used to obtain bandwidths of 8:1. The ferrite core maintains a high impedance 
over a large bandwidth [5, p. 368].

4.9 Effective Length and Effective Height

There are many definitions of effective length and effective height depending upon 
the application. There are the general definitions used in electric engineering and 
specific ones used in EMC engineering.

4.9.1 Effective Length

The IEEE dictionary [6] defines effective length in two ways, depending on whether 
the antenna is radiating or receiving.

1. For an antenna radiating linearly-polarized waves, the effective length is 
defined as the length of a straight conductor oriented perpendicularly to the 

C

Double tuning transformer Antenna and equivalent
radiation resistance

(b)

Coaxial line

Ferrite core

(a)

Inner conductor
(shown dotted)
connected to dipole

C

L L

L

R

Figure 4.7 (a) Double-inductive transformer, and (b) combined balun/transformer for a dipole.
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direction of maximum radiation, having a uniform current equal to that at the 
antenna terminals and producing the same far-field strength as the antenna. 
Thus, if an antenna has a triangular current distribution, its effective length 
would be the length it would have to be if its maximum current Imax (usually 
at the feed point) were to be distributed uniformly across its entire length.

2. In the case of the same antenna receiving linearly-polarized waves from the 
same direction, the effective length is defined as the ratio of the open-circuit 
voltage developed at the terminals of the antenna to the component of the 
electric field strength in the direction of antenna polarization.

4.9.2 Effective Height

The IEEE dictionary [6] defines the term effective height in two ways.

1. The unqualified definition is the height of the center of radiation above the 
effective ground level.

2. For low-frequency applications, the term is applied to loaded or unloaded 
vertical antennas, and defined as the moment of the current distribution in 
the vertical section, divided by the input current.

In EMC low-frequency applications, the term effective height is generally used 
in two ways.

1. Firstly it is defined in one of the ways that the IEEE dictionary defines the 
effective height, that is, as the moment of the current distribution in the ver-
tical section, divided by the input current. The moment of current distribu-
tion is the current at a particular point multiplied by its distance from the 
position of maximum current. The position of maximum current occurs at 
the input terminals in the case of radiating antennas.

For a short thick monopole of length < 0.1λ the effective height heff is 
given by

 
heff =

I(z)dz
0

l

∫
Imax

 (4.16)

where

heff is the effective height in meters (m),

l is the physical length of the monopole in meters (m), and

I(z) is the current at a distance z along the monopole in amperes (A).

The current I(z) is given by

 
I(z) =

Imax

l
z  (4.17)
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Thus, (4.16) can be written as

 
heff =

Imax

l
zdz
Imax0

l

∫  (4.18)

Integrating with respect to z gives us

 
heff =

Imax

l
z2

2
⎡
⎣⎢

⎤
⎦⎥
zdz
Imax

 (4.19)

which reduces to

 
heff = l

2
 (4.20)

Thus, we can see that the effective height is only equal to half its physi-
cal height/length.

2. The other way in which the effective height is defined is similar to the IEEE 
definition of the effective length for a receive antenna, but is broadened 
to cover magnetic as well as electric fields. It is defined as the ratio of the 
antenna open-circuit voltage to the strength of the field component being 
measured. The effective height [7] of a magnetic radiator such as a loop 
antenna can be considered as the number of volts measured per tesla (T) of 
incident magnetic flux density, whereas in the case of an electric radiator, 
such as a dipole, it is the number of volts measured per meter (V m–1) of 
incident electric field. In other words, it acts as a conversion between teslas 
(T) (or V m–1) and volts.

 
heff = V

B
 or 

V
E

 (4.21)

where V is the voltage in volts at the output terminals of the antenna, B 
is the incident magnetic flux density in teslas, and E is electric field in volts 
per meter.

4.10 e-Field Antennas

Electric field wire antennas are, in general, linear wires carrying current with the 
electric field in the space surrounding the antenna, having the same polarization as 
the direction of the current in the wire. At low frequencies below 1 MHz, E-field 
antennas are mainly dipoles and monopoles. The parallel element is another antenna 
used to provide an electric field for susceptibility measurements. Dipoles are usually 
used as receiving probes and monopoles are used for transmitting as well as receiving.
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4.10.1 Small Dipole

At low frequencies the dipole is usually used as a receiving probe to give relative 
values of electric field strengths, rather than absolute values. For example, it may 
be used to check the integrity of a shielded room or equipment casing by identifying 
leakage from rogue seams and apertures. It can be used for absolute measurements 
if it has been calibrated or if it is used in a calibrated test site. A small radiating 
dipole behaves like a current element and it is sometimes called a Hertzian dipole or 
a doublet. We have seen (in Chapter 3) that the instantaneous values of the compo-
nent fields shown in Figure 4.8(a) can be derived by applying Maxwell’s equations 
[3, p. 304] and are given by the following expressions

 
Hf = Idl sinq

4p
w sinw(t − r /v)

rv
+ cosw(t − r /v)

r3
⎡
⎣⎢

⎤
⎦⎥

 (4.22)

 
Eq = Idl sinq

4p − w sinw(t − r /v)
rv2 + cosw(t − r /v)

r2v
+ sinw(t − r /v)

wr3
⎡
⎣⎢

⎤
⎦⎥  

(4.23)

 
Er = 2Idl cosq

4p
cosw(t − r /v)

r2v
+ sinw(t − r /v)

wr3
⎡
⎣⎢

⎤
⎦⎥  

(4.24)

where I is the current in amperes, dl is the length of the element in meters, ω is the 
angular frequency in radians per meter, r is the radial distance from the element in 
meters, ε is the permittivity of the medium in farads per meter, v is the velocity of 
the wave in the medium in meters per second.
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Figure 4.8 Electric and magnetic fields due to a small radiating dipole. (a) Orientation of the 
electric and magnetic field vectors from a radiating dipole, (b) cosine term, (c) positive sine term, 
and (d) negative sine term.
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If we consider the RMS values of a time-varying field of the form e–jωt and we use 
the cosine term as the reference phasor, as shown in Figure 4.8(b), then the sine term 
lags behind the cosine phasor and can be represented by a phasor of −j, as shown 
in Figure 4.8(c). Similarly the negative sine term can be represented by a phasor of 
+j as shown in Figure 4.8(d). The phase constant β can be used to replace the ratio 
ω/v. Equations (4.22) to (4.24) can therefore be rewritten in the following forms

 
Hf = jb2Idl

4p
1
br − 1

(br)2
⎡
⎣⎢

⎤
⎦⎥
sinqe− jbr  (4.25)

 
Eq = 30b2Idl

1
br − j

(br)2 − 1
(br)3

⎡
⎣⎢

⎤
⎦⎥
sinqe− jbr  (4.26)

 
Er = 60b2Idl

1
(br)2 − j

(br)3
⎡
⎣⎢

⎤
⎦⎥
cosqe− jbr  (4.27)

Near the antenna, that is, at distances < 0.01λ, the 1/r and 1/r2 terms can be 
ignored in comparison with the 1/r3 term. Thus, only the last terms in Er and Eθ 
need to be considered. The Hϕ component can be ignored, since it does not have a 
1/r3 term. The Er and Eθ are given by

 
Er = j60Idl

r3 cosqe− jbr  (4.28)

 
Eq = j30Idl

r3 sinqe− jbr  (4.29)

It can be seen that the Er vector has twice the magnitude of the Eθ vector, and 
the phase between the two vectors is 90°. The ratio of the Er to Eθ in the near field 
is given by

 

Er

Eq
= 2cotq  (4.30)

4.10.2 Short Monopoles

Monopoles are used at low frequencies for transmitting as well as receiving. Mono-
poles can be made more broadband by making the diameter of the conductor larger. 
Length-to-diameter ratios (l/d) of 10 to 104 are common (Weiner [8]). A linear dipole 
with an l/d ratio of 5,000 and a bandwidth of 3% can have its bandwidth extended 
to 30% by keeping its length constant, but having its l/d ratio decreased to 260 [5, 
p. 333]. The monopole could be fed by a coaxial line, with the center conductor 
being connected to the conductor of the monopole, and the outer conductor con-
nected to the ground plane.
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For monopoles of height H < 0.2λ the approximate reactance Xa is given by

 
Xa = ′Za cot

2pH
l

⎛
⎝

⎞
⎠  (4.31)

where the value of Z′a [3, p. 512] has been found empirically (by comparison with 
experimental results) to be given by

 
′Za = 60 loge
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 (4.32)

where a is the radius of the conductor of the monopole.
For very thin monopoles, that is, where the radius is much smaller than the 

length, the current distribution is approximately sinusoidal and independent of the 
size of the ground plane [8]. However, for thick monopoles or rods, the current 
distribution is no longer sinusoidal and the current distribution on the monopole, 
as well on the ground plane, is a function of the radius of the ground plane.

4.10.3 Ground Plane Dependence

In cases where the ground plane is small in terms of wavelengths, the outer edge of 
the ground plane diffracts the incident radiation in all directions. The currents on 
the top and bottom surfaces of the ground plane are equal in magnitude, but they 
must be opposite in direction since the net current at the edge is zero. This outer edge 
diffraction becomes more significant as the size of the ground plane gets smaller, 
since the currents are larger near the monopole. Edge diffraction can alter the input 
impedance by more than 100% and the gain by more than 6 dB compared with a 
monopole on an infinite ground plane.

For monopoles with infinite and zero ground planes, the peak directivity occurs 
at the horizon (i.e., at θ = 90°) as shown in Figure 4.9(a, c). However, in general, it 
can be said that as the size of the infinite ground plane is decreased, the peak direc-
tivity occurs at smaller angles (θ < 90°), although this variation is not monotonic. 
The directivity at θ = 90° for a short monopole with no ground plane is 1.76 dBi, 
whereas with a large but finite ground plane the directivity at θ = 90° is −1.249 dBi, 
and with an infinite ground plane the directivity is 4.77 dBi [8]. The magnitude of 
the peak directivity for a short monopole with no ground plane is also smaller 1.76 
dBi as compared with 4.77 dBi for a large or infinite ground plane. The radiation 
resistance Rrad of a monopole with no ground plane is 20π2(h/λ)2 whereas with a 
large or infinite ground plane the radiation resistance is 40π2(h/λ)2.

At frequencies up to 1 MHz where the wavelength is greater than 300m it is 
possible to have a ground plane consisting of wires instead of a solid one. A ground 
plane of eight or more radial wires is often used, as shown in Figure 4.9(d).

4.10.4 Top-Loaded Monopoles

A monopole can be loaded by attaching a disk at the top, or by bending it into the 
shape of an L or T, as shown in Figure 4.10. Top loading can increase the effective 
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Figure 4.9 Variation of the radiation pattern for a monopole with the size of ground plane: 
(a) Zero ground plane, (b) finite ground plane of diameter 10λ/π, (c) infinite ground plane, (d) 
monopole with radial wire ground plane.

length by a factor of two; this increases the gain of the antenna. Top loading can 
also decrease the capacitive reactance of a short antenna [3]. In the case of a receiv-
ing antenna, a large shunt capacitance requires a high inductive tuning circuit; this 
lowers the efficiency of the total circuit and hence the signal received.

In the case of transmitting antennas, the current I depends on the voltage V 
and the capacitive reactance Xa of the antenna (i.e., I = V/Xa). The power radiated 
is given by

 Prad = I2Rrad  (4.33)

where Rrad is the radiation resistance of the antenna.
Since the current I = V/Xa, the power radiated can be written as

 
Prad =

V2Rrad

Xa
2  (4.34)

If Xa is large, the voltage has to be increased to very large values to radiate 
even reasonable amounts of power. Thus by reducing the magnitude of Xa, we can 
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increase the power radiated. Top loading by use of a top hat changes the current 
distribution of the unloaded monopole as shown in Figure 4.10(a) to that shown 
in Figure 4.10(c). This shows the current distribution that would be present if the 
monopole was extended by a length b equivalent to the effective increased length 
of the top loaded monopole. In the case of the L- or T-shaped antennas shown in 
Figure 4.10(d, e), the bent sections draw the same amount of current that would be 
drawn by an additional length b connected to the antenna. This additional length 
b is approximately equal to the physical length of the horizontal portion of the 
L- and T-shaped antennas. Without top loading, the radiation resistance would be 
40π2(h/λ)2. However for a loaded monopole of total effective length (H + b) < 0.1λ 
the radiation resistance Rrad is given by

 
Rrad = 160p2 H

l
⎛
⎝

⎞
⎠

2

1 + H
H + b

+ 1
4

H
H + b
⎛
⎝

⎞
⎠

2⎡
⎣⎢

⎤
⎦⎥

 (4.35)

We have seen from (4.20) that the effective height of a short thick monopole is 
half its physical length. By top loading, the effective height can be increased to 0.8 
of its physical length in the frequency range 10 kHz to 40 MHz. In the lower fre-
quency range, 20 Hz to 150 kHz, an effective height of around 0.63 of the physical 

b

HHH

(a) (b) (c)

(d) (e)

current distribution

b

H H

Figure 4.10 Top-loaded monopoles: (a) Unloaded monopole, (b) top hat monopole, (c) current 
distribution on a monopole of length H + b, (d) L-shaped antenna, and (e) T-shaped antenna. 
(After [11])
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length can be obtained. A preamplifier can be used to provide a match between the 
high impedance of the rod antenna and the low impedance of the receiver, so that no 
signal loss occurs between them. Most 41-inch active rod antennas have an ACF of 
around 6 to 8 dB/m. In the absence of a preamplifier, the loss could be substantially 
higher than 12 dB, especially at the lower operating frequency of the rod antenna.

4.10.5 Parallel Element e-Field Generator

The parallel element E-field generator provides an electric field for susceptibility 
testing to military standards such as MIL-STD 462. It consists of two parallel hori-
zontal wires about 2m long that are fed by a voltage of the order of 50 to 75V [9]. 
The operating bandwidth is from 10 kHz to 30 MHz in two bands, and the electric 
field produced between the elements is approximately 200 V m–1. At 1m from the 
antenna and along the center line the electric field strength is approximately 20 
V m–1. In a typical arrangement, the parallel wires are connected across the second-
ary of an impedance matching transformer. The primary of the transformer forms 
the load of a transmission line as shown in Figure 4.11(c).
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Figure 4.11 Parallel element E-field generator: (a) Typical feed arrangement for the parallel 
element, (b) side view showing electric field lines, (c) variation of the electric field with 
frequency.
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4.11 h-Field Antennas

For magnetic field measurements, loops or coils of wire are used for receiving as 
well as transmitting. At frequencies below 1 MHz, the loops are small in terms of 
wavelength. The loops can consist of a single turn of wire or multiturn coils. At 
very low frequencies (e.g., at general AC electric power frequencies) a pair of coils, 
known as Helmholtz coils, are used to provide an uniform magnetic field.

4.11.1 Helmholtz Coils

Helmholtz coils are used to provide uniform magnetic fields for immunity and sus-
ceptibility measurements. They consist of a pair of coils of equal diameter, wound 
as flat rings, as shown in Figure 4.12. The coils are placed in a parallel configura-
tion and at a distance apart that is equal to the radius of either coil. The coils are 
wound in the same sense, that is, both are clockwise or counterclockwise, and the 
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P

P

α

δH

δH

a
x

d

δH cos α
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Figure 4.12 Magnetic fields due to Helmholtz coils for a uniform magnetic field: (a) Helmholtz 
arrangement of coils, (b) magnetic field lines of force for a single coil, (c) magnetic fields due to a 
current element on a coil.
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same current flows in the both coils. This arrangement produces a uniform magnetic 
field in the area between the coils. The device under test (DUT) should be placed 
midway between the pair of coils and also near to the common axis of the pair.

If a single coil had been used, the magnetic lines of force would have been like 
that shown in Figure 4.12(b).

Consider an element δl at a point A on a coil with radius a, as shown in Figure 
4.12. The magnetic field δH at point P on the axis due to the element δl carrying 
a current I is given by

 
dH = Idl sinq

4px2  (4.36)

where x is the distance between P and the element and θ is the angle between the 
element δl and the line joining it to P.

The direction of the magnetic field vector δH is at an angle α to the plane 
containing the coil. This is the same as the magnitude of the vector Hϕ in the near 
field, given by (4.25), since the first term can be ignored for very small electrical 
distances. This vector can be resolved into vertical and horizontal components of 
δHcos α and δHsin α. If we consider another element diametrically opposite at 
point B, the magnetic field at P due to it will have a vertical component of δHcos α 
that is in the opposite direction (vertically downwards) to that due to the element at 
A, and will therefore cancel out the vertical component of the field due to A. This is 
true for all diametrically opposite points, so that for a circular coil, there will be no 
resultant vertical magnetic field. Thus, there will only be a horizontal magnetic field 
(parallel to the axis of the coil) which is found by taking the line integral of δHsin α 
around the circumference (2πa) of the coil. The resultant magnetic field is given by

 
Hr = 2pa

0!∫ dHsina  (4.37)

The magnitude of δH is given by (4.36), but in this case the angle θ between the 
element and the line joining it to P is 90°, and thus sin θ is equal to 1. The resultant 
Hr can therefore be written as

 
Hr = 2pa

0!∫
Idl sina

4px2  (4.38)

 
Hr = Iasinq

2x2  (4.39)

If d is the distance along the axis, then by using Pythagoras’ theorem, we can 
see that sin α can be written as

 
sina = a

a2 + d2
 (4.40)

And since x2 = a2 + d2, (4.39) can be rewritten in the following form
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Hr = Ia2

2 a2 + d2( )3/2
 (4.41)

In the case of a pair of coils, each having N turns and radius a and separated 
by a distance a, the resultant magnetic field Ht along the common axis and midway 
between the coils (at d = a/2) is given by

 

Hr = 2NIa2

2 a2 + a2 / 4( )3/2
 (4.42)

This reduces to

 
Hr = 8NI

5a 5
 (4.43)

It can be seen that the resultant magnetic field is proportional to the current I 
and the number of turns on the coils. The diameter of the conductor used to wind 
the coils determines the current handling capacity. Maximum currents of 20A are 
common. The magnetic field is also inversely proportional to the radius (a) of the 
coils, but the smaller radius will also restrict the size of the DUT. The diameters of 
commercially available Helmholtz coils vary between 0.5 and 3m.

Sets of two (biaxial) or three (triaxial) coils are used to provide uniform magnetic 
fields along two or three mutually perpendicular axes. It is important to remember 
that the field is only uniform near the common axis of each pair of coils; thus the 
larger the DUT, the larger the coil diameter required.

4.11.2 Small Magnetic Loops

Single-turn loops are used to receive magnetic fields, whereas multiturn loops are 
used for receiving as well as transmitting. The loop is sometimes called a magnetic 
dipole. The small loop has similar fields to that from a small dipole, but with the 
E and H fields interchanged. The polarization of the electric field in the horizontal 
plane is tangential to the loop, as shown in Figure 4.13, unlike the situation of the 
dipole where the electric field is in the same direction as the axis of the dipole. The 
electric and magnetic fields radiated by a small single-turn loop are given by

 
Ef = 30b3IdA

1
br − 1

(br)2
⎡
⎣⎢

⎤
⎦⎥
sinqe− jbr  (4.44)

 
Hq = b3IdA

4p
1
br − j

(br)2 − 1
(br)3

⎡
⎣⎢

⎤
⎦⎥
sinqe− jbr  (4.45)

 
Hr = jb3IdA

2p
1

(br)2 − j
(br)3

⎡
⎣⎢

⎤
⎦⎥
cosqe− jbr  (4.46)
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where I is the current in the loop in amperes, dA is the area of the loop in meters 
squared, and β is the phase constant and equals 2π/λ in meters. If the loop has N 
turns, each of the expressions in (4.44)–(4.46) must be multiplied by N.

Near the antenna, that is, at distances < 0.01λ, the 1/r and 1/r2 terms can be 
ignored in comparison with the 1/r3 term. Thus, only the last terms in Hr and Hθ 
need to be considered. The Eϕ component can be ignored since it does not have a 
1/r3 term. The Hr and Hθ terms in the near field are given by

 
Hr = IdA

2pr3 cosqejbr  (4.47)

 
Hq = − IdA

4pr3 sinqejbr  (4.48)

It can be seen that the Hr vector has twice the magnitude of the Hθ vector, and 
the phase between the two vectors is 90°. The ratio of the Hr to Hθ in the near field 
is given by

 

Hr

Hq
= −2cotq  (4.49)
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Figure 4.13 Fields due to a small radiating loop.
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4.11.3 Single-Turn Shielded Loops

Shielded loops reject the electric field and sample the magnetic field over a small 
area. Only a short length of the loop conductor is exposed to the incident magnetic 
field. The shield is sometimes called a Faraday shield. There are two types of shielded 
loops, the balanced and unbalanced type. The shield is made of metal whose thick-
ness is several skin depths to prevent any direct interaction between the currents 
on the internal and external surfaces of the shield. The effective terminals CD are 
at the small gap formed between the two halves of the loop,

The loop can be assumed to consist of a series combination of an internal imped-
ance Zint, an external inductance Zext, and a radiation resistance Rrad. In practice, 
there is also a distributed capacitance (between the sides of the turn) in parallel with 
these impedances, but this is often omitted since it can be compensated by having 
a larger variable capacitance in parallel. The internal impedance Zint consists of 
an inductance Lint in series with a resistance Rint. Thevenin’s equivalent circuit for 
a receiving loop is shown in Figure 4.14(a). The voltage Vl, developed at the load, 
is given by

 
Vl =

VOCZl

Z + Zl( )  (4.50)

where Zl is the load impedance in ohms (Ω), Z is the input impedance of the loop 
in ohms and Voc is the open-circuit voltage in volts.

In the case of the unbalanced loop, the coaxial line is bent into a semicircle 
and the inner conductor is extended beyond the outer conductor and connected to 
the solid semicircle, as shown in Figure 4.14(b). The semicircular loop of length πb 
and the transmission line of length h, connect the terminals CD to the load, which 
has an impedance Zl.

The incident magnetic flux density produces a voltage of VOC at the gap CD 
that is given by

 VOC = jwAB  (4.51)

where VOC is the open-circuit voltage in volts, ω is the angular frequency in radians 
per second, A is the area of the loop in meters squared, and B is the flux density in 
teslas. It is assumed that the magnetic flux density is uniform over the area of the 
loop. This would be the case for a small loop.

It should be noted that only the component of the magnetic field density that is 
perpendicular to the plane of the loop is instrumental in inducing the voltage pro-
duced. In the general case, the relative orientation between the loop and the incident 
wave is shown in Figure 4.14(c), and the induced voltage is given by

 VOC = jwABcosqsinf  (4.52)

where VOC is the open-circuit voltage in volts, ω is the angular frequency in radi-
ans per second, A is the area of the loop in meters squared, B is the flux density in 
teslas, and ϕ and θ are the angles following the normal polar notation.
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Figure 4.14 Shielded single-turn loops: (a) Equivalent circuit for a receiving loop, (b) shielded 
unbalanced single-turn loop, (c) plane wave incident on a loop, (d) shielded balanced single-turn 
loop.

In the case of the balanced shielded loop, the coaxial line is bent into a circle, 
and the inner conductor is exposed by the removal of the outer conductor and 
dielectric as shown in Figure 4.14(d). The equivalent circuit is the same as that of 
the unbalanced loop. The problem with this design is that some sort of balun is 
required to connect it to an unbalanced coax.
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4.11.4 Simple Multiturn Loop Probe

A simple probe can be constructed by forming the inner conductor of a coaxial 
cable into a 3 or 4 turn coil, as shown in Figure 4.15(a). The coil is then connected 
to the outer conductor via a 47Ω resistor [10]. The equivalent circuit is shown in 
Figure 4.15(b).

The signal generator reading is in volts, although the magnetic flux density (in 
tesla) is being measured. The effective height of a loop antenna as defined in Section 
4.9 is the number of volts measured per tesla (T) of incident magnetic flux density. 
The area of the loop is usually given in centimeters, and incident magnetic flux 
density is of the order of picotesla (pT). Thus, the effective height can be defined in 
volts per picotesla, as in MIL-STD 461A [7] and is given by the following relation

 

V
B

= 2pNAf × 10−16  (4.53)
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Figure 4.15 A small multiturn loop probe: (a) A simple multiturn probe made from coaxial 
cable, (b) equivalent circuit of a simple probe.
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where B is the magnetic flux density in picoteslas (10–12 tesla), N is the number of 
turns, A is the area of the loop in centimeters squared, and f is the frequency in hertz.
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C h a p t e r  5

Antennas for Frequencies Between 
1 MHz and 1 GHz

At frequencies between 1 MHz and 1 GHz, wire (as well as aperture) antennas 
are used. The wire antennas can be realized as free-standing wires or as printed 
circuits on a dielectric support. Since the wavelength at 1 GHz is 30 cm, resonant 
dipoles and monopoles are both manageable sizes. This chapter describes mono-
poles, dipoles, and loop antennas. It also discusses folded and triangular dipoles, 
and the biconical which can all be considered to be variants of the dipole. Other 
antennas described are the log periodic and Yagi antenna, which are really arrays 
of dipoles, and the discone antenna, which is a variant of the monopole. The helical 
antenna can be considered to be a type of loop. The bilog antenna is a combination 
of the triangular (bowtie) antenna and the log periodic. The broadband antennas 
such as the biconical, log spiral (which is described in Chapter 6), and log periodic 
can be considered to be variants of frequency independent (FI) antennas, although 
only the log spiral is a truly FI antenna. Double-ridged horns are also used at these 
frequencies, but these are described in Chapter 6.

5.1 Resonant Monopoles

A monopole is connected to the inner conductor of the coaxial line, and the ground 
plane is connected to the outer conductor, as shown in Figure 5.1(a). At frequencies 
in the MHz range, monopoles can be an appreciable fraction of, or larger than, a 
wavelength and these monopoles can therefore considered to be large monopoles. 
When a monopole is approximately a quarter of a wavelength long, it is resonant and 
it radiates the maximum power at this frequency. It has a purely resistive impedance 
of 36.8Ω at resonance. This resistance varies slightly with the gap between the inner 
and outer conductor of the coaxial line feeding the antenna. The ratio of the radii 
of the outer and inner diameters (b/d) should be 1.868 for a line of characteristic 
impedance of 37Ω [1, p. 605]. Experimental data shows that the resonant length 
of a monopole occurs when the length is 0.236λ and the ratio of the diameter to 
length (l/d) of the conductor is 0.00318λ. At 100 MHz, the monopole would have 
a diameter of 9.5 mm and its length would be 0.708m. When the monopole is > λ/4 
long, it exhibits an inductive impedance. The radiation pattern varies with the size 
of ground plane [2], as in the case of the short monopoles described in Chapter 4. 
Figure 5.1(b–g) shows the variation of the radiation pattern of the resonant mono-
pole with the electrical diameter (the diameter in terms of wavelength) of the ground 
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plane. As the ground plane diameter is increased from zero to 6.5λ/π, the main lobe 
(position of peak directivity) moves from the horizon (θ = 90°) to smaller angles 
and then increases again, but the variation is not monotonic (it does not increase 
or decrease consistently). The peak directivity varies from 1.88 dBi for zero ground 
plane to 5.16 dBi in the case of an infinite ground plane. The radiation resistance 
varies between 19.43Ω and 36.54Ω, as shown in the table given in Figure 5.1.

5.2 Discone Antenna

The discone antenna, which is sometimes called a Kandoian antenna (after its inven-
tor), consists of a disk mounted on a truncated cone. The disk and cone could be 
solid or made of wires. The discone antenna can be considered to be a stub antenna 
(a thick monopole) that has been top-loaded by connecting a disk to its free end, 
and in which the ground plane has been modified to form a cone [3, p. 723]. Alter-
natively, it can be considered as a variant of the biconical antenna, where one of the 
cones has been flattened to a disk. The antenna is simple to construct and also easy 
to feed. The center conductor of the coaxial cable feeding the antenna is connected 
to the disk, and the outer conductor of the coaxial cable is connected to the top (or 
narrow) end of the cone, as shown in Figure 5.2(a). The azimuth radiation pattern 
of the discone is omnidirectional, as in the case of a vertical dipole, and the radi-
ated electric field vector is vertically polarized. The diameter of the narrow end of 
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Figure 5.1 Variation of the radiation pattern of a resonant monopole with the size of the ground 
plane. (a) Monopole fed by coaxial line, (b) zero ground plane, (c) ground plane diameter = 3λ/π, 
(d) ground plane diameter = 4λ/π, (e) ground plane diameter = 5λ/π, (f) ground plane diameter = 
6.5λ/π, (g) infinite ground plane.
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the cone, Cmin, is inversely proportional to the bandwidth of the antenna and the 
slant height L is a function of the frequency [4]. The slant height must be greater 
than a quarter of a wavelength at the lowest operating frequency (i.e., L > λc/4).

Nail [4] has found that the disk-to-cone spacing affects the impedance match, 
and the optimum impedance match to a 50Ω transmission line is independent of 
the cone flare angle ϕ for angles between 25 and 90 degrees. The optimum imped-
ance match is obtained when the disk-to-cone spacing is 0.3 Cmin (the diameter 
of the top of the cone) and the disk diameter D is 0.7 Cmax (the diameter of the 
base of the cone). This applies when Cmin is electrically small (< λ/75) at the high-
frequency end and the diameter w of the feed pin is not taken into account. It is 
also assumed that the disk-to-cone spacing s is much less than the diameter of the 
disk D. At large angles, the discone acts like a high-pass filter, in that once the cone 
length L exceeds λ/4, the match to a 50Ω line remains good over an extremely large 
frequency range. The radiation pattern of the discone antenna is omnidirectional 

w s = 0.3 Cmin

N-type connector

Disk

Truncated cone
Center pin

(a)

(b)

L > λ/4

D
φ

= 0.7 Cmax

Cmin

Cmax

Figure 5.2 The discone, or Kandoian, antenna. (a) Physical characteristics of a discone antenna, 
and (b) radiation pattern of a discone in the elevation plane.
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in the azimuth plane, as in the case of a monopole, and in the elevation plane the 
pattern is tilted downwards, as shown in Figure 5.2(b).

5.3 Cavitenna

The Cavitenna is used in the frequency range of 20 MHz to 300 MHz. It is a top-
loaded monopole which is mounted by the use of magnetic clamps to the side or 
ceiling of a shielded room. The wall (or ceiling) forms the ground plane for the 
monopole and the room is excited like a cavity. These resonances account for the 
spurious readings obtained when measurements are made at certain positions and 
for some frequencies. They also account for the lack of repeatable measurements.

5.4 Resonant and Large Dipoles

When the length of a dipole approaches half a wavelength, the dipole resonates and 
maximum power is radiated. The radiation resistance is found to be about 73Ω, and 
the condition for zero reactance occurs when the dipole length is about 0.5λ for thin 
wires, but the dipole length is less than 0.5λ for thicker wires, which are used for 
wider bandwidths [5, p. 547]. The peak linear directivity at the resonant frequency 
is 1.64, which is 2.15 dBi. The radiation pattern in the azimuth plane (assuming 
sinusoidal current distribution) is omnidirectional, as shown in Figure 5.3(a). In 
the elevation plane we have the familiar figure of eight for a vertical center-driven 
dipole, as shown in Figure 5.3(b), with the main lobes on the horizon at θ = 90° 
and −90°. As the length of the dipole increases above half a wavelength, the pattern 
in the elevation plane gets narrower and the peak directivity increases, as shown 
in Figure 5.3(c, d); and when the length is 1.25λ, minor lobes appear, as shown in 
Figure 5.3(e). As the length is increased further, the lobes at the horizon become 
narrower and the sidelobes get larger. For longer electrical lengths the main lobes 
are no longer on the horizon. The pattern breaks up so that there are four main 
lobes, as shown in Figure 5.3 (f–j).

The effective height h of a half-wave dipole [6, p. 4–24] depends on the angle θ 
between the axis of the dipole and the point of observation and is given by

 
h = l

p

cos
p
2

cosq⎛
⎝

⎞
⎠

sinq  (5.1)

We can see that on the axis where angle θ is 90° the effective height is λ/π.
The impedance Zd of a half-wave resonant dipole is given by

 
Zd = R(kl) − j 120 loge

1
a
− 1⎛

⎝
⎞
⎠cot(kl) − X(kl)

⎡
⎣⎢

⎤
⎦⎥  (5.2)

where k is the phase constant 2π/λ, a is the radius of the conductor, and R(kl) and 
X(kl) are functions shown in Figure 5.4.
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5.5 Folded Dipoles

The folded dipole is a very popular antenna because of its ease of construction and 
its impedance. The dipole is formed by joining two cylindrical dipole elements of 
equal length 2l at their ends and driving one of the elements at its center, as shown 
in Figure 5.5(a). The dipole connected to the signal source is known as the driven 
element, and the dipole connected to the driven element is known as the parasitic 
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Figure 5.3 Radiation patterns for large and resonant dipoles: (a) Azimuth plane pattern, (b) 
elevation pattern for λ/2 dipole, (c) elevation pattern for 3λ/4 dipole, (d) elevation pattern for λ 
dipole, (e) elevation pattern for 1.25λ dipole, (f) elevation pattern for 1.5λ dipole, (g) elevation 
pattern for 1.75λ dipole, (h) elevation pattern for 2λ dipole, (i) elevation pattern for 2.5λ dipole, 
and (j) elevation pattern for 2.75λ dipole.
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element. The dipoles can be identical or of different radii r1 and r2. The folded dipole 
is often constructed from commercially available twin wire transmission lines [7, 
p. 10]. The solid dielectric will reduce the phase velocity of the EM wave so that 
its wavelength is no longer equal to the free-space wavelength, but is reduced to a 
value of l er, where εr is the dielectric constant of the material. The wavelength 
of the transmission line currents is reduced by a proportionate amount. However, 
the dielectric material has a negligible effect on the antenna currents, and thus 
the resonant length remains unchanged. One method of construction that satis-
fies both requirements is to use shorting elements so that the distance between the 
shorted portions is as shown in Figure 5.5(b); this ensures that the lengths of the 
radiating elements are correct for air, but the transmission line modes are satisfied 
in the dielectric.

The excitation of the folded dipole can be considered as the superposition of 
common and differential modes, as shown in Figure 5.5(c). In the case of the com-
mon mode, the driving voltages in the two elements are both V and they have the 
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Figure 5.5 The folded dipole antenna. (a) Physical characteristics, (b) the folded dipole made 
from coaxial cable, (c) decomposition of a folded dipole into common and differential modes, 
and (d) equivalent circuit of a folded dipole.
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same polarity. The currents in the driven and parasitic arms are Ir and αIr, respec-
tively, where α is the current division factor and is given by

 
a =

cosh−1 x2 − u2 + 1( ) / 2v⎡⎣ ⎤⎦
cosh−1 x2 + u2 − 1( ) / 2uv⎡⎣ ⎤⎦  (5.3)

where v (= d/r1) is the ratio of the dipole spacing to the radius of the driven dipole, 
and u (= r2/r1) is the ratio of the radii of the parasitic and driven elements.

The differential mode driving voltages in the two elements are V and αV, and 
they have opposite polarity. The currents in the driven and parasitic arms are both If.

For a half-wave folded dipole whose elements are of equal length 2l, the input 
impedance is close to that of a 300Ω twin-wire transmission line.

The input impedance of a folded dipole of total length 2l, greater than or equal 
to λ, is given by

 
Zin =

2(1 + a)2ZrZf

2Zf + (1 + a)2Zr

 (5.4)

where α is the current division factor given by (5.3), and Zr is impedance of the 
common mode and is given by

 
Zr = V

(1 + a)2Ir
 (5.5)

and Zf is impedance of the differential mode and is given by

 
Zf = (1 + a)V

2If
 (5.6)

These equations assume that the element spacing d and the radii r2 and r1 are 
all much smaller than the length 2l of the elements.

When the element length 2l is equal to λ/2, the impedance Zf is much larger 
than Zr(1 + α)2 so the denominator of (5.4) can be taken as 2Zf, and (5.4) reduces to

 Zl /4 = Zr(1 + a)2  (5.7)

The effective height h of a half-wave folded dipole [6, p. 4–24] depends on the 
angle θ between the axis of the dipole and the point of observation, and is given by

 
h = 2l

p

cos
p
2

cosq⎛
⎝

⎞
⎠

sinq
 (5.8)

The equivalent circuit of the folded dipole is shown in Figure 5.5(d).
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5.6 Triangular Dipoles

A dipole can be made more broadband by using triangular sheets of metal instead of 
straight wires, as shown in Figure 5.6(a). This type of antenna is sometimes called 
a bowtie antenna. The bowtie has similar radiation patterns and input impedance 
to the biconical antenna, but it is much lighter in weight and simpler to construct. 
The antenna is characterized by the flare angle α of the apices and the height A 
(from the apex to the opposite side) of the triangles. Simplifying the construction 
to a wire outline results in the significant degradation of broadband performance. 
But at low frequencies, mesh can be used instead of solid sheets, as long as the mesh 
spacing is smaller than one tenth of a wavelength at the highest operating frequency.

The larger the values of A and α, the more the radiation pattern in the elevation 
(z-y) plane varies from the azimuth (x-y) plane, and also, the sidelobes are higher 
[6, p. 29–5]. Optimum design (a compromise between pattern and impedance 
characteristics) is obtained by selecting values of α between 60 and 80 degrees and 
values of A up to 0.58λ. When a bowtie antenna of typical dimensions 38 cm × 27 
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Figure 5.6 The triangular dipole (bowtie) antenna: (a) Physical characteristics, (b) the bowtie in 
front of a metal screen, and (c) variation of gain with frequency for a bowtie placed in front of a 
screen.



5.7 Biconical Antennas 119

cm is mounted λ/4 in front of a flat reflecting screen, as shown in Figure 5.6(b), its 
gain is increased and its back radiation is reduced. Placing the antenna in front of 
a screen of size 56 cm × 48 cm results in a 5-dB improvement in gain over the 470 
to 900 MHz frequency range, as shown in Figure 5.6(c).

5.7 Biconical Antennas

The biconical antenna was first used by Oliver Lodge in 1892 [3, p. 340]. Although 
broadband, this antenna is not frequency-independent when the cones are trun-
cated, as would be the case for a practical antenna. The infinite biconical antenna, 
shown in Figure 5.7(a), acts as a guide for spherical waves in the same way as an 
infinite transmission line acts as a guide for plane wave. The feed at the terminals 
produces a voltage V between the cones, and a total current I flows on the surface 
of the cones at a distance r from the terminals. The characteristic impedance is 
defined as the ratio of V to I in the same way as it is defined for transmission lines. 

~

θ θ

l

x

z

y

(c) (d)

(a) (b)

Spherical
wavefront

H

H

EE

rI

Figure 5.7 The biconical antenna: (a) TEM mode of the biconical antenna, (b) feeding details of 
the biconical antenna, (c) radiation pattern in x-y (azimuth) plane, and (d) radiation pattern in y-z 
(elevation) plane.
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If we consider only the first or fundamental mode, that is, the transverse electro-
magnetic (TEM) mode, the electric and magnetic fields are both transverse to the 
direction of propagation of the wave and perpendicular to each other. The electric 
field lines are great circles through the polar axis, and the magnetic lines are circles 
perpendicular to the axis.

Using Maxwell’s second equation, we have in this case

 ∇ × E = – jwmH  (5.9)

Expanding the LHS of (5.9) in spherical coordinates, we get

 

∇ × E =
ar

r2 sinq
∂ r sinqEf( )

∂q −
∂ rEf( )
∂f

⎡

⎣
⎢

⎤

⎦
⎥ +

aq
r sinq

∂Er
∂f −

∂ r sinqEf( )
∂r

⎡

⎣
⎢

⎤

⎦
⎥

+
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r

∂ rEq( )
∂r

−
∂Er
∂q

⎡
⎣⎢

⎤
⎦⎥  

(5.10)

The electric field does not have a component in the ϕ or radial (r) directions and 
the Eθ component is independent of ϕ. Thus, the right-hand side of (5.10) reduces to

 
∇ × E =

af
r
∂ rEq( )
∂r

 (5.11)

In the case of the right-hand side of (5.9), we only have to consider the Hϕ com-
ponent, and this gives

 
– jwmH = –af jwmHf  (5.12)

Combining (5.11) and (5.12) gives us

 

1
r
∂ rEq( )
∂r

= – jwmHf  (5.13)

If we consider Maxwell’s first equation for a nonconducting medium σ = 0, 
we have

 ∇ × H = jwmE  (5.14)

For the TEM mode, we again only have the Hϕ and Eθ components, and thus 
Maxwell’s first equation is reduced to

 

∂ rHf( )
∂r

= – jwe rEq( )  (5.15)

It can be shown that the Hϕ component [3, p. 345] is given by
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Hf = 1

r sinqH0e
− jbr  (5.16)

where H0 is the amplitude of the magnetic field
The intrinsic impedance Z0 is defined as the ratio of Eθ to Hϕ and is given by

 
Z0 =

Eqr sinq
H0

ejbr  (5.17)

From which we can write Eθ as

 
Eq =

Z0H0

r sinq e
− jbr  (5.18)

We can calculate the voltage between the points at the radial distance r by tak-
ing the line integral of the electrical field Eθ (with respect to θ) along a great circle 
between the two points. The angle θ varies between −θ1 and +θ1 over this path, 
where θ1 is the cone semi-angle. Thus, the voltage is given by

 

V(r) = Z0H0e
− jbr dq

sinq
q2

p−q1

∫  (5.19)

The biconical antenna that is usually fed from a coaxial line via a balun is 
shown schematically in Figure 5.7(b). The radiation pattern of the biconical antenna 
is similar to that of a dipole. In the azimuth (x-y) plane it is omnidirectional, and 
in the elevation (y-z) plane is a figure of eight as shown in Figure 5.7(c, d). Typical 
gains of biconical vary between 0 and 4 dBi, and beamwidths in the elevation plane 
are between 20° and 100°.

The broadband impedance characteristics of the biconical antenna occur when 
the cone half-angle θhc lies between 30° and 60° [6, p 4–12]. This angle is not criti-
cal and is usually selected to match the characteristic impedance of the transmission 
line feeding the antenna as closely as possible.

The characteristic impedance of a biconical antenna is given by

 
Z = 120loge cot

qhc
2

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

 (5.20)

where θhc is the cone half-angle.
Using (5.20) for a biconical antenna of half angle 60°, the characteristic imped-

ance is calculated as 66Ω. The variation of the impedance with cone half angle is 
shown in Figure 5.8. Measured values of the characteristic impedance for a 6:1 
bandwidth biconical antenna of half-angle 60° and cone diameter of one wavelength 
(at the lowest frequency) has been found to be a constant 50Ω over the bandwidth 
with a VSWR of < 1.2 [3, p. 64].
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For small cone angles cot(θhc/2) is approximately equal to 2/θhc, and thus the 
characteristic impedance of a small-angled biconical antenna is given by

 
Z = 120loge

2
qhc

⎡
⎣⎢

⎤
⎦⎥  (5.21)

5.8 Yagi-Uda Antenna

This antenna is often called a Yagi, after the student of Professor Uda (Japan) who 
first presented the relevant paper in English and performed many of the measure-
ments. However, it was designed by Uda, and should therefore be called a Uda-
Yagi. It consists of a single driven dipole and a number of slightly shorter parasitic 
dipoles in front of it, as shown in Figure 5.9(a). The driven element is a resonant or 
tuned dipole, or it could be a folded dipole. Parasitic dipoles are ones that are not 
directly fed but have currents induced in them, in the same way as currents from the 
primary of a transformer induces a current in the secondary. The parasitic dipole 
can then reradiate like directly-fed radiating dipoles. These parasitic elements are 
called directors. A reflector which is slightly longer than the driven element is placed 
behind the driven element. All elements are parallel to each other and in the same 
plane. The antenna radiates in the end-fire direction from the reflector towards the 
shorter directors. Increasing the number of directors increases the gain, but with 
diminishing returns, so that in practice there is not a large increase in gain when 
the number of parasitic elements is above about 12 [8, Vol. 2, p. 765]. The radia-
tion pattern in the x-y plane is shown in Figure 5.9(b), and the radiation pattern in 
the y-z plane is shown in Figure 5.9(c). In the case of uniform Yagi arrays, all the 
elements have the same circular cross section, the spacings between the elements 
are the same, and all directors have the same physical length, as shown in Figure 
5.9(b). The directors are made the same length for ease of construction, but they 
do not carry the equal currents.
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The gains obtainable for different number of elements have been computed for 
uniform Yagis made of wires having diameters from 0.0025λ to 0.02λ and spac-
ings between 0.15λ and 0.3λ [9]. The curve of gain versus the number of elements 
for a conductor diameter of 0.0025λ shows an average gain of 0.9 dB for each 
additional element above three, but the gain flattens off after about 5 elements, as 
shown in Figure 5.10.
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Figure 5.9 The Yagi-Uda dipole array. (a) Yagi-Uda array of dipoles, (b) radiation pattern in the 
x-y plane, (c) radiation pattern in the z-y plane, and (d) uniform Yagi-Uda array.
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Comparison between measured results and computed values suggest that the 
elements behave as though they are slightly longer than their physical lengths. This 
is thought to be due to an end effect, and when the elements are slightly shortened, 
empirically, optimum performance can be obtained at a particular design frequency.

Increasing the number of parasitic elements reduces the radiation resistance of the 
antenna, so that it does not match the transmission line feeding it. A folded dipole 
is required to match the resistance of the antenna to the transmission line in these 
cases. When four elements are used and spaced 0.2λ apart, the input resistance is 
45Ω. The antenna can be made more broadband by designing the directors for the 
upper end of the frequency band and the reflector for the lower end. An antenna 
with five elements (one reflector and three directors) can have a bandwidth of 60%, 
but its gain is reduced to around 6 dBi [8, p. 765]. If the antenna is optimized, its 
gain can be increased to 10 dBi, but its bandwidth is reduced to about 9%.

5.9 Frequency-Independent Antennas

In general, it can be said that the impedance and radiation pattern characteristics 
of an antenna is determined by its shape and dimensions in terms of wavelength. 
In 1954, Rumsey suggested that if an antenna could be defined entirely in terms of 
angles, for instance, instead of any characteristic length dimensions, then it would 
be possible for such an antenna to have properties which are independent of the 
frequency of operation. A change of frequency, however, results in rotation of the 
radiation pattern. This type of antenna, based on the angle condition, can be imple-
mented by the use of conical surfaces and equiangular spirals.

There are two types of frequency-independent (FI) antennas:-

1. Logarithmic conical spirals, called log spirals;
2. logarithmic periodic, called log periodic.

It can be shown that they are both the same type of structure, except that the 
log periodic has periodicity at discrete angles, whereas the periodicity of the log 
conical spiral is continuous. One of the characteristics of FI antennas is that the 
radiation is in the back-fire direction.

5.10 Log Periodic Antenna

The log periodic antenna consists of an array of dipole elements and displays, fairly 
stable impedance, and pattern characteristics over the design bandwidth. This 
antenna has self-similar figures with discrete similarity at discrete angles (ϕ) only. 
The log periodic dipole array (LPDA) antenna is shown schematically in Figure 
5.11(a).

It consists of dipoles of decreasing length and spacing, such that the apex angle 
formed by the intersection of two imaginary lines drawn through the ends of the 
dipoles on each side of the array is 2α; and the tan of the half angle α is given by
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tana =

ln
2Dn

 (5.22)

where ln is the length of the nth element and Dn is the distance of the nth element 
from the apex. The ratio of the lengths of successive dipoles is equal to the ratio 
of their distances from the apex and is known as the scaling factor sf. The scaling 
factor is given by

 
sf =

ln
ln−1

=
Dn

Dn−1

 (5.23)

where sf is a constant of magnitude less than 1, ln, ln–1 are the lengths of the nth 
and (n − 1)th elements (where ln is larger than ln–1) and Dn, Dn–1 are the distances 
of the nth and (n − 1)th element from the apex.

A spacing parameter Sp can also be defined, which varies with the element and 
is given by

 
Sp =

dn
2ln

 (5.24)

where dn is the distance between the nth and the (n + 1)th element, and ln is the 
length of the nth element.
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Figure 5.11 The log periodic dipole array (LPDA): (a) Schematic of the log periodic dipole array, 
(b) radiation pattern in the x-y plane, (c) radiation pattern in the z-y plane, (d) coaxial line 50Ω 
or 75Ω, (e) 300Ω twin-wire feed for the LPDA.
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Since ln is a half wave dipole, it is equal to λ/2 and thus the spacing parameter 
Sp is also equal to dn/λ, that is, it is equal to the spacing in wavelengths at the fre-
quency of the resonant dipole.

Using the relationships of (5.22) and (5.23), the spacing parameter can be 
rewritten as

 
Sp =

1 − sf( )
4

cota  (5.25)

The properties of the antenna at frequencies f, rf, r2f … rnf are the same. When 
these frequencies are plotted on a logarithmic scale, these frequencies are equal 
spaced, and this is the reason for this type of antenna being called a log periodic 
antenna. If the frequencies are closely spaced, the antenna can provide uniform 
performance over a wide range of frequencies [8, Vol 2, p. 767]. The center-fed 
dipoles are connected to a twin transmission line, so that adjacent elements are fed 
in antiphase, as shown in Figure 5.11 This gives back-fire radiation (in the direc-
tion of elements of decreasing length). If the phase reversal is not included, then the 
radiation occurs in the end-fire direction such that the radiation from the shorter 
elements is obscured by the longer elements. Scalloped radiation patterns are also 
produced by end-fire arrays and impedance behavior is erratic [6, p. 14–27]. The 
array is fed at its high-frequency (shortest element) end and the transmission line is 
shorted through a stub at its low-frequency end. The upper frequency limit is deter-
mined by the length of the shortest dipole and occurs when this length is resonant 
at approximately half a wavelength. The lower frequency limit is determined by 
the length of the longest dipole. When the array is fed by a particular frequency, 
the wave will travel along the array from the shortest element until it encounters 
the resonant dipole element (i.e., the dipole whose length is approximately half a 
wavelength). This resonant element will have a lower impedance than any other 
element, and thus it will extract more energy than any other element. The energy 
extracted from the wave will progressively increase as the wave travels from the 
high-frequency end to the resonant element and the energy extracted will decrease 
beyond this element. The elements that extract energy form the active region, 
which is restricted to a few elements on either side of the resonant element. As the 
frequency is increased, the active region moves towards the shorter elements and 
as the frequency is decreased, it moves towards the longer elements. The width of 
the active region also reduces with increasing frequency, with the highest frequency 
having the smallest active region. At the low frequency end up to 50% of the length 
is used, but at the highest operating frequency only about 15% may be used [3, p. 
705]. The effective electrical aperture (the aperture in terms of wavelengths) remains 
essentially independent of frequency. The antenna can be considered as a cascade 
of cells, with each cell consisting of a section of transmission line shunt loaded at 
its center by the dipole element impedance. This dipole impedance also includes the 
mutual coupling between the elements. This shunt loading results in attenuation 
in the feeder line [6, p. 14–27]. This attenuation increases as the scaling factor sf is 
increased, as long as the spacing parameter Sp does not become too small. In order 
to ensure that radiation does not occur in the end-fire direction, this attenuation 
through the active region should be about 20 dB.
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The value of the constant sf varies between 0.76 and 0.98 for values of Sp 
between 0.06 and 0.2. However, as the value of Sp is reduced the VSWR tends to 
increase. Typically, VSWR values of around 1.4 are achievable. As sf approaches 
its upper limit of 0.98, the elements are more closely spaced and hence the active 
region contains more elements. The inclusion of more elements in the active region 
increases the directivity and values of between 8 and 12 dBi are achievable. The 
apex angle 2α also affects the antenna directivity, and angles vary between 2 and 
40 degrees. Small angles result in excessively long antennas, whereas large angles 
cause disruption of the phasing between elements and result in radiation pattern 
distortion [7, p. 18]. The antenna resistance has little effect on the directivity [8, 
p. 769]. For thinner elements the resistance changes more rapidly with frequency, 
and there is a reduction in the directivity. Thicker elements reduce the Q and hence 
increase the bandwidth. As the spacing parameter Sp is reduced, the VSWR tends 
to rise.

At frequencies in the very high-frequency (VHF) range (30–300 MHz), the 
antennas can be mounted high enough (in terms of wavelengths) to avoid ground 
effects. However, at frequencies in the high-frequency (HF) range (3–30 MHz), the 
proximity to the ground results in loss, which reduces gain, and the image of the 
antenna formed by reflection in the ground plane causes alteration of the radiation 
pattern. End-loading is also associated with these low frequencies, and makes the 
elements appear to be electrically longer; this results in the operating frequency being 
lowered. In the EMC field, log periodics are mainly used at frequencies between 
100 and 1,100 MHz.

Half-power beamwidths (HPBW) in the E plane (that is, the plane x-y of the 
dipoles) are of the order of 50°. The H-plane (y-z plane perpendicular to the plane of 
the dipoles) HPBW is of the order of 90°. The radiation patterns of the log periodic 
in the x-y and y-z planes are shown in Figure 5.11(b, c), respectively. Typical feed-
ing arrangements are shown in Figure 5.11(d, e). Phase reversal between adjacent 
elements is achieved by either connecting alternate monopoles to opposite sides of 
a transmission line, or by physically crossing the wires of a twin transmission line 
feed for dipoles supported on insulators [3, p. 708].

Smith [7, p. 18] has developed algorithms for selecting the optimum spacing 
parameter Sp and scaling factor sf for LPDAs of specified gains. For a LPDA of lin-
ear gain g the spacing parameter is given by

 
Sp = −5.76909996 × 10−4 × 0.0167208176g + 0.0602945516  (5.26)

For gains from 8 to 12 dBi, spacing parameters vary between 0.1428 and 0.1804, 
as shown in Figure 5.12.

The optimum scaling factor sf can be calculated from the optimum spacing 
parameter and is given by

 
sf = 3.9866009Sp + 0.236230336  (5.27)

For the range of spacing parameters from 0.1428 to 0.1804, the scaling factors 
vary between 0.806 and 0.955 and are shown in Figure 5.12.
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The impedance of the antenna Z can be matched to the transmission line by 
selecting the correct length-to-diameter ratio (l/d0) of the element. The impedance 
Z is given by

 
Za =

Z0
2

8Z1

sf +
8Z1

Z0

⎛
⎝⎜

⎞
⎠⎟

 (5.28)

where Z0 is the characteristic impedance of the transmission line and Z1 is given by

 
Z1 = 276log10

l
d0

⎛
⎝⎜

⎞
⎠⎟
− 270  (5.29)

Using the range of Sp and sf shown in Figure 5.12, the antenna can be matched 
to a 75-Ω line by choosing values of length-to-diameter ratio (l/d0) between 10.501 
and 10.554.

The number of elements depends on the bandwidth and the scaling factor sf. 
A design bandwidth (Bs) is calculated which is greater than the desired bandwidth 
Bw, which is the ratio of the highest to the lowest frequency. This larger design 
bandwidth is required to accommodate the active region for the high-frequency 
end. The design bandwidth [6, p. 29–15] is given by

 
Bs = Bw 1.1 + 7.7 1 − sf( )2⎡

⎣
⎤
⎦cota  (5.30)

The number of elements is given by

 

N = 1 −
loge Bw

loge 1/ Sf( )
⎡

⎣
⎢

⎤

⎦
⎥  (5.31)
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For an LPDA operating from 100 to 1100 MHz (i.e., Bw = 11), and an apex 
angle of 53 degrees (which gives an LPDA of length equal to its width), the design 
bandwidth is 29 and this gives the number of elements as 21. For an LPDA operating 
from 200 to 1,000 MHz (i.e., Bw = 5) and an apex angle of 53 degrees, the design 
bandwidth is 5 and this gives the number of elements as 16.

The trapezoidal tooth antenna with curved teeth, introduced by DuHammel 
in 1957, was the first successful log periodic. It consisted of a self-complementary 
structure, that is, if the two arrays shown in Figure 5.13(a) were to be folded along 
the center line of the metal sheet, they would form a single sector with the metal 
section being of double thickness. It had a bidirectional pattern, that is, it radiated 
in two directions, into and out of the paper. This was adapted by Isbell to a straight-
toothed version, as shown Figure 5.13(b). The teeth act as monopoles. The distance 
from the back of each tooth to the apex is Dn and rn is the distance from the front of 
the teeth. The ratio of rn/Dn is a measure of the width of the teeth. The scaling factor 
sf is defined as above, and the angle subtended by the extreme edges of the teeth (at 
the apex) is 2α. However, in this case there are two other angles to be considered. 
The angle 2β defines the angle of the supporting section, and the angle ψ is the 
angle between the two arrays. When ψ is equal to 180°, it behaves like the one used 
by DuHammel and gives a bidirectional pattern. If the input impedance is plotted 
on a Smith’s chart over several periods, the points lie on a circle whose center is on 
the zero-impedance line [6, p. 14–25]. The characteristic impedance of the antenna 
is the geometric mean of the maximum and minimum values of the resistance (real 
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part of the impedance). The two arrays can be considered as a uniform biconical 
TEM transmission line. Since the monopoles are attached to the opposite sides of 
the center supporting strip, the required 180° phase delay is achieved.

This antenna radiates a unidirectional linearly-polarized beam [8, Vol.1, p. 376] 
with the electric field parallel to the edges of the teeth, as shown in Figure 5.13(b). 
The variation of the −10 dB beamwidth in the E and H planes with the angle ψ 
(between the arrays) is shown in Figure 5.13(c) for a scaling factor of 0.707, α = 
22.5° and β = 5°. It can be seen that around ψ = 60° the E and H plane beamwidths 
are equal. This feature is particularly useful when the log periodic is used as a feed 
for a reflector that requires circular symmetry.

5.11 BiLog®

The BiLog antenna [10] is a hybrid antenna comprised of an LPDA in front of a 
bowtie antenna. The advantage of using this antenna is that it can be used over a 
wider range of frequencies, thus obviating the need to use two antennas. Apart from 
the time saving, the testing results in increased accuracy, since the repositioning 
of antennas is not required. The BiLog can be used over the frequency range of 30 
MHz to 1 GHz. At 30 MHz, the wavelength is 10m, and if an LPDA is used, the 
longest element would be about 5m.

At the higher frequencies, the antenna acts as a LPDA and does not require 
a balun when fed by a two-wire transmission line. At the lower frequencies, the 
antenna acts as a broadband balanced dipole and a balun is required.

The radiation patterns for horizontal polarization of the BiLog at 30 and 150 
MHz demonstrate the familiar figure of eight dipole patterns, as shown in Figure 
5.14(a). As the frequency is increased, the pattern tends towards the unidirectional 
pattern of the LPDA, as shown in Figure 5.14(b).

Figure 5.14 Radiation patterns of the BiLog antenna for horizontal polarization. At (a) 30, 150, 
and 300 MHz, and (b) 650 and 1,000 MHz. (After [10].)



5.11 BiLog® 131

For immunity and susceptibility testing, the input power in watts required to give 
electric field strengths of 1, 3, and 10 V/m at a distance of 3m from the antenna is 
shown in Figure 5.15. It can be seen that at the lower end of the frequency range, the 
input power required is higher, but above 250 MHz the power is almost constant.

The antenna correction factor (ACF) of the BiLog is shown in Figure 5.16 and 
is compared to those for the LPDA and the biconical antenna. The magnitudes of 
the antenna factors are similar to the LPDA above 300 MHz, and between 100 and 
300 MHz it appears to be better than the biconical antenna.
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5.12 Helical Antennas

The helix antenna, as shown in Figure 5.17(a), has a diameter D, and the circum-
ference of the helix is C = πD. The spacing between turns is S and the length of 
each turn is L. The pitch angle ψ is related to the spacing and diameter, as shown 
in Figure 5.17(b), and is given by

 
tany = S

pD  (5.32)

where

ψ is the pitch angle in degrees,

S is the spacing in meters, and

D is the diameter of the helix in meters.

A helical antenna could consist of a single conductor or multiple conductors. It 
can radiate in several modes depending on the electrical diameter (the diameter in 
terms of wavelength). The most common mode is the axial mode of radiation, when 
the boresight is along the axis, as shown in Figure 5.17(c), and the minor lobes are 
relatively small. This mode occurs when the circumference C (of one turn) is of the 
order of one wavelength. When the diameter is much smaller than a wavelength, 
the helix antenna acts like a dipole and has an omnidirectional radiation pattern 
perpendicular to its axis, as shown in Figure 5.17(e). This is known as the normal 
mode. Higher order modes occur when the helix diameter is greater than λ/8. The 
single lobe of the axial mode splits up into two lobes known as the conical mode 
of radiation, as shown in Figure 5.17(d).

The axial-mode helix has wideband impedance characteristics and the radiated 
electric field is circularly polarized [6, Chapter 13]. Helices wound like a left-hand 
screw receive left-hand circularly polarized (LHCP) waves, whereas those wound 
like a right-hand screw receive right-hand circularly polarized (RHCP) waves. Most 
axial-mode helices are of uniform diameter, but helices of nonuniform diameter are 
used to give wider bandwidth and improved radiation characteristics. The axial-
mode helix can have a 1.7:1 bandwidth and its directivity is close to the maximum 
attainable of an antenna of that size, over the whole of the bandwidth. This is 
because the phase velocity is automatically adjusted to the correct value to produce 
the maximum directivity for each frequency [11, p. 7–1].

The helix usually has a ground plane or is cavity-backed. Cavity-backed helices 
are preferred, since they reduce back radiation and the forward gain is enhanced, 
resulting in an improved front-to-back (F/B) ratio. In a typical arrangement for a 
uniform helix, as shown in Figure 5.18(a), the coaxial feed is connected to the helix 
via a microstripline-matching transformer. For the frequency range of 650 to 1,100 
MHz, the transformer is about 12 cm long, and the cavity has a diameter of 26 cm 
and a depth of 12.5 cm. The conductor from which the helix is wound could be 
tubing of a circular cross section or a flat strip, and a lightweight cylindrical foam 
dielectric is used as the former.
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Figure 5.17 The helical antenna: (a) Characteristics of the helical antenna (b) relationship 
between diameter and length of one turn, (c) axial mode pattern for circumferences of around 
one wavelength, (d) conical mode pattern for circumferences greater than one wavelength, (e) 
normal mode pattern for circumferences much less than one wavelength.

The VSWR measured at the input of the matching transformer can be signifi-
cantly reduced by adding two additional tapered turns at the free end of the helix. 
These tapered turns reduce the VSWR by suppressing the reflected currents. The 
cut-off frequency occurs when the circumference of the helix is 0.75λ. The HPBW 
for pitch angles between 12 degrees and 15 degrees, and helices of circumference 
C of values 0.67λ < C < 1.3λ, can be given by

 

q = 52
C
l

NS
l

 (5.33)

where

θ is the HPBW in degrees,

C is the circumference of the helix in meters,
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S is the spacing between adjacent turns in meters, and

N is the number of turns.

The HPBW given by (5.33) is an empirical approximation derived from mea-
sured data and applies to helices of at least 3 turns, and to beamwidths between 
30 degrees and 60 degrees. The optimum dimensions for a wideband helix in the 
frequency range 200 to 500 MHz has a pitch angle of 14 degrees, a conductor 
diameter of 0.017λ, and axial length of 1.65 wavelengths at the center frequency 
[11, p. 7–3]. These dimensions give a value of approximately 6 turns for the helix. 
The ground plane diameter must be greater than 0.8λ and the distance between the 
ground plane and the first turn is half the spacing S, that is, 0.12λ.

When the circumference is of the order of a wavelength (0.67λ < C < 1.3λ), the 
terminal impedance of the helix is nearly resistive [11, p. 7–6] and the resistance 
Rh (within 20%) is given by the following empirical relation

 
Rh = 140C

l  (5.34)

Cavity 10.3" by 5" 4.7" microstripline

50 coaxialΩ
connector

Figure 5.18 Mechanical arrangement of a cavity-backed helix for the frequency range of 650 to 
1,100 MHz.
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where C is the circumference of the helix. This terminal impedance of the helix 
varies with frequency, but the variation will be less pronounced for helices with a 
larger number of turns than it is for helices with fewer turns.

The radiation pattern can be obtained to a first approximation, by consider-
ing the helix to be an array of N isotropic elements spaced a distance apart. The 
pattern of the array is the product of the pattern of each isotropic element and the 
array pattern. The isotropic element has a pattern of approximately cos θ, and the 
array has a radiation pattern which is the same as that of a uniformly-illuminated 
aperture, and thus the resultant electric field radiation pattern is given by

 
E = A

sin Ny / 2( )
sin y / 2( ) cosq  (5.35)

where E is the electric field in volts per meter, N is the number of turns, ψ = kS 
cos θ − δ, k = π/λ, δ is the progressive phase between turns and equals kLc/v, L 
the length of one turn, v is the phase velocity along the helical conductor, c is the 
velocity of light, and A is the normalization factor equal to sin(π/2N).

When we increase the number of turns we get a narrower beam, which is 
expected since this is tantamount to increasing the number of elements in an array 
or increasing the aperture of an antenna.

Helical antennas can also be wound with more than one winding, such as bifilar, 
quadrifilar, and multifilar helices. The bifilar winding results in backfire radiation 
and does not generally require a ground plane.

5.13 Large and Resonant Loops

When the circumference of a loop is greater than 0.1λ, the current distribution is 
significantly different from the uniform distribution assumed in the case of a small 
loop (see Chapter 4). Assuming uniform current distribution gives predicted radia-
tion resistances that are much less than the measured values, and as the size of the 
loop increases the calculated radiation resistance (using uniform current distribu-
tion) departs even further from the measured values. For instance, if we assume uni-
form current distribution for a loop of circumference 0.1λ, the calculated radiation 
resistance is 86% of the actual value, whereas if we have a loop of circumference 
0.3λ, the calculated radiation resistance is 26% of the actual value [6, p. 5–9], as 
shown in Figure 5.19(b). The loop is usually fed by a twin-wire transmission line. 
The resistance and reactance of the circular loop has been calculated as a function 
of the electrical circumference (the circumference in terms of wavelength) and are 
shown in Figure 5.19(b). When the circumference is approximately a whole number 
of wavelengths, the resistance has minimum values, and these points are known as 
resonance points, at which the loop radiates the maximum power; whereas when 
the circumference is an odd number of half wavelengths (0.5λ, 1.5λ, 2.5λ … (2n 
− 1)λ/2), the resistance has maximum values, and these points are known as anti-
resonance points. The actual values of the resistance at these resonance and anti-
resonance points are determined by the thickness parameter Tp of the wire forming 
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the loop. The thickness parameter Tp is a function of the relative radii of the wire 
and the loop, and is given by

 
Tp = 2loge

2pb
a

⎛
⎝

⎞
⎠  (5.36)

where b is the radius of the loop and a is the radius of the wire forming the loop.
The resistance is relatively independent of the thickness parameter at the reso-

nance points, but at antiresonance points it can be seen that the greater the thickness 
parameter, the higher the resistance is. This is to be expected, since for a fixed-loop 

2a

b

Parallel wire
transmission line

(a)

T = 10p

T = 12p

T = 15p

T = 20p

0.5 1.0 1.5 2.0

10

100

1.0

1,000

10,000

(b)

2πb/λ

Thickness parameter Tp

Figure 5.19 Characteristics of the single-turn loop antenna: (a) Physical characteristics of a 
single-turn loop, and (b) variation of input resistance with electrical circumference.
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radius, the larger the thickness parameter, the smaller the radius of the conductor 
wire is, and hence the increase in resistance. A single-turn loop can be optimized so 
that it can have a high gain over a frequency range where its length varies between 
1λ and 1.7λ. For instance, a loop of diameter 20.3 cm has a directivity of more 
than 3.5 dB over the frequency range 470 to 806 MHz where the loop circumfer-
ence varies between 1λ and 1.7λ [6, p. 29–13].

5.14 Double-Ridged Horn

Double-ridged horns are used at frequencies above 100 MHz. The ETS-Lindgren 
(formerly EMCO) 3106 double-ridged waveguide horn is often used in EMC labs 
and covers a frequency range of 200 MHz to 1 GHz. However, double-ridged 
waveguide horns are more commonly used at frequencies above 1 GHz and are 
described in Chapter 6.
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C h a p t e r  6

Antennas for Frequencies Above 
1 GHz

Above 1 GHz, wire antennas of resonant length are too small to be practicable. 
Frequency-independent antennas such as the log conical and planar spirals are 
popular, and aperture antennas such as the double-ridged horns are used. Smooth-
walled horns are used where a wide frequency range is not required, and also for 
calibration purposes.

6.1 Frequency-Independent Antennas

In 1954, Rumsey suggested that if an antenna could be defined in terms of angles 
instead of any characteristic length dimensions, then it would be possible for such 
an antenna to have properties which are independent of the frequency of opera-
tion. However, such a structure would be infinite in length, and when truncated 
would not necessarily retain its frequency-independent characteristics because of 
the reflected fields from the truncation point.

The logarithmic spiral antenna is a true frequency-independent antenna [1, 
p. 698]. The first practical FI was constructed in 1958 by John D. Dyson at the 
University of Illinois [1, p. 697]. It was a bidirectional planar spiral. The unidirec-
tional planar spiral was achieved by placing a cavity behind the spiral. The cavity 
forms an image of the spiral which retransmits through the original spiral, and thus 
modifies the radiation pattern. Radar-absorbing material (RAM) is placed in the 
cavity to prevent this reradiation, but this absorbs about 50% of the power input 
to the antenna.

6.2 Band Theory

The band theory is used to explain the radiation from log spiral antennas, as well 
as Archimedean spiral antennas. Although there is no mathematical basis for this 
theory, it is in good agreement with experimental results, and is easily understood 
and compatible with intuitive reasoning [2].

The spiral antenna behaves like a two-wire transmission line that is gradually 
transformed into a radiating structure. Allowable radiation bands exist for all circles 
that have a circumference equal to an integral number of wavelengths. For a more 
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detailed explanation of the modes of radiation of a spiral, see Section 6.3.1. In the 
case of the fundamental mode, or mode 1, which has a main lobe along the axis, 
the radiation can be explained in a way detailed next.

Consider a two-arm spiral, as shown in Figure 6.1(a), fed by currents that are 
in antiphase (i.e., 180° out of phase), but of equal amplitude. Consider two dia-
metrically opposite points, A and A′, on the same arm of the spiral. If the current 
at A is in an upward direction, the direction of the current at A′ will depend on 
the phase delay caused by the length of the arc AA′. When the arc length is λ/2, 
the phase delay is 180°, so that instead of the current at A′ being in the opposite 
direction to the current at A′, (as would be the case for DC), it is in the same direc-
tion, because of this additional 180° phase delay. A similar situation occurs for the 
currents at B and B′ for the other arm of the antenna. Thus, all the currents are in 
the same direction at points A, A′, B, and B′. These points can all be considered to 
be at an average diameter of λ/π. The points C, C′, D, and D′ will similarly have 
currents in phase with each other but at right angles to the currents at A, A′, B, 
and B′. Since these currents are in time as well as spatial quadrature, the antenna 
radiates circularly polarized waves. This band of the spiral that has a mean diam-
eter of λ/π is called the first radiation band. This gives the fundamental mode, or 
mode 1, of radiation.

At other frequencies where the circumference of the spiral is not equal to a 
wavelength (i.e., the diameter = λ/π), the phase relationship between the currents in 
adjacent conductors becomes random, so that the net radiated energy is very small.

For mode 2, four arms are required, and the phase between the feed currents to 
opposite arms is zero or a multiple of 360°. As shown in Figure 6.1(b), the distance 
along the arc between points F and F′ that have in-phase currents will be λ, and 
thus the radiation band will have a circumference of 2λ, or a diameter of 2λ/π. The 
direction of the current vectors at F and F′ are in opposite directions, so that the 
radiation on axis will be zero, and split beams are obtained on either side of the 
boresight for this mode (see Figure 6.4).

Band theory can also be used to explain the deterioration in the axial ratio 
with decreasing spiral diameter for spirals that have their outer periphery left open-
circuited or short-circuited. This occurs because the energy traveling outwards 
towards the periphery is reflected back with an opposite sense. This reflected energy 
is at a lower level than the energy from the feed point, and thus the result is ellipti-
cal polarization. This can be seen in Figure 6.2, where the incident electric field Ei 
from the feed traveling towards the periphery is RHCP, and the reflected electric 
field Er is LHCP. Assuming that the two fields Ei and Er are in phase at time t = 0, 
we can see that if Ei > Er, the resultant electric field is right-hand elliptically polar-
ized. The ellipticity (the ratio of the minor to major axis) of the resultant electric 
field depends on the relative magnitudes of Ei and Er. As Er becomes of similar 
magnitude to Ei, the resultant field tends to linear polarization. This occurs when 
the spiral diameter is very small (<λ/π) and the reflected energy (from the edges) is 
of a similar magnitude to the initial energy from the feed [2]. Similarly, when the 
spiral diameter is very large, Ei >> Er and the resultant electric field would be nearly 
circularly polarized, and of the same sense as the incident electric field radiating 
from the center of the spiral towards the edges.
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Figure 6.1 Band theory for spiral antennas. (a) Mode 1 radiation with two arms, and (b) mode 
2 radiation with four arms.

6.3 Log Spiral

The logarithmic spiral is really an equiangular spiral, but is commonly called a log 
spiral. The two main types of log spiral are those on flat surfaces and those con-
formed onto cones (conical log spirals). The planar log spirals may be circular or 
square; but the circular ones are more commonly used. In order to have radiation 
of an electric field, we must have a change in the current with time. This can be 
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Figure 6.2 The resultant electric field from spiral antennas.

achieved by moving a current element or by changing the rate of current flow with 
time. Since current is the rate of change of charge with time, the rate of change of 
current is the same as the acceleration (or deceleration) of a charge. In the spiral 
antenna, the acceleration of a charge is achieved by the change of direction rather 
than the change of magnitude of the current. When the conductor (in which the 
charge is traveling) is bent into an arc normal to the direction in which the charge 
is traveling, the velocity vector v of the charge is changed to v′, as shown in Figure 
6.3(a). Using the triangle of forces, as shown in Figure 6.3(b), we can see that v′ − v 
is δv. The rate of change of δv with time gives us acceleration. The current is also 
attenuated in the case of a finite structure, as much as 20 dB in the first wavelength 
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for planar log spirals [3, p. 185] so that the current is negligibly small at the point 
of truncation. The decay is an approximately constant function of the electrical 
arm length (i.e., the arm in terms of wavelengths). This has the effect of constantly 
shortening the active arm length as the frequency is increased. However, since the 
electrical arm length remains relatively constant, the HPBW is also constant. Even 
the truncated spiral with just one or two arms can provide FI operation over a 
wide bandwidth.

The decrease of currents is less rapid for narrow arms or narrow slot structures 
[4, p. 14–9]. The equations that determine the inner and outer edges of a planar log 
spiral are given in polar coordinate form by the radius vectors r1 and r2 from the 
center. Both edges of the spiral have the same value of k and a, but one of them is 
rotated through an angle of δ with respect to the other. Thus, the angle δ defines 
the angular width of the arms.

 r1 = kea(a-d)  (6.1)

 r2 = keaa  
(6.2)

where r1 and r2 are the radial distances to the point P1 and P2 on the inner and outer 
edges of the spiral, as shown in Figure 6.3(a), α − δ is the angle with respect to the 
x-axis for the inner spiral, α is the angle with respect to the x-axis for the outer 
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Figure 6.3 The equiangular or log spiral antenna: (a) Velocity vectors for a charge moving in an 
arc; (b) addition of velocities using the triangle of vectors.
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spiral, k is a constant that determines the start of the spiral, and a is a constant 
known as the expansion coefficient.

Both k and a are positive constants, and a determines the rate of spiral, and 
usually takes values between 0.2 and 1.2 [3, p. 182]. Dividing (6.1) by (6.2), we get 
the ratio of r1 to r2, which is given by

 
K2 = r1

r2
= e−ad  (6.3)

where K2 is the ratio of r1 to r2

When the angle δ is zero, the inner and outer edges are coincident, and when δ 
= π, the outer edge of the first turn would touch the inner edge of the second turn 
of the spiral, so that the spiral would become a disk. Thus, in order to maintain a 
separation between the arms, the angle δ must lie between 0 and π; which means 
that K2 must lie between 1 and e–πa. When δ = π/2, or 90°, we have a self-com-
plementary antenna. A self-complementary antenna has the metal area congruent 
to the nonmetallic area, so that when the two are superimposed a solid metallic 
sheet would be obtained. Alternatively, a rotation of the metallic area causes it to 
be superimposed on the nonmetallic area. The width of the conductors is equal to 
the space between the conductors.

Taking natural logs, that is, logs to the base e for the general case of r, (6.2) 
can be rewritten as

 loge r = loge k + aa loge e  (6.4)

Since logee = 1, (6.4) reduces to loger = logek + aα. The rate of change of the 
radius with angle α is found by differentiating with respect to r, and is given by

 

dr
da

1
r
= a  (6.5)

This gives the rate of change of the radius vector r with angle α as

 

dr
da = ra  (6.6)

Thus, the rate of change of r is proportional to the expansion coefficient a. 
The expansion coefficient a defines the tightness of the spiral. If a is large, then r 
increases rapidly with angle α and we have a loosely wound spiral; whereas when 
a is small, r increases slowly and we have a tightly wound spiral.

The angle β, which the spiral (or, strictly speaking, the tangent to the spiral) 
makes with the position vector at a point on the spiral, is constant and this gives 
the equiangular spiral its name. The angle β is sometimes called the wrap or wind-
ing angle of the arms, and is given by

 
tan b = 1

a
 (6.7)
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b = tan−1 1

a
⎛
⎝

⎞
⎠  (6.8)

For loosely wound spirals a is large and angle β is small, and for tightly wound 
spirals a is small and angle β is large.

An equiangular or log spiral can also be recognized by the fact that the width 
of the spiral, as well as the distance between the turns, increases as the radial dis-
tance from the center increases.

The spirals can have two or more arms. A rotation of 360/N (where N is the 
number of arms) leaves the structure unchanged. Thus if the spiral has 2 arms, a 
rotation of 180° will superimpose the spiral onto itself where N is the number of 
arms, whereas if the spiral has 4 arms a rotation of 90° achieves the same result [4].

6.3.1 Modes of Radiation

There are a number of independent modes of radiation available which depend on 
the number of arms. For N arms there are (N − 1) modes available. The first, or 
fundamental, mode (which is also known as the sum pattern mode) has a single 
main lobe coincident with the boresight or main (z-) axis of the spiral. All the other 
modes have a null on the main axis and two lobes either side of the axis, with the 
angle of the lobe increasing in proportion to the mode number, as shown in Figure 
6.4. These higher-order modes are known as difference pattern modes.

For dual polarization, more than two arms are required. Most of the radia-
tion takes place in the first active region. For good spiral design, this active region 
has a circumference of approximately M wavelengths, where M is the mode num-
ber. Thus, mode 1 has an active region confined to a radius of λ/2π or 0.16λ, or a 
diameter d1 of 0.32λ, as described in Section 6.2. For loosely wound spirals, the 
attenuation in the first active region may not be large enough, and the waves travel 
to the second active region.

In addition to these higher-order positive modes, there are negative modes asso-
ciated with cavity-backed spirals. These are due to the energy being reflected from 
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Figure 6.4 The radiation patterns for the different modes of the planar log spiral antenna.
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the periphery of the spiral. In general, only the first order negative mode (M − 1) 
is of significance.

In order to obtain radiation on boresight, the opposite arms of the spiral have 
to be in antiphase; that is, 180° out of phase. The difference pattern modes occur 
when the opposite arms are fed in-phase.

The phase ϕp associated with a particular arm of the spiral [4, p. 14–4] is given by

 
fp = 2pMn

N
 (6.9)

where

ϕp  is the phase in radians;

M is the mode number;

n is the arm number;

N is the total number of arms.

Thus, for mode 1 propagation, the total number of arms is 2, and it can be seen 
that arm 1 has a phase of π and arm 2 has a phase of 2π. For mode 2, the total 
number of arms is 4, and the phases obtained for arms 1, 2, 3, and 4 using (6.9), 
are π, 2π, 3π, and 4π, respectively. Thus, it can be seen that the phase of opposite 
arms (e.g., 1 and 3) differ by 2π, that is, they are in phase.

6.3.2 Rotation of Radiation Pattern with Frequency

The radiation pattern of the spiral is rotated as the frequency is changed. When the 
frequency is changed from a frequency of, say, f to f/k3 (where k3 is a constant), the 
pattern is rotated through an angle of logek3/a. This rotation is not observable for 
tightly wound spirals (large angle β), since the radiation pattern has circular sym-
metry. However, for loosely wound spirals (small angle β), the beam is elliptical 
and the rotation of the beam can be observed [5]. Tightly wound spirals and those 
with wider arms tend to have smoother and more uniform radiation patterns, which 
exhibit smaller variations in HPBWs.

Although the width of a log spiral should increase with its distance from the 
feed point, in practice, if a metallic strip of constant width (or a wire of constant 
diameter) is used for each arm, a moderately wide bandwidth of between 5:1 and 
10:1 can be obtained for bidirectional spirals [4, p. 14–9].

6.3.3 Planar Log Spiral

The first planar log spiral was constructed by J. D. Dyson in 1958. It was a bidi-
rectional antenna. The planar log spiral can be implemented by either cutting a 
metal spiral (usually on a dielectric substrate) or by cutting a spiral slot in a metallic 
ground plate, as shown in Figures 6.5 and 6.6.

The spiral is shown with less than two turns for clarity. The planar log spiral 
exhibits a decrease of current with distance that is faster than 1/r and thus the 
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Figure 6.5 The metallic planar log spiral.

end effect becomes negligible at a distance that depends on the exact shape of the 
structure [4, p. 14–3].

6.3.4 Slot Planar Log Spiral

The planar spiral in slot form, as shown in Figure 6.6(a), is implemented by remov-
ing the metallic spiral from an infinite ground plane. This is based on Babinet’s 
principle, which states that a radiating flat strip element can be replaced by the 
equivalent shape slot in an infinite metallic sheet, since they both have the same 
radiation characteristics. The slot spiral of Figure 6.6 is shown with less than two 
turns for clarity.

6.3.4.1 Input Impedance

The log spiral antenna has a theoretical impedance at all frequencies, equal to the 
intrinsic impedance ξ0 of free space (120π or 377Ω) divided by the number of arms, 
[6, p. 520]. This applies to self-complementary spirals with opposite arms intercon-
nected. Thus, for the two-armed spiral antenna the theoretical input impedance is 
120π/2 (i.e., 188Ω). However, the measured input impedance is typically between 
50 and 100Ω [1, p. 700]. The experimental values are lower because the presence 
of the cable feeding the structure. Narrow arm structures have higher impedances 
[4, p. 14–9].
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Figure 6.6 Feeding arrangements for the slot form of the planar log spiral. (a) Infinite balun 
coaxial line feed, and (b) axially-fed coaxial line.

6.3.4.2 The Arm Length of the Spiral

The length of the arm of a spiral is specified as the length along the center line of 
the arm. In order to calculate the length of an arm, consider the elementary length 
δl as shown in Figure 6.7.

Using Pythagoras’ theorem, we have
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dl2 = (rda)2 + dr2 = dr2 r
da
dr
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 (6.10)

and thus we can say the following approximation holds

 
dl = r dadr

⎛
⎝

⎞
⎠

2

+ 1
⎡
⎣⎢

⎤
⎦⎥

1
2

dr  (6.11)

The total length L is found by evaluating the integral between the limits of r1 
and r2

 

L = r dadr
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r2

r1

∫  (6.12)

From (6.6) we can see that (rdα/dr) is equal to 1/a, and thus (6.12) can be 
rewritten as

 

L = 1
a
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Figure 6.7 Calculation of the arm length of a log spiral.
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6.3.4.3 Figure of Merit

The diameter d (see Figure 6.5) of the start of the spiral governs the high-frequency 
end of the antenna. This, in turn, is governed by the feed used. The low-frequency 
limit is determined by the overall diameter D of the spiral. If the diameter d of the 
feed region is, say, λH/10 (where λH is the wavelength at the high-frequency end) 
and the overall diameter D is λL/2 (where λL is the wavelength at the low-frequency 
end), and the ratio D/d is 25, we have

 

D
d

= 25
1

=
lL / 2
lH /10  (6.14)

Thus, the ratio of the wavelengths is 1:5, and hence the frequency bandwidth 
is 5:1. The ratio of D/d is called the dimension ratio and λH/λL is called the wave-
length ratio. The product of the dimension ratio and the wavelength ratio is taken 
as the figure of merit for a particular structure, and is a measure of how compact 
an antenna can be made for a given bandwidth. This figure of merit is usually one 
or greater. In the above case, the dimension ratio is 25 and the wavelength ratio is 
1/5, which gives a figure of merit of 5 [4, p. 14–10].

6.3.4.4 Feeding Arrangements

The feed for the spiral can be located axially, and may consist of a coaxial cable 
with the inner conductor connected to one arm, and the outer conductor connected 
to the other arm (using a tapered balun for instance), as shown in Figure 6.6(b). 
Alternatively, a balanced feed can be used by bonding a cable to the underside of 
the metal between the arms [1, p. 700], as shown in Figure 6.6(a). Because of the 
rapid attenuation of the field with distance along the spiral, the current flow in the 
cable is negligible with this arrangement [4, p. 14–9]. The cable may be embedded 
in the ground plane, or soldered to it, and this arrangement is known as an infinite 
balun. This is the only type of balun that will allow the fullest use of the infinite 
impedance and pattern bandwidths of this type of antenna. [3, p. 183]. The main 
disadvantage of this type of feed is that it requires the use of a sufficient ground 
plane to carry the feed cable, and as a consequence, the feed region in the center is 
fairly large. This, in turn, restricts the upper frequency limit of the antenna. When 
the diameter of the cable approaches the width of the metal to which it is attached, 
it is necessary to attach a dummy cable to the opposite arm to maintain symmetry 
of construction and to prevent a tilt in the radiation pattern. Consistently, good 
radiation patterns can be obtained with spirals between 1¼ and 1½ turns.

The electric field components Eθ and Eϕ, in the θ and ϕ directions (as shown in 
Figure 6.8(a)), can be measured separately by antennas oriented at right angles to 
each other. A practical bidirectional planar log spiral has an unsymmetrical radia-
tion pattern that also varies with frequency, as shown in Figure 6.8 (b–i). These are 
radiation patterns measured by Dyson [3, Figures 8 and 9], at frequencies between 
595 MHz and 12 GHz (i.e., a bandwidth of 20:1). These have been obtained for a 
slot spiral cut into a 1/32-inch-thick copper sheet of a 14-inch square. This sheet 
is then bolted onto a larger ground plane, but the size of this ground plane has not 
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been stated. The spiral had a = 0.30, k = 0.2, K2 = 0.62, the arm length was 38.7 
cm, and the maximum diameter was 28.4 cm.

The variation of the HPBW with azimuth angle is quite marked. For instance, 
at 3.979 GHz the HPBW varies between 60° and 105°, as shown in Figure 6.9(a). If 
the frequency is varied and the HPBW is viewed in the azimuth plane ϕ, the variation 
at spot frequencies in the range 2.472 to 7.505 GHz is shown in Figure 6.9(b). A 
spiral antenna can have any number of arms. However, the variation of the radiation 
pattern with the expansion coefficient a can only be calculated theoretically for an 
antenna having an infinite number of arms [6, p. 520]. This is known as a sheath 
spiral. The variation of the radiation pattern for such a spiral, with the expansion 
coefficient a, is shown in Figure 6.10. It can be seen that when a is greater than 
one, the HPBW is proportional to a, and the gain is inversely proportional to a. 
However, when the expansion coefficient a is less than one, there is no monotonic 
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Figure 6.8 Radiation patterns for a planar log spiral in the ϕ = 0 deg and ϕ = 90 deg planes 
for E and E . (a) E and E vectors; (b) Frequency 595 MHz, axial ratio 1.94; (c) Frequency 1 GHz, 
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dependence on a [6, p. 520]. In practice, an antenna with only a few arms (even as 
few as two) is a reasonably good approximation for a sheath spiral.

6.3.5 Cavity-Backed Spiral

The planar log spiral when placed in front of a cavity (λ/4 deep), can be used to give 
an unidirectional radiation pattern. An image of the original spiral is formed, and 
since it is in antiphase with the original spiral, and appears to be λ/2 behind the 
original, it constructively reinforces the field radiated by the original spiral. How-
ever, the image of the spiral radiates through the original spiral and distorts the 
pattern. In addition, since the cavity depth is around λ/4 for only a limited range of 
frequencies, the bandwidth is reduced to around 2:1 (i.e., an octave). If the cavity-
backed spiral is loaded with radar-absorbing material (RAM) to absorb the radia-
tion, the bandwidth can be increased to 10:1 [4, p. 14–9]. However the absorbing 
material used in the cavity dissipates about 50% of the total input power to the 
antenna; thus, the efficiency of the antenna is reduced to less than 50% in the case 
of a transmitting antenna. In the case of a receive antenna, this dissipative loss raises 
the antenna noise temperature and thus reduces the system detection threshold [7].

The cavity diameter must be greater than or equal to the spiral diameter. If the 
cavity diameter is made too large, higher-order coaxial or waveguide modes may 
be excited in the cavity. This would result in pattern deterioration at these cav-
ity resonant frequencies. If the cavity diameter is made too small, the gain of the 
antenna is reduced, while the VSWR and ellipticity ratio is increased [2, p. 86]. The 
planar-backed spiral is also used as a feed for a parabolic reflector.

6.3.6 Conical Log Spiral

The conical log spiral antenna is an equiangular spiral projected onto a conical 
surface, as shown in Figure 6.11. It can also be considered as a tapered form of the 
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Figure 6.10 Variation of the radiation pattern of a planar log spiral, with the expansion 
coefficient a, for an infinite number of arms. (After [6, p. 520].)
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helical antenna, and for small cone half-angles (θhc ≤ 10 deg) the conical log spiral 
behaves like a helical antenna. It does not require a cavity in order to produce a 
unidirectional radiation pattern. The conical log spiral can be used at frequencies 
below 1 GHz, and commercially available antennas, when made to conform to 
MIL-STD drawings, cover the frequency ranges from 100 MHz to 1 GHz, 200 
MHz to 1 GHz, and 1 to 10 GHz. However, they can be used from about 50 MHz 
to 18 GHz. Typical HPBWs are of the order of 60° in elevation and azimuth, and 
gains are of the order of 5 to 8 dBi. They are used for radiated emissions as well as 
susceptibility measurements.

For conical log spirals that are excited at the apex, the field is transverse to the 
radial direction and the current decreases inversely as the radial distance r from the 
center. This decrease is not large enough to make the end effects negligible when 
the cone is truncated [4, p. 14–3]. Calculated magnitudes of the attenuation are in 
the range of 7 to 10 dB per wavelength along the spiral arm. End effects produce 
variations in the radiation pattern.

The constants that govern the shape of the conical log spiral are similar to those 
of the planar log spiral, but they are dependent on the cone half-angle θhc. The 
expansion coefficient a is equal to a′/sinθhc, where a′ is the expansion coefficient 
for a planar log spiral. Thus, the conical log spiral equations equivalent to (6.7) and 
(6.8) for the planar log spiral are given by

θ
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r2
1

P
P1

2

r

Figure 6.11 The conical log spiral.
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tan b = 1
a
=

sinqhc
′a

b = tan−1 sinqhc
′a

 (6.15)

where θhc is the cone half-angle and a′ is the expansion coefficient on the equivalent 
planar spiral. The equations that determine the inner and outer edges of a conical 
log spiral are given in polar coordinates formed by the radius vectors r1 and r2 from 
the center. Both edges of the spiral have the same value of k and a, but one of them 
is rotated through an angle of δ with respect to the other. The angle δ thus defines 
the angular width of the arms.

 r1 = kea(a-d)  (6.16)

 r2 = keaa  (6.17)

where r1 and r2 are the radial distances to the point P1 and P2 on the inner and 
outer edges of the spiral, α − δ is the angle with respect to the x-axis for the inner 
spiral, α is the angle with respect to the x-axis for the outer spiral), k is a constant 
that determines the start of the spiral, and a is a constant known as the expan-
sion coefficient.

Both k and a are positive constants, and a determines the rate of spiral. The 
ratio of r1 to r2, is given by

 
K2 = r1

r2
= e−ad  (6.18)

As the cone half-angle decreases from π/2 (planar spiral), the spiral becomes 
more tightly wound. For small values of a′ (of the order of 0.02), the main lobe is 
rotationally symmetrical [8, p. 331]. The pattern rotates with frequency, as in the 
case of a planar log spiral, but this effect is not observable in the case of rotation-
ally symmetrical beams. Like the planar log spiral, the conical log spiral can be 
constructed in either conductor or slot form.

The two-arm conical spiral is a symmetrical structure and can be fed by a bal-
anced two-wire transmission line, brought along its axis and a wire connected to 
each arm. Preferably, this should be a shielded line. A metallic shield or cylinder 
on the axis appears to have very little effect on the antenna characteristics, as long 
as its diameter is less than one third of the antenna diameter at any point on the 
axis [8, p. 495]. The balun to convert from an unbalanced to a balanced line may 
also be placed inside the antenna, if it is nonradiating and not affected by the fields 
inside the cone. The tapered line balun, which is extremely wideband, can be used, 
although there appears to be some interaction between the fields around the balun 
and those due to the antenna [9, p. 495]. If the pattern degradation can be toler-
ated, then this balun is ideally suited to the conical log spiral. Alternatively, the 
feed may be a coaxial cable bonded to the spiral arm (or to the ground plane, in the 
case of the slot form) as an infinite balun, in the similar manner to the planar case. 
However, the use of an infinite balun results in an effective increase in the width 
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of the arms, and the impedance and other parameters will therefore be equivalent 
to those obtained for larger values of angular width δ.

If the arms are decreased to a narrow constant width, they can be formed from 
cable alone. In this wire version, the feed cable becomes one arm, and at the apex 
the center conductor is connected to the outer braid of the dummy cable, which 
forms the opposite arm of the antenna. The apex diameter of approximately 4 cm 
is a practical limit of a feed cable of type RG8/U, and an upper-frequency limit of 
around 1700 MHz [8, p. 333]. If RG141/U cable is used, the apex can be reduced to 
2 cm, and thus the upper frequency can be extended. However,this type of antenna 
constructed from cables results in an effective increase in the width of the arms, and 
the impedance and other parameters will therefore be equivalent to those obtained 
for arms of larger widths.

The conical spiral is fed at its apex, and in common with other frequency-
independent antennas, provides backfire radiation. However, this backfire radiation 
occurs only for cone half-angles of 15° or less. As the cone angle is increased, there 
is a marked deterioration in the front-to-back ratio, until the value 90° is reached, 
when the antenna becomes a planar spiral and the pattern becomes bidirectional.

6.3.6.1 The Active Region

At the feed region of a two-arm spiral, out-of-phase traveling-wave currents are 
excited. These currents do not radiate until they reach the active region. The active 
region is defined as that region which controls the primary characteristics of the 
radiated field [9]. As the smaller turns are eliminated, there is very little observ-
able change in the near-field distribution until the antenna is truncated at a radius, 
such that the near field is approximately 3 dB below the maximum recorded near 
field. This sets the upper edge of the active region. Similarly, as successive turns are 
removed from the base end, there is a negligible change until the antenna is trun-
cated at a radius, such that the near field is approximately 15 dB below the maxi-
mum recorded near field [9, p. 491]. This sets the upper edge of the active region. 
The active region is therefore defined as that region between the electrical radius 
r–

3 (at the highest frequency of operation) at which the electric field magnitude is 3 
dB below the maximum on the apex side, and the electrical radius r +

15 (at the lowest 
frequency of operation) at which the magnitude is 15 dB below the maximum on 
the base side. The axial ratio of the electric field polarization ellipse on the boresight 
axis, for this active region, is 3 dB or less at the lowest frequencies. The magnitude 
of the electric field is measured by using a near field small shielded loop probe at 
a distance of 0.03λ from the surface of the antenna [9, p. 490]. The bounds of the 
active region vary for different cone half-angles θhc and wrap-angles β. These bounds 
are based on the near-field measurements, and they predict the far-field pattern 
most accurately for cone half-angles θhc of approximately 20 deg. For smaller cone 
angles, the bounds are larger, and for larger cone angles, the bounds are smaller.

6.3.6.2 Bandwidth

The bandwidth of the structure Bs is defined as the ratio of the radius of the base 
D/2, to the radius of the apex d/2. The operating bandwidth Bop of the antenna is 
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defined as the ratio of the structure bandwidth Bs to the bandwidth of the active 
region [9, p. 490]. The bandwidth of the active region Bar is given by

 
Bar =

r15
+

r3
−

 (6.19)

where r–
3 is the electrical radius on the apex side at which the magnitude of the near 

field is 3 dB below the maximum at the highest frequency of operation and r +
15 is 

the electrical radius on the base side at which the magnitude of the near field is 15 
dB below the maximum at the lowest frequency of operation.

6.3.6.3 Radiation Characteristics

The narrow on-axis beam occurs for small cone angles and wrap angle β = 80° 
approximately, with all turns of the active region being phased for backfire radia-
tion. As the active region increases, the beam broadens and tends towards a multiple 
beam. In general, as the aperture of an antenna increases, the beam gets narrower. 
However, in the case of log conical spirals, the phase distribution across the spiral 
results in radiation occurring in progressively different directions. Larger turns or 
more widely spaced elements are phased to radiate at an angle to the axis. At a half 
cone angle of 15°, the radiation is mainly on axis for angles of wrap β = 80 deg. 
However as the angle of wrap is decreased to 45°, a major portion of the active 
region is phased for broadside radiation.

The directivity of the antenna can be calculated from the HPBWs in the orthogo-
nal planes and is given by [9, p. 493]

 
DdB = 10log10

32,000
q1f1

 (6.20)

where DdB is the directivity in dBi (with respect to a circularly polarized isotropic 
source), and θ1 and ϕ1 are the HPBWs is degrees in the orthogonal planes.

The electric field components Eθ and Eϕ, in the θ and ϕ directions, can be mea-
sured separately by antennas oriented at right angles to each other. This variation 
is due to radiation due to higher-order modes which do not have rotationally sym-
metrical beams. The difference in HPBWs varies between 3° and 20°, depending on 
the spiral wrap angle β and the cone half-angle θhc. The difference in the HPBWs 
for the Eθ and Eϕ components [9, Figure 12] is shown in Figure 6.12. In general, it 
can be said that the difference increases with a decreasing wrap angle and increas-
ing cone half-angle. It can be seen that for very small cone angles of 2° (θhc = 1°) 
the difference in the HPBWs is around 3° for a wrap angle of 80° and increases to 
9°, for a wrap angle of 45°. For large cone half-angles of 15°, and a wrap angle of 
45°, the difference is as high as 20°.

For cone half-angles of 10°, and β = 73°, the measured HPBWs for Eθ and Eϕ 
polarization are 70° and 90°, respectively [8, p. 331]. The HPBW of the order of 40° 
to 50° can be obtained with small cone antennas. However, the coverage of very 
wide bandwidths would entail the use of very long antennas for these small cone 
angles. The length of the antenna, in terms of the longest wavelength λL, is given by
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L
lL

= 1
2tanqhc

D
lL

− d
BlL

⎡
⎣⎢

⎤
⎦⎥

 (6.21)

where D is the diameter of the base, d is the diameter of the apex, λL is the wave-
length of the lowest operating frequency, θhc is the cone half-angle, and B is the 
operating bandwidth. As the active region moves towards the truncated tip of the 
cone, the HPBW may at first become narrower and then the pattern may become 
rough. Any lack of precision in the structure of the antenna will cause the pattern 
to tilt or become distorted. As the frequency is increased further, the beam broadens 
and tends to break up into a number of lobes [9, p. 493]. Cone half-angles of 15° 
or less have higher front-to-back ratios. For K2 between 0.85 and 0.9, and β = 73°, 
an apex diameter of λH/4, and a base diameter of 3λL/8 provides a front-to-back 
(F/B) ratio of 15 dB or more.

The axial ratio of the polarization ellipse for angles off boresight (from 0° to 
90°) varies between 2 and 4 dB for a wrap angle β = 45° and θhc = 10° [4, p. 14–12]. 
The axial ratio is 2:1 (3 dB) up to about 60° off axis.

In the case of wrap angles β ≤ 45° and θhc  ≤ 7.5°, as the antenna deviates from 
the self complementary structure of δ = 90°, the front-to-back (F/B) ratio also may 
deteriorate and the pattern breaks up into many lobes. A large portion of the energy 
is also radiated in the direction of the base, that is, end-fire instead of backfire 
radiation. For β = 80°, the F/B ratio increases from 6 to 25 dB as θhc decreases from 
22.5° to 7.5° [8, p. 14–12].

For self-complementary antennas, δ = 90°, the variation of the average HPBW 
(for Eϕ and Eθ polarization) with wrap angle β is shown in Figure 6.13 with the cone 
angles as a parameter. The HPBWs are much larger for self-complementary antennas.

The approximate directivity can be calculated from these HPBWs by using the 
formula of (6.20). These directivities have been calculated and are plotted in Figure 
6.14 for the HPBWs of Figure 6.13.

θ = 1.0
deg

hc hc hc hcθ = 5
deg

θ = 2.5
deg

E with wrap angle and the cone half angleβ θ

θ = 15
deg

Wrap angle β in degrees

0

5

10

15

20

25

45 50 55 60 65 70 75 80an
d

in
 d

eg
re

es
E φ

D
iff

er
en

ce
 in

 t
he

 H
PB

W
s 

fo
r

E θ

y

z

x

θ
φ

and
vectors

EφEθ

Eφ

Eθ

Figure 6.12 Variation of the difference in the HPBWs for the Eθ and Eϕ components with spiral wrap 
angle β, with cone half-angles as a parameter.



6.3 Log Spiral 159

0
20
40
60
80

100
120
140
160

45 50 55 60 65 70 75 80 85

Av
er

ag
e 

H
PB

W
s 

in
 d

eg
re

es

Wrap angle in degreesβ

θ = 1.0°
hc

θ = 5°
hc

θ = 2.5°
hc

θ = 15°
hc

z

y

x

θ

φ

E and E vectorsφθ

Eφ

Eθ

Figure 6.13 Variation of the average HPBWs with spiral wrap angle β, with the cone half-angle 
as a parameter.

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

0

2

4

6

8

10

12

14

16

Av
er

ag
e 

di
re

ct
iv

ity
 in

 d
Bi

Wrap angle b in degrees

θ = 1.0
hc

θ = 5°
hc

θ = 2.5°
hc

θ = 15°
hc

y

z

x

θ

φ

E and E vectorsφθ

Eφ

Eθ

Figure 6.14 Variation of the average directivity for Eϕ and Eθ with spiral wrap angle β, with the 
cone half-angle as a parameter.

The typical variation of gain and antenna correction factor with frequency for a 
commercially available conical log spiral is shown in Figure 6.15, for the frequency 
range of 200 MHz to 1 GHz (ETS-Lindgren 3101). It can be seen that the gain 
increases rapidly from approximately −6 dBi at 200 MHz, to a value of 3.6 dBi at 
350 MHz, and then oscillates between 3.5 and 4.5 dBi. The antenna correction factor 
varies between 17 and 27 dB, with the minimum value occurring around 350 MHz.

For the frequency range of 1 to 10 GHz (ETS-Lindgren 3102), the typical 
variation of gain and antenna correction factor with frequency for a commercially 
available conical log spiral is shown in Figure 6.16. It can be seen that the gain does 
not increase monotonically, but varies between approximately 0.3 dBi and 4 dBi, 
reaching its lowest value of 0.3 dBi at 10 GHz. The antenna correction factor, on 
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the other hand, shows a steady increase from its minimum value of about 27 dB at 
1 GHz, to its maximum value of 50 dB at 10 GHz.

6.3.6.4 Input Impedance

The mean impedance level appears to slowly decrease with decreasing cone half-
angle θhc [8, p. 333]. The approximate measured input impedance varies between 
129Ω and 153Ω for pitch angles of 17° and half cone angles between 10° and 30°. 
These values were obtained for K2 = 0.925, arm length L = 1.5m, a = 0.303 sin θhc, 
and wrap angle β = 73°.

The diameter of the base of the spiral determines the lowest frequency, and the 
diameter is approximately λ/2 at this frequency. The truncated apex diameter is 
approximately λ/4 at the highest frequency [1, p. 703].

The impedance is inversely proportional to the width of the arms. The impedance 
can be varied between 80Ω and 320Ω by reducing the angular width δ of the arms 
from 160° to 20° (narrow width). This variation with the angular width is shown 
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in Figure 6.17, with the cone half-angles θhc of 7.5°, 10°, and 15° as parameters. The 
impedances obtained for a cone half-angle θhc of 10° and an infinite balun feed are 
appreciably lower, and vary between 150Ω and 60Ω.

If the arm width is kept constant at 90°, and the cone angle is increased, the 
impedance increases, until the cone becomes a plane at θhc = 90 and the imped-
ance approaches the theoretical value of 60π or 188Ω [9, p. 496]. As the angle of 
wrap β increases, the impedance also increases, although the change is very small.

When the antenna is operated at a frequency such that there is no distortion due 
to the truncated tip or base, the variation of the Eθ and Eϕ radiation patterns with 
cone half-angles θhc, spiral wrap angle β, and angular arm width δ, is shown in 
Figure 6.18. It can be seen that as the wrap angle is increased, the patterns become 
more even and tend towards the single-lobe pattern. There is also a smaller differ-
ence between the Eθ and Eϕ electric field patterns. At the small cone half-angle θhc 
= 7.5°, the patterns are smoother for the smaller wrap angles (β = 70°) than they 
are when θhc is larger (15°). For θhc < 10° and wrap angles > 75° it is possible to use 
thin arms or even constant width arms [9, p. 498]. The constant width arms can 
be constructed of coaxial cable, and this is used in many commercially available 
conical log spirals.

In the plane perpendicular to the axis of the cone, the pattern is almost omnidi-
rectional. As in the case of other FI antennas, the radiation is in the backfire direction.

Dual polarization can be obtained by having another set of spirals wound in 
the opposite sense on the inside of the cone.

6.3.6.5 Phase Center

The phase center of an antenna is the point from which the EM waves appear to be 
emanating. The conical log spiral does not have a unique phase center, although an 
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apparent phase center can be defined over most of the main beam [9, p. 493]. The 
apparent phase center in terms of the cone radius Rc/λ is given by

 

Rc

l = 1.2sin b
2p(1.4 + cos b)  (6.22)

Because the fields have higher amplitude nearer the apex, the phase center tends 
to remain in this region, although the radiation region moves further away from 
the apex at lower frequencies [9, p. 494].
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6.4 Archimedes Spiral

The Archimedean spiral, as shown in Figure 6.19(a), is sometimes called an arith-
metic spiral. Although the Archimedean spiral is a broadband antenna, it is not a 
true FI antenna.

The equations that determine the inner and outer edges of the Archimedean 
spiral are given by r1 = aα − δ and r2 = aα. The width of the arm is given by r1 − r2 
=aαδ. Thus, the width of the arm is constant for a fixed value of the expansion 
coefficient a and angular arm width δ. The adjacent turns of a single spiral are 
separated by a distance of 2aπ.

The angle β, which the radius position vector makes with the tangent to the 
spiral, is not constant with the angle α, as in the case of log spirals. The angle β is 
given by

 tana = b  (6.23)

Archimedean spirals must have many turns and be tightly wound to operate 
over wide bandwidths, whereas equiangular spirals can be constructed with just 1 
or 2 turns that are loosely wound. For a tightly wound spiral at distances remote 
from the origin, the angle β varies slowly with the angle α and the Archimedean 
spiral closely approximates a tightly wound log spiral [1, p. 698].

6.4.1 Cavity-Backed Archimedean Spiral

An empirical estimate of the gain and axial-ratio variation with the cavity diam-
eter in terms of wavelengths is shown in Figure 6.20 [1, p. 14–16]. The results were 
obtained for a large number of spirals in the 0.2 to 4 GHz frequency band. The gain 
curve was normalized to the average axial ratio. The gain relative to an isotropic 
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antenna, that is, the gain in decibels referenced to an isotropic antenna, increases 
almost linearly until a knee is reached at around λ/3, and then the gain curve starts 
to asymptotically approach the maximum gain at 0.5λ.

The boresight axial ratio variation with the cavity diameter is shown in Figure 
6.20(b). The deterioration in the axial ratio obtained with the smaller cavity diam-
eters is to be expected, since the energy reflected from the edges of the spiral has the 
opposite sense of polarization to the energy radiated at the center of the antenna.

The variation of gain (normalized to the maximum gain attainable) with the 
cavity depth is shown in Figure 6.21. It can be seen that the maximum gain is 
obtained when the cavity depth cd is λ/4. Increasing the number of turns increases 
the energy radiated, since the effective aperture is now increased.

6.4.1.1 Feeding Arrangements

The feed and/or balun should be symmetrical and nonradiating. The most com-
mon feeding method used for the Archimedean spiral is a rigid coaxial line which 
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Archimedean planar spiral with cavity diameter.
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is placed axially within the cavity. The center conductor is connected to one arm 
and the outer conductor is connected to the other arm. The coaxial line is tapered 
to obtain a good match over the frequency range of an octave or more [2, p. 89]. 
However, the feed itself radiates, giving rise to an unsymmetrical beam, and affect-
ing the ellipticity of the electric field polarization. The beam may also be squinted 
by a feed that radiates or is not well balanced, and thus gives rise to boresight error.

A printed circuit balun (see Figure 6.19) is another popular balun that may be 
used. This consists of a hairpin bend used on one side of the board, and a balanced 
line on the other side. The spiral arms are soldered directly to the balanced line. 
This type of balun has been used with antennas of octave bandwidth in the 200 
MHz to 4 GHz frequency range, and ellipticity ratios of less than 3 dB have been 
obtained up to 60 degrees off boresight. Boresight errors have also been virtually 
eliminated, and VSWRs of less than 2:1 have been obtained [2, p. 89].

6.5 Microstrip Planar Spiral

Microstrip antennas are usually fairly narrowband. However, a spiral-mode 
microstrip (SMM) has been designed by Wang and Tripp [10] that has similar band-
width to the cavity-backed spiral, and at the same time has the smaller volume and 
conformability associated with a microstrip antenna. The SMM was constructed 
with a half-inch wide ring of RAM that was just thick enough to fit between the 
spiral and the ground plane, and such that it is half underneath and half outside the 
truncated spiral. The RAM prevents the generation of higher-order phase modes, as 
well as the generation of the negative first order mode (M = −1), which is the first 
order mode being reflected from the outer periphery of the spiral. The gap widths 
(between the printed spiral and the ground plane) of 1.5 and 7.6 mm were used 
for Archimedean and equiangular spirals, and bandwidths of 6:1 were achieved in 
the frequency range of 2 to 12 GHz. The spiral diameters were 3 inches, and the 
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diameter of the ground plane was 18 inches (46 cm). The smaller gap widths give 
lower gains and efficiencies at the lower operating frequencies. The axial ratios 
of the SMM antennas are larger than those obtained for the cavity spiral. They 
also suffer from pattern ripples and beam asymmetries, which are thought to be 
due to the imbalance of the balun feed and the edges of the finite ground plane. 
When compared with a 2.5-inch diameter cavity-loaded spiral, the gains of 3-inch 
diameter SMMs (with gap widths of 7.6 mm) were between 1 and 3 dB better over 
the frequency range 2 to 12 GHz. SMM offers several advantages over the cavity-
backed spiral. The cavity-backed spiral has a cavity whose depth has a comparable 
dimension to the diameter of the spiral. For an antenna with a bandwidth of 2 to 
18 GHz, the SMM antenna has a thickness of 0.38 cm (0.15 in) compared with 
5.08 cm (2 in) of a cavity-backed spiral.

6.6 Discone Antenna

The principle of the discone antenna has been described in Chapter 5 and its charac-
teristic parameters are shown in Figure 6.22. The discone antenna is often supplied 
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Figure 6.22 The discone or Kandoian antenna in the 1 to 2 GHz frequency range. (a) Physical 
characteristics of a discone antenna, and (b) radiation pattern of a discone antenna in the 
elevation plane.
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with a snap-on N-type connector, which provides the RF feed as well as the mechani-
cal support for the disk. At frequencies above 1 GHz, the minimum diameter of the 
cone Cmin must of necessity be of the order of λH/12, where λH is the wavelength 
of the highest operating frequency, in order to accommodate the connector. At fre-
quencies between 1 and 2 GHz, Rappaport [11, p. 37] has found that for discone 
antennas mounted on the end of N-type connectors, (and thus having values of Cmin 
= λH/12, approximately) the diameter w of the feed pin must be taken into account. 
The dimension s (disk-to-cone spacing) also has a significant impact on antenna 
loading for large electrical dimensions of Cmin, and must be taken into account. 
The optimum separation s for a cone flare angle of 45 deg was found to be 0.41 
Cmin, but for larger flare angles, s = 0.5 Cmin was the optimum spacing. At lower 
frequencies (below 1 GHz) s = 0.3 Cmin was used, as stated in Chapter 5.

The best flare angles (to provide a low VSWR) range between 45 deg and 75 
deg, and the diameter of the feed conductor w should be a third of the diameter 
of the top of the cone (w = 0.33 Cmin), at frequencies for which Cmin is of the order 
of λH/12 or greater. At lower frequencies (Cmin ≤ λH/75), the optimum value of w 
is 0.3 Cmin, as stated in Chapter 5. The impedance of the connector is a function 
of w/Cmin, and for a ratio equal to 0.3, the characteristic impedance of 66.5Ω is 
obtained, which presents a good match to a 50Ω transmission line. These values 
achieve a VSWR of 1.3:1 over an octave bandwidth. The disk diameter should also 
be 0.75 Cmax and the slant height L should be 1.15λL/4 (where λL is the wavelength 
at the lowest operating frequency), instead of values of 0.7 Cmax and λL/4 respec-
tively for lower frequencies.

Four cones were constructed with Cmin = 19 mm (0.75 in), and flare angles ϕ of 
45 deg, 60 deg, 75 deg, and 90 deg. The body of each cone was soldered to a UG-
21D/U N-type connector, and the rear end of the connector was made flush with 
the top of the cone. Disks of varying diameters were soldered to the rods that were 
in turn soldered to the center pins of the connectors.

The dimensions for the four antennas are shown in Table 6.1.
The antenna can also be optimized by adjusting the position of the clamp nut. 

This clamp nut tuning changes the dimension s (disk-to-cone spacing), and also 
reduces the impedance mismatch created within the connector. An improvement 
of around 5 dB was obtained in the antennas with larger cone angles (65 to 90 
deg) but for the cone flare angle of 45 deg, the disk diameter had to be increased 
to 1.1 Cmax and the feed pin diameter had to be reduced to 0.25 Cmin to obtain an 
improvement in the VSWR.

Table 6.1 The Parameters of Four Antennas with Different Flare Angles

Flare Angle Antenna 1 Antenna 2 Antenna 3 Antenna 4

ϕ 45 deg 60 deg 75 deg 90 deg

Cmax 74.2 mm 95.2 mm 108 mm 120.5 mm

Cmin 19.1 mm 19.1 mm 19.1 mm 19.1 mm

L 73 mm 73 mm 73 mm 73 mm

D 55.65 mm 71.4 mm 81 mm 90.4 mm
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6.7 Double-Ridged Horns

Double-ridged horns can be used from around 50 MHz to above 40 GHz, but com-
mercially available horns are usually found in the frequency range of 200 MHz to 
2 GHz, and 1 to 18 GHz

The gains of double-ridged horns vary between 2.5 to 8 dBi for the frequency 
range of 200 MHz to 1 GHz, and 4 to 42 dBi for the frequency range of 1 to 18 
GHz. HPBWs vary between 40 deg and 70 deg, in the H and E planes, respectively. 
Double-ridged horns are particularly useful for immunity and susceptibility testing, 
since they can handle powers of up to 800W in the lower frequency range and up 
to 500W in the higher frequency range.

In order to understand the behavior of double-ridged horns, we must consider 
doubled-ridged waveguides, which are smooth-walled rectangular waveguides with 
ridges. The basics of waveguide theory are explained in Section 6.7.1.

6.7.1 Waveguide Theory

Waveguides may be of a rectangular, circular, or elliptical cross section. The rect-
angular waveguides could have smooth inner walls or may have one, two, or four 
ridges, in which case they are known as ridged waveguides. Waveguides are used at 
frequencies above about 1 GHz, since coaxial lines are subject to attenuation (which 
increases with frequency) and they also cannot withstand high power. At lower 
frequencies, the size of the waveguide becomes too large to be practical, although 
waveguides are sometimes used for specialized applications at frequencies down to 
300 MHz in the case of smooth-walled waveguides, and down to 100 MHz in the 
case of ridged waveguides. Waveguides cannot support a TEM wave, since one of 
the requirements for its propagation is two separate conductors.

The EM wave propagates in the waveguide in a similar manner to the way light 
waves travel in an optic fiber. We can imagine the waves reflected off the metal walls 
as they travel down the guide. When we draw rays of light in optics, the wavefront 
moves perpendicular to these rays. Consider a rectangular waveguide of cross sec-
tion dimensions a and b, as in Figure 6.23(a). The guide is excited at a point between 
the two side walls, and waves reflect off the side walls. In Figure 6.23(b), the rays 
are shown reflecting off the walls, whereas in Figure 6.23(c), the wavefronts are 
shown. The dotted lines indicate troughs and the full lines represent the crests. The 
waves reflected off the side walls cross and where two troughs cross at point Q, 
for instance, the resultant is a trough of twice the magnitude of the trough of each 
individual wave. Similarly, where crests cross (at P for instance) the resultant crest 
is twice the magnitude of the individual crests. Thus, the resultant wave traveling 
down the guide is of twice the amplitude of the individual waves. This is the guided 
wave, and the distance between crests or between troughs is the guide wavelength 
λ0. The distance between P and Q is half this value, and PS is a quarter of this value. 
The relationship between the guide wavelength and the wavelength of the individual 
incident waves can be derived using geometry and trigonometry. The wavelength of 
the individual waves is the same as the wavelength of the waves in free space, and 
thus this is known as the free-space wavelength λ0. In Figure 6.23(c), the distance 
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denoted by TQ is that between a crest and a trough, and is therefore half this free-
space wavelength. The width of the guide is a, and the distance RS is a/2.

In triangle PTQ, the sine of angle TPQ is given by

 
sinq =

l0 / 2
lg / 2

 (6.24)

In triangle PRS using Pythagoras’ theorem
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Equating (6.24) and (6.25), we get
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Squaring and cross multiplying gives
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Dividing throughout by l0
2lg

2a2 / 4  gives
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Let us now consider what happens as we vary λ0. We will consider four cases; 
when it is equal to 2a, slightly less than 2a, much less than 2a, and greater than 2a.

1. If λ0 = 2a, then the right-hand side of (6.26) becomes zero, and thus the guide 
wavelength λg → ∞. In this case, the frequency tends to zero, that is, the 
wave does not propagate. The free-space wavelength at which this occurs is 
known as the cut-off wavelength λc (= 2a), and the corresponding frequency 
is known as the cut-off frequency fc. The waveguide acts as a high-pass filter, 
and propagation only takes place at frequencies above this cut-off frequency.

2. When λ0 is slightly less than 2a, it can be seen that the difference between 
the two terms on the right-hand side of (6.26) is very small, so that the 
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reciprocal of the square of the guide wavelength is also very small. This 
makes the guide wavelength very long, as depicted in Figure 6.23(d).

3. When λ0 is much smaller than 2a, it can be seen from (6.26) that the first 
term on the right-hand side of the equation is the only significant term, 
which means that the guide wavelength tends to the free-space wavelength, 
as depicted in Figure 6.23(e).

4. When λ0 is greater than 2a, that is, the free-space wavelength is greater than 
the cut-off wavelength, an interesting situation occurs. The right-hand side 
of (6.26) is negative, and this makes its square root an imaginary value. This 
is analogous to the imaginary part of an impedance, and a similar condition 
applies in this case. The guided wave has a purely reactive impedance, and 
the guide supports what are known as evanescent modes. These modes store 
energy in a similar manner to the way capacitors store energy; they do not 
propagate or dissipate energy. Use is made of this property (of waveguides 
below cut-off) in the design of ventilation panels for shielded rooms.

6.7.2 Modes in Square and Rectangular Waveguides

Let us now consider what happens at the metal side walls of the waveguide. We 
apply what are known as boundary conditions. One of these boundary conditions 
states that at a perfect conductor, the tangential electric field is zero. This is in effect 
a generalized form of Ohm’s law which states that the voltage is equal to the prod-
uct of the current and resistance. If we have a perfect conductor, the resistance is 
zero, and thus the voltage is also zero. Since the electric field is the voltage per unit 
length, the electric field along or tangential to a perfect conductor is also zero. It can 
be shown that the normal (perpendicular) electric field varies across the broadside 
dimension a of the waveguide in a sinusoidal manner, from zero at the ends to a 
maximum at the center.

Other variations of electric field are also possible across this dimension, but one 
half-sinusoidal variation is the lowest configuration that can be supported by the 
waveguide. This is known as the dominant or fundamental mode of propagation. 
For rectangular waveguides, this is the TE10 mode where TE stands for transverse 
electric, and the subscripts 1 and 0 stand for the number of half-wave variations along 
the y- and x-axes, respectively. In this mode, the electric field only has a component 
in the x-y plane, transverse to the direction of propagation of the wave. As shown 
in Figure 6.24(a), the electric field only varies in the y-direction, that is, across the 
broadside or a dimension of the waveguide; there is no electric field perpendicular to 
the b dimension of the waveguide, and hence no variation in the x-direction. Since 
there is one half-wave variation in the y-direction, the first subscript is one, and there 
is no variation in the x-direction, so the second subscript is zero. If the electric field 
had been perpendicular to the b dimension of the waveguide, the mode would be 
called the TE01 mode. The magnetic field has a component in the transverse plane 
as well as in the direction of propagation of the wave, and for this reason, in some 
older textbooks and papers, the TE modes are called H modes. The magnetic field 
lines are shown in Figure 6.24(a), with the top surface of the guide detached, for 
clarity. If there are two half wave variations of the electric field across the broadside 
dimension then the mode is known as the TE20 and the electric field variation for 
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this mode is shown in Figure 6.24(b). The magnetic field lines are not shown on 
the top and bottom surfaces, and the top surface of the guide is shown detached, 
for clarity. Rectangular waveguides are normally chosen for use at certain frequen-
cies so that they only propagate the fundamental TE10 mode (which also presents 
the lowest attenuation) and the free space wavelength of the center frequency for 
propagating this mode is around 4a/3.

These waveguides are usually chosen so that their dimensions lie between the 
following limits:

 a = 0.6l0  to 0.9l0  (6.27)

and

 b = 0.3l0  to 0.45l0  (6.28)

This ensures that only the dominant mode is propagated. Figure 6.25(a) shows 
the a and b dimensions of a waveguide in terms of the free-space wavelength for the 
dominant, as well as some of the higher-order modes of propagation [12, Fig.7.8]. 
The curves and lines in Figure 6.25(a) represent the limiting values of the dimensions 
for the higher-order modes. Figure 6.25(b) shows the cut-off frequencies normal-
ized to (as a multiple of) the cut-off frequency of the TE10 mode for square wave-
guides (b/a = 1), as well as for rectangular waveguides which usually have an b/a 
ratio of around 1/2. The modes in oversize waveguides with b/a = 2 are also shown 
for completeness. These oversize waveguides are used for high power applications.

For TE waves, the wave impedance Zw is given by

 
Zw = 120p

lg
l0

⎛
⎝⎜

⎞
⎠⎟

 (6.29)

Since the guide wavelength λg is always greater than the free-space wavelength, Zw 
for TE modes is greater than the wave impedance of 120π (377) ohms in free space.

Another set of modes exist where the magnetic field only has components in 
the plane transverse to the direction of propagation, whereas the electric field has 
components in the transverse plane as well as in direction of propagation. These are 
known as the TM or E modes. For TM waves, the wave impedance Zw is given by

 
Zw = 120p

l0

lg
⎛
⎝⎜

⎞
⎠⎟

 (6.30)

Since the guide wavelength λg is always greater than the free space wavelength, 
Zw for TM modes is less than the wave impedance of 120π (377) ohms in a free 
space. Attenuation as a function of frequency for some of the lower-order modes in 
a rectangular waveguide are shown in Figure 6.26, together with the attenuation 
in a coaxial cable for comparison [12, Figure 8.2].
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Figure 6.24 Propagation of (a) TE10, and (b) TE20 modes, showing the fields in rectangular 
waveguides.
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6.7.2.1 Rectangular Waveguide Designations

Standard rigid waveguides are chosen so that they only propagate the dominant 
or TE10 mode. There are two main types of designations used for rectangular 
waveguides. The DEF 5351 designation uses the letters WG, and the EIA RS 216A 
designation uses the letters WR. In the first case, the letters WG are followed by a 
number which decreases with frequency, that is, increases with decreasing dimensions 
of the waveguide. For example, WG10, which is used in the NATO E and F bands 
(2.3 to 4.2 GHz), has inside dimensions of 7.214 cm (2.84 in) × 3.404 cm (1.34 in), 
whereas WG16 which is used in the NATO bands I and J (formerly X-band, 8 to 
12.4 GHz) is 2.29 cm (0.9 in) × 1 cm (0.4 in).

In the case of the other commonly used designation, the letters WR are followed 
by numbers which decrease with increasing frequency; i.e. the numbers increase 
with the size of the waveguide. For example WR284 is equivalent to WG10, whereas 
WR90 is equivalent to WG16. We should note that with the WR designation the 
number following the WR number is approximately 100 times the larger dimen-
sion of the waveguide in inches; that is, it is the value of the broadside dimension in 
decimal inches. Table 6.2 shows both designations over the 400 MHz to 135 GHz 
frequency range. By measuring the inside dimensions of a waveguide, we can look 
up its operating frequency range.

6.7.3 Double-Ridged Waveguides

We have seen that the cut-off wavelength λc for the TE10 of a particular smooth-
walled rectangular waveguide is twice its broad dimension a (i.e., λc = 2a). How-
ever when a single or double ridge or septum is used, the cut-off wavelength of the 
dominant or TE10 can be increased to more than 2.5 times this value (i.e., λc > 5a). 
This means that the lower cut-off frequency of the ridged waveguide is less than 
two-fifths of that of the smooth-walled guide.
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cut-off frequency of the dominant TE10 mode. (After: [12, Figure 8.2].)
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Table 6.2 Rectangular Waveguide Designations and Dimensions

DEF
5351
No.

EIA
RS216A
No.

Dimensions (in) Dimensions (mm)
Operating Freq. 
Range in GHzWidth Height Width Height

WG 1 WR 1800 18 9 457.2 228.6 0.41–0.61

WG 2 WR 1500 15 7.5 381 190.5 0.50–0.75

WG 3 WR 1150 11.5 5.75 292.1 146.05 0.61–0.96

WG 4 WR 975 9.75 4.875 247.65 123.82 0.75–1.12

WG 5 WR 770 7.7 3.85 195.58 97.79 0.96–1.45

WG 6 WR 650 6.5 3.25 165.1 82.55 1.12–1.70

WG 7 WR 510 5.1 2.55 129.54 64.77 1.45–2.20

WG 8 WR 430 4.3 2.15 109.22 54.61 1.70–2.60

WG 9 WR 340 3.4 1.7 86.36 43.18 2.20–3.30

WG 10 WR 284 2.84 1.34 72.13 34.036 2.60–3.95

WG 11A WR 229 2.29 1.145 58.166 29.083 3.30–4.90

WG 12 WR 187 1.87 0.872 47.498 22.148 3.95–5.85

WG 13 WR 159 1.59 0.795 40.386 20.193 4.90–7.05

WG 14 WR 137 1.37 0.622 34.798 15.798 5.85–8.20

WG 15 WR 112 1.12 0.497 28.448 12.624 7.05–10.05

WG 16 WR 90 0.9 0.4 22.86 10.168. 8,20–12.4

WG 17 WR 75 0.75 0.375 19.05 9.525 10.0–15.0

WG 18 WR 62 0.62 0.31 15.748 7.874 12.4–18.0

WG 19 WR 51 0.51 .255 12.954 6.476 15.0–22.0

WG 20 WR 42 0.42 0.17 10.668 4.318 18.0–26.5

WG 21 WR 34 0.34 0.17 8.6360 4.318 22.0–33.0

WG 22 WR 28 0.28 0.14 7.112 3.556 26.5–40.0

WG 23 WR 22 0.22 0.11 5.588 2.794 33.0–50.0

WG 24 WR 19 0.188 0.094 4.775 2.387 40.0–60.0

WG 25 WR 15 0.148 0.074 3.759 1.8796 50.0–75.0

WG 26 WR 12 0.122 0.061 3.098 1.5494 60.0–90.0

WG 27 WR 10 0.10 0.05 2.54 1.27 75.0–10.0

WG 28 WR 8 0.08 0.04 2.032 1.016 90.0–135

The bandwidth for single mode transmission can be 4:1 [4, p. 42–34]. The 
maximum usable bandwidth (MUB) is given by the ratio of the cut-off wavelength 
of the TE10 mode to that of the TE20 mode. It should be noted that this is not the 
useful bandwidth, since the guide is normally operated about 15 to 25% above the 
cut-off frequency. The ridges can also raise the cut-off frequency of the TE30 mode 
slightly [4, p. 40–5].

The bandwidth of the double-ridged waveguide can be extended further by sup-
pressing the TE20 so that the MUB is given by the ratio of the cut-off wavelength 
of the TE10 mode to that of the TE30 mode. The ratio of the cut-off wavelength of 
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the TE30 mode to that of the TE10 mode can be greater than 12:1 for double-ridged 
waveguides. Dielectric loading is often used for horns of bandwidths greater than 
5:1 to reduce the phase error, as in the case of smooth-walled horns. It should be 
noted that the cut-off frequency can be reduced by the use of these dielectric mate-
rials, but this does not increase the bandwidth and usually results in greater loss. 
The change in the cut-off frequency depends both on the width of the ridge and 
its height relative to the dimensions of the waveguide. The addition of the double 
septum or ridge also alters the amplitude distribution across the mouth of the horn, 
with a corresponding reduction in the sidelobe level down to −30 dB [1, p. 655]. 
The electric field lines are shown in Figure 6.27(a).

6.7.4 Double-Ridged Waveguide Horns

In the smooth-walled pyramid waveguide horn, the electric field in the H plane 
(parallel to the broadside) tends to zero at the edges. This gives reduced sidelobes 
of around 23 dB. In the E plane however, the amplitude is nearly uniform, resulting 
in a sidelobe level of 13 dB. The introduction of septum plates with heights equal 
to a quarter of the broadside dimension (so that the gap b′ = 0.5) gives a stepped 
amplitude distribution, which is almost a binomial series distribution of 1:2:1. This 
can reduce the sidelobe level to 30 dB below boresight by accurate positioning of 
the ridges at the throat of the horn [1, p. 655].

The taper of the ridge height and width must be such that a smooth impedance 
transition is provided from the characteristic ridge impedance of Z0 = 50Ω to the 
intrinsic impedance of free space, ξ0 = 377Ω. It has been found experimentally that 
an exponentially impedance taper of the following form is quite satisfactory [13].

Z = Z0e
kx  for 0 ≤ x ≤ l

2

Z = 377 + Z0 1 − ek(l−x)[ ]  for 
l
2
≤ x ≤ 1

where l is the length of the flare section and k is a constant, such that the impedance 
of the midpoint of the flared section is the average of the end point impedances.

The simplest type of ridge to fabricate is one of constant width. The length of 
the flared section should be fairly long so that the impedance transformation is 
accomplished over a length of the order of half a wavelength at the lowest operating 
frequency. However if the ridge width is too large near the open mouth of the horn 
aperture, the H plane distribution may have a large peak in the center and a large 
phase error occurs in the E plane [13]. Both of these factors result in a reduced gain 
for the horn. This can be alleviated by allowing the width of the ridges to increase 
in the flared section.

Consider the double-ridged waveguide shown in Figure 6.27(a). The width of 
each ridge is a′ and the gap is b′, so that the height of each ridge is (b − b′)/2. The 
transverse section of the waveguide can be considered to be a junction capacitance 
(at the central reduced height waveguide section) in parallel with two TE mode 
transmission lines on either side with open and short-circuit terminations, respec-
tively [14, p. 399]. This equivalent circuit model holds as long as the gap b′ is smaller 
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Figure 6.27 Double-ridged waveguide: (a) Ridge dimensions in a double-ridged waveguide, 
(b) equivalent circuit for cut-off wavelength computation, and (c) electric field for the TE10 mode 
in a double-ridged waveguide.

than the cut-off wavelength λc and much smaller than half the width of the normal 
height guide (a − a′)/2. At cut-off, the susceptance looking into the shorted paral-
lel plate guide to the right of the ridge is equal in magnitude but opposite in phase 
to the susceptance of the guide looking to the left [14, p. 399]. The susceptance at 
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the center is zero at cut-off. The equivalent circuit is valid for b/λc < 1 in the case 
of the double ridge waveguide.

It is also assumed that no higher-mode interaction exists between the ridge and 
the narrow side of the guide. This would be the case when the width of unreduced 
guide (a − a′) is much larger than twice the guide height, that is, (a − a′) >> 2b.

The guide wavelength λg is given by the following resonance condition at the 
reference plane T

 

′Y0

Y0

tan
p
l0

′a + B
Y0

− cot
p
l0

(a − ′a ) = 0  (6.31)

where Y′0/Y0 = b/b′ and λc is the cut-off wavelength of the guide. The numeri-
cal solution to (6.29) yields the cut-off wavelength for the TE10 normalized to the 
broadside a of the waveguide, that is, λc/a [14, p. 399]. These are plotted in Figure 
6.28 for different values of a′/a and for values of b′/b between 0.1 and 0.5.

The cut-off wavelengths for the TE10, TE20, and TE30 are shown in Figure 6.29, 
for b′/b = 0.1 and a/b = 2. The maximum usable bandwidths are the ratios of the 
cut-off wavelengths of the TE20 or TE30 modes to those of the TE10. The MUBs are 
shown in Figure 6.30. The MUB increases rapidly as the gap between the ridges 
becomes small. When the gap b′ is increased to 0.25b, the cut-off wavelengths 
(normalized to the height b) are reduced as shown in Figure 6.31. The bandwidths 
obtainable with the larger gap between the ridges (shorter ridges) are lower than those 
obtainable with smaller gaps, and are shown in Figure 6.32 which is to be expected.

The ridged waveguide is much smaller than the smooth-walled guide with the 
same bandwidth, however, the losses are higher.

The ACF, gain, and HPBWs for a commercially available (the ETS-Lindgren 
3106B) double-ridged waveguide horn in the frequency range of 200 MHz to 3 GHz 
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Figure 6.28 Variation of the TE10 mode cut-off wavelength with ridge width a′/a, and for values 
of b′/b between 0.1 and 0.5, and a/b = 2.
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Figure 6.29 The cut-off wavelengths for the TE10, TE20, and TE30 for b′/b = 0.1 and a/b = 2.
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and a/b = 2.

are shown in Figure 6.33. The HPBWs shown are the average of those in the E and 
H planes. The typical data is based on horizontal polarization.

Double-ridged horns can handle high powers and are therefore used as trans-
mit antennas in, for example, susceptibility/immunity and SE measurements. The 
far-field distance is normally taken as 2D2/λ where D is the diagonal in this case. 
However, the broadbanding of the horn results in a loss of gain and this reduces the 
effective aperture De. This effective aperture is the diameter of a reflector antenna 
with the equivalent gain. The HPBWs of a 1- to 10-GHz double-ridged horn, for 
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Figure 6.31 The cut-off wavelengths for the TE10, TE20, and TE30 for b′/b = 0.25 and a/b = 2.
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example vary between about 72° and 30°. The HPBW θH of a hypothetical circular 
reflector of diameter De is given by

 
De = 58l

qH  (6.32)
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Figure 6.33 The (a) ACF, (b) gain, and (c) HPBWs for a commercially available double-ridged 
waveguide horn in the frequency range 200 MHz to 3 GHz.
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where

θH is the HPBW of the equivalent reflector in degrees;

λ is the wavelength in meters;

De is the diameter in meters.

The effective diameter De can be calculated at each frequency if we know the 
HPBWs. The far-field distance is then calculated at each frequency, and these values 
are listed in column 4 of Table 6.3. The far-field distance using the physical diagonal 
of the horn of 28 cm, is shown in column 5 of Table 6.3. It can be seen that using 
these distances the horn would have to be placed much further away (especially at 
the higher frequencies), with a subsequent reduction in the dynamic range of the 
whole measurement system. For instance, at 10 GHz the distance would be 5.2m 
instead of 13.9 cm.
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C h a p t e r  7

Calibration of Antennas

This chapter details the calibration of antennas by describing the measurement and 
calculation of gain, and the calculation of antenna correction factors.

In the measurement of radiated emissions from a device under test (DUT) or in 
site surveys, antennas provide the interface between the free-space radiated wave 
and the guided waves (in the transmission line), whose characteristics are measured 
by the receiver. In susceptibility testing, the antenna is the source of the radiated 
field and the antenna converts the guided wave from the transmission cable to the 
free-space wave used to test the DUT.

The field detected by the antenna depends on the spatial orientation (e.g., the 
direction in which it is pointing), as well as the polarization orientation of the 
antenna. An antenna (apart from an ideal isotropic one) can receive different propor-
tions of the electric field, depending on the direction in which it is pointing. Along 
its boresight (the direction of maximum radiation when it is transmitting) it will 
receive the maximum signal. If a power density of 1 W/m2 is present at a particular 
location, and we put an antenna with a linear power gain of 12 at this position, 
then we will actually measure 12 W/m2. Thus, we must know that the linear power 
gain is 12, in order to deduce that the true power density present is only 1 W/m2.

We can either measure or calculate the gain of antennas. Manufacturers usually 
quote the gains at spot frequencies. The measurement may entail the comparison 
of the antenna’s gain with that of a standard reference antenna. These reference 
antennas are usually standard gain horns at frequencies above about 1 GHz. At 
lower frequencies, the reference antennas are usually resonant dipoles.

The antenna detects the electric or magnetic field, but the receiver or analyzer 
measures the voltage across its input terminals. The signal from the antenna suf-
fers losses between the antenna and the receiver, and thus the conversion between 
electric field, for example, and the voltage is not a simple matter of relating them by 
the well known formula of E = V/he (where he is the effective height of the antenna). 
A correction factor has to be applied, which is known as the antenna correction 
factor (or commonly just called the antenna factor), in order to relate the voltage 
measured by the receiver to the electric field at the antenna location.

7.1 Gain

Let us first consider the difference between directivity and gain. The directivity, or 
directive gain, is the comparison between a lossless antenna and a fictitious isotropic 
antenna; whereas the gain (sometimes called the effective gain) is the comparison 
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between an actual antenna and a particular reference antenna [1, p. 34–21]. The 
directivity in the case of a transmitting antenna is defined as

 
directivity = maximum radiation intensity from a lossless antenna

average radiation intensity from an isotropic antenna
 (7.1)

The maximum radiation intensity is the maximum power per unit solid angle, 
and the average radiation intensity from an isotropic antenna is the same as would 
be obtained if the radiation from an antenna is averaged over a sphere. A similar 
definition applies to a receiving antenna, since an antenna is a reciprocal device and 
has the same properties for transmitting as it has for receiving. The directivity does 
not take into account the heating losses in the antenna, and reflection losses due to 
the impedance mismatch between the antenna and the generator (or receiver). The 
gain is defined as the product of the directivity and the efficiency and is given by

 G = hD  (7.2)

where G is the gain in linear terms (or numeric gain), η is the efficiency as a per-
centage or fraction, and D is the directivity in linear terms.

The gain and directivity are usually quoted in decibels, in which case the fol-
lowing relation applies

 GdB = DdB + hdB  (7.3)

where the subscript dB is used to denote the quantities in decibels. Note that since 
the efficiency is always less than one, ηdB is negative.

The efficiency depends on the ohmic (heating) losses in the antenna and the 
losses due to impedance mismatch between the antenna and the transmission line 
feeding it. Efficiencies of antennas vary between about 50% and 90%.

Although, strictly speaking, the gain and directivity could apply to any angular 
position, in practice these terms are only used for boresight or maximum values, 
unless otherwise specified.

7.1.1 Measurement of Gain

The gain of an antenna can be measured using one, two, or three antennas. The 
single antenna method requires a smooth, perfectly reflecting metal sheet, and the 
two antenna method requires two identical antennas. The gain of antennas used as 
standards are measured, and these standard gain antennas are then compared with 
the antennas used for testing. These standard gain antennas are not used in test 
measurements, thus ensuring that they are not damaged. Standard gain antennas 
are usually smooth-walled pyramidal rectangular horns fed by standard rectangu-
lar waveguides. The gain of a pyramidal horn depends mainly on the flare angle, 
the length of the flare, and the frequency. At lower frequencies, where the horns 
are too large, resonant dipoles are used, and the gains of unknown antennas are 
measured by substitution methods.
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7.1.1.1 The Friis Transmission Formula

Let us consider the two antennas depicted in Figure 7.1 at a distance R apart. The 
antenna A is transmitting and the antenna B is the receive antenna.

It can be shown that the effective area Ar presented by a receiving antenna to 
a plane wave [2, Chapter 6] is given by

 
Ar =

Grl
2

4p
 (7.4)

where Ar is the area of the antenna in squared meters, Gr is the linear (or numeric) 
gain of the antenna, and λ is the wavelength of the radiation in meters. If the 
transmitting antenna has a gain of Gt and is radiating a power of Pt watts, then 
the power density Pd (the power per unit area) at a distance R from the receiving 
antenna is given by

 
Pd =

PtGt

4pR2  (7.5)

(b)
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Figure 7.1 Measurement of gain using two antennas: (a) Condition for destructive interference, 
and (b) condition for constructive interference.
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The power Pr received by the antenna B is the power density times the area Ar 
that it presents to the incident wave, and is given by

 
Pr = PdAr =

PtGt

4pR2

Grl
2

4p
 (7.6)

This equation can be rewritten as

 
Pr = PtGtGr

l
4pR

⎛
⎝

⎞
⎠

2

 (7.7)

It can also be written in decibels as

 
10log10 Pr = 10log10 Pt + 10log10Gt + 10log10Gr + 20log10

l
4pR

⎛
⎝

⎞
⎠  (7.8)

Equation (7.7) is known as the Friis transmission formula. The last term in (7.8) 
is dependent on the wavelength of the propagating frequency, and on the distance 
between the antennas. It is known as the space attenuation, or loss factor, Le. It is 
always negative in the far field (R > λ/π for wire antennas, or > 2D2/λ for aperture 
antennas, where D is the largest dimension of the antenna), but is usually written as 
a positive quantity since it taken to represent a positive loss rather than a negative 
gain. Figure 7.2 shows the variation of this space loss or attenuation in decibels Ls 
versus distance, with frequency as a parameter. The space loss between antennas 
placed 1λ apart is approximately 22 dB.
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Figure 7.2 Space attenuation versus distance, with frequency as a parameter.
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The power Pt transmitted by the transmit antenna is not the same as the power 
provided by the generator Pg feeding the antenna. There is a loss of power between 
the antenna and the generator, which depends on the impedance mismatch between 
the two. This loss of power can be quantified by measuring the complex reflection 
coefficient of each individually. The complex reflection coefficient of each should 
be measured to the same reference plane, and a correction term Mt applied to the 
power output of the generator. The complex reflection coefficient gives the phase 
as well as the magnitude of the wave reflected by an impedance that is not matched 
to the characteristic impedance of the system. It can be measured over the whole 
frequency band of interest by a vector network analyzer, such as a Hewlett-Packard 
8510 or a Wiltron 360. The magnitude of the correction term [3, p. 649] is given by

 

Mt =
1 − tg

2( ) 1 − tt
2( )

1 − tgtt
2  (7.9)

where τg and τt are the complex reflection coefficients of the generator and transmit 
antenna, respectively, to the same reference plane. The magnitude (modulus value) 
of the reflection coefficient is related to the magnitude of the VSWR (voltage stand-
ing wave ratio) S, by the following formula

 
t = S − 1

S + 1
 (7.10)

The power transmitted by the antenna Pt, and that supplied by the generator 
Pg, is given by the following relation

 
Pg = PtMt  (7.11)

where Mt is defined by (7.9). If a power meter is used to measure the power from 
the generator, a correction term has to be applied to the power Pm measured by it. 
The power Pm is related to the true transmitted power Pg by the following relation

 
Pg = PmMm  (7.12)

The correction term Mm is calculated from the following relation

 

Mm =
1 − tm

2( ) 1 − tt
2( )

1 − tmtt
2  (7.13)

The received power also requires a similar correction term Ms to be applied to 
the power measured by the receiver, to allow for the impedance mismatch between 
the receive antenna and the receiver. The correction term is given by

 

Ms =
1 − tt

2( ) 1 − ts
2( )

1 − ttts
2  (7.14)
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where τr and τs are the complex reflection coefficients of the receive antenna and 
the receiver, respectively, at the same reference plane.

The correction terms Mt and Ms can be replaced by a combined correction term 
C, which is in decibels and is given by

 C = 10log10 Mt + 10log10 Ms  (7.15)

If the transmit and receive antennas do not have the same polarization, then a 
correction for the polarization mismatch must be used in addition to the correction 
term of (7.15). If the polarization mismatch is Ptr in linear terms, then the correc-
tion term Cp in decibels is given by

 
Cp = 10log10 Ptr  (7.16)

Other factors to be taken into consideration are the errors due to near-field 
effects and multipath effects. The near-field effects are due to: (1) the fact that the 
near-field components may not have decreased to negligible values at the far-field 
distance of 2D2/λ or λ/π (the magnitude of this correction term is of the order of 
0.05 dB); and (2) there is a variation of the electric field across the aperture of the 
receive antenna. This is known as an amplitude taper and a variation of 0.25 dB 
can give rise to an error of about 0.1 dB in the magnitude of the gain measurement. 
Thus, the total errors due to these near-field or proximity effects are of the order 
of 0.15 dB [3, p. 650].

The multipath effects are caused by interference between the direct wave 
(from the transmitter to receiver antennas) and the waves that arrive at the receive 
antenna after reflection. Depending on the relative phases of the waves, construc-
tive or destructive interference can result. When the antennas are separated by 
less than 2D2/λ or λ/π then the multipath interference is primarily due to multiple 
reflections between the two antennas, whereas at greater distances the multipath 
interference is mainly the result of reflections from the ground and other objects. 
The presence of multipath interference can be investigated by varying the distance 
between the antennas. If multipath effects are present, then the receiver connected 
to the receive antenna will show an output that resembles a sine wave as the dis-
tance between the antennas is increased (or decreased). This is due to the phase 
differences between the path lengths of the direct and reflected waves; when this 
path difference is an odd multiple of half-wavelengths, the receiver’s output has its 
minimum value, and when this path difference is a whole number of wavelengths, 
the output has its maximum value. The direct wave (AB) and a single wave that has 
undergone one reflection (AG + GB) is depicted in Figure 7.1. When the distance 
is R, this difference is λ/2, as shown in Figure 7.1(a), and destructive interference 
occurs. When this distance is increased to R1 the difference is λ, as shown in Figure 
7.1(b), and constructive interference occurs. In practice there will be more than 
one reflected wave and some reflected waves will undergo more than one reflec-
tion. The measurement also requires that both the transmit and receive antennas 
are maintained at boresight (i.e., the positions of maximum radiation of the two 
antennas are collinear).
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7.1.2 Purcell’s Method

This method is sometimes called the mirror method and involves the use of just one 
antenna to perform the calibration. The set-up consists of a transmitting antenna 
such as a pyramidal horn (as shown in Figure 7.3) placed in front of a square 
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metal reflecting sheet, as shown in Figure 7.4, and the power is received by the 
same antenna.

The sheet reflects power Pm which can be assumed to come from an image 
antenna placed as far behind the sheet as the real antenna is in front of it. The 
normal far-field distance criterion of R = 2D2/λ should be maintained between the 
antenna and its image, so that the distance between the antenna and the sheet is 
R/2 = D2/λ, where D is the largest dimension of the horn. The sheet should be flat 
to at least one-sixteenth of a wavelength (see Figure 7.4(c)), and it must be planar to 
avoid errors in the position and dimensions of the image antenna. The sheet should 
be large so that diffraction effects at its edges are negligible, and its side h should 
also be large enough to intercept the main beam [4, p. 585] of width θ (= 2λ/D) 
radians between nulls. This results in the following condition, which is shown in 
Figure 7.4(b).

 

h / 2
R / 2

≥ l
D  (7.17)
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Figure 7.4 Purcell’s method for measurement of gain: (a) Measurement set-up for Purcell’s 
method, (b) minimum size for side of sheet, and (c) enlarged view showing smoothness of sheet.
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where h is the length of one side of the sheet, R is the distance between the horn 
and its image, and D is the largest dimension of the horn. This gives the lower limit 
for h of

 
h ≥ Rl

D
 (7.18)

For single-frequency measurements using a pyramidal horn, the set-up of Fig-
ure 7.4(a) applies. The horn is connected to the signal generator via a standing 
wave detector (SWD) and a stub tuner. When the transmitted and reflected waves 
interfere, a standing wave results. The ratio of the maximum to minimum volt-
age of the standing wave is the VSWR (voltage standing wave ratio). The SWD 
consists of a probe that is inserted through a longitudinal slot along the center of 
the broad wall of the rectangular waveguide. The probe can be moved along the 
longitudinal axis of the waveguide, and its depth into the waveguide can be varied. 
The probe is connected to a detector (usually a diode), and the detector output is 
measured on a meter. The probe carriage is moved longitudinally along the axis of 
the waveguide to record the maximum and minimum values of the standing wave 
in the waveguide. If there is a very small standing wave, then the ratio of maximum 
to minimum voltage will be small, and this ratio is one when there is no reflected 
wave. This condition exists when the waveguide is perfectly matched. When there 
is a large reflected wave, the VSWR is also large and approaches infinity when the 
reflected wave is equal to the transmitted wave. The procedural steps for measuring 
the gain of a pyramidal horn, as shown in Figure 7.3, are now given:

1. The horn is connected to the stub tuner, SWD, and signal generator, and 
allowed to radiate into free space.

2. The horn is matched to the waveguide run by adjusting the stub tuner (usually 
a three stub tuner) so that the SWD indicates that the VSWR is very small.

3. The metal sheet is then placed at a distance d (= R/2) in front of the horn, 
such that d is greater than or equal to D2/λ.

4. The VSWR is measured using the SWD. In the Friis transmission formula, 
the distance R between the transmitting and receiving horns is now the dis-
tance between the horn and its image. The distance between the horn and 
the metal sheet in Figure 7.4 is d, and thus the distance between the transmit 
horn and its image is 2d. Thus R = 2d and (7.7) can be rewritten as

 
Pr = PtGtGr

l
8pd

⎛
⎝

⎞
⎠

2

 (7.19)

Since the same horn is used for transmitting and receiving, the gains of Gr and 
Gt can both be replaced by the common value of G. Equation (7.19) thus becomes

 
Pr = PtG

2 l
8pd

⎛
⎝

⎞
⎠

2

 (7.20)
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The square root of the ratio of Pr to Pt is the magnitude of the reflection coef-
ficient ⎪τ⎪, and is given by

 

Pr
Pt

= t = Gl
8pd

 (7.21a)

which can be rewritten in the following form

 

1
t = 8pd

Gl  (7.21b)

The magnitude of the reflection coefficient τ is related to the VSWR S by the 
following equation

 
t = S − 1

S + 1  (7.22)

The distance d is varied, the VSWR is measured in each case and the magnitude 
of the reflection coefficient is calculated. A plot of ⎪τ⎪ against 1/d is shown in Fig-
ure 7.5. The plot should give us a straight line, and the slope yields the value of the 
constant (8π/Gλ) on the right hand side of (7.21b), from which G can be calculated 
at each value of λ. In practice, a straight line is not obtained, because of the edge 
effects, measurement errors, and the fact that the transmitting horn reradiates some 
of the power reflected from the sheet. With the measured results shown in Figure 7.5, 
the best straight line gives a slope of approximately 18. In this case, the frequency 
at which the measurements were performed was 10 GHz, so that λ = 0.03m. The 
value of linear gain G calculated is thus 45.6, equating to a gain of 16.7 dB.
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In the case of swept frequency measurements, the SWD and meter are replaced 
by a dual directional coupler and connected to a network analyzer. The return loss 
(from which the VSWR can be calculated) is measured over the whole frequency 
range of interest, but the principle of the measurement is the same as in the single-
frequency measurements described above.

7.1.3 Two-Antenna Method

The Friis formula of (7.7) is used to determine the gain of antennas by employing 
two identical antennas. The Friis formula can be rewritten for the two antennas as

 
G =

Pr
Pt

⎡
⎣⎢

⎤
⎦⎥

4pR
l

⎛
⎝

⎞
⎠

2

 (7.23)

where G is the linear (or numeric) gain of either antenna, Pr is power transmitted 
by one antenna, and Pt is the power received by the other antenna. Since the gain 
is usually required in decibels, and the transmitted and received powers are also 
usually measured in decibels, (7.23) is more conveniently given in decibels in the 
following form

 
gdB = 1

2
20log10

4pR
l

⎛
⎝

⎞
⎠ − 10log10

Pt
Pr

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  (7.24)

Alternatively, (7.24) can be rewritten in the following form

gdB = 1
2

20log10

4pR
l

⎛
⎝

⎞
⎠ + 10log10

Pr
Pt

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Note that the ratio of Pt to Pr is inverted, and the sign of its log is changed since

− log10

Pt
Pr

⎛
⎝⎜

⎞
⎠⎟
= + log10

Pr
Pt

⎛
⎝⎜

⎞
⎠⎟

The received and transmitted powers Pr and Pt are measured, and the correc-
tion terms of (7.15) are applied to obtain the corrected values. The principle of the 
measurement set-up is shown in Figure 7.1, and the checks to ensure that multipath 
effects are minimised should be undertaken. The distance R between the two anten-
nas is varied to give several values for the received and transmitted powers at each 
frequency. The average value for the gain can then be calculated from (7.24).

7.1.4 Three-Antenna Method

If two identical antennas are not available, then the gain measurements can be per-
formed by using three antennas. The same measurements as described in Section 
7.1.3 are performed with two of the antennas each time. Three sets of measurements 
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will be required altogether to cover all the combinations. This will result in three 
simultaneous equations, given by

 
g1 + g2 = 20log10

4pR
l

⎛
⎝⎜

⎞
⎠⎟ + 10log10

Pr
Pt

⎛
⎝⎜

⎞
⎠⎟1,2

 (7.25)

with antenna 1 used for transmitting and antenna 2 used for receiving

 
g1 + g3 = 20log10

4pR
l

⎛
⎝⎜

⎞
⎠⎟ + 10log10

Pr
Pt

⎛
⎝⎜

⎞
⎠⎟1,3

 (7.26)

with antenna 1 used for transmitting and antenna 3 used for receiving

 
g2 + g3 = 20log10

4pR
l

⎛
⎝

⎞
⎠ + 10log10

Pr
Pt

⎛
⎝⎜

⎞
⎠⎟2,3

 (7.27)

with antenna 2 used for transmitting and antenna 3 used for receiving. In (7.25) to 
(7.27), g1, g2, and g3 are the gains in decibels of the first, second, and third antennas, 
respectively. The measurement involving each pair of antennas is the same as in the 
case of the two-antenna method of Section 7.1.3. The precautions and correction 
terms described in Section 7.1.1 also apply in this case. The MIL-STD-461 generally 
requires 1m antenna separation, whereas commercial specs require a 10m separation.

7.2 Calculation of Gain

The rectangular pyramidal horn is the most commonly used standard horn, and 
thus the method of calculation of its gain alone is included here. A pyramidal horn, 
such as the one shown in Figure 7.3, is fed by a standard rectangular waveguide, 
and the walls of the guide flare in both the E and H planes. The angle of flares and 
length of the flared section determines the final dimensions of the open mouth of 
the horn, which in turn determines the gain of the horn.

The gain of a horn depends on:

The dimensions a and b of the rectangular waveguide feeding the horn;

The dimensions a1 and b1 of the open end of the horn;

The slant lengths le and lh in E and H planes of the flared section;

The flare angles 2ψε and 2ψh  in the E and H planes, respectively.

The formulas are given for calculating the total gain of the pyramidal horn. 
This gain is dependent on the individual gains Ge and Gh that would be obtained 
by having E- and H-plane sectoral horns with the same flare angles. As long as 
the aperture of the pyramidal horn in each plane is at least one wavelength, the 
pattern in one plane is substantially independent of the aperture in the other plane 
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[5, p. 648]. In order to compute the gain of a pyramidal horn, we may therefore 
calculate the gains of individual E- and H-plane sectoral horns, and the product of 
these linear (or numeric) gains together with the efficiency will give us the gain of 
the pyramidal horn.

7.2.1 E-Plane Sectoral Horn

In the E-plane sectoral horn depicted in Figure 7.6, we can see that the broad walls 
of the waveguide are flared in the direction parallel to the electric field vector, and 
the flare angle is 2ψe. The narrow dimension of the guide is increased from b to b1 
at the open mouth of the horn, whereas the broad dimension a remains at the same 
value. The flared walls have a virtual apex, and the virtual lengths l1 to the open 
end are longer than the length ρe (the virtual perpendicular distance) by δ. This dif-
ference causes the spherical waves emanating from the virtual apex to have a phase 
difference at the edges of the horn (compared with the wavefronts at the center of 
the horn).This phase difference (Fermat’s principle) is given by

 
f = 2pd

l  (7.28)

where ϕ is the phase difference in radians and λ is the wavelength. Both δ and λ are 
required to be in the same units. When the phase difference is π,  the waves from 
the edges are in antiphase with those from the center, so that they destructively 
interfere resulting in a decrease in the gain and an increase in the sidelobe level.

In order to obtain universal relationships between the phase deviation δ and the 
loss in gain associated with it, it is convenient to express δ in terms of wavelengths. 
Consider triangle OPQ in Figure 7.6(b). Using Pythagoras’ theorem, we can see that

 
re

2 = l1
2 −

b1

2
⎛
⎝

⎞
⎠

2

 (7.29)

But since ρε is equal to l1 − δ

 

l1 − d( )2 = l1
2 −

b1
2

4

l1
2 − 2l1d + d2 = l1

2 −
b1

2

4

 (7.30)

 
2l1d + d2 =

b1
2

4
 (7.31)

However, since δ is much smaller than the length l1,δ2 is negligible compared 
with 2l1δ and can therefore be ignored. Equation (7.31) thus reduces to

 
d =

b1
2

8l1
 (7.32)
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where b1 is the height of the open mouth of the horn and l1 is the virtual length of the 
flared section. The phase deviation, or error Te in terms of wavelength, is given by

 
Te = d

l =
b1

2

8l1l
 (7.33)

7.2.1.1 Loss Due to Phase Error

The efficiency of the horn is reduced by the phase error at the open mouth, so that 
the effective aperture is only about 50% of the actual aperture. This means that 
efficiencies as low as 50% are to be expected. Thus, the gain could be only half the 
magnitude of the directivity, or 3 dB less when they are both expressed in decibels.

Dielectric loading of the horn can be used to correct the phase error, so that 
a uniform phase is obtained across the aperture. Efficiencies as high as 90% are 
achievable with zero phase taper and uniform amplitude illumination of the mouth 
of the horn.

The loss in gain due to the phase error is plotted in Figure 7.7 for an E-plane 
sectoral horn. The loss Le (in decibels) is shown as a function of Te and Te, and has 
been given in terms of the virtual slant length l1 of the flare [1, p. 10–8] as

 
Te = d

l =
b1( )2
8l1l

 (7.34)

However, it is more useful to have Te in terms of the physical slant length le of 
the flared section, which can be easily measured.
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Figure 7.7 Variation of loss with phase deviation—E-plane sectoral horn.
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Referring to Figure 7.6(b), we can see that the flare semi-angle ψe is given by

 

sinye =
b1 / 2
l1

=
b1 − b( ) / 2

le
b1

l1
=
b1 − b
le

 (7.35)

Thus, Te can be rewritten in terms of le as

 
Te =

b1 b1 − b( )
8lle

 (7.36)

The maximum gain of a horn is directly proportional to the size of its aperture. 
We can increase the aperture by having a large flare angle, and/or by having a long 
flare length. However, in order to restrict the phase variation at the open end, we 
must have a long horn with a small flare angle. While this can be attained at high 
(millimeter wave) frequencies with relatively small horns, the horns become imprac-
ticably large at lower frequencies. Thus, some compromise must be sought between 
the flare angle and the length fe of the flared section for a particular value of δ. We 
can see from Figure 7.6(b) that the relationship between the flare semi-angle ψε and 
the virtual length l1 is given by

 

cosye =
re
l1

 or cosye =
re

re + d
re = re + d( )cosye

re 1 − cosye( ) = d cosye

re =
d cosye

1 − cosye( )

 (7.37)

Thus, for a specific value of δ, we can relate the flare angle to the flare length 
ρe. The value of δ that can be tolerated depends on the type of sectoral horn. In 
the case of the E-plane horn, the maximum value of δ is a quarter of a wavelength 
at the highest frequency of operation. This gives a phase difference of 90 degrees, 
or π/2 radians.

Figure 7.8 shows the variation of the virtual flare length ρe with flare semi-angle 
for a phase error of 90 degrees at 100 MHz, 1 GHz, and 10 GHz. Note that for 
a given flare semi-angle, the permissible maximum flare length is much smaller at 
high frequencies than it is at lower frequencies. For instance, for a flare semi-angle 
of 30 degrees, the maximum permissible flare length at 10 GHz is only about 5 cm, 
whereas it is 4.8m at 100 MHz.

Since the virtual length ρe is not easy to measure, it is more convenient to show 
the variation of the flare semi-angle ψε in terms of the physical lengths le of the 
flared section and the heights b and b1 (of the waveguide and horn, respectively). 
Referring to Figure 7.6(b), we can see that
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tanye =
b1

2re
=
b1 − b

2fe

re =
b1

b1 − b
⎛
⎝⎜

⎞
⎠⎟
fe

and

fe = re −
b1 − b

2
⎛
⎝

⎞
⎠

2

Thus,

 
ρe =

b1

b1 − b
⎛
⎝⎜

⎞
⎠⎟

le
2 −

b1 − b
2

⎛
⎝⎜

⎞
⎠⎟

2

 (7.38)

7.2.1.2 Gain of an E-Plane Horn

The numeric or linear gain Ge of an E-plane horn is given by the following formula 
[6, p. 546]:

 
Ge =

64aρe
πλb1

C2 b1

2πρe

⎛
⎝⎜

⎞
⎠⎟
+ S2 b1

2πρe

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (7.39)

where a is the width of the waveguide feeding the horn, ρe is the virtual length of 
the horn, b1 is the height of the open mouth of the horn, C is the Fresnel cosine 
integral, and S is the Fresnel sine integral.
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The Fresnel cosine and sine integrals are defined by the following relationships

C(x) = cos
p
2
x2⎛

⎝
⎞
⎠dx

0

x

∫

S(x) = sin
p
2
x2⎛

⎝
⎞
⎠dx

0

x

∫

The values of the Fresnel cosine and sine integrals are shown in Figure 7.9.
The gain of an E-plane horn has been calculated using (7.39) for different values 

of ρe, to give the normalized curves of Figure 7.10, which show the gains divided by 
the width a (in terms of the wavelength). It should be noted that the gains increase to 
a maximum in each case as b1/λ is varied, and then start to decrease again. Closer 
examination of these curves show that the value of the phase deviation at these 
maxima is 0.25λ. For instance in the case of a horn of length 8λ, the maximum 
occurs at b1/λ = 4, resulting in a value of Te equal to 0.25, and thus δ = 0.25λ. This 
corresponds to a phase error of 90 degrees or π/2 radians which is the maximum 
phase error that can be tolerated for an E plane horn.

7.2.2 H-Plane Sectoral Horn

In the H-plane sectoral horn depicted in Figure 7.11, we can see that the narrow 
walls of the waveguide are flared in the plane parallel to the magnetic field vector, 
and the flare angle is 2ψh. The broad dimension of the guide is increased from a to a1 
at the open mouth of the horn, whereas the narrow dimension, or height b, remains 
at the same value. The flared walls have a virtual apex, and the virtual lengths l2 
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Figure 7.9 Fresnel cosine and sine integrals.
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to the open end are longer than the length ρh (the virtual perpendicular distance) 
by δ. This difference causes the spherical waves emanating from the virtual apex 
to have a phase difference at the edges of the horn (compared with the waves from 
the center of the horn). This phase difference results in a loss in gain, as in the case 
of the E-plane horn described in Section 7.2.1, however, in this case, a larger phase 
difference can be tolerated. Instead of 90 degrees, a maximum phase difference of 
135 degrees can be tolerated for the H-plane sectoral horn when the electric field 
vector is perpendicular to the H-plane. This phase difference corresponds to a value 
of δ equal to 3λ/8.

The phase deviation or error in terms of wavelengths Th can be derived in a 
similar manner to the case of the E-plane horn, and is given by

 
Th = d

l =
a1

2

8l2l
 (7.40)

where a1 is the width of the aperture of the horn and l2 is the virtual slant length 
of the flared section.

7.2.2.1 Loss Due to Phase Error

The efficiency of the horn is reduced by the phase error at the open mouth, and the 
effective aperture is only about 50% of the physical aperture. Thus, the gain could 
only be half the magnitude of the directivity.

Dielectric loading of the horn can be used to correct the phase error, so that 
a uniform phase is obtained across the aperture. Efficiencies as high as 90% are 
achievable with zero phase taper and uniform amplitude illumination of the mouth 
of the horn.
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The loss in gain due to the phase error is plotted in Figure 7.12 for an H-plane 
sectoral horn. The loss Lh is in decibels, against Th, has been given in terms of the 
virtual slant length l2 [1, p. 10–8] which is the virtual length of the flared section. 
However, it is more useful to have Th in terms of the physical slant length lh of the 
flared section, which can be easily measured.

Referring to Figure 7.11(b), we can see that the flare semi-angle ψh is given by

 
sinyh =

a1 / 2
l2

=
a1 − a( ) / 2

lh
 (7.41)
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Figure 7.12 Variation of loss with phase deviation for an H-plane sectoral horn.

Thus, Th can be rewritten in terms of lh as

 
Th =

a1 a1 − a( ) / 2
8llh

 (7.42)

The maximum gain of a horn is directly proportional to the size of its aperture. 
We can increase the aperture by having a large flare angle, and/or by having a long 
flare length. However, in order to restrict the phase variation at the open end, we 
must have a long horn with a small flare angle. While this can be attained at high 
(millimeter wave) frequencies with relatively small horns, the horns become imprac-
ticably large at lower frequencies. Thus, some compromise must be sought between 
the flare angle and the length fh of the flared section for a particular value of δ. We 
can see from Figure 7.11(b) that the relationship between the flare semi-angle ψη 
and the virtual length l2 is given by

 

rh = rh + d( )cosyh

rh 1 − cosyh( ) = d cosyh ;   rh =
d cosye

1 − cosye( )
 (7.43)

where ψh is the flare semi-angle in degrees, and ρh is the virtual length of the flare. 
Thus, for a specific value of δ we can relate the flare angle to the flare length l2. 
The value of δ that can be tolerated depends on the type of sectoral horn. In the 
case of the H-plane horn, the maximum value of δ is three-eighths of a wavelength 
at the highest frequency of operation. This gives a phase difference of 135 degrees, 
or 3π/4 radians.
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Figure 7.13 shows the variation of the virtual flare length ρh with flare semi-
angle for a phase error of 135 degrees at 100 MHz, 1 GHz, and 10 GHz. Note 
that for a given flare semi-angle, the maximum permissible flare length is much 
smaller at high frequencies than it is at lower frequencies. For instance, for a flare 
semi-angle of 30 degrees, the maximum permissible flare length at 10 GHz is only 
about 7.3 cm, whereas it is 7.3m at 100 MHz. However, these lengths are about 
67% larger than those for an E-plane sectoral horn with the same flare angles. 
Thus, a longer flare length can be tolerated in the H-plane sectoral horn than in 
the E-plane sectoral horn.

The virtual flare length ρh is related to the physical flare length lh and the widths 
a and a1 of the waveguide and the horn, respectively, by the following expression

 
ρh =

a1

a1 − a
⎛
⎝⎜

⎞
⎠⎟ e

(lh)
2 −

a1 − a
2

⎛
⎝⎜

⎞
⎠⎟

2

 (7.44)

7.2.2.2 Gain of an H-Plane Sectoral Horn

The linear or numeric gain Gh of an H-plane sectoral horn [6, p. 561] is given by

 
Gh =

4πbρh
a1λ

C(u) − C(v)[ ]2 − S(u) − S(v)[ ]2{ }  (7.45)

where b is the height of the waveguide feeding the horn, ρh is the virtual length of 
the horn, a1 is the width of the horn aperture, C(u) is the Fresnel cosine integral of 
u, C(v) is the Fresnel cosine integral of v, S(u) is the Fresnel sine integral of u, and 
S(v) is the Fresnel sine integral of v, where the Fresnel cosine and sine integrals are 
given by

10 20 30 40

100

10

1

0.1

0.01

30

3

0.3

0.03

Flare semi-angle in degreesψn

Fl
ar

e 
le

ng
th

in
 m

ρ h

a

ll

fh

h

h
1

h2

a

ρ

O Q

P

h
ψ
ψ

δ

100 MHz

1 GHz

10 GHz

Figure 7.13 Variation of flare length with flare semi-angle for an H-plane horn.



7.2 Calculation of Gain 207

C(x) = cos
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2
x2⎛
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⎠dx

0

x

∫

S(x) = sin
p
2
x2⎛

⎝
⎞
⎠dx

0

x

∫

and u and v are given by

u = 1
2

lrh
a1

+
a1

lrh

⎛
⎝⎜

⎞
⎠⎟

v = 1
2

lrh
a1

−
a1

lrh

⎛
⎝⎜

⎞
⎠⎟

The Fresnel cosine and sine integrals can be obtained from Figure 7.9.
The gain of an H-plane horn has been calculated using (7.45) for different values 

of ρh, to give the normalized curves of Figure 7.14, which show the gains divided by 
the width a1 (in terms of the wavelength). It should be noted that the gains increase 
to a maximum in each case as a1/λ is varied, and then start to decrease again. Closer 
examination of these curves show that the value of the phase deviation at these 
maxima is 3λ/8. For instance, in the case of a horn of length 8λ, the maximum 
occurs at a1/λ = 4.9, resulting in a value of T of 0.375, and thus δ = 0.375λ. This 
corresponds to a phase error of 135 degrees, or 3π/4 radians, which is the maximum 
phase error that can be tolerated for an H-plane horn.

7.2.3 Gain of a Pyramidal Horn

The gain of a pyramidal horn can be calculated in three different ways, depending 
on the degree of accuracy required.
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7.2.3.1 Accurate Calculation

This method involves the calculation of the gains in the E and H plane by assuming 
that their gains are the same as E- and H-plane sectoral horns with the equivalent 
dimensions. As long as the aperture of the pyramidal horn in each plane is at least 
one wavelength, the pattern in one plane is substantially independent of the aperture 
in the other plane [5, p. 648].

The E-plane gain is given by (7.39), and the Fresnel cosine and sine integrals 
are shown in Figure 7.9.

The gain in the H plane is calculated from (7.45), where all terms are as previ-
ously defined.

The gain of the pyramidal horn is the product of the individual gains of the E- 
and H-plane horns, divided by a factor that allows for the effect the dimensions of 
the feeding waveguide have on the resultant gain.

The linear gain Gp of a pyramidal horn [7, p. 16.8] is given by

 
Gp = pl2

32ab
GeGh  (7.46)

where a and b are the dimensions of the waveguide feeding the horn, and Ge and 
Gh are the linear gains in the E and H planes

The dimensions in wavelengths for the midband frequency, in the case of most 
standard waveguides, are approximately 0.75 and 0.375 for a/λ and b/λ, respectively 
(see Figure 6.25). The value of π/32 is approximately 0.098, so that the value of the 
expression multiplying the E- and H-plane gains is given by

 

pl2

32ab
= 0.349  (7.47)

Thus, we must multiply the linear gains of the E- and H-plane sectoral horns 
by 0.349 to obtain the gain for a pyramidal horn at the midband frequency.

In decibels, the expression given by (7.47) is equal to −4.57. Thus, after adding 
the gains in decibels for the E- and H-plane sectoral horns, we must subtract 4.57 
dB from the result.

The gain in decibels (gp) for a pyramidal horn is given by

 
gp = ge + gh − 4.57  (7.48)

where ge and gh are the gains in decibels for the E- and H-plane sectoral horns.

7.2.3.2 Semi-Accurate Method

In this case, the E- and H-plane gains (divided by a and b in wavelengths, respec-
tively) are obtained from Figures 7.10 and 7.14 for the values of ρe and ρh given. For 
intermediate values of ρe and ρh, the values of the gains can be interpolated. The 
linear gain of the pyramidal horn Gp can be calculated from the following formula
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Gp = p

32
Ge

l
a

⎛
⎝

⎞
⎠ Gh

l
b

⎛
⎝

⎞
⎠  (7.49)

where a is the width of the waveguide feeding the horn and b is the height of the 
waveguide feeding the horn. The values for the expressions in brackets are obtained 
directly from the curves of Figures 7.10 and 7.14, and multiplying the product by 
the π/32 gives the gain of the pyramidal horn.

Note that (7.49) is exactly the same as (7.46). If we want to express the gains 
in dB then the gain of a pyramidal horn gp is given by

 
gp = 10log10 Ge

l
a

⎛
⎝

⎞
⎠ + 10log10 Gh

l
b

⎛
⎝

⎞
⎠ − 10.08  (7.50)

since 10log10(π/32) is equal to −10.08.

7.2.3.3 Approximate Method

The gain gp of a pyramidal horn in decibels can be calculated [6, p. 570] from the 
following approximate formula

 
gp = 10log

32ab
pl2

⎛
⎝

⎞
⎠ − LeLh  (7.51)

where a1 is the width of the horn aperture, b1 is the height of the horn aperture, Le is 
the loss in decibels for an E-plane horn, and Lh is the loss in dB for an H-plane horn

The values of Le and Lh can be obtained from Figures 7.7 and 7.12, respectively.

7.3 Example

A standard gain horn has aperture dimensions of 16.5 cm and 8.25 cm, and the 
lengths of the flare in the E and H planes are 17.75 cm and 17 cm, respectively. The 
dimensions of the waveguide feeding the horn are 2.29 cm and 1 cm. Calculate the 
gain at 10 GHz by the three methods described above.

Solution
The lengths in the E and H planes are the ones denoted by le and lh in Figures 7.6 
and 7.11. In order to use the formulas in Section 7.2.3, we have to first calculate 
the values of ρe and ρh.

We can calculate ρe using (7.38)

re =
b1

b1 − b
⎛
⎝⎜

⎞
⎠⎟

le
2 −

b1 − b
2

⎛
⎝

⎞
⎠

2

Using (7.38) and inserting the above values for b1, b, and le, we get ρe = 18.9 
cm, as shown in Table 7.1.
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Similarly, using (7.44) we get a value for ρh of 18.9 cm, as detailed in Table 7.2.
We should expect ρe and ρh to have the same values, since the two lengths are 

coincident and represent the perpendicular distance from the virtual apex of the 
horn to its open end.

We shall now apply the three methods of calculation described above. We will 
need to calculate the dimensions in terms of wavelengths (see Table 7.3).

At 10 GHz, λ = 3 cm, b1 = 8.25 cm, giving b1/λ = 2.75; a1 = 16.5 cm, giving 
a1/λ = 5.5; le = 17.75 cm, giving le/λ = 5.92; lh = 17 cm, giving lh/λ = 5.67.

7.3.1 Accurate Method

7.3.1.1 E-Plane Gain

The value of b1/√(2πρe) is calculated as 0.7994. The Fresnel cosine and sine integrals 
for 0.8 can be read from Figure 7.9 as 0.72 and 0.25, respectively. After squaring 
these we should insert them into the formula of (7.39) to yield a calculated value of 
the E-plane gain Ge of 19.56.

7.3.1.2 H-Plane Gain

The values of u and v must first be calculated using the following formulas

u = 1
2

lrh
a1

+
a1

lrh

⎛
⎝⎜

⎞
⎠⎟

v = 1
2

lrh
a1

−
a1

lrh

⎛
⎝⎜

⎞
⎠⎟

Table 7.1 Values of b, b1, and le Used to Derive ρe

b b1 le b1-b b1/(b1-b) le
2 −

b1 − b
2

⎛
⎝

⎞
⎠

2

le
2 −

b1 − b
2

⎛
⎝

⎞
⎠

2

re =
b1

b1 − b
⎛
⎝⎜

⎞
⎠⎟

le
2 −

b1 − b
2

⎛
⎝

⎞
⎠

2

8.25 1 17 7.25 1.138 275.86 16.61 18.90

Table 7.2 Values of a, a1, and lh Used to Derive ρh

a a1 Lh a1-a a1/(a1-a) lh
2 −

a1 − a
2

⎛
⎝

⎞
⎠

2

lh
2 −

a1 − a
2

⎛
⎝

⎞
⎠

2

rh =
a1

a1 − a
⎛
⎝⎜

⎞
⎠⎟

lh
2 a1 − a

2
⎛
⎝

⎞
⎠

2

16.5 2.29 17.75 14.21 1.16 264.58 16.27 18.90

Table 7.3 Values of Variables b1, a1, and lh, and le in Terms of Wavelength

b1 b1/λ a1 a1/λ lh lh/λ lh le/λ

8.25 2.75 16.5 5.5 17 5.67 17.75 5.92
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These formulas yield values of u = 1.87 and v = 1.23. The cosine and sine inte-
grals for u can be read from Figure 7.9 as 0.36 and 0.41, respectively; and those 
for v are 0.72 and 0.63. Inserting these values into (7.45) yields a calculated value 
of the H-plane gain Gh of 10.6. The linear gain Gp of the pyramidal horn can now 
be calculated from (7.46).

The value of the fraction in (7.46) is 0.385, and multiplying it by the values for 
Ge and Gh (19.56 and 10.6) gives a result of 79.83. Therefore, we have (in decibels) 
gp = 19.02 dB.

7.3.2 Semi-Accurate Method

The magnitude of ρe/λ (and ρh/λ) is 6.3λ, but the nearest value to this are the 6λ 
curves of Figures 7.10 and 7.14. From Figure 7.10 at b1/λ = 2.75, we have a value of 
Gea/λ = 25. In decibels, this equates to 13.98. From Figure 7.14, at a1/λ = 5.5, we 
have a value of Ghb/λ = 31. In decibels, this equates to 14.91.The linear gain Gp of 
the pyramidal horn is given by (7.49). Inserting the values for Ge and Gh in (7.49) 
gives a value for Gp = 76.1. This gives a value of gp = 18.8 dB.

7.3.3 Approximate Method

The approximate gain gp in decibels can be calculated from (7.51). In order to find 
the values of Le and Lh from Figures 7.7 and 7.12, we have to calculate the values of 
Te and Th from (7.36) and (7.42), respectively. Inserting the values for b, b1, λ, and 
le in (7.36) gives a value of Te = 0.147. From Figure 7.7, we get a value of 0.03 dB 
for Le. Inserting the values for a, a1, λ, and lh in (7.42) gives a value of Th = 0.589. 
From Figure 7.12, we get a value of 2.2 dB for Lh.

The value of the first term in (7.51) is 21.87 dB. Inserting this value and the 
values for Le and Lh into (7.51) gives a resultant value of gp = 19.37 dB. Thus, we 
can see that the values for gp (19.02, 18.8, and 19.37 dB) obtained by the three 
methods only differ by about 0.6 dB.

7.4 Antenna Correction Factor

This is commonly known as the antenna factor. It is a factor that is used to convert 
the magnitude of the voltage (in V, mV, μV, dBV, dBmV, or dBμV) obtained at the 
terminals of the receiver, to the electric field intensity present at the position of the 
antenna. Thus the electric field E at the antenna is given by

 E = V × (AF)  (7.52)

where E is in volts per meter, V is in volts, and AF is the antenna factor. If we 
examine (7.52) dimensionally, we can see that since E is in volts per meter and V 
is in volts, the antenna factor AF must be in meters. In a 50-Ω system, AF can be 
taken as approximately given by the following relation [8]

 
AF = 9.73

l G
 (7.53)
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where G is the linear or numeric gain and λ is the wavelength at the frequency 
of operation.

The Society of Automotive Engineers (SAE) also defines an antenna factor (AF2) 
which is called the apparent gain. This is the difference obtained in the receiver 
reading when: (1) the transmit and receive antennas are placed at least one meter 
apart, and (2) the antennas are disconnected and the cables from the signal genera-
tor and receiver are connected directly together. Thus, the losses in the balun and 
tuning or matching networks are measured.

In order to calculate the antenna factor [9], we should take into account (1) 
the losses in the balun and matching network, and (2) the losses due to mismatch 
between the antenna and receiver.

The power density is defined as the vector cross product (see Chapter 3) of the 
electric and magnetic field vectors (E and H). The magnitude of the power density 
Pd is the vector cross product of the modulus values of the E and H fields (see Sec-
tion 3.6) and is given by

 Pd = E × H   (7.54)

where Pd is in watts per meter squared, E is the electric field intensity in volts per 
meter, and H is the magnetic field intensity in amperes per meter. The ratio of E to 
H is known as the intrinsic impedance of the wave Zw, and in the case of a plane 
wave in free space, this has a value of 120π. Thus (7.54) can be written as

 
Pd = E 2

Zw
  (7.55)

If the effective area of the antenna is A, then the power P in watts available at 
the antenna is given by

 
P = E2A

x   (7.56)

If a receiver of impedance Zr is connected to the antenna, then by Thevenin’s 
theorem, the antenna is represented by an EMF V and the current I is given by

 
I = V

Za + Zr( )  (7.57)

When the antenna and receiver are purely resistive (of resistances Ra and Rr), 
the power transferred is given by

 

P = I2Rr =
V2Rr

Ra + Rr( )2
 (7.58)

Figure 7.15 shows that if the receiver resistance Rr is varied between values of 
0.25 Ra to 2.5 Ra, the power transferred for an input voltage of 1V varies between 
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0.002 and 0.0035W for an antenna resistance of 73Ω.  (This is the approximate 
resistance of a resonant dipole—see Section 5.4). The maximum power of 0.0035W 
is transferred when the receiver resistance Rr is the same as that of the antenna Ra. 
The receiver is considered to be matched when this condition exists. Note that when 
the receiver resistance is half or double that of the antenna resistance, the power 
transferred has the same magnitude of 91% of the maximum power. The magnitude 
of the maximum power Pmax given by (7.58) can rewritten as

 
Pmax = V2

4Rr

 (7.59)

since Rr = Ra.
If the effective height of the antenna is he, then (since voltage V is equal to the 

product of the electric field E and the effective height) the maximum power avail-
able at the antenna is given by

 
Pmax =

E2he
2

4Ra

 (7.60)

This assumes that the antenna is directly connected to the receiver and that 
they both have the same resistance. However, this is not the case in practice, since 
the antenna has a higher resistance than the connecting cable and receiver. A dipole  
has a resistance between 72 and 73Ω, whereas the receiver and connecting cable 
normally have resistances of 50Ω. A balun is also required to convert the balanced 
output of the dipole to the unbalanced coaxial cable. In order to transfer the maxi-
mum power, a balun-and-matching (B/M) network is used to provide a conjugate 
match to the antenna. There are conjugate mismatch losses associated with this type 
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Figure 7.15 Power transfer between an antenna and a receiver.
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of matching, as well as dissipative or ohmic losses in the B/M network and con-
necting cables. The correct antenna factor should take into account all these power 
losses. The total of these losses [9] can be shown by the following ratio

 

Power available from the antenna
Power delivered to the receiver

= Mab
2 Kbu

2 Mar
2 e2al  (7.61)

where

Mab
2 = power available from the antenna

power delivered to the B/M network

Kbu
2 = power delivered to the B/M network 

power available from the B/M network

Mar
2 = power available from the B/M network

power delivered to the receiver cable

e2al = power delivered to the receiver cable
power delivered to the receiver input

α is the attenuation factor of the cable, and l is the length of cable from the 
unbalanced output of the B/M network to the input of the receiver. Note that the 
M2

ab and M2
ur are not the same as the correction terms of Section 7.1.1.

Referring to Figure 7.16, which shows the simplified equivalent circuit of the 
measuring system, the maximum power available from the antenna to the B/M 
network (assuming the B/M network is matched to the antenna) is given by

 
Pmax = V2

4Ra

 (7.62)

where V is the voltage due the electric field E and he (the effective height of the 
antenna) and Ra is the resistance of the antenna.

Z /2

V = Ehe

a

Z /2a

Balun and
matching
network

Z Zb u

RrVr

21

Cable

Z =
0 R r

Antenna output
Receiver input

I I

Figure 7.16 Simplified equivalent circuit of the measurement system.
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The power transferred to the B/M network is given by

 

Pmax =
V2Ra

Z + Zb
2  (7.63)

where Z0 is the impedance presented to the balun-and-matching network, and Ra 
is the resistance.

Combining (7.62) and (7.63) gives the expression for M2
ab as

 
Mab

2 = V2

4Ra

Za + Zb
2

V2Rb

 (7.64)

which reduces to

 
Mab

2 =
Za + Zb

2

4RaRb
 (7.65)

Similarly, the expression for M2
ur can be given by

 
Mab

2 =
Zu + Rr

2

4RaRr

 (7.66)

The expressions for M2
ab and M2

ur represent the conjugate mismatch losses at 
the input and output of the B/M network [9].

The equivalent circuit of the B/M network is shown in Figure 7.17. It can be 
shown that

 
Zb = Z11 −

Z12
2

Z11 + Rr

 (7.67)

and

 
Zu = Z22 −

Z12
2

Z11 + Za
 (7.68)

The expression for K2
bu is given by

 

Kbu
2 =

4RbRu

Z12
2

Z11 + Za( ) Z12 + Rr( ) 2

Z11 + Za( ) Z22 + Rr( ) − Z12
2 2

 (7.69)

The maximum power available at the antenna is given by (7.60), and the maxi-
mum power delivered to the receiver is given by
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Figure 7.17 Open-circuit two-port network equivalent of the balun-and-matching network, 
with source and load connected.

Pmax =
Vr

2

Rr

where Vr is the voltage at the receiver input and Rr is the resistance of the receiver. 
Thus, the ratio of the power available at the antenna to the power delivered to the 
receiver is given by

 

Power available at antenna
Power delivered to the receiver

=
E2he

2Rr
4Ra

2Vr
2  (7.70)

Equating (7.61) and (7.70) gives

E2he
2Rr

4Ra
2Vr

2 = Mab
2 Kbu

2 Mar
2 e2al

from which we get the ratio of E to Vr i.e., the antenna factor, as

 

E
Vr

= 2
he

Re
Rr
MabMurKbbe

al  (7.71)

The values for the antenna factor at four different frequencies was calculated [9] 
using equation (7.71) in the case of the Schwarzbeck dipole [10]. It was assumed that 
the length of the cable connecting the balun to the output connector, was 0.5m; and 
the cable type was RG 214/U. The loss associated with this type of cable is given by

e2al = (0.0015F + 1.11)0.03

where F is the frequency in MHz.
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The calculated individual components as well as the resultant antenna factors 
are listed in Table 7.4 and compared with the manufacturer’s published data [10]. It 
can be seen that there is very good agreement between the calculated and measured 
values published by the manufacturer.
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Table 7.4 Comparison Between Calculated and Published Antenna Factors for the Schwarzbeck Dipole

Frequency 
(MHz)

2/he  
(dB)

(Ra/Rar)1/2  
(dB)

Mab  
(dB)

Kbu  
(dB)

Maur  

(dB) eαl

eαl ( 
dB)

E/Vr  
Calculated

E/Vr  
Published

30 −4.04 1.65 0.35 9.62 0 1.0040 0.017 7.60 7.45

100 6.42 1.65 0.35 9.62 0 1.0069 0.026 18.07 17.94

300 15.9 1.65 0.35 9.62 0 1.0134 0.058 27.64 27.35

1000 26.42 1.65 0.35 9.62 0 1.029 0.124 38.46 38.03
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C h a p t e r  8

Introduction to Electromagnetic 
Compatibility Measurements

This chapter covers the main EMC measurements necessary to ensure that equipment 
is compliant with legal regulations and military standards. It gives an overview of 
specified limits, test philosophy, measurement set-ups, and instrumentation in the 
EMC field. Other disciplines covered by the field of EMC are shielding effective-
ness, radio monitoring, and electrostatic discharge (ESD).

The IEEE dictionary [1] defines EMC as a measure of equipment tolerance to 
external EM fields, as well as the ability of a device to function satisfactorily in 
its EM environment without introducing intolerable disturbance to that environ-
ment or to other devices. It is accepted that some unwanted EM signals (or noise) 
will be generated, but it is the level or amplitude of these signals that is important. 
Standards define the maximum level of these signals at each frequency. When these 
signals are of sufficient amplitude to affect the performance of other devices, then 
electromagnetic interference (EMI) is said to exist. The term RFI (radio frequency 
interference) is used interchangeably with EMI, although EMI is a later definition 
that includes the whole of the EM spectrum, whereas RFI is generally considered 
to be between 10 kHz and 10 GHz. However, EMI is the more commonly used 
expression to denote RFI, and is used throughout this book. EMI manifests itself 
in performance degradation, malfunction, or failure of electrical or electronic 
equipment. Degradation is defined by the International Electrotechnical Commis-
sion (IEC) as an unwanted change in the operational performance of a device due 
to EMI. The source of these spurious signals can be natural, as well as man-made.

In order to establish the EMC compliance of a device, certain measurements 
have to be performed. The unwanted signals can be received from or transmitted 
to other devices through conduction or radiation. Conducted signals require metal 
or dielectric materials, and tend to occur at frequencies below 30 MHz, whereas 
radiated signals, which can be transmitted through a vacuum or free space, take 
place mainly above 30 MHz. There is a very fine dividing line between conducted 
signals that couple capacitively (or inductively) between unconnected circuits, and 
radiated signals in the near field of an antenna. However, if the distances involved 
are very small in terms of wavelengths (order of 1/100th of a wavelength or so), then 
the mechanism of energy transfer can be considered to be conduction, whereas for 
larger distances the mechanism of transfer is through radiation, and the energy is 
characterised in terms of electric and magnetic fields rather than in terms of cur-
rents and voltages. The emissions can be:
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• Intentional, as in the case of a radio broadcast or air traffic signal, or
• Unintentional, as in the case of computers and other equipment.

We can quantify the EMI caused by a device by measuring its radiated and 
conducted emissions and its EMC by measuring its immunity or susceptibility to 
specified levels of radiated and conducted fields.

Shielding effectiveness is the ability of a material to exclude or confine EM waves. 
This is becoming a very important part of EMC measurements, and is not covered 
to any great extent by many textbooks. Its increasing importance is in part due to 
the practice of many manufacturers not to consult EMC specialists at the design 
stage, and then attempt to shield equipment at the production stage to comply with 
the relevant standards. Radio monitoring is defined by the IEEE as the observation 
of the characteristics of transmitted signals. This is important, since it is necessary 
to ensure that the electromagnetic environment is maintained at a low enough level 
so that equipment placed in this environment will function satisfactorily. Radio 
monitoring is covered in a separate chapter in this book, dealing with the radiation 
from transmitters. ESD is becoming more important as human-generated ESD volt-
age increases. This increase is mainly due to the use of man-made materials, and 
low humidity levels in the house and work environment.

There are various national and international standards that specify the levels 
to which equipment must comply. In 1933, the Comité International Spécial des 
Perturbation Radioélectronique (CISPR) committee of the IEC was the first organi-
zation to propose EMC standards. The European Community (EC) has adopted a 
number of common standards called Europaische Norm (EN) which apply to emis-
sions and immunity for a number of different nonmilitary equipment. The ENs in 
Europe are controlled by the members of CENELEC, which comprises 34 national 
standards bodies such as in BSI (British Standards Institution) in the UK, and DKE 
(Deutsche Kommission Elektrotechnik) in Germany. As the European standardiza-
tion bodies have agreements in place with the international bodies, most of these EN 
specifications are based on IEC standards. These ENs will apply to all equipment 
to be sold within the European Union (EU) and European Free Trade Area (EFTA) 
countries. In addition, other regions have adopted ENs, including Australia, New 
Zealand, and the Middle East. In the USA, the Federal Communications Commis-
sion (FCC), and in Japan, the Voluntary Control Council for Interference (VCCI) 
are the regulatory bodies that specify the emissions standards to which equipment 
has to demonstrate compliance.

8.1 Radiated Emissions

The EM waves emitted by a device into space are termed radiated emissions. Radi-
ated emissions do not require a medium for transmission of energy. These emis-
sions can affect the performance of other equipment, as well as the device that is 
itself the source of the emission. When the emissions affect other equipment it is 
termed intersystem interference, and when the source of the emissions is within the 
equipment itself it is called intrasystem interference. The FCC regards the EMI test 
process as the framework of the source-transfer function-measurement relationship 
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[2]. The equipment under text (EUT) is the source, the test site in conjunction with 
the receiving antenna is the transfer function, and the measurement is undertaken 
by a tuneable receiver or a spectrum analyzer. The EMF or potential measured by 
the receiver is usually in microvolts or decibels per microvolt (dBμV), and this level 
is related to the electric field present at the antenna location by the antenna factor. 
The antenna factor thus converts the voltage measured by the receiver to the elec-
tric field in microvolts per meter (μV/m) or decibel-microvolts per meter (dBμV/m), 
making allowances for the gain of the antenna, and the losses in the balun and 
cables between the antenna and receiver.

8.1.1 Differential and Common Mode Radiation

The radiated emissions can be classified as differential-mode or common-mode 
radiation [3, p. 185]. Differential-mode radiation is produced by currents flowing 
in opposite directions in the go and return cables or lines, so that they behave like 
a loop antenna.

Common-mode radiation is caused by currents flowing in the same direction 
along adjacent cables. These are usually the greatest source of radiated emissions. 
The reason for this can be seen by referring to Figure 8.1(a). Consider the currents 
IA and IB flowing in the wires A and B, respectively, that are separated by a dis-
tance b. These cause magnetic fields HA and HB, at distances r1 and r2 (where r1 
+ b = r2), which are of different magnitudes, to add together on the side nearer to 
wire A, since they are in the same direction. A similar situation occurs all along 
the length of the pair of wires at different radii and on the other side of the wires 
nearer wire B. As the distance b between the wires is decreased, the distances r1 
and r2 are nearly equal, and the magnitudes of HA and HB are also nearly equal, 
so that their resultant is almost double that of their individual magnitudes. These 
magnetic fields represent a loss of energy which is radiated as EMI.

In the case of the corresponding differential mode currents shown in Figure 
8.1(b), the magnetic fields HA and HB at distances r1 and r2 are in opposite direc-
tions so their resultant is their difference. When the separation between the wires 
(b) is small, r1 and r2 are nearly equal and thus HA and HB will be nearly equal, so 
that their difference is nearly zero. This means that very little energy will be radi-
ated by differential-modes currents.

8.1.2 Measurement of Radiated Emissions

To comply with standards, the emissions from the device have to be below a speci-
fied level. This level is different for each frequency. The EMC engineer would nor-
mally perform measurements over the whole frequency range of interest, either on 
an Open Area Test Site (OATS) or (increasingly) in a semi-anechoic chamber, by 
using a spectrum analyzer or measuring receiver. Anechoic chambers are becom-
ing more commonplace as they allow automated measurements and do not expe-
rience interference from background sources. If the radiated emissions are below 
the specified levels (but preferably at least 6 dB below the specified limits), the 
EUT is considered to be in compliance. However, instead of using a peak-reading 
spectrum analyzer for outdoor measurements, the most commonly used detectors 
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are quasi-peak and peak receivers. Peak detectors are used in measurements for 
compliance with military standards such as MIL-STD 462, whereas quasi-peak 
detectors are recommended by bodies such as CISPR for compliance with national 
standards and legal regulations. Many receivers can also measure average electric 
field intensity. As the quasi-peak detector was designed to protect AM modulated 
signals, there is a trend to adopt a new detector called the RMS Average which is 
designed to protect digitally modulated signals.

Since most electronic equipment nowadays is microprocessor-controlled, we shall 
consider the regulations for this type of equipment. The FCC defines a computer 
device as any electronic system that uses digital techniques, and generates or uses 
timing signals at a clock rate greater than 10 kHz [4, p.44]. Most regulatory bodies 
classify computer equipment according to its user environment. The FCC and the 
European Standards use classes A and B, whereas the VCCI uses classes 1 and 2.

8.1.3 Classes of Computer Equipment

Class A refers to equipment used in commercial, industrial, or business environ-
ments, and class B includes digital devices such as personal computers and similar 
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Figure 8.1 (a) Common-mode and (b) differential-mode radiated emissions for parallel wires.
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electronics devices that are marketed for use by the general public. The fact that 
a desktop computer is often used in a business or industrial environment does not 
affect its classification. If the same computer can be used in the residential envi-
ronment, it will be classified as class B device. Peripheral devices (such as modems, 
printers, etc.) acquire the classification of the computer to which they are connected. 
However, if the peripherals can be shown (because of price or performance) to be 
not suitable for use in the domestic environment, then these peripherals can be 
classified as class A.

Class B equipment is subject to more stringent requirements than class A, that is, 
the permitted levels of radiated emissions for class B equipment are lower than those 
for class A. Class A equipment only requires verification, whereas class B requires 
certification. The verification process is relatively simple and easy. Manufacturers 
test their equipment, and as soon as compliance is attained, the equipment can be 
labelled and marketed. To place equipment on a particular market, the manufac-
turer is required to hold a technical file consisting of:

• A general description of the radio equipment;
• Photographs or illustrations;
• Versions of software or firmware affecting compliance;
• User information and installation instructions;
• Conceptual design and manufacturing drawings;
• Descriptions and explanations necessary for the understanding of the opera-

tion of the equipment;
• A list of the harmonized standards, applied in full or in part, of which the 

references have been published in the Official Journal of the European Union;
• Copy of the EU declaration of conformity;
• Results of design calculations made, examinations carried out, and other 

relevant similar elements;
• Test reports.

For computer equipment, the EU and FCC operate a self-certification process.
Radiated emissions from class A are specified at a measurement distance of 10m, 

whereas the emissions from class B equipment can be undertaken at a distance of 
3m. The 30-m limit has been discontinued in this frequency band, as the measure-
ment of these levels is difficult on many sites because of ambient noise sources, and 
in addition, the difficulties of scanning the antenna height to 6m. Figure 8.2 shows 
the maximum level of radiated emissions specified by the FCC for the two classes 
of equipment. The limits above 1 GHz are shown in Table 8.1.

The radiated limits specified by the European Standards for the radiated electric 
field for 3m test distance are shown in Figures 8.4 and 8.5 [5].

8.1.4 Measuring Radiated EMI

The different regulatory bodies stipulate limits as well as different measurement 
set-ups for compliance. The measurement details for the IEC compliance are given 
here as an example. The IEC standards cover a frequency range from 9 kHz to 6 
GHz. A loop antenna is used to cover the frequency range from 9 kHz to 30 MHz. 
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Figure 8.2 FCC radiated electric field limits for computers up to 1 GHz.

Table 8.1 FCC Radiated Electric Field Limits Above 1 GHz

Frequency Range (MHz) Class Distance (m) Detector Limits (dBµV/m)

1,000 to 40,000 A 10 Peak 69.5

1,000 to 40,000 A 10 Average 49.5

1,000 to 40,000 B 3 Peak 74

1,000 to 40,000 B 3 Average 54

A biconical antenna is used to cover the frequency range from 30 to 200 MHz. A 
log periodic antenna is used to cover the frequency range from 200 to 1,000 MHz. 
A horn antenna is used from 1 to 6 GHz. The antennas are each placed 3m away 
from the EUT (equipment under test) and the frequency range is swept.

Details of the FCC indoor measurement for radiated emissions are now given. 
The EUT is placed on a 0.8-m high rotatable wooden table (must be expanded poly-
styrene for testing above 1 GHz). The area of the table depends on the size of the 
EUT. The antenna is mounted on a mast adjustable over at a height of 1 to 4m and 
3m away from the EUT. The measuring receiver is set to a scan of an appropriate 
frequency range, and the IF bandwidth is set to the relevant resolution bandwidth 
for the frequency range being observed. The I/O (input-output) cables are moved 
to defined positions as shown in the standard, and the sub assemblies are arranged 
10 cm apart. The I/O cables are also draped over the sides of the EUT to pick up 
emissions from the EUT’s internal logic. Several layouts are tried out to establish the 
worst-case readings on the spectrum analyzer. The spectrum analyzer is then tuned 
to another frequency span and the same procedure is repeated. The measurements 
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are then performed at frequency intervals up to the highest required frequency. A 
schematic of the measurement set-up is shown in Figure 8.3. For both the 3m and 
10m distance measurements, the antenna has to be moved between heights of 1 to 
4m to record the maximum level of the radiated emissions. The EUT is then rotated 
in the horizontal plane to investigate the position that gives the highest level of emis-
sion for both horizontal and vertical polarization of the antenna.

Nonabsorptive table
(polystyrene)

To spectrum analyser

0.8m height

Figure 8.3 The measurement set-up for radiated emissions testing.
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Figure 8.4 CISPR 32/EN 55022 radiated electric field limits below 1 GHz.
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Both FCC and EN standards have an upper frequency limit depending on the 
highest internal frequency. The FCC requirement for unintentional radiators is to 
measure to the fifth harmonic of the highest internal frequency, up to a maximum 
of 40 GHz. The limit is the same from 1 GHz to 40 GHz. The European require-
ments are shown in Table 8.2.

The CISPR 32/EN 55032 limits between 30 MHz and 1 GHz as shown in Fig-
ure 8.4 are the same as in the predecessor standard EN 55022, and are based on 
the quasi-peak detector. CISPR 22/EN 55022 was updated to include limits above 
1 GHz, and these have been adopted in CISPR 32/EN 55032. The limits above 1 
GHz are stated in terms of peak and average limits to reflect the protection of digi-
tal modulation techniques used by radios in this frequency range, shown in Tables 
8.3 and 8.4. To reflect the non-OATS facilities, CISPR 32/EN 55032 includes the 
use of fully anechoic rooms (FAR) and free-space OATS (FSOATS). A FSOATS is 
usually a semi-anechoic chamber or OATS with an absorber placed on the ground 
plane between the EUT and measurement antenna. It is used at frequencies above 
1 GHz and has the same limits applied as the FAR.
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Figure 8.5 CISPR 32/EN 55022 radiated electric field limits above 1 GHz.

Table 8.2 CISPR 32/EN 55032 Required Highest Frequency for Radiated Measurement

Highest Internal Frequency (Fx) Highest Measured Frequency

Fx< 108 MHz
108 MHz < Fx < 500 MHz
500 MHz < Fx < 1 GHz
Fx > 1 GHz

1 GHz
2 GHz
5 GHz
5 × Fx up to a maximum of 6 
GHz
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The free-space facilities are based on having absorber material on the floor, 
which ensures the absence of a ground reflected component. The traditional OATS 
was designed to ensure a consistent reflected signal from the ground plane. The 
disadvantage of the reflected signal from the ground plane is that there could be 
destructive interference between the direct wave and reflected wave which caused 
a null. As such, it is necessary to scan the antenna height to avoid this null. With 
the free-space technique, it is not necessary to scan the antenna height to avoid the 
null, however, it is necessary to scan to ensure that directional signals are detected.

A difference of 6 dB is expected for measured field strengths above a ground 
plane (for example, using an OATS), as compared with free space (for example using 
a FAR). A simple OATS geometrical optic model is shown in Figure 8.6: two rays 
impinge on the receive antenna above a ground plane; namely the one transmitted 
directly between the transmit and receive antennas and the one reflected by the 
ground plane.

The difference in phase relation of the two rays results in an interference pat-
tern which corresponds to the function of the height of the receive antenna above 
the ground. The resulting effect ranges from cancellation to doubling of the direct 

Direct ray
Transmit
antenna

Receive
antenna

Groundplane

ht

hrReflected ray

d

Figure 8.6 Ray diagram for radiated emissions measurement.

Table 8.3 CISPR 32/EN 55032 Class A Radiated Limits

Frequency Range (MHz) Test Site Distance (m) Detector Class A Limits (dBμV/m)

30 to 230 OATS/SAC 10 Quasi peak 40

230 to 1,000 OATS/SAC 10 Quasi peak 47

30 to 230 FAR 10 Quasi peak 42 to 35

230 to 1,000 FAR 10 Quasi peak 42

1,000 to 3,000 FSOATS 3 Average 56

3,000 to 6,000 FSOATS 3 Average 60

1,000 to 3,000 FSOATS 3 Peak 76

3,000 to 6,000 FSOATS 3 Peak 80
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ray. As such, during OATS measurements, hr is varied until constructive interfer-
ence (or doubling) is obtained.

8.2 Radiated Susceptibility and Immunity

IEC/EN 61000-4-3 is a basic standard which requires that equipment is tested to 
a level of severity that depends on the EM radiation to which it is exposed when it 
is used. Product standards refer to the basic standard and assign appropriate test 
levels. There are four test levels, defined as follows:

Level 1: low-level EM radiation environments, such as those typical of radio 
or television broadcasting stations that are located at a distance of more 
than 1 km, and radiated levels of low-power transceivers.

Level 2: Moderate EM radiation environments such as portable transceivers 
that are at least 1m away from the equipment.

Level 3: Severe EM radiation environments such as high power transceivers 
that are close to the equipment.

Level 4: Open test level for very severe EM radiation environments. This level 
is subject to negotiation between the user and the manufacturer, or it 
can be defined by the product standard.

The IEC defines susceptibility of equipment as the characteristic of the equip-
ment that results in undesirable responses when subjected to EM energy. The term 
susceptibility is usually used for military equipment, whereas the term immunity is 
used for nonmilitary equipment. In the case of military equipment, the standards 
are typically more stringent, that is, the equipment has to be capable of withstand-
ing higher levels than nonmilitary equipment. When military equipment produces 
or processes classified data, it is also required to be produced to what are known 
as TEMPEST standards, so that unauthorized access to the data is not possible.

In general, military equipment requires between 30 and 60 dB more shielding 
than comparable commercial equipment, to meet the more stringent standards [6]. 

Table 8.4 CISPR 32/EN 55032 Class B Radiated Limits 

Frequency range (MHz) Test Site Distance (m) Detector Class A limits (dBμV/m)

30 to 230 OATS/SAC 10 Quasi-peak 30

230 to 1,000 OATS/SAC 10 Quasi-peak 37

30 to 230 FAR 10 Quasi-peak 32 to 25

230 to 1,000 FAR 10 Quasi-peak 32

1,000 to 3,000 FSOATS 3 Average 50

3,000 to 6,000 FSOATS 3 Average 54

1,000 to 3,000 FSOATS 3 Peak 70

3,000 to 6,000 FSOATS 3 Peak 74
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Automotive manufacturers also specify very stringent test levels that are similar to 
military test levels.

The susceptibility of a device is measured by placing the device in an EM envi-
ronment of specified electric field or power density. The measurements can be per-
formed in an enclosure such as a screened room, an anechoic chamber, or a TEM 
cell (see Section 9.5.2).

Military standards, such as MIL-STD 461, address equipment and systems 
levels and cover susceptibility as well as emissions.

Equipment has to be immune to various EM signals. These include radiated 
electric and magnetic field strengths, and conducted common- and differential-mode 
voltages. Details of these measurements and the various levels specified by the dif-
ferent standards are adequately covered in textbooks. These standards are adopted 
in most regions world-wide including Europe [7].

8.2.1 Immunity to Radiated Electric Field Strength

IEC stipulates immunity to radiated electric field strength over the frequency range 
of 80 MHz to 6 GHz for commercial environments. The test level depends on the 
frequency and the product type. Residential, commercial, and light industrial equip-
ment including information technology equipment has a level set at 3 V/m, whereas 
medical equipment has levels set at between 10 V/m and 28 V/m at some frequencies 
[7, p. 18]. Below 80 MHz, the test standards are based on conducted test methods 
as the wavelengths are too long for common products to act as efficient receptors. 
The following frequency limits typically apply:

• Ports for power cables to be tested over the frequency range of 150 kHz to 
80 MHz;

• Ports which are not intended to have data cables attached to them of lengths 
greater than 3m need not be tested below 80 MHz.

Radiated immunity field uniformity requirements are such that the transmit 
antenna is typically located between 1 and 3m. These higher fields and longer dis-
tances increase the power requirements of the test facility.

8.2.2 Immunity to Conducted Radiated Interference

At frequencies below 80 MHz, commercial standards specify conducted radiofre-
quency testing. This is because at longer wavelengths (over 3.75m) the dimensions 
of most equipment are not large enough to act as an efficient receptor. Most of the 
interference enters the system via cables, which can be long enough to act as efficient 
antennas for a radiated signal, or can act as efficient transmission lines to conduct 
remotely generated interference into the equipment. This test typically only applies 
to cables that can be longer than 3m, usually utility cables, Ethernet, and telephone 
lines. The frequency range of 150 kHz to 80 MHz is to be covered with test levels 
of 3 Ve.m.f. (electromotive force) and 10 Ve.m.f.
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The preferred test method is to use a coupling/decoupling network (CDN), 
as this presents a controlled 150-Ω impedance to the cable, which represents the 
common-mode impedance seen by a long cable above a ground plane. Other meth-
ods include the electromagnetic clamp and current injection probe which is favored 
in military standards. The electromagnetic clamp is a combined electric field and 
current injection probe which attempts to couple efficiently at both high and low 
frequencies between 150 kHz and 80 MHz. The current injection probe has no 
impedance control and the injected current can vary widely compared to the original 
calibration level which is measured using a 50-Ω-defined impedance, whereas the 
EUT can have a higher or lower input impedance depending on the type of circuit. 
For example, if the input impedance is high, a high voltage occurs on the cable 
as the current probe drives a constant current. If the input impedance is less than 
50Ω, then a high current and low voltage will result. Typical setups are shown in 
Figures 8.7–8.9.

To amplifier

6 dB attenuator

Injection probe

Figure 8.7 Conducted immunity arrangement using bulk current injection.

6 dB attenuator

6 dB attenuator

To power supply or
auxiliary equipment

To amplifier

Figure 8.8 Conducted immunity arrangement using CDN.
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8.2.3 Magnetic Field Immunity

The magnetic field immunity levels stipulated by the IEC/EN [7] are as follows:

• For uniform magnetic fields such as those provided by a Helmholtz coil or a 
simple loop, the level is between 1 A/m and 30 A/m over the frequency range 
50 to 60 Hz.

• For point source magnetic fields, the level is 160 dBpT over the frequency 
range 30 Hz to 30 kHz.

• For power frequencies, the magnetic field induction level is 20A in the 
test circuit.

8.2.4 Immunity to Electrical Fast Transients

The immunity to electrical fast transients (EFT) (mains spikes) stipulated by the IEC/
EN standards [7] are to levels of between 1 and 2 kV on mains ports and 500V to 1 
kV on signal ports. (1 kV/500V is for residential, light industrial, and commercial, 
and 2 kV/1 kV for industrial.) The transient has a bandwidth of around 400 MHz.

There are two coupling methods specified. For power cables, a CDN is used, 
which uses 33 nF coupling capacitors. For signal cables, a capacitive coupling clamp 
is used, which comprises a metal enclosure through which the cable is passed. The 
clamp represents a capacitance of 100 pF [8].

The EFT is caused by arcing across switches that supply inductive loads. As the 
conventional electromechanical switch is opened, the back EMF from the inductive 
load causes the voltage across the switch to rise to a point that arcing occurs. At 
this point, current flows and the back EMF collapses. When the voltage drops to a 
certain level, the arc across the switch extinguishes. The voltage across the switch 
re-establishes and the process repeats itself until the energy from the inductive load 
is dissipated or the switch has opened sufficiently for the arc not to be sustained. 
The frequency of the arcing varies between 5 and 100 kHz, and the standards allow 
the use of either a 5-kHz repetition rate or a 100-kHz repetition rate. Figure 8.10 
shows the voltage transients generated by a switch opening, and Figure 8.11 shows 
details of the fast transient test waveform.

EM clamp

To auxiliary
equipment

To amplifier

6 dB attenuator

To EUT

Figure 8.9 Conducted immunity arrangement using electromagnetic clamp.
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Figure 8.10 Voltage transients generated by a switch opening. 
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Figure 8.11 Details of fast transient test waveform.
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8.2.5 Immunity to Electrostatic Discharges

The electrostatic discharge levels stipulated by IEC/EN are typically 8 kV for air 
discharge and 4 kV for contact discharge. Some standards require immunity to be 
demonstrated up to higher levels. For example, medical device standards (IEC/EN 
60601-1-2) stipulate test levels up to 15 kV for life support apparatuses. The tran-
sient has a bandwidth of over 1 GHz [9].

There are two forms of electrostatic discharges required, contact and air. Air 
discharges are applied to surfaces declared by the manufacturer to be nonconductive. 
Contact discharges are applied to conductive surfaces. The contact discharge method 
was developed to improve test repeatability, as the air discharge is highly dependent 
on temperature, humidity, and speed of approach of the ESD simulator to the EUT. 
The contact discharge is favored as the electrostatic discharge is applied via a high 
voltage relay, which ensures good repeatability. Air discharges are dependent on the 
ambient temperature, humidity, atmospheric pressure, and the speed at which the 
gun approaches the EUT. Care needs to be taken to ensure that the ground lead of 
the ESD simulator is held away from the EUT, as it can affect coupling.

ESD discharges are also applied to the vertical coupling plane (VCP) and the 
horizontal coupling plane (HCP) to simulate induction. If a product does not have 
a ground path, such as battery powered devices, then they must be discharged after 
each ESD application.

Some standards require the ESD to be carried out starting at lower levels and 
increasing the voltage up to the specified level. This is because lower discharge volt-
ages can have a higher bandwidth due to a faster rise time of the pulse [10].

The ESD simulator has a capacitor and resistor network to replicate the human 
body model (see Figure 8.12). The most common network is the 150-pF/330-Ω net-
work, as is used for medical devices, and residential and commercial equipment. 
Automotive standards specify a variety of capacitor/resistor combinations, including 
150 pF/330Ω, 330 pF/330Ω, 150 pF/2,000Ω, and 330 pF/2,000Ω [11].

Horizontal coupling plane (insulated)
1.6m × 0.8m

Vertical coupling plane
0.5m × 0.5m

EUTESD generator

470kΩ

470kΩ

470kΩ

470kΩ

Ground reference plane

Bonded to ground
reference plane

Figure 8.12 Electrostatic discharge test arrangement.
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8.3 Conducted Emissions and Immunity

Conductive coupling can take place via resistive, capacitive, or inductive paths. A 
line impedance stabilization network (LISN) is connected between the mains power 
supply and the mains cable of the EUT as shown in Figure 8.13.

Line-conducted emissions refer to the voltage fed back to the mains from the 
EUT. There are two main sources for these signals. They travel from the EUT’s logic 

Output jack
to test

From DUT
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(c)
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Figure 8.13 Line conducted emissions using an LISN: (a) Typical LISN set-up, (b) power cable 
wound in same direction, and (c) power cable wound into figure eight.
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circuits through the power supply and back through the LISN. The second source for 
signals above 15 MHz is from digital circuits, such as the computer and its cables, 
which are picked up by the AC power cable acting as a receiving antenna. This lat-
ter source of emission can vary because it is dependent on cable placement [2]. The 
regulations stipulate that the level of these emissions in the frequency range 0.15 to 
30 MHz must be less than 65 dBμV (varies with frequency) for class B equipment. 
For class A equipment, the limits are 79 dBμV and lower.

Line conducted emissions vary less with cable placement than radiated emissions, 
so these measurements lend themselves to automation. The FCC performs conducted 
emissions in an indoor test set-up. The EUT is placed on a 0.8-m-high wooden table 
which has a surface area of nominally 1m × 1.5m, but it may be larger or smaller 
to accommodate various sized EUTs. The AC cable is connected to an LISN. The 
AC cable is wound in a figure eight, if necessary, to reduce inductive effects. Figure 
8.13(a) shows the LISN with typical internal circuitry. If the cable is wound in the 
same direction, there is a resultant magnetic field, as in Figure 8.13(b). However, if 
a figure eight configuration is used as in Figure 8.13(c), then the magnetic field in 
each section of the figure eight is in the opposite direction to that in the other, so 
that the fields cancel each other out and their resultant is zero. The EUT’s I/O cables 
are arranged on the rest of the table. The engineer moves the I/O cables about to 
find the position that gives the maximum level of emissions. The AC power cable is 
kept rigid while these I/O cables are moved about. If a spectrum analyzer is used, 
an attenuator or a limiter is added to protect the analyzer from the low-frequency 
transients that would otherwise damage it. A measuring receiver with a quasi-peak 
detector may also be used [2]. Although a screened room is desirable for conducted 
emission testing, it is not necessary,

8.3.1 Immunity to Conducted Common- and Differential-Mode Voltages

The conducted immunity levels proposed by the IEC/CISPR [7] are as follows for 
residential, commercial, and light industrial environments:
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Figure 8.14 EN 55032 conducted limits for class B equipment.
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3V rms for common-mode conduction over the frequency range of 50 kHz to 
400 MHz;

For industrial environments the levels are at 10 V/m.

The preferred method of conducting this test is to use CDNs. This network is 
designed to present a common-mode impedance of 150Ω for the cable. Therefore, 
for a single conductor, a 100-Ω resistance is used which, in series with the 50-Ω 
output of the generator, yields a 150-Ω impedance. For a two-wire conductor, a 
200-Ω resistance per line is used. This can be used up to at least four or eight wires, 
however, as the number of lines increases the balance becomes more difficult. The 
CDN provides the best control of the line impedance and protection of the auxiliary 
equipment which should not be subjected to the injected interference.

Alternative methods include the current injection probe which is favored by 
military standards. However, this method is not favored for the commercial stan-
dards, as the impedances are not controlled. In addition, the injection current probe 
is rather inefficient, requiring more expensive power amplifiers to attain the test 
levels. An improvement is the electromagnetic clamp which uses a long ferrite load 
to improve the isolation of the auxiliary equipment, and also allows a combined 
current injection and capacitive coupling technique to be use which reduces the 
required amplifier power.

8.4 Shielding Effectiveness of Solid Materials

The radiated emissions can be prevented from entering or leaving a device by ade-
quate shielding. The shielding effectiveness depends on:

• The conductivity of the shield;
• The permeability of the shield;
• The permittivity of the shield;
• The thickness of the shield;
• The frequency of the incident radiation;
• The distance between the source and shield;
• The shape of the shield.

The shield should be grounded, and if made of aluminum it should not be anod-
ized. Anodizing makes the aluminum nonconducting, so that it cannot be used as a 
ground. Electrolytic tin-plated steel, on the other hand, is a low-cost material that 
lends itself to the formation of multiple shields that can be soldered together [12]. 
Shielding materials can also be painted or sprayed onto surfaces. Nickel is often 
used as paint coating, but copper is almost four times more conductive for the same 
thickness, and the water-based copper is also more environmentally friendly [13]. 
It is also cheaper and easier to apply. A nickel coating increases resistance to cor-
rosion, which is useful in outdoor locations.

Steel has a relative magnetic permeability of around 1,000, and is a good shield 
at low frequencies [14]. Copper has good conductivity and is relatively light. It is 
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used in solid and mesh form. Bronze is usually used in mesh form and in cases where 
magnetic and high frequency performance is not severe.

The SE of a material is the attenuation it presents to an electromagnetic wave, 
and is defined as the insertion loss in decibels obtained in the presence of the mate-
rial. At low frequencies (i.e., far below 1 GHz), and when the source is in the near 
field of antennas, the electric and magnetic fields are considered separately and the 
shielding effectiveness can be defined for E-mode and H-mode, respectively.

Thus, the SE for the electric field is given by

 
SE = 20log10

E1

E2

⎛
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⎞
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 (8.1)

where

E1 is the electric field intensity in the absence of the material;

E2 is the electric field intensity in the presence of the material.

SE for the magnetic field is given by

 
SE = 20log10
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 (8.2)

where

H1 is the magnetic field intensity in the absence of the material;

H2 is the magnetic field intensity in the presence of the material.

Solid materials prevent the penetration of electric and magnetic fields by 
three mechanisms:

1. Reflection (R) at the air–material interfaces;
2. Absorption (A) as the fields travel through the material;
3. Multiple internal reflections (MR) at the material–air interface.

Figure 8.15 shows the path traced by a wave incident at the surface of a shield. 
If the incident fields are E1

i and H1
i, then we can see that at the first air–material 

interface, parts of the fields are reflected (E1
r and H1

r) and parts are transmitted 
(E1

t and H1
t). These transmitted fields travel to the second material–air interface 

and suffer some absorption, so that the when they reach this second interface the 
waves have lower levels (E2

i and H2
i). These incident waves at the back surface of 

the material are also partly transmitted as E2
t and H2

t, and partly reflected as E2
r 

and H2
r. The reflected waves are transmitted back to the first material–air interface, 

suffering some absorption, and the incident fields at this first material–air interface 
are E3

i and H3
i. At this interface they will again be partly reflected (E3

r and H3
r) and 

partly transmitted (E3
t and H3

t). The transmitted waves (E3
t and H3

t) due to multiple 
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internal reflections are not in phase with the first reflected waves (E1
r and H1

r) and 
thus reduce the resultant reflection loss of the material. Thus the contribution (MR) 
to the total shielding effectiveness is also called a correction term. It will only be 
significant under certain conditions. If the absorption of the shield is greater than 
15 dB, or if thickness of the material is greater than the skin depth, then the fields 
will be greatly attenuated, so that the value of MR will be negligible.

8.4.1 Reflection Loss

The reflection loss depends on the type of wave incident on the shield. At frequen-
cies where the source to shield distance is less than < λ/2π, there are three types of 
waves to be considered: magnetic mode reflection loss Rh, electric mode reflection 
loss Re, and the reflection loss experienced by a plane wave Rp. Although the theo-
retical magnetic and electric reflection losses can be calculated, in practice, these 
fields cannot exist independently; thus, a predominantly magnetic field will always 
have an accompanying electric field, and a predominantly electric field will have an 
accompanying magnetic field. The magnitudes of the three types of reflection losses 
are shown in Figure 8.16. For a source-to-shield distance of 1m, this is equal to 2π 
at a frequency of 47.7 MHz. It can be seen that the theoretical reflection loss of a 
magnetic field alone is much less than that of a plane wave, but in practice, because 
there is also a small electric field present, the measured magnetic reflection loss is 
greater than the theoretical one. Similarly, the theoretical electric field reflection 
loss is higher than that for a plane wave, but in practice, because of the presence of 
a magnetic field, the measured values are lower than the theoretical ones.
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Figure 8.15 Path traced by a wave incident at the surface of a shield.
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8.4.1.1 Magnetic Mode Reflection Loss

In the near field (<λ/2π) of magnetic field generators such as loops, and at low fre-
quencies (<< 2 GHz) the magnetic field is more dominant and the wave impedance 
is lower than it would be under plane wave conditions. The reflection loss in this 
case is called the magnetic mode reflection loss and is given by:

 
Rh = 20log10 0.452
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where

Rh is the magnetic mode reflection loss in decibels;

r is the source-to-shield distance in inches;

f is the frequency in hertz;

μr is the magnetic permeability relative to a vacuum/air; 

σr is the conductivity relative to copper.

If the source-to-shield distance is in meters, the following formula should be used:

 
Rh = 20log10 0.0.1173
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where D is in meters.
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Figure 8.16 Reflection loss for electric, magnetic, and plane waves.
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Another simpler formula that gives very slightly different values at frequencies 
above 10 kHz is given by:

 
Rh = 14.6 + 10log10
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where

Rh is the magnetic mode reflection loss in decibels;

r is the source-to-shield distance in inches;

f is the frequency in hertz;

μr is the magnetic permeability relative to a vacuum/air; 

σr is the conductivity relative to copper.

If the source-to-shield distance is in meters, then the following formula applies:

 
Rh = 14.5 + 10log10
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where

Rh is the magnetic mode reflection loss in decibels;

D is the source-to-shield distance in meters;

f is the frequency in hertz;

μr is the magnetic permeability relative to a vacuum/air; 

σr is the conductivity relative to copper.

The comparison between the values obtained for the two above formulas is 
demonstrated by Table 8.5 for a source-to-shield distance of 1m in the case of SAE 
1045 steel, which has a relative magnetic permeability of 1,000 and a conductivity 
of 0.10 relative to copper. It can be seen that the detailed formula gives values for Rh 
that are about 0.5 (3.6%) higher at 10 kHz, and 0.03 lower (−0.05%) at 50 MHz.

Table 8.6 shows the magnitudes of Rh for different materials at three different 
frequencies. The values of relative magnetic permeability of the materials have been 
taken at 150 kHz and are lower at the frequencies above 150 kHz.

Since these formulas are rather complex, the variation of the magnetic reflec-
tion loss with the independent variables is not easy to see. However, if we vary just 
one of the variables while keeping the other variables constant, then we can see the 
effect of each of the variables on the magnetic reflection loss Rh.

8.4.1.1.1 Variation of Magnetic Reflection Loss with Permeability
Let us first of all consider the variation of the Rh as the relative magnetic perme-
ability is increased from 1,000 to 80,000, while the conductivity relative to copper 
is kept at a constant value of 0.3, and the source shield distance is 1m. Figure 8.17 
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Table 8.5 Theoretical Magnetic Reflection Loss Using Equations (8.3) and (8.4)

Frequency (MHz)

Rh

Approx Formula 
Equation 8.5

Rh

Detailed Formula 
Equation 8.4

Percentage Difference 
between 8.4 and 8.5 
Formulas

0.01 14.6 15.14 3.58

0.05 21.59 21.81 1.03

0.1 24.6 24.75 0.6

0.5 31.59 31.64 0.15

1 34.6 34.62 0.07

5 41.59 41.58 −0.02

10 44.6 44.59 −0.03

50 51.59 51.56 −0.05

D = 1m; μr is the magnetic permeability relative to a vacuum/air, and equals 1,000; and σr is the conductivity 
relative to copper, and equals 0.1.

Table 8.6 Theoretical Magnetic Reflection Loss for Different Materials

Material

Conductivity  
Relative to  
Copper

Magnetic  
Permeability μr 
Relative to  
a Vacuum

Rh Approximate 
Formula  
(150 kHz)

Rh Approximate 
Formula  
(1 MHz)

Rh 
Approximate  
Formula  
(50 MHz)

Aluminum 0.61 1 64.21 72.45 89.44

Beryllium 0.1 1 56.36 64.6 81.59

Brass 0.26 1 60.51 68.75 85.74

Cadmium 0.23 1 59.98 68.22 85.21

Copper 1 1 66.36 74.6 91.59

Gold 0.7 1 64.81 73.05 90.04

Hypernick 0.06 80,000 5.11 13.35 30.34

Iron 0.17 1,000 28.67 36.9 53.89

Lead 0.08 1 55.39 63.63 80.62

Magnesium 0.38 1 62.16 70.4 87.39

Mu-metal 0.03 80,000 2.1 10.34 27.33

Nickel 0.2 1 59.37 67.61 84.6

Permalloy 0.03 80,000 2.1 10.34 27.33

Phosphor bronze 0.18 1 58.91 67.15 84.14

Silver 1.05 1 66.57 74.81 91.8

Stainless steel 0.02 1,000 19.37 27.61 44.6

Tin 0.15 1 58.12 66.36 83.35

Zinc 0.29 1 60.98 69.22 86.21

shows the variation of Rh at three different frequencies, namely 10 kHz, 1 MHz, 
and 50 MHz. Examination of the curves reveals that as the permeability increases, 
the H-mode reflection loss Rh decreases. As the relative permeability increases from 
1,000 to 10,000 by a factor of 10 (10 dB), the magnitude of Rh decreases by 10 dB, 
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from 49 to 39 dB at 1 MHz. Thus, Rh is inversely proportional to the relative per-
meability. We can also see that as the frequency is increased by a factor of 100 (20 
dB) the magnitude of Rh also increases by 20 dB, from 9 dB at 10 kHz (and relative 
permeability of 10,000) to 29 dB at 100 MHz. Thus, Rh is directly proportional to 
the frequency. However, we must also be aware of the fact that although the distance 
between the source and shield has remained at a constant value of 1m, the electri-
cal distance (i.e., the distance in terms of wavelength) has effectively decreased as 
the frequency is increased. If the shield-source distance is maintained at the same 
electrical distance, then the magnitude of Rh would decrease with increasing fre-
quency. For instance, if the source-shield distance is maintained at 1/20th of the 
wavelength, then Figure 8.18 shows the variation of Rh with the magnetic perme-
ability, using frequency as a parameter. The magnitude of Rh for a material with 
relative permeability of, say, 20,000 is 70 dB at 10 kHz, but reduces to 30 dB at 100 
MHz. However, we must also be aware of the fact that the relative permeability of 
a material tends to decrease with frequency. For instance, the relative permeability 
of steel decreases from around 1,000 at DC to 300 at 400 MHz, and a mere 1 at 
about 1 GHz [15, Table A1]. Summarizing, we can say that the magnitude of Rh is 
inversely proportional to the relative permeability of the shield and proportional to 
the frequency if the physical source-shield distance is kept constant.

8.4.1.1.2 Variation of Magnetic Reflection Loss with Source-Shield Distance
Figure 8.19 shows the effect of varying the distance between the source and shield 
from 0.01 to 1m for a material with relative permeability of 1,000 and conductivity 
0.3 relative to copper for three different frequencies. As the source-shield distance 
is increased by a factor of 10 (10 dB) from 0.01 to 0.1 (at 1 MHz, for instance), the 
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Figure 8.17 Variation of H-mode reflection loss with relative permeability for a source-shield 
distance of 1m and relative conductivity of 0.3.
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Figure 8.18 Variation of H-mode reflection loss with relative permeability for a source-shield 
distance of 0.05λ and relative conductivity of 0.3.
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Figure 8.19 Variation of H-mode reflection loss with source-shield distance in meters for a 
relative permeability of 1,000 and relative conductivity of 0.3.

magnitude of Rh increases by 20 dB (or a factor of 100) from 19 to 39 dB. Thus, 
Rh is proportional to the square of the frequency.

If we vary the electrical distance (i.e., the distance in terms of the wavelength) 
then Figure 8.20 shows the variation of Rh with electrical distance from 0.01 to 0.16 
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wavelengths. We can see that the magnitude of Rh increases with increasing source-
shield electrical distance, but Rh decreases with increasing frequency. At a source-
shield distance of 0.09 wavelengths, for instance, the value of Rh decreases from 87 
dB at 10 kHz, to 27 dB at 10 GHz. Summarizing, we can say that as we physically 
move the shield away from the source, the magnetic reflection loss increases as the 
square of the distance, and as the frequency is increased for a fixed separation of 
the source and shield, the magnitude of Rh also increases in linear proportionality.

8.4.1.1.3 Variation of Magnetic Reflection Loss with Relative Conductivity
We shall look at the variation of Rh with conductivity for magnetic as well as non-
magnetic materials. If we have a nonmagnetic material with a relative permeability 
of 1, and the source-to-shield distance is maintained at a constant distance of 1m, 
we can see from Figure 8.21 that as the conductivity is increased the magnitude 
of the magnetic reflection loss Rh increases. For instance, at 10 kHz, if the relative 
conductivity is increased by a factor of 10 (10 dB) from 0.1 to 1.0, the magnitude 
of Rh also increases by 10 dB from 45 to 55 dB. We should also note that at a con-
stant value of the conductivity, as the frequency is increased, the magnitude of Rh 
also increases in direct proportion.

However, if the electrical distance is kept constant at 1/20th of a wavelength 
(0.05λ), then we can see from Figure 8.22 that as the frequency is increased, and 
at a particular value of conductivity, the magnitude of Rh decreases. For instance, 
at a relative conductivity of 0.4, Rh has a magnitude of 114 dB at 10 kHz, but a 
factor of 100 higher at 1 MHz, Rh falls by 20 dB to 94 dB (a factor of 100 less).
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Figure 8.20 Variation of H-mode reflection loss with source-shield distance in wavelengths for a 
relative permeability of 1,000 and relative conductivity of 0.3.



8.4 Shielding Effectiveness of Solid Materials 245

0.00 0.20 0.40 0.60 0.80 1.00

Conductivity relative to copper

H
-m

od
e 

re
fle

ct
io

n 
lo

ss
 in

 d
B

100

90

80

70

60

50

40

30

10 kHz

1 MHz

50 MHz

10 kHz1 MHz50 MHz

Figure 8.21 Variation of H-mode reflection loss with relative conductivity for a source-shield 
distance of 1m and relative permeability of 1.
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Figure 8.22 Variation of H-mode reflection loss with relative conductivity for a source-shield 
distance of 0.05λ and relative permeability of 1.
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Summarizing, we can say that at a fixed physical distance Rh is directly pro-
portional to the conductivity as well as the frequency.

A similar set of graphs are shown in Figures 8.23 and 8.24 for nonmagnetic 
materials which have a relative permeability of 1. Note that since Rh is inversely 
proportional to the relative permeability, the nonmagnetic materials have a higher 
magnetic reflection loss Rh than magnetic materials at a given value of conductivity. 
This is not an intuitive deduction. The magnetic reflection loss is quite low on the 
whole, compared with the reflection loss obtained to electric fields.

8.4.1.1.4 Dependence of Rh

Summarizing the dependence of Rh on the permeability, conductivity, and frequency, 
we can say that at a fixed physical distance between the shield and source

• Rh is inversely proportional to relative permeability (see Figure 8.17);
• Rh is proportional to conductivity for magnetic as well as nonmagnetic mate-

rials (see Figures 8.21 and 8.23);
• Rh is proportional to frequency (see Figures 8.17, 8.19, 8.21, and 8.23); 
• Rh is also proportional to the square of source-shield physical distance (see 

Figure 8.19).

The dependence of Rh on the magnetic permeability, frequency, conductivity, 
and source-to-shield distance can be deduced from the simplified equations of (8.5) 
and (8.6), but is not obvious from (8.3) and (8.4). Table 8.6 lists the magnitudes 
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Figure 8.23 Variation of H-mode reflection loss with relative conductivity for a source-shield 
distance of 1m and relative permeability of 1,000.
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of Rh for some of the more common magnetic and nonmagnetic materials for a 
source-shield distance of 1m at three different frequencies. It is assumed that the 
magnetic materials are not saturated, and that the magnetic permeabilities are 
constant with frequency. The H-mode shielding effectiveness for iron is very low 
at low frequencies. For example, at 60 Hz, to obtain a SE of 100 dB, a 0.3-in (7.6 
mm) thick shield is required [16].

8.4.1.2 Electric Mode Reflection Loss

In the near field of monopoles, dipoles, and so forth, the electric field is more domi-
nant and the wave impedance is higher than that of a plane wave. The reflection 
loss, in this case, is called the electric mode reflection loss and is given by

 
Re = 353.8 − 10log10

r2f 3mr
sr

⎛
⎝⎜

⎞
⎠⎟

 (8.7)

where

r is the distance between the source and shield in inches;

f is the frequency in hertz;

μr = μ/μ0 is the magnetic permeability relative to a vacuum/air; 

σr is the conductivity relative to that of copper.
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Figure 8.24 Variation of H-mode reflection loss with relative conductivity for a source-shield 
distance of 0.5λ and relative permeability of 1,000.
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If the source-to-shield distance is in meters, then the electric mode reflection 
loss is given by

 
Re = 321.8 − 10log10

D2f 3mr
sr

⎛
⎝⎜

⎞
⎠⎟

 (8.8)

where

D is the distance between the source and shield in meters;

f is the frequency in hertz;

μr = μ/μ0 is the magnetic permeability relative to a vacuum/air; 

σr is the conductivity relative to that of copper.

Note that in some instances, the formula for the electric field reflection loss is 
quoted as

 
Re = 321.8 + 10log10

sr

D2f 3mr
⎛
⎝⎜

⎞
⎠⎟

 (8.9)

This formula is also correct, since the change of sign results in inversion of the 
quotient, due to the following identity

 
−10log10(A) = +10log10

1
A
⎛
⎝

⎞
⎠  (8.10)

where A is a constant.
We can see from (8.9) that

• Re is inversely proportional to the relative permeability (see Figure 8.25). At 1 
MHz, as the relative permeability is increased by a factor of 10 (10 dB) from 
1,000 to 10,000, Re is decreased by 10 dB from 111 dB to 101 dB.

• Re is inversely proportional to the square of the source-shield distance. Refer-
ring to Figure 8.26, at 1 MHz, as the distance is increased from 0.1 to 1.0 by 
a factor of 10 (10 dB), the magnitude of Re decreases 20 dB from 161 to 141 
dB. If we vary the electrical distance (i.e., the distance in terms of the wave-
length) then Figure 8.27 shows the variation of Re with electrical distance 
from 0.01 to 0.16 wavelengths. We can see that the magnitude of Re decreases 
with increasing source-shield electrical distance, and Re also decreases with 
increasing frequency.

• Re is proportional to the relative conductivity (see Figure 8.28). For instance, 
at 1 MHz, when the relative conductivity is increased from 0.1 to 1.0 by a 
factor of 10 (10 dB), Re also increases by 10 dB from 131 dB to 141 dB.

• Re is inversely proportional to the cube of the frequency (for example, see 
Figure 8.28). At a conductivity of 0.7 for instance, Re has a value of 200 dB 
at 10 kHz, which reduces by 60 dB to 140 dB when the frequency is increased 
by a factor of 100 (20 dB).
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Figure 8.25 Variation of E-mode reflection loss with relative permeability for a source-shield 
distance of 1m and relative conductivity of 0.3.
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(relative permeability of 1 and relative conductivity of 1).
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Figure 8.27 Variation of E-mode reflection loss with source-shield distance in wavelengths for 
copper (relative permeability of 1 and relative conductivity of 1).
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distance of 1m and relative permeability of 1.
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Reflection loss for the electric field is greatest at low frequencies and for high 
conductivity materials [12]. It decreases with frequency and tends to infinity at 
DC. The reflection at the surface of the material depends on its surface resistivity.

The resistivity of the material is the resistance of unit thickness, unit width, 
and unit length. Thus, the resistivity has units of ohms multiplied by area (length 
squared) divided by length; that is, ohms per meter. In the case of surface resis-
tance, there is no thickness, so the surface resistivity is the resistance of unit width 
and unit length. Thus, the units of surface resistivity are ohms multiplied by a unit 
of length and divided by a unit of width, which results in units of ohms. Since the 
surface resistivity has the same units as the resistance, it is expressed in ohms per 
square (Ω/sq) to distinguish it from resistance. The term per square means that it 
is the resistance of a square of a surface. Any unit may be used for the width and 
length of the surface area, as long as the units are used for both dimensions.

This is most important between frequencies from 1 MHz to 1 GHz. High con-
ductivity or low resistivity is required for good screening. The magnitudes of Re 
at three different frequencies for some common materials are shown in Table 8.7. 
It is assumed that the magnetic materials are not saturated, and that the magnetic 
permeabilities are constant with frequency.

Table 8.7 Theoretical Magnetic Reflection Loss for Different Materials with a Source-to-Shield Distance 
of 1m

Material

Conductivity  
Relative  
to Copper

Magnetic  
Permeability  
Relative to a  
Vacuum Re (10 kHz) Re(1 MHz) Re 100 MHz

Aluminum 0.61 1.00 199.45 139.45 79.45

Brass 0.26 1.00 195.75 135.75 75.75

Cadmium 0.23 1.00 195.22 135.22 75.22

Copper 1.00 1.00 201.60 141.60 81.60

Gold 0.70 1.00 200.05 140.05 80.05

Hypernick 0.06 80000 189.38 129.38 69.38

Iron 0.17 1000. 193.90 133.90 73.90

Lead 0.08 1.00 190.63 130.63 70.63

Magnesium 0.38 1.00 197.40 137.40 77.40

Mumetal 0.03 80000 186.37 126.37 66.37

Nickel 0.20 1.00 194.61 134.61 74.61

Permalloy 0.03 80000 186.37 126.37 66.37

Phosphor bronze 0.18 1.00 194.15 134.15 74.15

Silver 1.05 1.00 201.81 141.81 81.81

Stainless steel 0.02 1000 184.61 124.61 64.61

Tin 0.15 1.00 193.36 133.36 73.36

Zinc 0.29 1.00 196.22 136.22 76.22
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8.4.1.3 Plane Wave Reflection Loss

In the far field of antennas, the wavefront is plane and the wave impedance is 377Ω. 
In this case, the source-to-shield distance does not affect the shielding effectiveness 
of the shield. The plane wave reflection loss Rp is given by

 
Re = 168 − 10log10

fmr
sr

⎛
⎝⎜

⎞
⎠⎟

 (8.11)

where

f is the frequency in hertz;

μr is the relative permeability; 

σr is the conductivity relative to that of copper.

Equation (8.11) can be rewritten, using the identity of (8.10), as

 
Re = 168 + 10log10

sr

fmr
⎛
⎝⎜

⎞
⎠⎟

 (8.12)

Figures 8.29 through 8.31 show the variation of the plane wave reflection loss 
with relative permeability and relative conductivity (for magnetic and nonmagnetic 
materials). From these figures and (8.11) we can see that the plane wave reflection 
loss is

• Inversely proportional to the relative permeability (see Figure 8.29). As the 
relative permeability increases from 2,000 to 20,000 (by a factor of 10 or 
10 dB) at 100 MHz, the magnitude of Rp decreases 10 dB from 50 to 40 dB.

• Inversely proportional to the frequency. In Figure 8.29, as the frequency is 
increased by a factor of 100 (20 dB) from 1 to 100 MHz, the magnitude of 
Rp decreases from 70 to 50 dB at a relative permeability of 2,000.

• Directly proportional to the relative conductivity. In Figure 8.30, as the con-
ductivity is increased from 0.1 to 1 at 100 MHz, the magnitude of Rp increases 
from 78 to 88 dB.

The variation of plane wave reflection loss with relative conductivity for a rela-
tive permeability of 1,000 is shown in Figure 8.31.

The theoretical values of the plane wave reflection loss at three different fre-
quencies for some common materials are given in Table 8.8. It is assumed that the 
magnetic materials are not saturated, and that the magnetic permeabilities are 
constant with frequency.

8.4.2 Absorption Loss

The absorption loss A of planar materials is given by

 
A = 3.34t srmrf  (8.13)
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Figure 8.29 Variation of plane wave reflection loss with relative permeability for a relative 
conductivity of 0.3.
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Figure 8.30 Variation of plane wave reflection loss with relative conductivity for a relative 
permeability μr of 1.
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Figure 8.31 Variation of plane waves reflection loss with relative conductivity for a relative 
permeability μr of 1,000.

Table 8.8 Theoretical Plane Wave Reflection Loss for Different Materials

Material
Conductivity  
Relative to Copper

Magnetic Permeability 
Relative to a Vacuum

Rp  
(100 kHz)

Rp  
(1 MHz)

Rp  
(50 MHz)

Brass 0.26 1.00 110.39 102.15 85.16

Cadmium 0.23 1.00 109.86 101.62 84.63

Copper 1.00 1.00 116.24 108.00 91.01

Gold 0.70 1.00 114.69 106.45 89.46

Hypernick 0.06 80000 54.99 46.75 29.76

Iron 0.17 1000 78.54 70.30 53.31

Lead 0.08 1.00 105.27 97.03 80.04

Magnesium 0.38 1.00 112.04 103.80 86.81

Mu-metal 0.03 80000 51.98 43.74 26.75

Nickel 0.20 1.00 109.25 101.01 84.02

Permalloy 0.03 80000 51.98 43.74 26.75

Phosphor  
bronze

0.18 1.00 108.79 100.55 83.56

Silver 1.05 1.00 116.45 108.21 91.22

Stainless steel 0.02 1000 69.25 61.01 44.02

Tin 0.15 1.00 108.00 99.76 82.77

Zinc 0.29 1.00 110.86 102.62 85.63
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where

A is in decibels;

t is the thickness in inches;

μr is the magnetic permeability relative to vacuum/air;

f is the frequency in hertz; 

σr is the conductivity relative to copper.

If the thickness of the shield is in meters, then the absorption loss A is given by

 
A = 131T srmrf  (8.14)

where T is the thickness in meters.
Figures 8.32 and 8.33 show the absorption loss obtained by thin shields of 

thicknesses 1 and 10 μm, respectively. Since the relative permeabilities of magnetic 
materials vary between 1,000 and 80,000, the absorption losses of magnetic mate-
rials are much higher than those obtained with nonmagnetic materials. Thus, in 
the case of nonmagnetic materials, there is little point in increasing the thickness 
beyond the skin depth (see (8.14) for a definition of skin depth). Figure 8.34 shows 
the variation of the absorption with relative conductivity for nonmagnetic materi-
als with relative permeabilities of 1. From these figures and (8.13), it can be seen 
that the following applies:

• The absorption is proportional to the thickness of the material. Referring to 
Figures 8.32 and 8.33, we can see that for a particular frequency and rela-
tive permeability, the absorption loss for the 10-μm-thick shield of Figure 
8.33 is ten times higher than the absorption loss for the 1-μm-thick shield 
of Figure 8.32.

• The absorption is proportional to the square root of the relative magnetic 
permeability. In Figure 8.32, as the relative permeability increases by a fac-
tor of 10 from 2,000 to 20,000, the magnitude of A increases at 1 MHz by a 
factor of 3.16, from 3.16 to 10. Since 3.16 is the square root of 10, it follows 
that A is proportional to the square root of the relative permeability.

• The absorption is proportional to the square root of the relative conductivity. 
In Figure 8.34, as the conductivity is increased by a factor of 10, from 0.1 to 
1 at a frequency of 1 MHz, the magnitude of A increases by a factor of 3.16, 
from 40 to 126.

• The absorption is proportional to the square root of the frequency. Referring 
again to Figure 8.34, as the frequency is increased by a factor of 100 from 10 
kHz to 1 MHz, the magnitude of A increases by a factor of 10, from 10 dB 
to 100 dB at a relative conductivity of 0.6.

The absorption is independent of the distance between the source and the shield, 
and is also independent of the type of wave. It is the same for a magnetic, electric, or 
plane wave. If the absorption is less than 15 dB, the shield is designated as electri-
cally thin. As the frequency is increased, the skin depth decreases. The skin depth 
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Figure 8.32 Variation of absorption loss with relative permeability for a 1-μm shield of relative 
conductivity 0.3.
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Figure 8.33 Variation of the absorption loss with relative permeability for a 10–μm shield of 
relative conductivity of 0.3.
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Figure 8.34 Variation of absorption loss with relative conductivity for a 10-μm shield of relative 
permeability μr of 1.

δ in meters is defined as the depth of penetration in a conductor when the electric 
field falls to 1/e (where e is 2.718) of its magnitude at the surface of the conductor. 
The skin depth is given by

 
d = 1

psmf
 (8.15)

where

δ is the skin depth in meters;

σ is the conductivity in siemens per meter (S/m);

μ is the permeability in henries per meter (H/m); and

f is the frequency in hertz.

Table 8.9 lists the absorption loss at three different frequencies for some common 
materials. We can see that the absorption loss for magnetic materials is much higher 
than that for nonmagnetic materials. It is assumed that the magnetic materials are 
not saturated, and that the magnetic permeabilities are constant with frequency.

8.4.3 Multiple Reflection Loss

The multiple reflection loss in decibels is given by

 MR = 20log10 1 − e−(2T /d)[ ]  (8.16)

where T is the thickness in meters, and δ is the skin depth in meters.
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Table 8.9 Theoretical Absorption Loss for Different Materials with a Material Thickness of 0.1 mm 

Material
Conductivity  
Relative to Copper

Magnetic Permeability 
Relative to a Vacuum A (100 kHz)

A  
(1 MHz)

A  
(50 MHz)

Aluminum 0.61 1.00 3.96 10.23 72.35

Beryllium 0.10 1.00 1.60 4.14 29.29

Brass 0.26 1.00 2.59 6.68 47.23

Cadmium 0.23 1.00 2.43 6.28 44.42

Copper 1.00 1.00 5.07 13.10 92.63

Gold 0.70 1.00 4.24 10.96 77.50

Hypernick 0.06 80000 351.51 907.59 6417.66

Iron 0.17 1000 66.15 170.80 1207.76

Lead 0.08 1.00 1.44 3.71 26.20

Magnesium 0.38 1.00 3.13 8.08 57.10

Mu-metal 0.03 80000 248.56 641.77 4537.97

Nickel 0.20 1.00 2.27 5.86 41.43

Permalloy 0.03 80000 248.56 641.77 4537.97

Phosphor 
Bronze

0.18 1.00 2.15 5.56 39.30

Silver 1.05 1.00 5.20 13.42 94.92

Stainless steel 0.02 1000 22.69 58.58 414.26

Tin 0.15 1.00 1.97 5.07 35.88

Zinc 0.29 1.00 2.73 7.05 49.88

This is a correction term that is nearly always negative so that it reduces the 
reflection loss of the shield. It has to be considered only in cases where the material 
is much thinner than the skin depth, or when the absorption is less than about 10 
dB. Since the correction term is only dependent on the thickness of the shield and 
the absorption loss, it is also independent of the source-shield distance and the type 
of incident wave.

8.4.4 Total Shielding Effectiveness

The total shielding effectiveness of a planar material depends on the type of incident 
field. The only difference is in the reflection loss presented to the incident fields. 
The absorption and multiple reflection losses are the same for all types of incident 
fields. Figures 8.35 to 8.37 show the insertion loss for the individual components, 
as well as the total SE obtained for magnetic, electric, and plane waves. These are 
for a 1-μm-thick SAE 1045 steel shield at a source-shield distance of 1m.

In the case of copper, the SE is mainly due to the high reflection loss to the 
electric mode, so there is little to be gained from increasing the thickness. Tables 
8.10 to 8.14 list the theoretical individual components for a 0.1-mm-thick shield of 
copper, aluminum, SAE 1045 steel, tin, and μ-metal at four different frequencies. 
It is assumed that the magnetic materials are not saturated, and that the magnetic 
permeabilities are constant with frequency.
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Figure 8.37 Variation of plane wave shielding effectiveness with frequency for 1 μm of SAE 
1045 steel with relative permeability of 1,000 and relative conductivity of 0.1.

Table 8.10 Theoretical Shielding Effectiveness of Copper with a Source-to-Shield Distance of 
1m, Relative Magnetic Permeability of 1, and Thickness of 0.1 mm

Frequency 50 Hz 1 kHz 10 kHz 1 MHz 100 MHz

Re 270.83 231.80 201.80 141.80 81.80

Rh 31.59 44.60 54.60 74.60 94.60

Rp 151.01 138.00 128.00 108.00 88.00

A 0.09 0.42 1.31 13.14 131.40

MR −39.42 −26.57 −17.02 −2.14 0.00

SE E-mode 231.50 205.64 186.10 152.80 213.20

SE H-mode −7.74 18.44 38.90 85.60 226.00

SE plane wave 111.68 111.84 112.30 119.00 219.40

Table 8.11 Theoretical Shielding Effectiveness of Aluminum with a Source-to-Shield Distance of 
1m, Relative Magnetic Permeability of 1, Conductivity Relative to Copper of 0.61, and Thickness 
of 0.1 mm

Frequency 50 Hz 1 kHz 10 kHz 1 MHz 100 MHz

Re 268.68 229.65 199.65 139.65 79.65

Rh 29.44 42.45 52.45 72.45 92.45

Rp 148.86 135.85 125.85 105.85 85.85

A 0.07 0.32 1.03 10.26 102.63

MR −41.56 −28.67 −19.02 −3.16 0.00

SE E-mode 227.20 201.30 181.66 146.75 182.28

SE H-mode −12.04 14.10 34.46 79.55 195.08

SE plane wave 107.38 107.50 107.86 112.95 188.48
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Table 8.12 Theoretical Shielding Effectiveness of SAE 1045 steel with a Source-to-Shield 
Distance of 1m, Relative Magnetic Permeability of 1,000, Conductivity Relative to Copper of 0.1, 
and Thickness of 0.1 mm

Frequency 50 Hz 1 kHz 10 kHz 1 MHz 100 MHz

Re 230.83 191.80 161.80 101.80 41.80

Rh −8.41 4.60 14.60 34.60 54.60

Rp 111.01 98.00 88.00 68.00 48.00

A 0.93 4.16 13.14 131.40 1314.00

MR −19.84 −8.37 −2.14 0.00 0.00

SE E-mode 211.92 187.59 172.80 233.20 1355.80

SE H-mode −27.32 0.39 25.60 166.00 1368.60

SE plane wave 92.10 93.79 99.00 199.40 1362.00

Table 8.13 Theoretical Shielding Effectiveness of Tin with a Source-to-Shield Distance of 1m, 
Relative Magnetic Permeability of 1, Conductivity Relative to Copper of 0.15, and Thickness of 0.1 
mm

Frequency 50 Hz 1 kHz 10 kHz 1 MHz 100 MHz

Re 262.59 223.56 193.56 133.56 73.56

Rh 23.35 36.36 46.36 66.36 86.36

Rp 142.77 129.76 119.76 99.76 79.76

A 0.04 0.16 0.51 5.09 50.89

MR −47.63 −34.68 −24.86 −7.04 −0.02

SE E-mode 215.00 189.04 169.21 131.61 124.43

SE H-mode −24.25 1.84 22.01 64.41 137.23

SE plane wave 95.17 95.24 95.41 97.81 130.63

Table 8.14 Theoretical Shielding Effectiveness of μ-Metal with a Source-to-Shield Distance 
of 1m, Relative Magnetic Permeability of 80,000, Conductivity Relative to Copper of 0.03, and 
Thickness of 0.1 mm

Frequency 50 Hz 1 kHz 10 kHz 1 MHz 100 MHz

Re 206.57 167.54 137.54 77.54 17.54

Rh −32.67 −19.66 −9.66 10.34 30.34

Rp 86.75 73.74 63.74 43.74 23.74

A 4.55 20.36 64.37 643.73 6437.26

MR −7.76 −0.87 −0.01 0.00 0.00

SE E-mode 203.36 187.03 201.91 721.27 6454.80

SE H-mode −35.88 −0.17 54.71 654.07 6467.60

SE plane wave 83.54 93.23 128.11 687.47 6461.00
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8.5 Measuring Shielding Effectiveness

The shielding effectiveness can be measured under H-mode, E-mode, or plane 
wave conditions. In the E- or H-mode SE measurement, the position of the source, 
MUT (material under test), and receive antenna are critical, and small differences in 
positioning can result in large differences in measured values of SE. The measure-
ment can be performed in free space or in a guided wave system. The free-space 
measurement is usually undertaken in an OATS or shielded enclosures, whereas 
the guided wave systems include TEM and stripline cells. These are described in 
Chapter 9. The choice of measurement depends on the frequency range as well as 
on the expected magnitude of the SE of the material.

8.5.1 Magnetic or H-Mode SE Measurements

One type of magnetic loop cavity, described by Hariya and Masahiro[17], consists 
of two 3-mm-thick flanged copper boxes of square cross section (see Figure 8.38). 
Each box has a 90° corner reflector through which a quarter of a loop antenna 
protrudes, the remainder of the loop being contained within each of the boxes. The 
MUT is clamped between the flanges. The insertion loss obtained with the MUT 
is compared with the insertion loss obtained without the sample. When the sample 
is inserted, it loads the instrument, and in order to establish the degree of load-
ing, the return loss of the instrument is measured with and without the sample in 
place. The maximum difference between the magnitudes of the return loss in these 
two cases is about 2.5 dB, indicating that although some loading and impedance 
mismatch does occur, it is not appreciable. The transmission characteristics of the 
device demonstrated some resonance above 900 MHz, but below 400 MHz the 
measured values agree quite well with predicted values. This device can be used to 
measure SE magnitudes up to about 120 dB. Materials with poor surface conduc-
tivity have to be treated to ensure that good contact is obtained with the flanges.
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Figure 8.38 Magnetic mode SE measurement instrument: (a) external, (b) internal.
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8.5.2 Electric or E-Mode SE Measurements

The device specified by the American Society for Testing and Materials (ASTM) 
[18] consists of 2 boxes, each 18 cm × 12 cm × 16 cm high (see Figure 8.39). There 
is an aperture in the abutting surface of each box to accept a specimen of 15 cm 
× 7.5 cm. The MUT is held in place by spring fingers, and silver paint is used to 
improve contact. The device can be used to measure the SE of materials up to about 
50 dB over the frequency range 100 kHz to 1 GHz. However, measurement of a 
gold calibration standard (consisting of a gold film on a polymeric substrate) showed 
a marked variation with frequency which did not occur on the same calibration 
standard in an ASTM coaxial TEM cell. The main advantages of this device are 
that the positions of the antennas are fixed and that the boxes are small enough to 
be below the cut-off of the dominant TE10 up to 833 MHz. Thus, the resonances 
experienced in shielded rooms are avoided. However, the field distribution of the 
incident energy is not known, and the results obtained with this device do not com-
pare favorably with other devices such as TEM cells.

8.5.3 Plane Wave SE Measurements

In free space, the plane wave is obtained by having the MUT in the far field of 
an antenna. In principle, this measurement involves producing a field by use of a 
transmitting antenna and measuring the field at a receiving antenna in the absence 
and presence of the MUT. If this measurement were to be performed in an OATS, 
it would require an infinitely large sheet of the MUT in order to prevent the energy 
from multipath rays affecting the result. Depending on the path length of these 
multipath rays, their phases would differ from the direct rays and thus there could 
be constructive or destructive interference with the direct rays. Thus, free-space 
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Figure 8.39 Electric field SE measurements using a dual-shielded box.
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measurements could give spurious results. The multipath signals can be gated-out 
[19] by using a time domain set-up, as shown in Figure 8.40. The pulse contains 
a frequency spectrum, so instead of sweeping the source and receiver over a band 
of frequencies, a single pulse is used. The impulse generator produces a pulse and 
triggers the oscilloscope so that the latter only receives the direct signal and not 
any of the multipath signals. The time between the direct path pulse and the first 
multipath pulse is the called the clean time. The shorter the pulse, the higher the 
upper-frequency limit of the test is. The low-frequency limit is dictated by the power 
available, the size of the sample, and the clean time. Higher power is required at 
low frequencies, since the MUT has to be placed further away from the antennas to 
meet the far-field condition. The size of the sample has to be larger, since if the pulse 
contains lower frequencies, it will be broader and thus, if the material size is the 
same the clean time will be reduced. A fast Fourier transform (FFT) is performed on 
the received pulse to obtain the frequency information. This set-up is very efficient 
in regards to measurement time, but the dynamic range is only about 50 to 60 dB. 
The frequency range is about 160 MHz to 1.5 GHz, but the upper-frequency limit 
can be extended to 3.5 GHz by the use of shorter pulses. The use of large sheets 
of the MUT can be avoided by using a large metal sheet with an aperture to take 
smaller sheets of the MUT. However, in this case, care must be taken to ensure 
that the effects of aperture coupling do not affect the field incident on the MUT.

Another set-up is to perform the measurements in two adjacent shielded rooms 
with an interconnecting aperture, over which the MUT is mounted for measure-
ment. The shielded rooms should be at least partly lined, and the MUT should be 
placed in the far field of both antennas. While the far-field condition can be fairly 
easily achieved at the higher frequencies (above about 1 GHz), at the lower frequen-
cies this condition is far more difficult to attain, since the longer distances to obtain 
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Figure 8.40 Time domain free-space SE measurements.
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far-field conditions necessitate a larger size of rooms. To cover the same dynamic 
range, a higher power will be required from the transmitting antenna to allow for 
the increased loss between the MUT and each of the antennas.

8.5.3.1 Guided Wave SE Measurements

Plane waves can also be produced in any guided system that can support a TEM 
wave. This necessitates a two-conductor transmission line. The MUT is compared 
to the insertion loss of a reference sample or air. The circular coaxial TEM cells 
from ASTM and NBS are shown in Figure 9.8 and described in Chapter 9. In the 
case of the ASTM cell, the center conductor is continuous, and the MUT is an 
annular (ring-like) shape that fits between the inner and outer conductor. The ref-
erence sample is also the same shape. Materials with SE values of up to 90 dB can 
be measured with this cell, but contact resistance is a major problem, especially 
for materials with high SE. These materials also have good conductivity and thus 
their impedances are low (lower than the characteristic impedance of the cell), so 
that they load the cell.

The shielding effectiveness of the MUT is given by

 
SE = 20log10 1 −

Z0

2 Zl + Zc( )
⎛
⎝⎜

⎞
⎠⎟

 (8.17)

where

Z0 is the characteristic impedance of the unloaded cell;

Zl is the impedance presented by the loaded cell; and

Zc is the contact impedance of the MUT.

For good conductors, the value of Zl is small, and it can be seen from (8.16) 
that as Zl gets smaller, the contact impedance Zc becomes more significant. Large 
values of contact impedance reduce the magnitude of SE in (8.16), and as Zl gets 
smaller, it also becomes increasingly difficult to match the loaded fixture to the 
characteristic impedance of the line.

The flanged TEM cell developed by NBS (see Chapter 9) does not have the 
same problems with contact resistance as the ASTM cell. The sample MUT has 
the shape of a solid disk, whereas the reference sample consists of two parts. One 
part is in the form of a disk (to fit the inner conductor of the cell), and the other is 
a ring to fit between the flanges of the outer conductor. Thus, there is no material 
between the inner and outer conductor of the cell for the reference measurement. 
The flanged NBS cell gives more consistent results than the ASTM cell.

Another cell that overcomes the disadvantages of the ASTM cell is the square 
coaxial cell proposed by Hariya and Masahiro [17]. The cell has a flat inner conduc-
tor that is shorter than the outer one, so the inner conductor does not make contact 
the sample when it is placed between the two halves of the fixture. One half of the 
cell is shown in Figure 8.41.
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8.5.4 Ventilation Holes

Ventilation holes are required for cooling purposes, and seams are used to join 
sheets of materials used to improve the SE of equipment. A common rule of thumb 
for seams and holes is that no hole diameter or seam should be greater than 1/100th 
of a wavelength [12]. Holes used for ventilation should be carefully chosen with 
regard to diameter and spacing. The shielding effectiveness is proportional to the 
spacing s, and inversely proportional to the cube of the diameter d. Thus, the greater 
the hole spacing, the less is the EM leakage, and the larger the hole diameter, the 
greater is the EM leakage [12].

8.6 Electrostatic Discharge

Electrostatic charge was one of the first forms of electricity to be discovered. The 
word electricity comes from the Greek word for amber, which is elektron. The dis-
covery of electrostatics is attributed to Thales (640–538 BC), who noticed that the 
amber spindle (used to spin silk) attracted the silk. However, it was not until 2,000 
years later that the sixteenth century Royal Physician Gilbert (1540–1603) discov-
ered that other materials such as glass could also retain charge in the same way as 
amber. We must all be familiar with rubbing balloons to enable them to stick to 
walls. The charge is built up by friction on the balloon and then it is attracted to 
any neutral insulating surface. A similar charge can be built up by walking across 
a nylon carpet, for instance, and if we were to then touch a metal object such as a 
radiator, then we might be subjected to a shock and in the dark we may see a spark 
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Figure 8.41 Rectangular TEM cell for SE plane wave measurement.
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or small arc. If the radiator is touched tentatively with a finger, the shock is much 
greater than it would be if the radiator had been grabbed with the whole hand. This 
is because the pointed finger has a higher charge density (charge per unit area) than 
a rounded blunt surface. In other words, the surface charge density increases with 
curvature. The charge also builds up more in dry conditions than in humid ones. 
This is because with increased humidity, the water vapor causes the charges to leak 
away. The variation of the electrostatic voltage with humidity for various human 
activities [20] is listed in Table 8.15.

The use of man-made materials also results in a increase in charge. An electro-
static voltage of up to 15 kV can be generated by walking across a nylon carpet [15, 
p. 13]. Peak human voltages can reach up to 35 kV, and peak currents can reach 5 
to 10A. The energy stored by human beings can vary between 20 to 30 mJ, whereas 
the energy stored in furniture is 5 to 6 mJ [21]. When these voltages are discharged 
upon electronic devices, they can cause considerable damage. In manufacturing, 
the main parameters of concern are the peak voltage and energy in the pulse. This 
is because the failures in electronic devices are caused by voltage breakdown of 
dielectrics, or by thermal heating due to the energy contained in the pulse, which 
results in thermal failure. In the field however, the main parameters of concern are 
usually peak currents and rise times. This is because failure modes are impedance 
and frequency related. It is difficult to determine whether voltage or current causes 
the damage. Practically speaking, once the dielectric breakdown voltage has been 
reached, it is the current that does the damage through I2R heating.

8.6.1 ESD Spectrum

The frequency spectrum of an ESD pulse depends on the shape of the pulse in the 
time domain, that is, the amplitude variation with time. The frequency spectrum 
of the pulse is the Fourier transform of the time domain function. An approximate 
spectrum for one type of human generated ESD pulse is discussed here. These 
pulses have typical rise times of 1 to 3 ns [22]. A rise time of 1 ns corresponds to a 
bandwidth of π times the rise time This represents a frequency bandwidth of 318 
MHz, which means that 1 GHz design rules must be applied to ESD shielding and 
grounding. The ESD pulse has been found to contain components above 1 GHz. 

Table 8.15 Variation of the Magnitude of Electrostatic Voltage at Two Different Ranges of 
Relative Humidities

ES Voltage in Volts

Relative Humidity Range 
10–20%

Relative Humidity Range 
65–90%

Walking on carpet 35,000 1,500

Walking on vinyl floor 12,000 250

Working at bench 6,000 100

Handling vinyl envelopes 7,000 600

Packing polyethylene bag 20,000 1,200

Sliding on foam padded chair 18,000 1,500
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The waveform from a typical human ESD event is shown in Figure 8.42(a), and 
its frequency spectrum is shown in Figure 8.42(b) [22, Figure 1]. The envelope of 
the spectrum is also shown with slopes of zero, 20 dB/decade, and 40 dB/decade, 
respectively.

Components sensitive to ES voltages of less than 15,000V are considered to be 
ESD-sensitive. The hazard from human-generated ESD depends on the capacitance 
and resistance of the human body, as well as the impedance of the EUT. Earth straps 
should be worn when working with electronic components. Resistors of 1 MΩ should 
be used, so that the discharge to earth occurs slowly [9, p. E-7-75].
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Figure 8.42 Waveform and spectrum for a human ESD: (a) Typical human-generated ESD 
current waveform, and (b) positive frequency spectrum of typical human ESD.
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8.6.2 Direct and Indirect ESD

The direct discharge is discharge directly through a device, whereas the indirect 
discharge is coupling through the electromagnetic field that is radiated by the ESD 
pulse [22].

8.6.2.1 Direct ESD

Electronic devices are particularly vulnerable to direct ESD during manufacture 
and repair or servicing. During normal operation of a device, the vulnerable circuits 
should also be protected from ESD. The I/O cables are often decoupled by connect-
ing capacitors between these cables and the power return path. This results in the 
ESD currents flowing in the circuit return paths, which could cause an upset. How-
ever, if the capacitors are connected directly to the chassis, then the ESD currents 
will be steered away from the power return path [22]. One way of increasing the 
immunity of a device is to use solid-state clamping devices between critical points 
and ground. When the ESD voltage increases above a specified value, the clamping 
device is turned on and provides a low impedance shunt path to ground [21]. In 
some cases, the clamping device may not respond fast enough to prevent damage. 
In these cases, a faster-acting current-carrying protection shunt is used to handle 
the initial current until the more robust clamping device can take over.

8.6.2.2 Indirect ESD

If a discharge occurs through the air, between the source and a metal plate, an 
EM field is radiated. This type of discharge is called an indirect ESD. This is often 
the cause of lock-up of computers and mysterious ESD failures. Modern logic has 
leading edge rates approaching 1 ns, which are of the same order as the rise time of 
human-generated ESD. This can result in an upset, since the ESD pulse is accepted 
as valid data [22].

8.6.3 ESD Models

In order to standardize ESD testing, several models have been developed. The human 
body model, for instance, is like a 100 to 300 pF capacitor discharging through 1 
to 3 kΩ of resistance. There is a fast discharge from the hand and arm, followed 
by a slower discharge from the whole body [22]. The human threshold for feeling 
of ESD is 2,000V, and thus it is possible to damage equipment without any indica-
tion. This may not cause destruction of the equipment, but only weaken it so that 
it is likely to fail at a later date. Levels for ESD testing are:

Commercial ESD testing 150pF 330 ohms
Automotive ESD testing 330pF 2000 ohms

8.6.4 Testing for ESD Susceptibility

Testing for ESD susceptibility is a relatively simple and inexpensive matter with an 
ESD gun. The gun simulates the voltages and currents from the human body. In 
the direct ESD test, the gun is discharged into all exposed metal surfaces, including 
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the keyboard, external ports, indicators, and so forth. These should be capable of 
withstanding 8 to 25 kV. In the case of plastic cases, the indirect ESD test is per-
formed. The gun is discharged into a nearby metal plate. This results in a radiated 
EM field to which the circuit inside the plastic case is subjected. However, it is dif-
ficult to repeat test results with different guns, since no two commercially available 
guns are alike [23].

The susceptibilities of various electronic devices to ESD [9, p. E-7-76] from 3M 
Static Control Systems are listed in Table 8.16

8.7 Instrumentation

The main test instruments used for EMC work involve the measurement of electric 
field strength or voltage. Modern measuring receivers are based on spectrum ana-
lyzers and fast Fourier transform (FFT) processing implemented after the detector 
stage. Many receivers also have audible tuning circuits. For swept frequency measure-
ments, spectrum analyzers are used, which have CRT displays with digital markers 
and storage facilities. Automated measurements have computer control, with raw 
data processed almost instantaneous or stored on floppy disks for processing later. 
The instrumentation is only discussed in very general terms.

8.7.1 Measuring Receivers

Measuring receivers measure the electric field intensity at the terminals of the 
antenna, and allowance is made for the losses in the cables, baluns, and so forth. 
However, measuring receivers are expensive as they are required to meet the CISPR 

Table 8.16 Range of ESD Susceptibility

Device Type Susceptibility in Volts

VMOS 30 to 1,000

MOSFET 100 to 200

GaAsFET 100 to 300

EPROM 100

JFET 140 to 7,000

SAW 150 to 500

Op Amp 190 to 2,500

CMOS 250 to 3,000

Schottky diode 300 to 2,500

Thick- and thin-film resistors 300 to 3,000

Bipolar transistor 380 to 7,000

ECL (PCB board level) 500 to 1,500

SCR 680 to 1,000

Modern VLSI (with built-in protection) 1,000 to 3,000
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pulse detector requirements [24, p. 17]. In addition, they have a better sensitivity 
than spectrum analyzers as they use tracking preselectors in the input stage.

8.7.2 Spectrum Analyzers

Basic spectrum analyzers do not meet the CISPR requirement for quasi-peak and 
RMS Average detectors. They measure the amplitude of each frequency over a band 
of frequencies that is scanned at a selected rate. The characteristics of the signal 
affect the test procedures. The instrumentation may include a low noise preamplifier 
to improve sensitivity and the spectrum analyzer must be calibrated. Preamplifiers 
are also prone to overload, which means that care must be taken in their use. Allow-
ance must also be made for the loss in the cables. A cable with the same loss versus 
frequency characteristics as the cable used in the measurement must be inserted 
between a signal generator and the spectrum analyzer to determine the insertion 
loss of the cable used over the whole frequency band. In order to ascertain whether 
the EUT is the source of the emission, the spectrum analyzer is scanned with and 
without the EUT turned on. The spectrum analyzer is scanned in peak hold in each 
case, and the response stored for comparison. The problem frequencies can then be 
definitely attributed to the EUT and further investigated in greater detail.

The peak value of the input signal is measured independent of its repetition rate. 
The bandwidth of the receiver must be wide enough to accommodate peak signals 
with short rise and fall times. The shorter the rise time of a signal, the larger its 
bandwidth is. The Fourier transform of a signal effectively converts a pulse in the 
time domain, that is, the electric field variation with time to the frequency domain. 
The frequency domain shows the frequency characteristics of a pulse, that is, the 
amplitude of each frequency that when combined gives the pulse its particular 
shape. A more detailed explanation of the Fourier transform is given in Chapter 3.

CISPR quasi-peak measurements require that the receivers have half-power 
bandwidths of 200 Hz, 9 kHz, and 120 kHz in the frequency ranges of 10–150 
kHz, 150 kHz–30 MHz, and 30–1,000 MHz, respectively [9, p. 9–21].

References

[1] IEEE, Standard Dictionary of Electrical and Electronics Terms, Fourth Edition, 1988.
[2] Dash, G., “Understanding EMI Test Methods Eases Product Acceptance,” Electronic 

Design News, May 28, 1983, pp 183–191.
[3] Chatterton, P. A., M. A. Houlden, EMC Electromagnetic Theory to Practical Design, 

John Wiley & Sons, 1991.
[4] Tsantes, T., “Independent EMI Test Labs Provide Aid as FCC’s Compliance Deadline 

Nears,” EDN, August 4, 1983, pp. 41–47.
[5] Mertel, H. R., “Design and Test for RFI Regulations of United States and CISPR, Part 1: 

Introduction, the CISPR, FCC, and VDE Limits,” Fifth Symposium on EMC, Zurich, 
March 1983.

[6] Gerke, D., “A Fundamental Review of EMI Regulations,” RF Design, April 1987, pp. 
57–62.

[7] Heirman, D. N., “International Activity in Product Immunity Standards and Testing,” 
EMC Test and Design, May/June 1992, pp. 16–19.



272 Introduction to Electromagnetic Compatibility Measurements

[8] EN 610004-4, Electromagnetic Compatibility (EMC) Testing and Measurement 
Techniques, “Electrical Fast Transient/Burst Immunity Test,” 2015.

[9] Kaiser, B. E., “Electromagnetic Interference and Control,” Frost and Sullivan Course, 
October 1990, London.

[10] EN 610004-2, “Electrostatic Discharge Immunity Test,” Electromagnetic Compatibility 
(EMC) Testing and Measurement Techniques, 2008.

[11] ISO 10605:2008, Road Vehicles—Test Methods for Electrical Disturbances from 
Electrostatic Discharge, 2008.

[12] Duncan, D., “A Low Cost Method of RFI/EMI Shielding,” EMC Technology, October/
November 1984, pp. 75–76.

[13] Spraylat Catalogue—Series 599 Copper Conductive Coatings.
[14] Hardy, S. M., “A Less Expensive Tempest Alternative,” Vol. 15, No. 6, June 1992, pp. 

54–61.
[15] Jackson, G. A., “The Achievement of Electromagnetic Compatibility,” ERA Technology 

Report 90-0106, February 1990.
[16] Schulz, R. B., V. C. Plantz, and D. R. Brush, “Shielding Theory and Practice,” IEEE Trans 

on EMC, Vol. 30, No. 3, August 1988, pp. 187–201.
[17] Hariya, E., and U. Masahiro, “Instruments for Measuring the EM Shielding Effectiveness,” 

International Symposium on Electromagnetic Compatibility, October 16–18, 1984.
[18] Simon, R. M., “ASTM Testing for EMI/RFI Shielding,” Wescon ‘84 Conference Record, 

IEEE, Anaheim CA, October 30—November 1, 1984.
[19] Wilson, P. F., and M. T. Ma, “A Study of Techniques for Measurement of Electromagnetic 

Shielding Effectiveness of Materials,” National Bureau of Standards, NBS/TN1095, 
May 1986.

[20] Rzepecki, R. H., Machine Design, March 26, 1981.
[21] Boxleitner, W., “How to Defeat Electrostatic Discharge,” IEEE Spectrum, August 1989, 

pp. 36–40.
[22] Gerke, D., “Electrostatic Discharge as an EMI Issue,” RF Design, November 1988, pp. 

65–71.
[23] Keenan, R. K., and L. D. Ros, “Some Fundamental Aspects of ESD Testing,” IEEE 

International Symposium on EMC, 1991, pp. 236–241.
[24] Johnson, R. W., “FCC Rules and Digital Equipment Testing for Compliance,” Test and 

Measurement World, April 1982, pp. 16–20.

Selected Bibliography

EN 60601-1-2, Medical Electrical Equipment, “General Requirements for Basic Safety and 
Essential Performance.”

IEC Standards Publication—IEC 61000-4 Series, “Electromagnetic Compatibility for Industrial 
Process Measurement and Control Equipment,” Bureau Central de la Commission 
Electronique Internationale, Geneve, Suisse, 1984.



273

C h a p t e r  9

Theory and Applications of Measurement 
Sites and Enclosures

This chapter describes test enclosures, from TEM cells to shielded rooms and OATS 
(open area test sites), that are used for many EMC applications. Other topics also 
covered are RAM (radar absorbing material) and ventilation panels that are used 
in shielded rooms.

In order to understand the principles of TEM cells, we must understand the 
propagation of EM waves in parallel plates and coaxial lines. Shielded rooms are 
like large rectangular waveguides that are shortened and closed at both ends to 
form a cavity. Unlined shielded rooms are prone to problems at certain frequen-
cies. In order to appreciate these problems, we must understand how EM waves 
behave in rectangular cross section closed cavities. This chapter relates the shielded 
room to a rectangular waveguide, and qualitatively deals with the limitations and 
precautions necessary when using a shielded room at some frequencies. Shielded 
rooms have ventilation panels that comprise waveguides beyond cut-off. These are 
explained in a qualitative manner, but formulas for calculating the attenuation of 
these waveguides are also given.

9.1 TEM Waves

EM waves are guided along transmission lines so that EM energy is carried by 
them from one part of the transmission line to the other. These waves, composed 
of electric and magnetic fields, change periodically in time and have clearly defined 
configurations that satisfy the boundary conditions of Maxwell’s equations. In free 
space, the electric and magnetic fields are at right angles to each other and to the 
direction of propagation of the wave. This type of wave is known as a TEM (trans-
verse electromagnetic) wave, and it can also be propagated as a guided wave in any 
two-conductor transmission line, such as parallel wires, coaxial lines, and striplines. 
The guided TEM wave can be propagated down to a frequency of zero hertz (i.e., 
dc). All other modes have a higher cut-off frequency, below which propagation can-
not occur. Modes are more fully explained in Section 9.3.1. The TEM mode in a 
transmission line is known as the principal mode, and the variation of the electric 
field with distance is shown in Figure 9.1(a), where the electric fields are shown as 
solid lines and the magnetic field lines are shown dotted.
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9.1.1 Power Flux Density

In the case of the TEM wave, the electric and magnetic fields are perpendicular 
to each other, and the plane containing them is perpendicular to the direction of 
propagation of the EM energy.

The vector cross product of the electric and magnetic fields is also a vector which 
is equal to the power flux density (power per square area), known as Poynting’s 
vector Pd. We can see that if we multiply volts per meter by amperes per meter, we 
would get volt-amperes per square meter (VA/m2), which is watts per square meter 
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H y
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H
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E

x

θ

(a)

(b)
(c)

Electric field E Magnetic field H

x

y

Time

z

Surface S

Figure 9.1 Plane wave propagation and Poynting’s power flux density vector: (a) A plane, or 
TEM, wave in free space, (b) E and H vectors for a TEM wave, and (c) Poynting’s power flux 
vector Pd.
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(W/m2). The relationship between the three vectors shown in Figure 9.1(b) is defined 
by the following equation

 Pd = E × H  (9.1)

where

Pd is in watts per square meter;

E is the electric field vector in volts per meter;

H is the magnetic field vector in amperes per meter.

The magnitude of Pd is given by

 
Pd = E H sinq  (9.2)

where

⎪E⎪ is the magnitude of E;

⎪H⎪ is the magnitude of H; 

θ is the angle between the electric and magnetic field vectors. In the case of a 
TEM wave, the angle between these vectors is 90°.

Note that the magnitude of the electric and magnetic fields are those in the plane 
perpendicular (i.e., the transverse plane) to the direction of propagation or power 
flow. The maximum values of these fields occur when the E and H vectors are in 
this transverse plane; any component parallel to the direction of propagation will 
not contribute to the power flux density. We can see that algebraically the maximum 
value of Pd occurs when the sine of the angle between the electric and magnetic 
fields is 1, that is, angle θ is 90°, or the fields are perpendicular to each other in the 
plane transverse to the direction of the propagation of the wave. Thus, the TEM 
wave has the maximum value of Poynting’s vector. The power density through a 
surface S, as shown in Figure 9.1(c), has a maximum value when Poynting’s vector 
is perpendicular to it.

9.1.2 Wave Impedance

The EM wave can be considered to have an impedance, depending on its configura-
tion. If the wave is incident on a surface with the same impedance, the surface can 
be said to be matched, in the same way as a load is matched to a transmission line. 
When this occurs, no energy will be reflected and the wave is totally absorbed. This 
impedance is known as the intrinsic or characteristic impedance Zw of the wave, 
and in the case of a TEM wave in a medium, it is given by

 

Zw =
Ex
Hy

= m
e
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⎝

⎞
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 (9.3)
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where

Zw is in ohms;

Ex is the electric field along the x-axis in volts per meter;

Hy is the magnetic field along the y-axis in amperes per meter;

μ is the permeability of the medium in henries per meter;

ε is the permittivity of the medium in farads per meter; 

σ is the conductivity of the medium in siemens per meter.

If the TEM wave is in free space, the conductivity is zero. Thus, the character-
istic impedance Z0 of TEM wave in free space is given by

 
Z0 =

m0

e0

⎛
⎝⎜

⎞
⎠⎟
= 120p  (9.4)

Since μ0 = 4π × 10–7 H/m, and ε0 = 1/36π × 107 F/m.
The characteristic wave impedance is often quoted at its approximate value 

of 377Ω.

9.1.3 TEM Transmission Lines

Transmission lines which can support the TEM waves require two separate conduc-
tors. The electric (solid lines) and magnetic (dotted lines) fields for some of these 
common transmission lines are shown in Figures 9.2(a–e). Note that when the 
magnetic lines are evenly spaced, they will also represent the lines of equipotentials 
(with the electric field lines perpendicular to them). In Figure 9.2(e), which shows 
the longitudinal cross section of a circular coaxial line, the closer the spacing of 
the electric field lines, the greater the magnitude of the electric field is. The electric 
field variation with distance in the direction of propagation is sinusoidal. We should 
also note that there is a sinusoidal variation with time, which effectively moves this 
electric field pattern forward by half a sine variation every half-period in time. The 
coaxial line is one of the most efficient ways of containing the EM energy. However, 
the spacing between the inner and outer conductors in a coaxial line is maintained 
by dielectric (in the form of beads or a continuous hollow cylinder). As the frequency 
increases, the losses in the dielectric also increase and the energy is increasingly 
attenuated. Another source of energy loss is the outer conductor, which is often of 
braided form. Energy can leak through holes in the braid, and the amount of the 
leakage is proportional to the electrical size of the hole, that is, the size of the hole 
as a fraction of the wavelength. Energy can escape through gaps that are as small 
as 1/100th of a wavelength. As the frequency increases, the wavelength decreases, 
and the gaps in the outer conductor become a larger fraction of this wavelength 
causing the EM energy loss to increase.

9.1.3.1 Characteristic Impedance of Transmission Lines

When a line is longer than 0.1 of a wavelength at its highest operating frequency, 
we cannot ignore the properties of the line. The current distribution in it (due to the 
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(a) (b)

(c) (d)

(e)

Electric field Magnetic field

Figure 9.2 TEM wave propagation in some transmission lines: (a) Parallel plate, (b) stripline, (c) 
circular coaxial line, (d) rectangular coax, and (e) cross sectional view of a circular coax showing 
electric field lines.

EMF at the input end) is not uniform. The line behaves as though it has resistive and 
reactive components distributed along its length. Each section of the go and return 
cables forms a unit loop, which can be represented by a shunt capacitance C and 
conductance G between the two cables, and a series resistance R and inductance 
L [1, p. 669]. If the line is a pair of parallel identical conductors, it is balanced and 
the resistance R and inductance L are equally divided between each cable, as shown 
in Figure 9.3. Normally an incident wave traveling from left to right towards the 
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termination is partly reflected. The reflected and incident waves combine to form 
a standing wave. If the termination is matched (made equal) to the impedance of 
the unit loop of the line, there is no reflected wave, and hence no standing wave.

The impedance of this unit loop is known as the characteristic impedance Z0 
and is given by

 
Z0 = R + jwL

G + jwC
 (9.5)

where

R is the series resistance in ohms;

G is the shunt resistance in siemens;

L is the series inductance in henries; 

C is the shunt capacitance in farads.

If the line is lossless, the resistive parts are zero, so that R = 0 and G = 0.
Equation (9.5) for the characteristic impedance reduces to

 
Z0 = L

c
 (9.6)

This is the general formula for a lossless transmission line, and the magnitudes 
of L and C will depend on the shape and size of the particular transmission line 
and the dielectric material.

9.1.3.2 Parallel Plate Transmission Lines

In the case of a parallel plate transmission line, the idealized electric and magnetic 
field variation are shown in Figure 9.4. Both the electric and magnetic fields are 
spaced uniformly across the cross section of the line, except at the edges, where 
fringing of the electric field occurs in practice.

The characteristic impedance Z0 of the parallel plate line of width b and spacing 
a, supporting the TEM wave (when the medium in the space between the parallel 
plates has a permittivity ε and permeability μ), is given by

Figure 9.3 Equivalent circuit of a balanced transmission line.
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where

Z0 is in ohms;

μ is the permeability of the medium in henries per meter;

ε is the permittivity of the medium in farads per meter; 

σ is the conductivity of the medium in seimens per meter.

If the medium between the parallel plates is air, the conductivity is zero and the 
permittivity and permeability are the same as that for free space, so the formula for 
the characteristic impedance Z0 reduces to

 
Z0 = a

b
m0

e0

⎛
⎝⎜

⎞
⎠⎟  (9.8)

Direction of propagation
of a TEM wave
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Figure 9.4 Propagation of a TEM wave in an ideal parallel plate transmission line.
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9.1.3.3 Coaxial Lines

Coaxial lines can have circular, rectangular, or square cross sections. The circular 
coaxial lines have cylindrical inner conductors and hollow cylindrical outer conduc-
tors, whereas the rectangular and square coaxial lines have hollow outer conductors 
and thin plate-like inner conductors that are sometimes called septums.

9.1.3.3.1 Circular Coaxial Lines
For a circular coaxial line with inner and outer conductors with diameters of radii 
a and b, the formulas for calculating the series and shunt resistances and reactances 
per unit length are given by [2, p. 4]
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The characteristic impedance Z0 for a lossless coaxial line is given by
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If it is preferred to use logarithms to a base 10, then the following formula 
should be used
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For (9.9) to (9.14):

• Rac is the ac resistance in ohms per meter;
• ω is the angular frequency in radians per second;
• μ is the permeability of the dielectric material in henries per meter;
• μr is the relative permeability of the dielectric material;
• ρ is the resistivity of the conductor in ohms per meter;
• tan δ is the loss tangent of the dielectric material;
• ε is the permittivity of the dielectric material in farads per meter;
• εr = ε/ε0 is the relative permittivity of the dielectric material;
• G is the shunt conductance in siemens per meter;
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• C is the capacitance in farads per meter; 
• L is the inductance in henries per meter.

The dimensions of standard coaxial lines are usually chosen to give character-
istic impedances of 50 or 75Ω. For an air dielectric coaxial line however, a ratio 
of b/a = 3.6 gives the lowest attenuation [3, p. 64]. This ratio gives a characteristic 
impedance of 77Ω. Coaxial lines are operated over a frequency range, such that 
only the TEM mode is propagated. Nevertheless, higher order modes are sometimes 
excited by discontinuities in the line, or a sudden change in geometry. Some of the 
higher order modes are shown in Figure 9.5.

The higher-order modes are not excited if the upper-frequency limit is restricted 
to a wavelength equal to the circumference at the arithmetic mean of the inner and 
outer diameters. This wavelength of the critical frequency [3, p. 69] is given by

TE    mode
(a)

(c)

(e)

(b)

(d)

(f)

TE    mode

TE    mode TM    mode

TE    mode TM     mode

11

31

01

21

01

11

Figure 9.5 Higher-order modes in coaxial lines showing the electric field lines: (a) TE11 mode, 
(b) TE21 mode, (c) TE31 mode, (d) TM01 mode, (e) TE01 mode, and (f) TM11 mode.
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 lc = p(a + b)  (9.15)

The critical frequency fc is given by

 
fc = c

p er(a + b)  (9.16)

where

c is the speed of light through free space in meters per second;

a is the radius of the inner conductor in meters;

εr is the relative permittivity of the dielectric material; 

b is the radius of the outer conductor in meters.

9.1.3.3.2 Rectangular and Square Coaxial Lines
In the case of rectangular and square cross sections shown in Figure 9.6, the outer 
conductor is a hollow rectangle or square, and the center conductor is a solid rect-
angle of thickness or height t.

In the case of the square cross section coaxial line, the characteristic impedance 
is given by [4, p. 345]
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where

b is half the width of the outer conductor in centimeters;

w is half the width of the inner conductor or septum in centimeters;

g

2a

2w

2b

2b

2w

g gg
2b

(a) (b)

t t

Figure 9.6 Coaxial line with (a) rectangular and (b) square cross sections.
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t is the thickness of the inner conductor in centimeters;

C is the capacitance per unit length in picofarads per centimeters; 

εr is the relative permittivity or dielectric constant of the material inside the 
coaxial line.

The characteristic impedance of a rectangular cross section coaxial line is a 
complex expression containing Jacobian elliptical functions, but a simpler expres-
sion, given below, is usually adequate for most practical purposes, where the center 
conductor is a thin plate or septum [5, p. 394].
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where

Z0 is the impedance of free space;

a is half the width of the outer conductor;

b is half the height of the outer conductor;

w is half the width of the inner conductor or septum in centimeters; 

g is the gap between the inner conductor and the vertical wall of the outer 
conductor (see Figure 9.6).

9.2 TEM Cells

As explained in Section 9.1, a transverse electromagnetic (TEM) wave exists when 
the electric and magnetic fields are perpendicular to each other, and they are both 
transverse to the direction of propagation of the wave. This is the type of wave that 
is known as a plane wave, and it exists in free space (in the far field of antennas) and 
in some transmission lines. In order to propagate in transmission lines, there must 
be two separate conductors. In other words, a TEM wave cannot propagate in a 
waveguide, but it can be supported by a coaxial line or a parallel plate. The parallel 
plate lines used for measurement are sometimes called stripline cells, and the rect-
angular and square coaxial line cells are known as TEM or Crawford cells. These 
cells are used to provide uniform fields for susceptibility and immunity measure-
ments, as well as for the measurement of shielding effectiveness of sheet materials.

9.2.1 Parallel Stripline Cells

The parallel plate cell is commonly referred to as a stripline cell and was described 
in MIL-STD 462 [6, p. 90] as consisting of two horizontal aluminum plates held 45 
cm (18 in) apart by wooden posts at each end. The top plate of width 60 cm (24 in) 
and length 3m (120 in), is supported by three wooden strips along its length, and the 
lower plate of the same length but 30 cm wider (as shown in Figures 9.7(a–d) and 



284 Theory and Applications of Measurement Sites and Enclosures

9.8) is backed by plywood. At one end, there was a transition to a standard N-type 
coaxial connector for the signal input, and the other end is connected to a load 
that is matched to the impedance of the line. The size of the EUT is restricted to a 
maximum height of 25 cm, and the maximum frequency of operation is 35 MHz. 
The limitation in frequency was caused by the abrupt impedance discontinuities at 
the feed point and load end of the parallel plate. Later designs used a tapered design 
at each end, which ensured better impedance matching. The size of the EUT can be 
increased by increasing the dimensions of the cell, but this results in a reduction in 
the maximum usable frequency. The electric field between the plates will take the 
approximate form shown in Figure 9.7(e), where some fringing occurs at the edges 
with asymmetric distortion on the side where the lower plate projects beyond the 
upper one. Electric field strengths of 10 V/m are obtainable with this type of cell.

(e)

Electric field E

Magnetic field H

120 in

(a)

(c)

Input end Load end

Top plate

Lower plate

Lower plate

36 in

10.5 in Wooden posts

Standard
coaxial
connector

top plate

(b) (d)

24 in

18 in

Wooden strips

Figure 9.7 Parallel plate stripline cell: (a) Plan view, (b) end view, (c) side elevation, (d) end 
view, and (e) approximate pattern of the electric and magnetic field lines.
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The parallel plate cell is also described in MIL-STD 461G [7, p. 156] for applying 
transient electromagnetic fields. UNECE (United Nations Economic Commission for 
Europe) Regulation 10 [8, p. 93] for automotive sub assembly testing also describes 
a square TEM cell. The cell described consists of two horizontal aluminum plates 
held 80 cm (31.5 in) apart by wooden posts at each end. Both plates are of width 
80 cm and length 80 cm. At the feed end there is a resistive matching circuit, and 
at the other end there is a nominal 150Ω resistive termination. The size of the EUT 
is restricted to one third of the volume of the cell, and the maximum frequency 
of operation is 200 MHz. The size of the EUT can be increased by increasing the 
dimensions of the cell, but this will result in a reduction in the maximum usable 
frequency, since the field uniformity over the useable volume deteriorates. The elec-
tric field between the plates will take the approximate form shown in Figure 9.9(e), 
where some fringing occurs at the edges. The parallel plate and matching networks 
are shown in Figures 9.10 and 9.11.

MIL STD 461G specifies the use of a large parallel plate cell for transient radi-
ated susceptibility testing with a 50 kV pulse with a rise time of approximately 2 
ns, indicating a bandwidth of over 160 MHz. The dimensions are not specified, but 
the high voltages involved necessitate adequate clearances. One third of the height 
and one half of the width is allowed as the working volume.

9.2.2 Circular Coaxial TEM Cells

These cells are like enlarged coaxial air-filled lines which are tapered at both ends 
to be connected to standard 50Ω connectors. They are mainly used to measure the 
shielding effectiveness of sheet materials. The cells are used in the frequency range 
of 1 MHz to around 1.8 GHz. The upper-frequency limit is restricted to prevent the 
excitation of higher-order modes, and the lower-frequency limit is determined by 
the measuring equipment. There are two types of commonly used circular coaxial 
TEM cells, the continuous-conductor (CC) and the flanged version. The formulas 
for the different parameters of a coaxial line are given in (9.9) to (9.14).

9.2.2.1 Continuous-Conductor TEM Cell

This cell, shown in Figure 9.12(a), was developed by the ASTM [9] consists of 
tapered sections from standard 50-Ω connectors to a central cylindrical section. 

Top plate

Feed point

Termination

Bottom plate

Figure 9.8 Parallel plate stripline cell with trellis.
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Figure 9.9 TEM cell. (a) Plan view, (b) end view, (c) side elevation, (d) end view.

The central section has inner and outer conductors of diameters of 4.35 cm and 
9.90 cm, giving a theoretical impedance of 49.3Ω. The cell can be disassembled for 
insertion of a washer-like annular sample of the MUT. The quoted frequency range 
of the cell is from 1 MHz to 1.4 GHz. However, if the criterion by Moreno is used, 
that is, (9.16), then the maximum frequency without the excitation of higher-order 
modes is 1.34 GHz.

A reference attenuation test is carried out using a sample comprising an annulus 
and a small disk which completes the inner and outer coaxial circuits. A test sample 
is then inserted that comprises a solid disk, which means the air space is replaced 
by the MUT. The difference between the two results yields the shielding effective-
ness. The material should be electrically thin to ensure adequate capacitive coupling 
across the sample joint, as described in ASTM D 4935-99 [10, p. 1].
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Figure 9.10 Parallel plate cell.
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Figure 9.11 Parallel plate cell matching circuits.

9.2.2.2 Flanged Coaxial TEM Cell

Figure 9.12(b) is similar to the ASTM cell described in Section 9.2.2.1, but it can 
be disassembled into two flanged sections, between which the circular disk-shaped 
sample is inserted, as shown in Figure 9.12(c). The reference sample, on the other 
hand, consists of two parts; a circular disk of the same diameter as the inner 
conductor, and a circular annulus with inner and outer dimensions to match the 
flanges of the cell, as shown in Figure 9.12(d). Thus, in the case of the reference 
sample, there is no material in the space between the inner and outer conductors 
of the cell. The inner conductor of the cell is 3.2 cm and the inside diameter of the 
outer conductor is 7.6 cm. Using (9.14) gives a characteristic impedance of 51.8Ω. 
The outside dimension of the flange is 13.3 cm. The quoted frequency range of the 
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cell is from 1 MHz and 1.8 GHz, but using Moreno’s criterion given in (9.16), the 
upper-frequency limit is 1.77 GHz.

9.2.3 Rectangular and Square TEM Cells

These cells are used to produce uniform fields, mainly for susceptibility measure-
ments and for calibration, but the dual TEM cell is also used for testing the shield-
ing effectiveness of planar materials.

7.6 cm 3.2 cm

Sample

13.3 cm

flanges

Inner conductor

Conical end section

Cylindrical section

Sample

Coaxial connector

(a)

(b)

34.5 cm

(c) (d)

13.3 cm 13.3 cm
7.8 cm

3.2 cm

Figure 9.12 Circular coaxial TEM cells (not to scale): (a) ASTM circular coaxial TEM cell, (b) 
longitudinal cross section of the NBS flanged circular coaxial TEM cell, (c) disk-shaped sample, 
and (d) reference sample consisting of an annulus and a small disk.
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9.2.3.1 The Crawford Cell

The Crawford cell is sometimes called a TEM cell, although the latter is a generic 
term covering all cells supporting a TEM wave mode. It consists of a rectangular 
or square cross section outer conductor, and the center conductor is a thin tapered 
plate (sometimes called a septum) supported by dielectric posts. Rectangular cross 
section cells are slightly shorter than square cross section cells for a given cut-off 
frequency [4, p. 345]. It can produce a higher E-field intensity than the parallel or 
stripline cell, and it can be used at higher frequencies for fundamental or domi-
nant mode propagation without the propagation of higher-order modes. It should 
be noted, however, that some higher-order modes are excited as the cross section 
of the cell changes abruptly from the tapered to the uniform rectangular or square 
cross section. However, if the dimensions of the uniform cross section portion are 
carefully chosen, these modes are attenuated before they reach the EUT.

9.2.3.1.1 Square Crawford Cell

The impedance of a 3-m long TEM cell of square cross section varies between 48.5 
and 52.5Ω [4, p. 345]. The formula for the characteristic impedance of this type 
of coaxial line is given by (9.17). The ratio of the width of the inner conductor to 
that of the outer conductor varies between 0.82 and 0.83. For a capacitance per 
unit length of C=0.087 pF/cm and a septum plate thickness of 0.157 cm, the cut-off 
frequencies are given in Table 9.1

Reference should be made to Section 9.2.3.2 about the upper-frequency limits 
of rectangular and square TEM cells.

The TEM cell, described in IEC 61000-4-20 [11], is used for objects that are 
limited in size. It is recommended that the EUT size is less than 0.33 times the 
height (y-axis), 0.6 times the width (x-axis) and 0.6 times the length (z-axis) of the 
cell dimensions [11, p. 14]. The EUT shall be at least 0.05 times the septum height 
above the bottom plate. MIL STD 461G recommends that the EUT size is less 0.5 
times the width and 0.5 times the length [7, p. 157]. The frequency range of the 
TEM cell is given by Crawford [12, p. 3]

 
f = c

2w  (9.19)

where c is the speed of light in meters per second and w is the width the cell in meters.
For an 800-mm-wide cell, this equates to an upper-frequency limit of 187 MHz, 

although the Automotive EMC Directive allows their use up to 400 MHz.

Table 9.1 Cut-Off Frequencies for TEM Cells

2b in Centimeters 2w in Centimeters Cut-Off Frequency (MHz)

150 124 100

50  41 300

30  25 500
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The cell is a square cross section coaxial line with a transition to a standard 
circular cross section coaxial line of 50Ω. The cell has two tapered sloping sections 
joined by a square section, as shown in Figure 9.16. The center conductor, which 
is sometimes referred to as a septum, is also tapered and supported by dielectric 
posts. The cell must be placed at least 2m away from walls, metallic objects and 
the associated measuring equipment. The EUT must be placed in the center of the 
cell and on a nonconducting table, as recommended in IEC/EN 61000-4-3 [13].

TEM cells can be used for emissions testing, immunity testing, and calibration 
of field probes. For emissions and immunity testing, the field is calibrated at a mini-
mum of five positions in the xy-plane which represents the front face of the EUT 
(four at the corners and one at the center). If the distance between any two adjacent 
points is more than 0.5m, more calibration points must be added, as specified in 
IEC 61000-4-20. The field uniformity must be within 6 dB overall at 75% of the 
electric field component measurements. The frequencies are measured at 1% steps. 
The upper frequency of a TEM cell is typically up to 1GHz and is verified by a TEM 
mode verification test where the x and z secondary components must be within 6 
dB of the electric field along the y-axis (predominant component) for 75% of the 
frequencies. Exceptions to these rules of up to 10 dB are accepted for up to 5% of 
the test frequencies. For immunity applications, the calibration procedure ensures 
that the applied field across the reference plane is always greater than the specified 
test level. A field probe is used that has a maximum dimension of less than 10% of 
the septum height and also has to be smaller than one quarter of a wavelength of 
the highest calibration frequency. The probes shown in Figures 9.13 and 9.14 have 
an antenna length of less than 1.75 in (18mm).

The calibration of the cell is carried out using either the constant forward power 
method or constant field strength method. In the constant forward power method, the 
variation in field strength across all of the points is measured with a defined forward 
power. In the constant field strength method, the forward power is adjusted at each fre-
quency and point to maintain a fixed field strength. As power meters are subjected to 
a more rigorous calibration procedure than field probes (which only may be calibrated 
at a single level) then the method that adjusts the forward power is more accurate. In  

Figure 9.13 Electric field probes.
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commercial testing to EN 61000-4-3 [13], the unmodulated field is established at 
one point, usually at a level of 1.8 times the highest test level to reflect 80% AM 
modulation that will be used during the actual testing stage. In the constant field 
method, the other points are then measured and the power level adjusted to achieve 
the same field strength. When the calibration procedure is complete, the forward 
power at each frequency is calculated to ensure that the field uniformity is achieved 
across all of the points, bearing in mind the criteria stated above. At the end of this 
process, a calibration file is generated which is used to perform the test on the EUT.

The TEM cell specified by IEC 61000-4-3 [13] is used to establish standard fields 
for field probe calibrations. When used as a calibration tool, the usable volume and 
frequency of a TEM cell has to be established by performing measurements at 27 
points on a virtual cube, including one at the center (as shown in Figure 9.15) with 
the distance between the points being 10% of the septum height [11, p. 64]. The 
calibration volume is much smaller than that allowed for emissions or immunity 
testing and is specified at a maximum of 20% of the septum height. The standard 
deviation of calibration data shall be less than 1 dB for a GTEM and 0.6 dB for 
the dual TEM cells.

A TEM cell with dimensions of 0.8m × 0.8m × 0.8m is limited to an upper-
frequency limit of 200 MHz by UNECE [8].

9.2.3.1.2 Rectangular Crawford Cell
For a Crawford cell [5, p. 394] of rectangular cross section, the working area is 
about one third of the separation between the center and outer conductors, where 
the electric field intensity is uniform to within a few percent. The cell, which is 
shown Figure 9.16, has an impedance given by the approximate formula of (9.18).
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Figure 9.14 Electric field probe design.
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C

27 measuring points including center point

Edges are solid lines or long dash dot if hidden

Black circles are measuring points visible on the surface of the cube

Long dashed lines join the visible measuring points

Grey circles are hidden measuring points

Dashed lines join the hidden measuring points

C  is the center of the cube

Figure 9.15 Validation points for TEM cell.

9.2.3.2 Cut-Off Frequency of Rectangular and Square TEM Cells

The highest usable frequency of a rectangular TEM cell with propagation of the 
TEM mode alone depends on the first higher-order mode to be propagated and its 
cut-off frequency.

For a rectangular coaxial line with an aspect ratio of a/b = 2 and a very thin 
septum, the first higher-order mode to be propagated is the TE10 mode, which is 
the fundamental mode in a rectangular waveguide (see Section 9.3.1). The cut-off 
frequency of the TE10 mode is also the same as that for a hollow rectangular wave-
guide with the same broadside dimension. In this case, since the larger cross section 
dimension of the rectangular TEM cell is 2a, the cut-off wavelength is 4a. In order 
to ensure that only the TEM mode will propagate, the cell must not be used above 
this cut-off frequency. Additionally, in order to ensure that any evanescent modes 
(see Section 9.3.3) are strongly attenuated, the cell should be used at a frequency far 
below this cut-off frequency. Another higher-order mode is the TE01 mode, which 
propagates when the electric field vector is turned through 90° relative to the cell. 
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 Figure 9.16 Crawford TEM cell with square cross section: (a) Transverse cross section, (b) 
longitudinal section through BB’, and (c) longitudinal cross section through AA′.

Thus, the dimension perpendicular to the electric field is now 2b instead of 2a (see 
Section 9.3.1). This mode can be propagated when the width of the septum 2w is 
large compared with the broadside dimension 2a of the cell, as shown in Figure 
9.6(a). This is due to the fact that the capacitive effects between the septum and the 
side walls of the cell result in the electrical dimensions of the height 2b appearing 
greater than the width a [12].
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The cut-off frequencies of both the TE10 and TE01 modes in a rectangular (or 
circular) TEM cell depend on:

• The aspect ratio of a/b [14];
• the ratio of the width of the septum to the width of the outer conductor par-

allel to the septum (w/a) [14]; 
• the characteristic impedance of the cell Z0 [14].

Let us first consider which the lowest-order mode to propagate is. Gruner [14] 
has shown that under certain conditions, the first higher mode to propagate is not 
the TE10 mode (as in a hollow rectangular waveguide), but the TE01 mode. As we 
vary the aspect (a/b) of the cell and the width of the septum with respect to the 
dimension a (i.e., as we vary the ratio w/a), either the TE10 mode or TE01 mode will 
propagate, depending on the values of these ratios. Referring to Figure 9.17(a), the 
curve is the dividing line between the TE01 mode and the TE10 mode. For values of 
w/a and a/b below this line, the TE10 mode is dominant, whereas for values above 
the line, the TE01 mode is dominant. For instance, if we have a rectangular cell 
with an a/b ratio of 2, and a w/a ratio less than 0.71, we can see from the graph of 
Figure 9.17(a) that the TE10 mode will be first mode to propagate. However, if the 
width of the inner conductor is increased so that w/a is greater than 0.71, while 
keeping the aspect ratio constant, then we can see from the graph that the TE01 
mode will be the first mode to propagate. For example, if a/b is 2 and the ratio of 
w/a is 0.8, the TE01 mode will be the first higher-order mode to propagate. This 
mode has a cut-off wavelength that is twice as large as that of the TE10 mode (since 
a is twice as large as b).

Thus, TEM cells that have dimensions with these ratios will have cut-off fre-
quencies which are only half those of cells where the TE10 mode is the first higher-
order mode to propagate. When the value of the ratio w/a is 0.71, and a/b is 2, the 
TE01 and TE10 modes have the same cut-off frequencies.

Weil [15] has eliminated the effect of the ratio w/a by plotting the cut-off wave-
length normalized to the cut-off wavelength of the TE10 mode for different imped-
ances. Figure 9.17(b) shows how the cut-off wavelength varies with the aspect ratio 
for lines of characteristic impedances from 50 to 150Ω. If we look at the 50-Ω line, 
we can see that it crosses the TE10 mode cut-off wavelength line at a/b=1.93. If this 
ratio exceeds 1.93, the cut-off wavelength is greater than for the TE10 mode, giving 
a cut-off frequency less than that for the TE10 mode, which is normally assumed to 
be the first higher-order mode to propagate. For instance, if we have a square cross 
section cell (a/b=1) then we can see that for a given impedance, the ratio of 4a/λc is 
always less than that for a rectangular cell, where a/b>1. A 50-Ω square cell has 4a/
λc = 0.51, giving a cut-off wavelength of 7.8a, whereas for a rectangular cell with 
a/b=1.5, the value on the y-axis is 0.78 which gives a cut-off wavelength of 5.12a. 
If the normal criterion is used, that is, the cut-off frequency of the TE10, the square 
cell would have a cut-off wavelength (4a) roughly half that of the 7.8a, obtained 
from the graph of Figure 9.17(b). This gives an upper-frequency limit almost 95% 
higher than the correct value.

Table 9.2 lists the cut-off frequencies using the TE10, TE01, and corrected cut-
off frequencies for some commercially available TEM cells.
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Figure 9.17 The cut-off frequencies for rectangular and square TEM cells: (a) Excitation of the 
TE01 and TE10 modes for different aspect ratios and widths of center conductor, and (b) cut-off 
frequencies for the TE01 and TE10 modes for different aspect ratios, with characteristic impedance 
as a parameter.

Table 9.3 shows the cut-off frequencies for NBS Crawford cells. For a more 
detailed explanation of these corrected cut-off frequencies, reference should be made 
to the papers by Gruner [14] and Weil [15].

9.2.3.3 Dual TEM Cell

The dual TEM cell (DTC) shown in Figure 9.18(a) consists of two TEM cells mounted 
one on top of the other with aligned apertures between the two. Each cell has outer 
conductors measuring 18 cm × 12 cm, and a septum or inner conductor with width 
of 13.6 cm. One cell is used as the transmitting cell, and the input signal is applied 
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Table 9.2 Predicted Cut-Off Frequencies for Commercially Available TEM Cells

Manufacturer  
and Model  
Number

Manufacturer’s  
Upper Frequency  
Limit (MHz)

Normal TE10  
Mode Cut-Off  
Frequency (MHz)

Normal TE01  
Mode Cut-Off  
Frequency (MHz)

Corrected TE10  
Mode Cut-Off  
Frequency (MHz)

IFI CC 101 100 125.4 182.9 66.3

IFI CC 101-5 150 182.1 125.1 100.2

IFI CC 102 200 250 166.8 133.3

IFI CC 103 300 388.5 249.6 204.4

IFI CC 105 500 513.3 333.5 292,4

IFI CC 110 1,000 1,010.6 663.5 530.5

Narda 8802 250 250 150 128.2

Narda 8801 500 500 300 256.4

Table 9.3 Predicted Cut-Off Frequencies for the NBS Crawford Cells

TE01 Mode Cut-Off 
Frequencies for λ = 2a
(MHz)

Corrected TE01 Mode Cut-Off Frequencies

Square Cell (a/b = 1) (MHz) Rectangular Cell (a/b = 1.669) (MHz)

100  58  86

300 174 258

500 430 430

to one of its ports while its other port is terminated in a matched load [14, p. 19]. 
This type of configuration is used for testing the shielding effectiveness of materi-
als which are usually in planar/sheet form. A sample of the MUT is inserted across 
the aperture between the two cells. We can see from Figure 9.18(b) that the electric 
field is perpendicular to the sample for the wave propagating from port 1 to port 
2, so that the wavefront is not perpendicular to the sample but almost parallel to it, 
that is, striking it at grazing incidence. The wave impedance is not that of a plane 
wave (377Ω). The aperture couples energy to the two output ports (3 and 4) asym-
metrically, and both low-impedance (magnetic mode) and high-impedance (electric 
mode) shielding effectiveness can be measured simultaneously. The NBS DTC uses 
TEM cells with cross-sectional dimensions of width 2a = 9 cm, height 2b = 6 cm, 
and the gap g between the septum and adjacent side wall of 1.1 cm. The apertures 
in the intercommunicating cell walls are 5.08 cm square, and the frequency ranges 
from 1 MHz to 1 GHz.

9.2.3.4 GTEM Cell

The gigahertz TEM (GTEM) cell minimizes the generation of higher-order modes 
by not having any abrupt changes in geometry (that could result in the excitation of 
higher-order modes) that are present in the Crawford TEM cell. The cell shown in 
Figures 9.19 and 9.20 is like a giant pyramid laid on its side with a standard circular 
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Figure 9.18 DTC set-up: (a) Transverse cross section through BB′, and (b) longitudinal cross 
section through AA′.

coaxial connector at its apex and a constant impedance resistive termination at its 
base (or load) end. This end also has pyramid shaped absorbers to attenuate any 
undesirable higher order that may be generated by irregularities. The shape of the 
cross section is rectangular, the same as that of the Crawford TEM cell, with outer 
and (plate or septum) inner conductors of increasing dimensions from the apex to 
the load end. The characteristic impedance of the GTEM cell is typically 50Ω and 



298 Theory and Applications of Measurement Sites and Enclosures

the frequency range is 30 to 1,000 MHz. The size depends on the dimensions of 
the equipment to be tested. No dimension of the EUT should be greater than 90% 
of the distance from the floor to the septum or center conductor. The EUT tends to 
capacitively load the cell, but if the volume of the EUT is kept small, the effects are 
negligible. Desktop computers tested in the GTEM cell have exhibited negligible 
loading effects when the maximum floor to septum separation is 1.75m [16].

The septum of the GTEM is terminated in a 50-Ω resistor. The width of the 
center conductor, though, does not allow a connection to just one resistor, because 
the capacitive and inductive effects would cause reflections at the connection to 
rear wall for higher frequencies. An array of resistors will also minimize the effects 
of a parasitic inductance that would occur with a single resistor. By using parallel 
paths, the impedance caused by the parasitic inductance is reduced, because the 
reciprocal of total inductance of the parallel connection is the sum of reciprocals 
of individual inductances of all inductors. At frequencies where the cross sectional 
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Figure 9.19 GTEM contigual cell: (a) Schematic vertical cross sectional view, (b) end view, (c) 
transverse cross section through AA′, and (d) longitudinal cross section through BB′.
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dimensions of the cell exceed half a wavelength, the waves start propagating in 
higher-order modes rather than in TEM mode, as described in Section 9.2.3.2. The 
cut-off wavelength is twice the larger cross section dimension of the rectangular 
cell. At higher frequencies, propagation in higher-order modes occurs [17]. These 
higher-order modes cannot be terminated by the resistors, as they are waveguide 
modes. Thus, radiated fields are terminated using suitable pyramidal absorbers.

The RF absorbers should have a sufficient return loss at frequencies down to 
500 MHz or even down to 200 MHz. This means there is a certain frequency band 
in which a crossover from TEM to waveguide propagation takes place, and there-
fore a crossover from resistive termination to wave termination is necessary. In that 
intermediate frequency band, both parts are not completely effective and only the 
combination leads to an acceptable reflection coefficient [17].

9.3 Modes in Circular Waveguides

In the case of circular waveguides, the boundary conditions also apply, but the deri-
vation of the cut-off frequency for the fundamental and the higher-order modes are 
more complex since they involve the roots of the Bessel functions, and are given by

 
lc = 2pr

′umn
 (9.20)

where

λc is the cut-off wavelength;

r is the radius of the guide; 

u′mn is the nth root of the Bessel equation J′m(u) = 0 for a TM wave, and the 
nth root of the Bessel equation Jm(u) = 0 for a TE wave.
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Figure 9.20 GTEM cell.
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For a more rigorous treatment, the reader is referred to [18, pp. 66–72].
The fundamental mode of propagation is the TE11 mode. The first subscript 

stands for one half-wave variation along half a circumference concentric with the 
guide wall, and the second subscript is one more than the number of field reversals 
along a radial path in the plane, transverse to the direction of propagation [3, p. 
116]. The cut-off wavelength for this mode is given by

 lc = 3.412r  (9.21)

where r is the radius of the waveguide in the same units as the wavelength.
Although this is the fundamental mode, it does not provide the lowest attenu-

ation, as is the case for rectangular waveguides. The mode that provides the least 
attenuation is the TE01 mode, which is the fifth-order mode of propagation. Figure 
9.21(a) shows the field variations for three of the lower-order modes for a circular 
waveguide. The TE01 mode is used for long lengths of waveguide runs. The attenu-
ation per unit length as a function of the cut-off frequency fc is shown in Figure 
9.21(b). It can be seen that the attenuation of the TE01 mode decreases with increasing 
frequency (above a minimum value at around 4.5 fc), whereas that of the dominant 
TE11 mode increases with frequency.

9.3.1 Cut-Off Waveguide Ventilation Panels

Ventilation is required for screened rooms, but these would also normally result 
in EM leakage. In order to avoid the leakage, use is made of the property of wave-
guides beyond cut-off (see Section 6.7.1). Ventilation panels consist of a matrix of 
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interlocking waveguides (beyond cut-off) in a flanged box which can be installed 
into the wall of a shielded room. Typical materials used are steel waveguides brazed 
together and tin dipped for good conductivity [19, p. 35]. The ventilation panels 
may be used in conjunction with fans. The cut-off waveguide does not support the 
normal propagating modes, but supports modes known as evanescent modes (see 
Section 6.7.1). These modes decay exponentially from the point of excitation, as 
shown in Figure 9.22(a), so that the electric field variation with distance is given 
by the following formula
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Figure 9.22 Attenuation of evanescent modes: (a) Decay of the electric field with distance for 
evanescent modes, and (b) attenuation of evanescent modes with wavelength.
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 E = Eoe
az  (9.22)

where

E is the electric field at a distance z from the point of excitation;

Eo is the electric field at the point of excitation; 

α is the attenuation in decibels per unit length of the waveguide.

If the wavelength is in meters, then the attenuation will be in decibels per meter.
These evanescent modes store energy, but do not propagate or dissipate energy. 

The input impedance of a waveguide below cut-off is purely reactive, that is, it does 
not have a resistive or real part of impedance. This technique is useful in reducing 
the leakage from apertures by replacing the hole with a tube of rectangular or circu-
lar cross section. The dimensions of the cross section are chosen to suit the highest 
operating frequency of the room. The critical dimension is the one perpendicular 
to the electric field, but for general use, if the room is to be suitable for any type 
of polarization, the smallest dimension should be chosen to be much less than the 
highest operating frequency. The length of the tube will determine the magnitude 
of the attenuation, since the field decays to a lower value the longer the length of 
the tube. The following sections give the formulas for calculating the attenuation 
of cut-off waveguides.

9.3.1.1 Rectangular, Square, and Polygonal Cross Section Cut-Off Waveguides

If a square or rectangular waveguide has a dimension of a perpendicular to the 
incident electric field vector, then it will not propagate a wave whose free-space 
wavelength is equal to or greater than 2a. The dimensions of the cut-off waveguide 
are chosen so that neither of its cross section dimensions are greater than half the 
free-space wavelength of the highest operating frequency of the shielded room. This 
ensures that the waveguide is beyond cut-off, regardless of the electric field orienta-
tion. Thus, if the highest operating frequency of the room is 15 GHz, its free-space 
wavelength is 2 cm, and so the smallest dimension of the cut-off waveguide must be 
less than 1 cm. In practice, the cut-off waveguide dimensions are chosen to be much 
less than 1 cm, and the smaller these dimensions are relative to the wavelength of 
the highest operating frequency of the room, the greater the attenuation it provides 
is. The attenuation is also dependent on the length of the cut-off waveguide, since 
the electric field decays with distance (see Section 9.3.3). The attenuation in decibels 
per unit length of waveguide is given by

 
a = 8.69
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 (9.23)

where

α is the attenuation in decibels per unit length of the waveguide;

λc is the cut-off wavelength of the waveguide;
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εr is the dielectric constant or relative permittivity of the material filing the 
guide (this value is equal to one for air); 

λ0 is the free wavelength of the incident wave.

This equation reduces to

 
a = 54.6
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 (9.24)

When the free-space wavelength is much larger than the cut-off frequency, that 
is, when the incident frequency is far below the cut-off frequency, the second term 
under the square root sign λc/λ0 tends to zero and (9.23) reduces to the following:

 
a = 54.6

lc
 (9.25)

For a rectangular waveguide, the cut-off wavelength λc is 2a (where a is the 
dimension perpendicular to the electric field vector).

 
a = 27.3

a
 (9.26)

If we have a waveguide whose largest cross section dimension a is 1 cm, the 
cut-off wavelength is 2 cm (2a). This corresponds to a frequency of 15 GHz. In 
order to calculate the attenuation per unit length, we have to consider the fre-
quency of the incident wave; in the case of a shielded room, this frequency is its 
highest operating frequency. If the highest operating frequency is 10 GHz, its 
wavelength is 3 cm. Since this is not much larger than the cut-off wavelength of 
2 cm, we must use (9.24). This gives us a value of 20.35 dB/cm, or 2035 dB/m. 
However, if the highest operating frequency of the room is only 100 MHz, its 
wavelength is 3m, and since this is much longer than the cut-off wavelength, we 
can use (9.24) which will give us an attenuation of 27.3 dB/cm. It is useful to see 
that if we had used (9.24), we would have obtained a value of 27.16 dB/cm. For 
a waveguide of length 5 cm, the attenuation would be more than 135 dB up to 
100 MHz, and 100 dB at 10 GHz. The attenuation per centimeter of evanescent 
modes in a 1-cm-wide rectangular waveguide as a function of wavelength is shown 
in Figure 9.22(b). The wavelength is normalized to (expressed as a multiple of) 
the cut-off wavelength.

9.3.1.2 Circular Cut-Off Waveguides

In the case of circular waveguides, propagation will not occur for a wave whose 
wavelength is equal to or greater than 1.706 times the diameter of the waveguide. The 
same equation (as for rectangular cut-off waveguides) applies when the wavelength 
of the highest operating frequency is not much lower than the cut-off wavelength. 
The attenuation per unit length given by (9.27) is
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where

α is the attenuation in decibels per unit length of the waveguide;

λc is the cut-off wavelength of the waveguide; 

λ0 is the free wavelength of the incident wave.

When the wavelength of the highest operating frequency is much larger than 
the cut-off wavelength of the dominant TE11 mode, (9.30) reduces to the following 
(using (9.21) for the cut-off wavelength) for a circular waveguide of radius r

 
a = 16

r
 (9.28)

If the radius is in centimeters, then the attenuation will be in decibels per centimeter.

9.3.1.2.1 Honeycomb Air Vents

The air vents for shielded rooms commonly use commercially available extruded 
aluminum honeycomb material as shown in Figures 9.23 and 9.24, that is used in 
aircraft structures. There must be good bonding between cell walls. This material 
is extruded in large quantities and has a high strength-to-weight ratio for structural 
applications, and since the hexagon cross section approximates a circular cross 
section waveguide, this can be used as a cost-effective substitute for circular wave-
guides. The material commonly used for air vents has a 3-mm (0.125-in) nominal 
width and an 18-mm (0.75-in) depth/length.

Width
3mm (0.125 in)

Wall thickness
0.025 mm (0.001 in)

Figure 9.23 Typical dimensions of a honeycomb air vent.
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For a 1.5-mm (0.0625-in) nominal radius of a circular waveguide, the cut-off 
wavelength according to (9.21) is 58.6 GHz. Since most shielded rooms operate at 
frequencies below 18 GHz, it can be seen from (9.33) that the attenuation is 192 
dB for frequencies well below cut-off and for a length/depth of 18 mm (0.75 in).

Aluminum extrusion is an automated cost-effective process, and is used to pro-
duce honeycomb-shaped formats, as these have a high strength-to-weight ratio for 
applications in aircraft, trains, and fast ships [20].

9.4 Resonant Cavities

Under certain conditions, the electric and magnetic fields in a shielded room may 
follow the same pattern as the fields in a rectangular waveguide cavity. At par-
ticular frequencies, the waves are not traveling but are resonant. The resonance is 
similar to the resonance that occurs with sound waves in organ pipes, where longer 
pipes resonate at the lower frequencies, and shorter pipes are resonant at the higher 
frequencies. In a shielded room, this condition occurs when any dimension of the 
room is an integral multiple of half a wavelength at any frequency. At the lowest 
resonant frequency, one dimension of the shielded room is equal to one half of a 
wavelength. For higher harmonics, where the frequency is an integral multiple of 
the lowest resonant frequency, the shielded room also resonates and the dimension 
is an integral multiple of half a wavelength at these higher frequencies. The effect 
of these resonances is to cause spurious results at these frequencies in measurements 
performed in shielded rooms.

The resonant frequencies are given by the following formula:
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Figure 9.24 Honeycomb air vent.
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where

c is the speed of light in meters per second;

l, m, and n are positive integers, of which only one may be zero for each 
mode of resonance; and,

a, b, and Zo are the dimensions of the chamber in meters.

However, it should be noted that these resonant frequencies are when the room 
is empty. When there is any equipment or other metal objects in the room, the cav-
ity is loaded and the resonant frequency is lower than that of the unloaded cavity.

In a large cavity, the total number of modes [3, p. 218]) for a wavelength range 
of dλ is given by

 
N = 8pVdl

lm
4

 (9.30)

where

dλ is the difference between the minimum and maximum wavelengths;

V is the volume of the cavity; 

λm is the center wavelength.

Any units of lengths may be used for the wavelengths and the dimensions of 
the cavity, as long as the same units are used for both.

9.4.1 Degeneracy

If we have modes with subscripts l, m, and n, these three can be arranged in 3! 
ways (i.e., 6 ways). Since both TE and TM modes can exist with these subscripts, 
altogether there are 12 different modes that can be supported by a rectangular cav-
ity for each set of values of l, m, and n. If the sides of the cavity are equal, then it 
can be seen that by substitution into (9.29), all of the 12 modes will have the same 
resonant frequency. This is known as twelve-fold degeneracy. If two of the sides of 
a cavity are the same, there will be 2! modes for TE modes and the same number 
for TM modes. Since in this case 4 modes will have the same resonant frequency, 
this is known as four-fold degeneracy. Similarly, if all sides of the cavity are differ-
ent, there will only be two-fold degeneracy.

9.4.2 Mode Stirrers

Mode stirrers are used in shielded rooms to even out the fields due to the geometry 
of the room. In order to understand the manner in which mode stirrers work, we 
must consider overmoded rectangular waveguides. In these guides, as opposed to 
the standard waveguides, the higher-order modes are allowed to propagate. We have 
seen how the electric field has a maximum at the center of the waveguide when the 
dominant mode is supported. Standard waveguides are restricted in their frequency 
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range so that they do not support either evanescent modes or higher-order modes. In 
Figure 9.25(a), we can see how the higher-order modes are propagated as the mag-
nitude of b/λ0 is increased. This magnitude can be increased by increasing b while 
keeping the wavelength constant, or by decreasing the wavelength (i.e., by increasing 
the frequency), and keeping the value of b constant. Shielded rooms are like large 
rectangular waveguides with fixed dimensions, but the wide operating frequency 
range is equivalent to decreasing the wavelength as the frequency increases, so that 
higher-order modes are propagated. There may be TE and TM modes up to several 
orders. For the sake of clarity, we shall just consider the TEn0 modes up to the sixth 
order. The electric fields are shown at one instant in time in Figure 9.25(a–f) for the 
individual modes from TE10 to TE60, and in Figure 9.25(g) the modes are shown 
superimposed. We can see in the latter figure that there are several positions along 
the a dimension where the electric field is at a maximum. At another point in time 
half a period later, the electric field is shown in Figure 9.25(h). Ideally, in a shielded 
room, we would like the electric field to be uniform over the whole room. Although 
we cannot have a finite magnitude for the tangential electric field at the walls of the 
room because of boundary conditions, we would like the variation in the electric 
field everywhere else to be as small as possible so that when we measure the field 
from an EUT, we can attribute the field to that device and not to the geometry of 
the room. At high frequencies, there are many higher-order modes, and the room 
is said to be overmoded or multimoded. However, at the lower frequencies where 
the room is of the order of a wavelength, only one or two modes may be present, 
and thus the electric field may have only one or two maxima. In an attempt to 
randomize and even out the fields in an overmoded cavity, a mode stirrer is used 
in the same way as it is used in microwave ovens, where we would like the food 
to be heated uniformly. The mode stirrer consists of a set of metal plate reflectors 
called paddles, and the fields are reflected by them, so that they are time averaged 
and appear uniform. When we are performing swept frequency measurements, we 
must ensure that the frequency is swept at a much slower rate than the rotation rate 
of the mode stirrer. Each frequency traditionally required 200 paddle positions, so 
this was a very time consuming method at low frequencies (less than 200 MHz) 
where the average room is not heavily moded, but at higher frequencies (1 GHz and 
above) where many more modes exist, less time is required [21, p. 21].

9.5 Shielded Rooms

A shielded room could be an unlined rectangular cuboid or an absorber-lined 
chamber (ALC). A shielded room is useful for measuring the radiated emissions, 
as well as susceptibility (or immunity) and the shielding effectiveness of materials.

9.5.1 Unlined Shielded or Screened Rooms

Although the terms shielded room and screened room are used synonymously, 
the term shielded room is often used as a generic term to include both lined and 
unlined rooms, whereas the term screened room is usually used to indicate an 
unlined shielded room. It should be noted however that the term screen is also used 
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Figure 9.25 Six TE modes in an overmoded rectangular cavity: (a) TE10 mode, (b) TE20 mode, 
(c) TE30 mode, (d) TE40 mode, (e) TE50 mode, (f) TE60 mode, (g) six TE modes superimposed, and 
(h) half a period later.

to denote nonsolid or woven material in cables, and doubled-walled wire cages are 
also called screened rooms. A screened room prevents EM waves outside the room 
from entering and those inside the chamber from leaking outside, but this is only 
over the operating frequency range of the room. We may generally assume that the 
lower the frequency of operation, the thicker the walls; but at higher frequencies 
the leakage occurs through small apertures, and thus the seams between adjoining 
walls and doors have to fit tighter. Leakage can occur through apertures that are 
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as small as 1/100th of a wavelength. At 10 GHz, where the wavelength is 3 cm, 
apertures as small as 0.3 mm can cause problems. On the other hand, at 30 MHz 
the wavelength is 10m, and thus apertures of the order of 10 mm can be tolerated. 
The metal walls of the shielded rooms reflect the EM waves, in much the same way 
as sound waves are reflected in the room. Because of the nature of waves, construc-
tive and destructive interference can take place, resulting in resonances (see Section 
9.4) that can give spurious results in measurements.

The walls of screened rooms are usually made of solid steel plates, or a sandwich 
of two steel plates separated by a thicker sheet of wood (typically particle board). 
Steel is chosen since it has good absorption properties at frequencies above about 
10 kHz, and provides a good compromise between EM attenuation and economic 
cost. At low frequencies, the absorption of steel is directly proportional to its thick-
ness. The steel plates are welded together to ensure that there are no gaps. At lower 
frequencies where the wavelength is large, wire cages may be used instead of solid 
walled chambers.

9.5.2 Absorber-Lined Chambers

Absorber-lined chambers could be partly or fully lined with RAM (radar absorbing 
material). If the chamber is completely lined with RAM, then it is usually called 
an anechoic (no echo) chamber. Partly lined chambers are used as a compromise 
solution for economic reasons, since absorbers are relatively expensive. In addition, 
lining a room with absorbers reduces the effective volume of the room.

9.5.2.1 Absorbers

Absorbers are commonly known as RAM (radar absorbing material). The most 
commonly used RAM consists of polyurethane foam, which is loaded with a mate-
rial such as carbon. The electric field is attenuated by dielectric losses in the loaded 
foam, and the reflected wave at the air-absorber interface is also low. The absorber 
is usually designed to be backed by a metal plate or foil, and the reflectivity of 
the absorber is compared to a perfect metal conductor. The reflectivity is quoted 
in decibels, and values between −20 and −45 dB can be expected at the specified 
frequencies. We should note that the negative sign here indicates that the reflected 
wave is 20 to 45 dB lower than the incident wave. The reflectivity in decibels, RdB, 
is related to the percentage of reflected power, Rp, by the following formula:

 
Rp = 10(Rdb/10)[ ] × 100  (9.31)

Thus, a −45-dB reflectivity means that only 0.0032% of the power is reflected.
These reflectivities are only obtainable at low angles of incidence, and inci-

dence angles greater than about 45 degrees should be avoided. The absorber may 
also change the polarization of the incident electric field, but this is a second order 
effect and will not be discussed here. The reflectivity of the absorber may also be 
a function of the incident wave polarization, depending on the composition of the 
absorbing material.
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Some other types of absorbers are available, including ferrite and Jaumann type 
of absorbers. Lossy resins are also available for molding into custom-built shapes or 
for spraying onto metal surfaces, but these types will not be discussed here.

9.5.2.1.1 Carbon-Loaded Foam RAM
This type of RAM is available in flat sheet form and in pyramid, convoluted (egg-
box), or conical shapes. They are based on loading the foam with conductive particles 
such as carbon to absorb the electric field. The flat sheet RAM is made up of layers 
of different conductivities, so that the resistance of successive layers changes in dis-
crete steps. The pyramid RAM, on the other hand, consists of continuous variations 
of the conductivity, so there is a gradual change in the resistivity of the material.

9.5.2.1.2 Flat Sheet RAM
This absorber tends to have a broader frequency range than the shaped variety, 
but its reflectivity is not as good. It consists of a number of layers of polyurethane 
carbon-loaded foam, as shown in Figure 9.26(a), of varying resistivities that are 
bonded together. The absorber is not reversible, in other words, it can only be used 
facing one way. It has a front surface (which is often a lighter color) for the incident 
radiation, and a back surface which should be backed by, or preferably bonded to, a 
metal surface for optimum performance. The lower the operating frequency of the 
absorber, the greater its thickness is; at 600 MHz, the thickness of the absorber is 
about 10 cm, but at 20 GHz the thickness is only about 0.5 cm. Absorbers can be 
used successfully at frequencies higher than those specified; the limit is only appli-
cable to the low-frequency end of the operating range. Reflectivities of the order of 
−25 dB are the best that can be expected with much poorer performance (−10 dB) 
at the lower end of the operating frequency range. The front layer of the absorber, 
which receives the incident wave from free space, has less resistive loading than the 
other layers, and thus has the highest impedance. Ideally, the impedance of this 
layer should be equal to the characteristic impedance of the wave that is incident on 
it, that is, in the case of a plane wave, it should have a real impedance or resistance 
of 377Ω. The impedance of successive layers is gradually decreased, with the last 
layer having a very low impedance, approaching that of a good metal conductor. 
The resistance is thus decreased in discrete steps; the number of these steps is equal 
to the number of layers.

Carbon-loaded fiber matting is also available, which has similar performance 
to the foam-loaded type, but it cannot be used at low frequencies; its low-frequency 
limit being higher than that of the foam type, at around 1 GHz.

The other types of sheet absorbers are thin flexible sheets of lossy foams, which 
used for special purposes and not as absorbers per se, and will therefore not be 
discussed here.

9.5.2.1.3 Pyramid, Conical, and Convoluted (Egg-Box) Absorbers
In the case of these absorbers, the variation in impedance is implemented by geo-
metrically shaping the carbon-loaded foam. This type of absorber has the best per-
formance with reflectivities of up to −50 dB, when the thickness of the absorber is 
at least twice the wavelength of the incident radiation. This represents a reflection 
of only about 0.001% of the incident power. The pyramid absorber, shown in Figure 
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Figure 9.26 Carbon-loaded RAM: (a) Flat sheet RAM, and (b) pyramid RAM.

9.26(b), comprises four triangular, inclined sides on a square base. The height of 
the pyramid (including the base) varies from around 10 cm to 4.6m for frequencies 
down to 30 MHz [19, p. 26]. At 100 MHz, for instance, the length of the pyramid 
absorber is around 1.8m. Several pyramids are joined together to form square or 
rectangular modular units. The pyramid taper provides a continuous impedance 
taper (to the incident wave) which varies from a high impedance at the tip of the 
taper to a very low impedance at the back, where it is usually in contact with a good 
metal conductor. The incident wave is attenuated increasingly as it travels through 
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the material. The absorber also scatters or diffuses the incident energy in different 
directions (at the air-absorber interface) so that it is absorbed into the other surfaces 
of the absorber within the valleys of the material, as shown in Figure 9.26(b). Note 
that in this case, the variation of impedance is gradually varied, whereas in the case 
of the flat sheet RAM, the impedance variation is implemented in discrete steps. 
When used as floor material, the valleys between the pyramids can be filled with 
rigid foam, such as expanded polystyrene, and then covered with a vinyl coating. 
Alternatively, the RAM may also be covered by rigid glass foam laminate to allow 
it to be used for the floor [4, p. 356].

9.5.2.1.4 Combined Ferrite and Pyramidal Absorber
Ferrite tile-lined rooms are effective in the lower frequency range and are relatively 
ineffective at high frequencies, above 600 MHz. Because pyramidal absorbers 
become very long at low frequencies, chambers can become very large with a rela-
tively poor usage of floor space. As a result, a combination of pyramidal and ferrite 
absorbers was developed as shown in Figure 9.27. The ferrite is installed first, and 
then pyramidal absorbers on top. The longer wavelength passes through the pyra-
midal absorber and is absorbed by the ferrite. As a result, much shorter pyramidal 
absorbers can be used, resulting in a more efficient use of laboratory floor space.

It is important that the pyramidal absorber and ferrite impedances are matched. 
The ferrite tile is designed to present an impedance of 377Ω to the incident wave, 
and is most effective at frequencies between 30 and 600 MHz [22]. This is achieved 
by keeping the ratio of the permeability and permittivity equal to unity as the char-
acteristic impedance in the equation equates to 377Ω which is the impedance of 
free space. A pyramidal absorber that operates from about 200 to 1,000 MHz is 

Ferrite

Lossy material
(e.g., wood)

Pyramidal absorber

Figure 9.27 Combined pyramid RAM and ferrite with dielectric spacer.
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used with the ferrite base. The wave at lower frequencies, below 600 MHz, passes 
through the absorber and is absorbed by the ferrite tile.

 
Z0 = 377

m
e  (9.32)

Where

Z0 is the characteristic impedance of free space in ohms;

μ is the permeability of the material in henries per meter; 

ε is permittivity of the material in farads per meter.

If the impedance of the wave passing through the pyramidal absorber is too 
low, then a mismatch occurs at the ferrite absorber incident surface, compromising 
performance. The pyramidal absorber for use with ferrite tiles has a lower carbon 
content (7%), which ensures that at lower frequencies the wave impedance is not 
affected and allows the wave to reach the ferrite. At frequencies above 600 MHz, 
the 7%-loaded pyramidal absorber presents a 377-Ω impedance to the incident 
wave, which is reduced to zero ohms at the base (see Figure 9.28). The pyramidal 
absorber would normally have a carbon loading of 26% when used without a ferrite 
backing [23, p. 40]. The absorbers would normally be at least 2 ft (0.61m) in height 
to be effective at frequencies above 200 MHz [23, p. 40]. The ferrite tile may also 
require a lossy dielectric layer between the tile and the metal surface of the shielded 
room to minimize the deterioration in performance that can occur between 600 
and 1,000 MHz. Tiles are typically 6 mm thick with 12.7 mm plywood backing 
as a dielectric [23, p. 42].
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Figure 9.28 Comparison between the attenuation of different absorbers.
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The attenuation/reflectivity is measured by propagating a wave from a transmit 
antenna to be incident at an angle of 45 degrees towards the absorber, and measuring 
the reflected signal in volts per meter using a receive antenna as shown in Firue 9.29. 
The level of the reflected signal is compared to the reference level obtained using a 
flat metal surface at the same distance and angle of incidence, and the difference 
between the two signals is known as the reflectivity of the absorber in decibels.

Figure 9.28 compares the reflectivity of pyramid RAM (of 7% carbon loading) 
over the frequency range 30 to 1,000 MHz with ferrite tiles, as well as a combina-
tion of pyramid RAM backed by ferrite tiles for waves at normal incidence. It can 
be seen that the pyramid RAM with 7% carbon loading on its own is poor at low 
frequencies, and the performance only increases slightly at the higher frequencies as 
the length of the pyramids become significant with respect to the wavelength. Using 
a 600-mm-long pyramid RAM (with 7% carbon loading) and backed by ferrite 
tiles with 26% ferrite loading, the reflectivity is worse than −8 dB, and although it 
increases to −40 dB around 1,000 MHz, the increase is not monotonic and this wide 
variation of performance with frequency makes this unsuitable except for very nar-
row band applications. The plot using solely ferrite tiles shows an average reflectivity 
of around −20 dB, but from 30 to 150 MHz it increases with a peak at 150 MHz, 
at which it then deteriorates at the high frequencies. This nonmonotonic variation 
of performance with frequency makes this unsuitable for broadband applications.

Using pyramid RAM of length 600 mm (with 7% carbon loading) backed by 
the ferrite tiles results in a more constant, albeit reduced, reflectivity of better than 
−18 dB over the full frequency range. Hence, this combination of 600 mm pyramid 
RAM backed by ferrite tiles with 26% ferrite loading is most suitable for chambers 
operating over the frequency range of 30 to 1,000 MHz.

9.5.3 Anechoic Chambers

When a screened room is lined with RAM, it is known as an anechoic (no echo) 
chamber. The level of the reflections from the walls, floor, and ceiling of the room 

Transmit Receive

Sample holder

Figure 9.29 Measurement of reflectivity.
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are reduced by lining the room with RAM. The level of these secondary or mul-
tipath reflections is not uniform throughout the volume of the room, and there is 
a relatively small volume within the room (called the quiet zone) where the level of 
these reflections are at a minimum.

9.5.3.1 Quiet Zone

There is more than one definition of the quiet zone. Sometimes it is defined as the 
volume where rays enter after at least two reflections [24, p. 679], and sometimes 
as the volume in which the reflections from the internal surfaces of the chamber 
are at a specified level below that of the direct ray from the transmitting antenna 
[5, p. 381]. The latter definition is the more common and also the more meaning-
ful definition. This level can be as high as −60 dB for high performance anechoic 
chambers, but is a function of frequency, the type of absorber and the position 
within the quiet zone.

9.5.3.1.1 Rectangular Chambers
The early anechoic chambers were of uniform cross section. The width of the 
chamber is chosen so that the angle of incidence of a ray (from the transmitting 
antenna) on the side walls is kept to below a certain value. The maximum value of 
the angle of incidence depends on the RAM used to line the chamber, and values 
between 45 and 60 degrees are quite common. The chamber should be long enough 
to ensure that far-field conditions prevail at the lowest frequency of operation. A 
length-to-width ratio of 3 is recommended to ensure that far-field (i.e., plane wave) 
conditions prevail. However, if this ratio is reduced to 2, the side wall reflections 
are minimized. This is because fewer of the reflections from the side walls reach 
the quiet zone, and those that do enter the quiet zone are reflections as a result of 
small angles of incidence where the absorber has a better reflection performance. 
Chambers are often lined with the same type of absorbers on all the walls, but it 
is better to line the end wall with higher performance RAM, since the main lobe 
of the transmitting antenna illuminates one of these walls. Higher-performance 
RAM is also used for areas along the side walls where the first reflections from the 
transmitting antenna occur, as shown in Figure 9.30(a).

An anechoic chamber is also known as a fully anechoic room (FAR) or a free 
space open area test site (FSOATS), and is required for measurements above 1 GHz. 
A FAR has absorbers on all six room surfaces including, sometimes, below a non-
conductive turntable which is raised above the absorber. The difference between 
a FSOATS and a FAR is that the FAR has all of the surface covered, whereas the 
FSOATS only has an area of absorber placed between the turntable and the trans-
mit antenna. The absorber must have a maximum height of 30 cm (12 in) and a 
minimum rated attenuation of 20 dB. The performance requirements for a FAR are 
based on a technique called site voltage standing wave ratio S (SVSWR) as specified 
in CISPR 16-1-4 [25]. The SVSWR test measures the standing wave in the chamber 
by moving a transmit antenna along six points on a straight line in the chamber, as 
shown in Figure 9.31. A signal generator is connected to the transmit antenna and 
the received signal is measured at the receive antenna. The signal level as measured 
at one point is taken as the reference level, and the variation between the results at 
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Direct ray

Direct ray

Quiet zone

Figure 9.30 (a) Rectangular and (b) Tapered anechoic chambers.

each of the six measurements must be less than 6 dB, which is a VSWR of less than 
2:1. The process is carried out for both vertical and horizontal polarizations. The 
site validation is carried out in a volume in the shape of a cylinder, which encloses 
the EUT, and is located at a height of 30 cm to account for the absorber located on 
the floor. The receive antenna, which is typically a broadband horn (or may be a 
log periodic), is directed at the center of the turntable and is not moved right or left 
during the measurement process. The free-space loss between the front location, for 
example F6, is measured first and stored as the reference. The next five locations 
are 2 cm, 10 cm, 18 cm, 30 cm, and 40m away from the receive antenna. This pro-
cess is repeated for the front, right, and left positions. If the test volume diameter 
will be greater than 1.5m, it is also necessary to measure the center position. If the 
test volume is more than 0.5m between top and bottom positions, it is also neces-
sary to verify the SVSWR at the front position at the top of the test volume. Similar 
to a VSWR test on a transmission line, the measurement device moving along the 
line measures the maxima and minima of the standing wave. Each line is treated 
as a standalone measurement. By setting limits on the SVSWR, the effectiveness of 
the test site can be verified. Two alternative measurement methods are allowed. At 
least one of either the transmit or receive devices must have an isotropic or dipole 
characteristic. In other words, it is not permitted to use a directional antenna at 
both ends. Typically, a miniature biconical is used for the transit antenna to ensure 
low antenna directivity. It is normal to use two miniature biconicals to cover the 
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frequency ranges of 1 to 6 GHz and 6 to 18 GHz. The test is performed in 50-MHz 
steps from 1 to 18 GHz using a network analyzer or similar equipment. Unlike 
NSA measurements, there is no absolute free-space attenuation relationship that 
has to be established. The technique simply verifies the absence of unacceptable 
resonances in the room. The verification is performed at the front, middle, left, and 
right extremities of the turntable.

The ha is the portion of the test volume that is obstructed by absorber placed on 
the floor (30 cm maximum) as shown in Figure 9.32. The h1 height is located at the 
middle of the test volume, or 1.0m above the bottom of the test volume, whichever 
is lower—shown as h2. The h2 height is located at the top of the test volume and is 
required to be tested when h2 is separated by at least 0.5m from h1.

The FAR may also be used at frequencies below 1 GHz, as outlined in CISPR 
16-1-4 [25]. The qualification test is based on the theoretical free-space attenuation. 
The equation for this is shown below

AS = 20log10

5Z0

2p × d

1 − 1
(bd)2 + 1

(bd)4

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
− 20log10 fM( ) + FaR + FaT  (9.33)
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F1 to F6

R1 to R6

L1 to L6
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Figure 9.31 Location of antenna positions for SVSWR test.

Bottom ha 300mm max

h2= top of volume

h1 = 1.0 m above bottom of volume
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volume

Figure 9.32 Test volume in a FAR.
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where

FaR and FaT are the antenna factors of the receive and transmit antennas 
(dB/m);

D is the distance between the phase centers of both antennas (m);

Z0 is the reference impedance (i.e., 50Ω);

β is defined as 2π /λ; 

fM is the frequency (MHz).

9.5.3.1.2 Tapered Anechoic Chambers
The tapered chamber was first introduced in 1967. It can be used at a lower fre-
quency (less than 1,000 MHz) than a rectangular chamber of the same size. It also 
has a wider quiet zone than a rectangular chamber of the same width. It consists 
of a pyramidal or conical tapered section joined to a section of rectangular cross 
section, as shown in Figure 9.30(b). The tapered section can be considered as a horn 
which is radiating into a rectangular section. The tapered section is usually about 
twice as long as the rectangular section. In the tapered region, the angle of incidence 
with the side walls is nearly 90° (grazing incidence) and thus RAM that has high 
absorption for large angles of incidence is required for these areas.

9.6 Open Area Test Sites

OATS were developed to measure the radiated emissions from equipment. The EUT 
is placed on a turntable typically at a height of 0.8m and is rotated in the horizontal 
plane through 360 degrees to ensure that directional emissions are detected. The 
receive antenna, which is located at 3m, 5m, or 10m away from the EUT, is scanned 
in height from 1 to 4m to avoid the null caused by the wave in the direct path being 
180 degrees out of phase with the reflected path from the ground plane. This ensures 
that the level is measured at the point where the maximum in-phase contribution 
from the reflected path occurs. Measurements are carried out using horizontal and 
vertical polarizations of the electric field antennas. The emissions from the EUT 
are highly dependent on cable orientation and its antenna. It is necessary to ensure 
that the maxima are measured because of the high variability of the test and the 
effect of the EUT configuration on emissions. This includes scanning the antenna 
height, rotating the EUT, and adjusting the cables connected to the EUT to ensure 
that the maximum emissions configuration is measured.

Open area test sites may be completely uncovered, or a site covered by a mate-
rial of low dielectric constant. The FCC specifies an optional ground plane, whereas 
CISPR specifies a minimum size for a ground plane. A ground plane is considered a 
necessity, especially for vertical polarization. Materials commonly used for ground 
planes are solid metal sheets, metal foil, perforated metal, expanded metal, wire 
cloth, wire screen, and metal grating (CISPR 16-1-4) [25].

The mesh is not as good as a solid ground plane, but it provides better drainage. 
The ground plane should lie on the surface, so that it can be inspected for signs of 
corrosion and noncontinuity.
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The size of the ground plane recommended by CISPR 16-1-4 is shown in Figure 
9.34(a), whereas the Fresnel ellipse shown in Figure 9.35 defines the approximate 
size of the ground plane recommended by FCC/OST MP-4 [4, p. 357, 371]. FCC/
OST MP-4 has been replaced by ANSI 63.7 [26]. The Fresnel ellipse defines a zone 
in which a reflective surface may cause a reflected signal, which could be out of 
phase with the direct signal at the receive antenna, thereby causing a null, as shown 
in Figure 9.33.

Note that the size of the ellipse is a function of the antenna separation D. The 
effect of the Fresnel ellipse is discussed in ANSI 63.7:2015. The Fresnel ellipse is 
defined in the following manner: The distance D between the transmit and receive 
antennas must be chosen such that the path lengths between the reflected ray (AS 
+ SB) and the direct ray (AB) is half a wavelength. Since we know that an ellipse 
is defined as the locus of a point that is a fixed distance from two other points 
(known as the foci, A and B in this case), all the reflected rays such as (AS + SB) 
and (AT + TB) must be equal. If the transmit and receive antennas are each placed 
D/2 away from the nearest edge of the ellipse, then the reflected rays such as (AS + 
SB) will be equal to 2D. It can be shown that if AB = SB (each will be equal to D), 
then by drawing a perpendicular from S to AB and using Pythagoras’ theorem, this 
perpendicular is equal to D 3 / 2 . Since this is the semi-minor axis of the ellipse, 
then the minor axis is D 3 .

For biconical antennas, the reference or calibration point is the center of the 
balun. For log periodic antennas, the calibration is marked on the antenna as chosen 
by the manufacturer, and is normally 50% between the shortest and longest elements.

The size and shape of the obstruction-free areas vary depending on the mea-
surement distance and whether or not the EUT will be rotated. For sites with a 
turntable, the recommended obstruction-free area is an ellipse, which encompasses 
the receiving antenna and EUT, and has a length of twice the measurement distance 
and a width equal to the product of the measurement distance and the square root of 
three. These dimensions are designed to ensure that the path of the undesired reflec-
tion from any reflective object on the perimeter is twice the length of the direct ray 
path. For a 3-m site, the first Fresnel ellipse is larger than the obstruction free-area 
ellipse. The ANSI standard recommends that if the site fails to meet the normalized 
site attenuation criteria, the area that is outside of the obstruction-free ellipse but 
enclosed within the first Fresnel ellipse should be investigated for reflective objects.

The first Fresnel ellipse is normally when the difference between the direct and 
reflected ray differs by a path length of D + λ/2; this gives D between the foci and 

How can the direct wave be deflected?

Reflective object

Receive antenna

Fresnel ellipse

Transmit antenna

Deflected wave path
to receive antenna

Deflected direct wave path to receive antenna

Figure 9.33 Effect of a reflective object.
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Figure 9.34 OATS: (a) Minimum size of ground plane per CISPR 22, and (b) FCC set-up for site 
attenuation.

major axis of 2D and minor axis of D 3. The second Fresnel ellipse is when the 
difference is D + 3λ/2.

The ANSI Standard C63.7:2015 acknowledges that the original rationale for 
using twice the direct ray path length was to ensure that the scattered electric field 
would be at least 6 dB, that is, half-power down from the direct signal between the 
EUT and receiving antenna, and hence would have minimal impact on the direct path 
measurement. However, it has been found that that a spurious reflected signal 6 dB 
down from the direct path signal can cause 2 to 3 dB errors in the measurements. As 
such, it is necessary to investigate the reflective obstructions to ensure that adequate 
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obstruction free area

d = a + 2m, where a is the maximum EUT dimension
W = D + 2m, where D is the maximum antenna dimension
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Figure 9.35 ANSI OATS as used by the FCC. R equals the measurement distance from the 
calibration point on the antenna (from the periphery of the EUT).

performance is achieved. A further area of concern is the magnitude of a ground 
plane edge reflection which is affected by the electrical termination to the surround-
ing ground material. In addition, the reflection-free area recommended for 3-m sites 
is smaller than the Fresnel ellipse. As such, the obstruction-free area is a minimum 
requirement, and for optimum site performance, a larger obstruction-free area and 
ground plane is advisable. Table 9.4 shows the recommended dimensions in ANSI 63.

The ellipse should be free of all obstructions, such as trees and bushes, and not 
have any above or below ground EM reflecting objects. It should be in an area of 
low RF ambients, and the terrain should be level to within about 4.5 cm [25]. Bond-
ing between the panels of the ground plane is of paramount importance, and spac-
ing intervals equal to 1/10th of the wavelength at the highest operating frequency 
are recommended. For a site that has an upper-frequency limit of 1,000 MHz, 
the wavelength is 30 cm, and thus the bonding interval should be 3 cm. However, 
bonding intervals of 12 cm (which represents 0.4 of the wavelength at 1,000 MHz) 
have been used successfully [27].

The site itself produces attenuation, and this attenuation factor must be mea-
sured. This factor is dependent on the transmit and receive antenna gains, their 
heights, the frequency of operation, and the ground reflected waves. There is also 
some reflection of other metal objects, but this is more difficult to quantify. The 
attenuation is measured using dipoles or broadband antennas [25] at 1, 5, and 10 

Table 9.4 ANSI 63.4 Recommendations for OATS 
dimensions.

R = 3m R = 10m R = 30m

6m × 5.2m 20m × 17.3m 60m × 52m
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MHz intervals in the frequency ranges of 30 to 100 MHz, 100 to 500 MHz, and 
500 to 1,000 MHz, respectively.

The transmitting antenna is positioned at fixed heights, as shown in Table 9.5, 
whereas the receiving antenna height is adjusted for maximum reception. This 
height should be varied between 1 and 4m for antenna separations of 3 and 10m. 
The antennas are calibrated and the antenna factors are known. The reading S1 in 
decibles of the receiver should be recorded at each frequency, and the NSA calculated 
based on either the antenna calibration data or the calculated free-space antenna 
factors for dipoles. The NSA data provided in the standard makes allowance for 
the losses in the path length between the EUT and the receive antenna (which is a 
function of frequency, as well as the physical distance). Allowance is also made for 
the factors due to the gains of the antennas and the constructive interference due 
to reflection from the ground plane.

If tuned half-wave dipoles are used, their free-space antenna factors can be 
calculated using this equation:

 
AF = 20log10

2p
l

⎛
⎝

⎞
⎠ + 10log10

73
50

⎛
⎝

⎞
⎠    (dB)  (9.34)

If the OATS has an all-weather cover, or if the test is being carried out in a 
semi-anechoic chamber, then a volumetric NSA must be measured using broadband 
antennas at five positions on the turntable: front, back, left, right, and middle. The 
NSA is carried out without an EUT present. In addition, two transmit antenna 
heights are required, for two polarizations (horizontal and vertical), and for two 
heights (1 and 2m horizontal, 1 and 1.5m vertical).

9.6.1 Free-Space OATS

A free-space open area test site (FSOATS) is an OATS with absorber placed on the 
ground plane between the EUT and the antenna. CISPR 32/EN 55032 [28] only 
allows its use at frequencies above 1 GHz. The qualification of a FSOATS is the 
same as a fully anechoic room. For FCC, ANSI 63.4 [29] allows a similar practice 
for frequencies above 1 GHz, providing the absorber is less than 30 cm high as the 
test volume may be obstructed [25, p. 45].

9.6.1.1 Theoretical Site Attenuation Factors

The site attenuation (AS in decibels) may be calculated theoretically by taking into 
account the path losses, the gains of the antennas, and the reflection from the ground 
plane [25]. The theoretical site attenuation is given by:

Table 9.5 OATS NSA Measurement [25] 

Method Polarization Transmit Antenna Height

Tuned half-wave dipoles Horizontal 2m

Tuned half-wave dipoles Vertical 2.75m

Broadband Horizontal and vertical 1m
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AS = 20log10
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where 

FaR and FaT are the antenna factors of the receive and transmit antennas 
(dB/m);

D is the distance between the phase centers of both antennas (m);

Z0 is the reference impedance (i.e., 50Ω);

β is defined as 2π/λ; 

fM is the frequency (MHz).

This theoretical site attenuation does not take into account antenna near-field 
correction factors. These are significant at distances of 5m (frequencies less than 
60 MHz) and 3m (frequencies less than 110 MHz). CISPR 16-1-4 recommends 
that numerical modeling code such as NEC is used to calculate the site attenuation 
based on the antennas used, test distance, and test volume. In practice, site attenu-
ation measurements are carried out using antennas calibrated on a reference site at 
a calibration laboratory. For best results, a pair of antennas (transmit and receive) 
should be used.

For a half-wave dipole, the magnitudes of Gt and Gr are each equal to 2.15 
dBi. Note that the negative signs indicate that the site attenuation factor is reduced 
because of these gains. The magnitudes of As are plotted in Figure 9.36 for values 
of D equal to 3, 5, 10, and 30m [25].

9.7 Reverberation Chamber

Chambers are unlined shielded rooms that use a mode stirrer to enable either emis-
sions or immunity tests to be carried out. As the room is unlined, multimodes occur 
within the room volume. The number of modes is dependent on the dimensions 
of the room and the wavelength. Therefore, as the frequency is swept, the num-
ber of modes changes and the field uniformity varies. To ensure that the EUT is 
adequately characterized, mode stirrers in the form of rotation paddles or vanes are 
used to ensure that at each frequency there is adequate illumination of, in the case 
of immunity, the EUT, or in the case of emissions, the receive antenna. The mode 
stirring is carried out in all three planes and two or three stirrers are mounted on 
the walls of the chamber. These chambers are normally used at frequencies above 
100 MHz, as the dimensions of the mode stirrers at lower frequencies become very 
large. Good reverberant properties at a specified frequency of operation require a 
minimum chamber size. Room-sized reverberation chambers (e.g., volumes between 
75 m3 and 100 m3) are typically operated from 200 MHz to 18 GHz [30]. In this 
case, the longest room dimension is 6m, which is one quarter of a wavelength at 
200 MHz.
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Figure 9.36 Theoretical site attenuation for distances of 3, 5, 10, and 30m.

The stirrers should have one dimension that is at least one-quarter wavelength 
at the lowest frequency, and a separate stirrer can be used for horizontal and verti-
cal polarizations. EN 61000-4-21 recommends that the stirrers should be as large 
as possible and should extend to three quarters of the room smallest dimension. 
The location of the stirrers is not critical. The use of a turntable is optional. Figures 
9.37–9.39 show different designs of stirrers.

Two methods of rotating the stirrer are used: mode stirred is where the stirrer is 
rotated continuously, and mode tuned is when the stirrer is stepped in discrete steps. 
Mode stirring allows faster measurements and has the advantage that the stirrer is 
moving continuously and prevents transient effects that can occur when the stirrer 
is stepped, however, it can pose problems in ensuring that a sufficient dwell time 
occurs at each frequency. Mode tuning has the advantage that the stirrer can be held 
at each position to ensure that defined dwell time is achieved, however, transient 
effects caused by the stirrer stopping and starting are a disadvantage [31, p. 106].

For calibration, EN 61000-4-21 [30] and RTCA DO 160G [32] only allow mode 
tuning to be used, with a minimum of 12 stirrer steps required. Mode stirring can 
be used during the EUT test.

The advantages of the reverberation chamber include the lower cost of the cham-
ber as it is unlined, and the ability to test all angles of incidence for complex scenarios.

The chamber should be free of absorbing materials such as wood. Polystyrene 
foam is a suitable material for the support table. The reverberation chamber depends 
on reflective surfaces and there are no absorber materials used in the chamber.

The suitability of a reverberation chamber is determined by performing a cou-
pling attenuation between a fixed transmit antenna and receive antenna. The anten-
nas used are typically log periodic and horn antennas to determine the maxima 
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Figure 9.37 Example of a typical paddle stirrer. It is good for frequencies down to 68 MHz.
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Figure 9.38 Layout of reverberation chamber.

and minima. Peak hold is typically used, and the stirrer/paddles are rotated at least 
five times in each integrating period. The transmit antenna is then set to the other 
polarization and the process repeated. Compliance with these criteria ensures that 
the chamber adequately illuminates the EUT in a uniform manner. Figure 9.40 
shows the compliance criteria called up in CISPR 16–1.
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Figure 9.40 CISPR 16-1-4 [25] defines the performance and allows for a 2-dB range of coupling 
attenuation.

9.7.1 Reverberation Chamber Requirements of EN 61000-4-21

IEC/EN 61000-4-21, which uses the same method as RTCA DO-160G [32, Sec-
tion 20.6, p. 20–16], has a more detailed description of the design and calibration 
of reverberation chambers. The standard assumes that the chambers will be used 
above at least 100 MHz. The purpose of the validation is to ensure that all points 
in the working volume meet the field uniformity criteria. The field uniformity must 
be verified at eight locations for EN 61000-4-21, at the eight corners of the test 
volume. RTCA DO-60G additionally requires that the ninth center point of the 
EUT volume is verified.

The field is measured at all of the validation points using a three-axis probe. 
The field uniformity is considered uniform if the standard deviation is less than 



9.7 Reverberation Chamber 327

3 dB at frequencies above 400 MHz. Between 100 and 400 MHz, the standard 
deviation slopes linearly on a semi-log plot from 3 to 6 dB, as shown in Figure 9.41.

A receive antenna is located at various locations inside the working volume 
during the validation procedure, as the power received on this antenna will be 
needed later to verify the chamber performance before testing an EUT. The use of 
reverberation chambers does not rely on antenna factors. The procedure assumes 
that the power delivered to the transmit antenna is radiated into the chamber with 
a certain antenna efficiency, which is typically 0.75 for a log periodic and 0.9 for 
a horn antenna [30, p. 47].

9.7.2 Validation Procedure

The procedure uses a transmit antenna, a receive antenna, and field probe. The 
receive antenna is for monitoring and does not form part of the validation process.

The field uniformity is verified in an empty chamber. For field uniformity, a 
field probe is used. It is only necessary to verify the uniformity up to one decade 
above the lowest frequency of use. The field uniformity is verified at 8 points, the 
eight corners of the volume of the uniform field. This process is carried out using the 
mode tuned mode, which means that discrete rotational stirrer steps are used. The 
number of steps depends on the result of the test; more steps may be used to obtain 
field uniformity and a minimum of twelve must be used. The transmit antenna must 
be linearly polarized, usually a log periodic or horn. The same antenna should be 
used for the EUT testing.

The field probe is located at one of the eight validation points, and the input 
power adjusted to produce the desired validation level on the field probe. The stirrer 
is then rotated in discrete steps and the three field components from the field are 
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Figure 9.41 Standard deviation of E field in empty chamber.
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recorded at each step. Three criteria are recorded for the stirrer’s 360 degree rotation, 
the maximum field in each of the x-, y-, and z-axes, the vectorial field (root sum 
square of the three axes), and the average input power over the antenna rotation. 
This process is repeated for all frequency steps up to ten times the start frequency.

From the 24 measurements at the 8 points and three axes, the values for indi-
vidual axes are normalized as follows.

For the x-axis:

 

!
Exnorm =

Exmax

Pinput

 (9.36)

Exnorm = normalized maximum measurement from each probe axis;

Exmax = maximum measurement from the x-axis over the nine measurement 
points; 

Pinput = average input power to the chamber during the tuner rotation.

This is repeated for the y- and z-axes.
For the 8 normalized E-field maximums in each axis, the average is calculated 

as follows.
For the x-axis:
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where

!
Ex 8

 = average of the normalized maximum measurements from each 
probe axis

!
Ex  = result from 10.36

Note: 〈 〉 denotes arithmetic mean

This is repeated for the y- and z-axes.
For the 24 normalized E-field maximums, the average is calculated as
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For each validation frequency, the standard deviation is calculated for one stir-
rer rotation:
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This is repeated for the y- and z-axes.
For all the vectors at each frequency over one tuner rotation, the standard 

deviation is calculated as
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 (9.40)

where Emn equals the individual measurements of all vectors (m = probe locations, 
and n = isotropic probe axes x, y, and z).

The standard deviation relative to the mean is
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If the standard deviation for the individual components σx, σy, and σz and the 24 
total data set do not exceed the levels shown in Figure 9.41, the chamber is compliant.

Figure 9.41 shows the example shown in EN 61000-4-21. As can be seen, the 
standard deviation exceeds the limit at frequencies below 120 MHz. This sets the 
lowest usable frequency. The system performance can be improved by increasing 
the number of stirrer steps, or improving the accuracy of the input power by taking 
account of reflected power from the transmit antenna. It is also possible to reduce 
the size of the working volume.

A chamber requires a minimum of one stirrer. Improved field uniformity can 
be achieved by using additional stirrers. If a chamber has a very high Q, then it 
may be difficult to achieve the field uniformity and it is recommended to reduce 
the Q by adding absorber. The standard also states that chambers with no more 
than 6 to 100 modes at the lowest frequency are unlikely to meet the field unifor-
mity required.

9.7.3 Testing an EUT

Before testing an EUT, it is necessary to verify that the EUT is not adversely load-
ing the chamber. This is performed by injecting a transmit signal into the chamber 
via the transmit antenna and recording the received power from a receive antenna 
which is located inside the working volume but at least one quarter of a wavelength 
away from the EUT. One stirrer rotation is completed at each frequency. The mean 
received power must be similar to the mean receive level measured during the eight 
measurements to form the validation. During validation, the receive antenna is 
moved to different positions within the test volume.

The chamber loading factor (CLF) is calculated using the chamber validation 
factor (CVF)

 
CVF = Average received power from receive antenna

Average input power to transmit antennat  
⎛
⎝⎜

⎞
⎠⎟

 (9.42)
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The antenna validation factor (AVF) is calculated by

AVF = Average received power 
Average received power measured during chamber calibration

⎛
⎝⎜

⎞
⎠⎟  

(9.43)

The chamber loading factor is

 
CLF = CVF

AVF
⎛
⎝

⎞
⎠  (9.44)

This process is necessary to ensure that the EUT is not loading the chamber to 
the point where the EUT will not be measured properly. The CLF should be less 
than the measurement uncertainty allows.

Further calculations are required to determine the chamber time constant. 
This is to ensure that an adequate dwell time is achieved at each frequency during 
immunity testing.

 
Q  dB( ) = 16 ∗ p2 ∗V

hTx ∗ hRx ∗ l3  
⎛
⎝⎜

⎞
⎠⎟
∗ CVF( )  (9.45)

where

ηTx and ηRx equal the antenna efficiency factors, typically 0.75 for a log peri-
odic and 0.9 for a horn antenna;

V is the chamber volume (m3); 

λ is the free-space wavelength (m).

The quality factor is used to calculate the chamber time constant

 
t = Q

2 ∗ p ∗ f  (9.46)

where

τ is the time constant (s); 

f is the frequency (all frequencies above 400 MHz must be calculated).

If τ is more than 40% of the pulse width at 10% of the frequencies, then the 
pulse width must be increased or loading must be added to the chamber to reduce 
the Q factor.
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9.7.4 Immunity Testing

For immunity testing, the transmit antenna should be located in the same position 
as the validation was performed. The desired electric field test level is used to calcu-
late the required input power to the transmit antenna at each frequency. The input 
power is based on the average of the 24 measurements taken during validation.

 

Pinput =
Etest!

E 24  or 8 ∗  CLF(f )

⎡

⎣
⎢

⎤

⎦
⎥

2

 (9.47)

where

Etest is the radiated immunity test level (V/m);
!
E 24 or 8  is the average normalized E field of the measurements taken during 

validation; and,

CLF (f) is the chamber loading factor at each frequency.

The dwell time at each frequency must take into consideration EUT response 
time, modulation frequency, and the time for the stirrer to move to a new position. 
The time shall always be greater than 0.5 seconds at each of the minimum of twelve 
stirrer positions.

The immunity test method is different from the test carried out in an anechoic 
chamber which simulates plane wave conditions. As a result, the reverberation 
chamber test is based on a power level metric with the maximum or average power 
level being the critical factor. For this reason, it is necessary to record the maximum 
and average power level with the receive antenna, with a requirement that the levels 
shall be within 3 dB of the levels measured during chamber validation.

9.8 Radiated Emissions

Emissions measurements using reverberation chambers raise issues. The apparent 
amplitude variation of the emitted signal can cause issues for traditional EMC 
detectors. For example, the quasi-peak detector has a long time constant and the 
effect of stirrer rotation could give false readings. When considering such detectors, 
it is advisable to observe the emission for a number of time constants at each stir-
rer position. The quasi-peak detector has a discharge time constant of 550 ms for 
frequencies between 300 and 1,000 MHz. In addition, the chamber quality factor 
(Q) can distort short duration pulses of less than 10 µs. For peak measurements, 
the minimum measurement time at each frequency is given by CISPR 16-2-3:2016 
[33]. The minimum sweep time is Tsmin

 
Tsmin = Tmmin ∗ Frequency Span

0.5 ∗ Bres

 (9.48)
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where

Bres is the resolution bandwidth of the measuring receiver; 

Tmmin is the minimum measurement (dwell) time at each frequency.

The minimum dwell time at each frequency is dependent on features of the 
product, such as pulses caused by intermittent signals and time for the stirrer to 
stop moving. Each step has to be at least one-half of the resolution bandwidth to 
ensure that all emissions are encompassed by the frequency scan.

The equipment should be arranged in the validated test volume. It is not neces-
sary to manipulate the interface cables, as would be required on an open area test 
site. The transmit antenna should be kept in the chamber as it was used during 
validation. The receive antenna should not be directed at the EUT or the transmit 
antenna, and is preferably directed into a corner. It is necessary to perform the 
loading test as described in the radiated immunity section.

The radiated emissions can be measured using mode stirring or mode tuning 
modes. However, the standard recommends that mode stirring, where the stirrer 
is rotating continuously, is used only for peak measurements and not when using 
other detectors that using averaging.

The radiated emissions measurement is based on the received power which can 
be converted to field strength.

The conducted power is measured from the receive antenna and corrected 
for antenna and chamber losses to obtain the radiated power level that the EUT 
is emitting.

Therefore, the radiated power is

Radiated Power = Received Antenna Power ∗ Antenna efficiency
Chamber Validation Factor

 (9.49)

9.8.1 Free-Space Field

The far-field electric field can be calculated using the common relationship for 
power transmitted from an antenna:

 
E
V
m
⎛
⎝

⎞
⎠ =

D ∗ Pradiated ∗ 377
4 ∗ p ∗ r2

 (9.50)

where

Pradiated is the radiated power from (9.49);

r is the distance in far-field conditions; 

D is the directivity of the EUT. This is assumed to be 1.7 to represent a 
dipole of length of between one-half and one full wavelength.

It should be noted that the level calculated is not always the same as that mea-
sured on an open area test site. The level measured in a reverberation chamber is 
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the total power emanating from the EUT simultaneously in all directions, whereas 
the OATS measures in specific directions only.
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a p p e N D I X  a

List of Acronyms and Abbreviations

0TLP zero transmission level point

AAS advanced antenna system

ABET Accreditation Board for Engineering and Technology

AC alternating current

ACA American Communications Association

ACARS ARINC Communications Addressing Reporting System

ACCESS automatic computer-controlled electronic scanning system

ACE Association for Cooperation in Engineering

ACET Advisory Committee for Electronics 
and Telecommunications

ACF antenna correction factor

ACGIH American Conference of Governmental 
Industrial Hygienists

ACI automatic card identification

ACIL American Council of Independent Laboratories

ACIS Association for Computing and Information Sciences

ACM/GAMM Association for Computing Machinery/German 
Association for Applied Mathematics and Mechanics

ACOS Advisory Committee on Safety

ACPDS Advisory on Personal Dosimetry Services

AEA American Electronics Association

AEA American Engineering Association

AEA Association of Engineers and Associates

AEC American Engineering Council

AEI Associazio Elettrotecnica Italiana

AEM Association of Elecronic Manufacturers

AEPSC Atomic Energy Plant Safety Committee

AERE Atomic Energy Research Establishment (UK)

AF antenna factor

AF audio frequency
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AFCCE Association of Federal Communication 
Consulting Engineers

AFNOR Association Francaise des Normes (France)

AGARD Advisory Group for Aerospace Research and Development 
(NATO)

AGED Advisory Group on Electron Devices

AGEP Advisory Group on Electronic Parts

AGET Advisory Group on Electronic Tubes

AHAM Association of Home Appliance Manufacturers

ALC absorber lined chamber

A/m ampere per meter

AM amplitude modulation

ANSI American National Standards Institute

ANZAAS Australian and New Zealand Association for the 
Advancement of Science

aps assumed perfect site

AR axial ratio

ARCG American Research Committee on Grounding

ARINC Aeronautical Radio Incorporated

ARMMS Automated RF and Microwave Measurement Society

ARMS Aerial Radiological Measurements and survey

ARMS Amateur Radio Mobile Society

ARP aerospace recommended practice

ARTE Admiralty Research Test Establishment (UK)

ASA American Standards Association (now ANSI)

ASAC Asian Standards Advisory Committee

ASCII American standard code of information interchange

ASEE Association of Supervisory Electrical Engineers

ASET American Society for Engineering Technology

ASI American Standards Institute

ASM American Society for Materials

ASTM American Society for Testing and Materials

AT ampere-turn

BABT British Approvals Board for Telecommunications

BALUN balanced to unbalanced

BAPT German postal service (for EMC laws)

BBC broadband conducted

BC back-conducted
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BCI bulk current injection

BCI broadcast interference

BEAME British Electrical and Allied Manufacturers

BECTO British Electric Cable Testing Organization

BEMS Bioelectromagnetics Society

B/M balun and matching (network)

BS British Standard

BW bandwidth

BW beamwidth

CAA Civil Aviation Authority (UK)

CAMESA Canadian Military Electronics Standards Agency

CARS community antenna relay service

CATV community antenna television

CB citizen’s band (radio)

CBEMA Computer and Business Equipment 
Manufacturer’s Association

CCA CENELEC Certification Agreement

CCB Common Carrier Bureau (FCC)

CCI combined form of CCIR and CCIT

CCIR International Radio Consultative Committee

CCITT Comite Consultatif International des Telegraphique 
et Telephonique

CCITT International Telegraph and Telephone 
Consultative Committee

CDM charged device model (ESD)

CE Commite European

CE conducted emissions

CE compromising emanation (TEMPEST)

CECC CENELEC Electronics Components Committee

CEI Council of Engineering Institutions

CEM computational electromagnetics

CEN Commite European de Normalisation

CEN European Standard Coordinating Committee

CENELEC Comite European de Normalisation 
Electrotechnique (European Committee for 
Electrotechnical Standardisation)

CERL Central Electricity Research Laboratory

CGA colour graphics adapter (640 × 200 pixels)
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CGM computer graphics metafile

CGS centimetre gramme second (system of units)

CI conducted interference

CIA Computer Industry Association

CIP current injection probe

CISPR Center for International Systems Research (Department 
of State)

CISPR Comite International Special des Perturbation 
Radio Electronique

CMR common-mode rejection

CMRR common-mode rejection ratio

CMV common-mode voltage

CNET Centre National d’Etudes des Telecommunication (France)

COMAR Committee on Man and Radiation (IEEE)

COMSEC communications security

CONELRAD control of electromagnetic radiation

COSHH control of substances hazardous to health

CP circularly polarised

CPEM Conference on Precision Electromagnetic Measurement

CPSE counterpoise

CRT cathode ray tube

CS conducted susceptibility

CSA Canadian Standards Association

CT2 cordless telephone (second generation)

CUI called unit identify

CW carrier wave

CW continuous wave

CYMB cyan yellow magneta black

CYMK cyan yellow magneta black

dB decibel

dBA decibel referenced to 1 amp

dB(A/m2) decibel referenced to 1 amp per square metre

dBa decibel adjusted

DBAO digital bloc k AND-OR

dBa0 noise power on dBa referred to or measured at 0TLP

dBc decibels relative to the carrier

dBi decibel referenced to an isotropic (antenna)

dBj relative RF signal levels (j = Jerrold Electronics)
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dBk decibels referred to one kilowatt

dBm decibels referred to one milliwatt

dBm/m2 dB referred to one milliwatt per square meter

dBm/m2/MHz dB referred to one milliwatt per square meter 
per megahertz

dBm(PSOPH) noise power in dBm referred measured by a set with 
psophometric weighting

dBμA dB referred to one microamp

dBμA/m dB referred to one microamp per metre

dBμV dB referred to one microvolt

dBμV/m dB referred to one microvolt per metre

dBRN decibels above reference noise

DBS direct broadcast by satellite

dBV decibels referred to 1 Volt

dBW decibels referred to 1 Watt

dBx decibels above the reference coupling

DC direct current

DCI direct current injection

DFT discrete Fourier transform

DIN Deutsches Institut fur Normung (German 
Standards Organisation)

Div divergence

DOC Department of Communications (Canada)

DoD Department of Defense (USA)

DOT Department of Transportation

DRA Defence Research Agency (UK)

DSB double sideband

DSSC double sideband suppressed carrier (modulation)

DTC dual TEM cell

DTSC digital termination shielded chamber

DUT device under test

EBU European Broadcasting Union

EC Engineering Council

EC European Communities

ECAC Electromagnetic Analysis Center

ECC Electronic Calibration Center (NBS)

ECE Economic Commission for Europe (CEE Geneve)

ECMA Electronic Computer Manufacturers Association
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ECMA European Computer Manufacturers Association

ECMWF European Centre for Medium-Range Weather Forecasting

ECP electromagnetic compatibility program

EED electroexplosive device

EED electromagnetic energy density

E3 electromagnetic environmental effects

EEM electric equipment monitoring

EEPA Electromagnetic Energy Policy Alliance

EFT electrical fast transients

EGA enhanced graphics array (640 × 350 pixels)

EIA Electronic Industries Association

EIAJ Electronic Industries Association of Japan

EIRP equivalent isotropically radiated power

EITB Engineering Industry Training Board

EM electromagnetic

EMC electromagnetic compatibility

EMC electromagnetically coupled

EMC electromagnetic coupling

EMCAB Electromagnetic Compatibility Advisory Board

EMCOM emission control

EMCP electromagnetic compatibility program

EMCS electromagnetic compatibility standardisation (program)

EMCTP electromagnetic compatibility test plan

EME electromagnetic energy

EMEE electromagnetic environmental effects

EMETF electromagnetic environmental test facility

e.m.f. electromotive force

EMF electromotive force

EMH electromagnetic health

EMI electromagnetic interference

EMICP electromagnetic interference control plan

EMINT electromagnetic intelligence

EMP electro-magnetic pulse (radiation)

EMR electromagnetic radiation

EMS electromagnetic susceptibility

EMSEC emanation security (TEMPEST)

EMU electromagnetic unit

EMV Gesetz (German EMC law)
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EN Europaische Norm (European standard)

EOTC European Organisation for Testing and Certification

EPA Environment Protection Agency

ERP effective radiated power

ERP equivalent radiated power

ERTZ equipment radiation TEMPEST zone

ESA electrostatic attraction

ESD electrostatic discharge

ESDS electrostatic discharge sensitive

ESTLA electrically short tuned loop antenna

ETL Electrotechnical Laboratory (Japan)

ETSI European Telecommunications Standards Institute

EUT equipment under test

FAA Federal Aviation Administration (USA)

F/B front-to-back ratio

FC ferrite core

FCC Federal Communications Commission (USA)

FEA Federal Energy Administration

FEANI Federation Europeane d’Associations Nationales 
d’Ingenieurs (France)

FERROD ferrite-rod antenna

FFT fast Fourier transform

FG function generator

FI frequency independent

FM frequency modulation

FMCW frequency modulated continuous wave

FMCW frequency modulated carrier wave

FOB Field Operations Bureau (FCC)

FOL fibre optic link

FS field strength

FSM field strength meter

FT Fourier transform

FTC Federal Trade Commission

FTZ Fernmelde Technischer Zentralamt (Germany)

GSM group special mobile

G/T antenna gain-to-noise temperature

GTD geometrical theory of diffraction
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HBM human body model (ESD)

HCP horizontal coupling plane (for ESD testing)

HEMP high altitude electromagnetic pulse

HERF hazards of electromagnetic radiation to flight

HERF hazards of electromagnetic radiation to fuel

HERO hazards of electromagnetic radiation to ordnance

HERP hazards of electromagnetic radiation to personnel

HIRF high intensity radiated fields

HP horizontal polarisation

HPBW half power beamwidth

HPM high power microwaves

HSI hardness surveillance illuminator

IAC Industry Advisory Committee

IBS Institute for Basic Standards

ICAO International Civil Aviation Organization

ICP inherently conductive polymers

IDP inherently dissipative polymers

IEC International Electrotechnical Commission

IEE Institution of Electrical Engineers (UK)

IEEE Institute of Electrical and Electronics Engineers (USA)

IEEJ Institute of Electrical and Engineers (Japan)

IEPS International Electronics Packaging Society

IES Institute of Environmental Sciences

IICIT International Institute of Connector and 
Interconnection Technology

INIRC International Non-Ionizing Radiation Committee

IPC Institute for Interconnecting and Packaging 
Electronics Circuits

IRPA International Radiation Protection Association

IRR International Radio Regulations

IRT Institute fur Rundfunktechnik GmHB (Germany)

ISDN integrated services digital network

ISHM International Society for Hybrid Microelectronics

ISM industrial scientific and medical

ISO International Standards Organization

ITE information technology equipment

ITE Institute of Telecommunications Engineers

ITEM Interference Technology Engineers’ Master
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ITU International Telecommunication Union (UNO)

JEDEC Joint Electron Device Engineering Council

kWh kilowatt-hour

LA lighting arrestor

LASSY Licence Administration Support System

LCR inductance-capacitance-resistance (network)

LE antenna effective length (for electric field antennas)

LEM antenna effective length (for magnetic field antennas)

LEMP electromagnetic pulse generated by a nearby 
lightning strike

LHCP left hand circular polarisation or circularlt polarised

LISN line impedance stabilisation network

LLD low level detector

LLSC low level sweep coupling

ln Naperian or natural logarithm (to the base e)

log logarithm (usually to the base 10)

LORAN long range navigation

LORAP long range aerial photography

LPDA log-periodic dipole antennas or array

LSB lower sideband

LSN line stabilisation network

LUF lowest usable frequency

MAGGI Million Ampere Generator (Aldermaston, UK)

Maser microwave amplification by stimulated emission 
of radiation

MCS Mobile Communications Systems (IEEE vehicular 
Technology Technical Committee)

MCW modulated continuous wave

MDS minimum detectable (or discernible) signal

MIC minimum ignition current

MIC mutual interference chart

MIL Defense Logistics Agency (USA)

MIL-I military specification on interference

MIL-STD military standard (book)

mil one-thousandth of an inch

MKS meter-kilogram-second

MM machine model (ESD)
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MMB Mass Media Bureau (FCC)

MMF magnetomotive force

MoD Ministry of Defence (UK)

MOF maximum operating frequency

MP-4 an FCC measurement procedure

MPE maximum permissible exposure

MPL maximum permissible level

MPW modified plane wave

MS military standard sheet, prefix to numbered series issued 
by DoD (USA)

MSC mode stirred cavity

MTF modulation transfer function

MUB maximum usable bandwidth

MUF maximum usable frequency

MUT material under test

NAB National Association of Broadcasters

NACSEM National COMSEC/EMSEC Information Memorandum 
(TEMPEST)

NACSI National COMSEC Instruction (TEMPEST)

NACSIM National COMSEC Instruction Memorandum 
(TEMPEST)

NAMAS National Measurement Accreditation Service (UK)

NARTE National Association of Radio and 
Telecommunications Engineers

NASA National Aeronautics Space Administration

NATA North American Telecommunications Association

NATLAS National Testing Laboratory Accreditation Scheme (UK)

NBC narrowband conducted

NBC nuclear biological and chemical

NBS National Bureau of Standards (USA) now NIST

NBSFS NBS frequency standard

NEC numerical electromagnetics code

NEMA National Electrical Manufacturer’s Association

NEMP nuclear electromagnetic pulse

NEPA National Environment Policy Act

NFP near field probe

NFPA National Fire Protection Association

NIH National Institute of Health
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NIST National Institute of Standards and Technology (USA)

NMR normal-mode rejection

NPL National Physical Laboratory (UK)

NRC National Research Council

NRC Nuclear Regulatory Commission

NRL National Research Laboratory (USA)

NRPB National Radiological Protection Board (UK)

NRTL nationally recognized testing laboratory

NSA normalised site attenuation

NSA National Security Agency

NTG Nachrichtentechnische Gesellschaft (German 
Communications Society)

NTIA National Telecommunications and Information 
Administration (US Department of Commerce)

NTISSI National Telecommunications and Information Systems 
Security Instruction

NTP normal temperature and pressure

NTZ Nachrichtechnische Zeitschrift (Germany)

NTSC National Television System Committee (US)

NVLAP National Voluntary Laboratory Accreditation Program

OATS open area test site

OBR optical bar code

oe oersted (ampere per metre)

OEM original equipment manufacturer

OET Office of Engineering and Technology (FCC)

OSHA Occupational Health and Safety Administration

OST Office of Science and Technology

P-P peak to peak

PBS Public Broadcasting Service

PCZ physical control zone (TEMPEST)

pd potential difference

PDS power density spectra

PF power factor

PLC power-line carrier

PM phase modulation

PM pulse modulation

PadB perceived noise level expressed in decibels

POE point of entry (TEMPEST)
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PRB Private Radio Bureau (FCC)

PRF pulse repetition frequency

PRI pulse repetition interval

PRR pulse repetition rate

PSD power spectral density

PSOPH psophometric weighting

PTFE polytetrafluouroethylene

PTM pulse time modulation

PW plane wave

PWS plane wave spectrum

QP quasi peak

QPA quasi-peak adapter

QRM man-made interference

RAC Representative Advisory Committee

radar radio assisted detection and ranging

RADFAC radiation facility

RADHAZ radiation hazards

RADIMT radiation intelligence

radome radar dome

RAE Royal Aeronautical Establishment (now DRA)

RAM radar absorbing material

RBE radiation biological effectiveness

RD radiation detector

RE radiated emission

REC radiant energy conversion

REG radar environment generator

RF radio frequency

RFA reticulated radio absorber

RFC radio-frequency compatibility program

RFEG radio frequency environment generator

RFI radio-frequency interference

RFPG radio frequency protection guidelines

RH radiological health

RHE radiation hazard effects

RI radio interference

RM radio monitoring

RMS radiation monitoring system
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RMS root mean square

RRSWG random repetitive square wave pulse generator

RS radiated susceptibility

RSS root sum square

RTMA Radio Television Manufacturers’ Association

SA spectrum analyser

SAE Society of Automotive Engineers

SAMPE Society for the Advancement of Material and 
Process Engineering

SAR specific absorption rate

SB sideband

s/c signal-to-clutter ratio

SCSI small computer system interface

SE shielding or screening effectiveness

SELDS shielded enclosure leak detection system

SEV Schweizerische Elektrotechnischer Verein (Swiss 
Electrotechnical Association)

SI Systeme Internationale d‘Unites (International system 
of units)

SIR signal-to-interference ratio

SMC stirred mode cavity

SNI signal-to-noise improvement

SNR signal-to-noise ratio

SPEHS single point excitation for hardness surveillance

SPG single point ground

SS Swedish Standard

SSB single sideband

SSBSC single-sideband suppressed carrier

SSSC single-switched suppressed carrier

SSPM single-sideband pulse modulation

stat electrostatic units in CGS system (prefix)

SUT site under test

SWR standing wave ratio

TE transverse electric (field)

TEM transverse electromagnetic

TEMPEST US government radiated emissions security program

TM transverse magnetic (field)

TSB twin sideband
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TSI threshold signal-to-interference ratio

TVAR TEMPEST Vulnerability Assessment Request

TVS transient voltage suppressor

TWSB twin sideband

TWT travelling-wave tube

TWTA travelling-wave tube amplifier

UL Underwriter’s Laboratory

UNO United Nations Organisation

UPS uninterruptible power supply

USB upper sideband

UUT unit under test

UWB ultra wideband

VCCI Voluntary Control Commission for Interference (Japan)

VCP vertical coupling plane (for ESD testing)

VDE Verband Deutsche Electrotechniker—Society of German 
Electrical Engineers

Vfg Verfugung (FTZ regulations that affect EDP equipment)

VGA video graphics array (640 × 480 pixels)

V/Hz volts per hertz

VP vertical polarisation

VSWR voltage standing wave ratio

WARC World Administrative Radio Conference

WG waveguide

WG Working Group (CISPR)

XPD cross polar discrimination

XT cross talk
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Preferred Scientific Prefixes

Prefix Abbreviation Decimal Equivalent

Exa E 1018

Peta P 1015

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Centi C 10–2

Milli m 10–3

Micro m 10–6

Nano n 10–9

Pico p 10–12

Femto f 10–15

Atto a 10–18

Notes: Uppercase K is common usage to denote memory as 
kilobytes in computing technology. However, a kilobyte is not 
strictly 1,000 bytes, but 1,024 or 210 bytes. Thus, lowercase k 
stands for 1,000, whereas uppercase K stands for 1,024.

Optical wavelengths are often quoted in angstrom units.

Angstrom (Å) is 10–10m.
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a p p e N D I X  C

List of Scientific Constants

Avogadro’s constant Na = 6.02 × 1023 mol–1

Boltzmann’s constant k = 1.38 × 10–23 J K–1

Base of the Naperian or natural system of logarithms, e = 2.718

Intrinsic impedance of a plane wave in free space Z0 = 120 or 377Ω

Electronic charge e = 1.602 × 10–19 C

Faraday’s constant F = 9.65 × 104 C mol–1

Gravitational acceleration g = 9.81 ms–2

Gravitational constant G = 6.67 × 10–11 m3s–2 kg–1

Molar gas constant R = 8.3 J mol–1 K–1

Neper is equal to 8.68 dB, {20 log(e)}.

Permeability of free space = 4 × 10–7 Hm–1

Permittivity of free space – 1/(36π × 108) or 8.85 × 10–12 Fm–1

Pi = π = 3.142

Speed of electromagnetic waves in a vacuum, c = 2.99773 × 108 ms–1 (usually  
taken as 3 × 108 ms–1)

Speed of sound in free space in dry air at STP is 331.5 m/s





353
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Conductivities of Common Metals

Metal
 Conductivity  
in Siemen/m

Conductivity  
Relative to Cu

Multiplier for  
Skin Depth

Aluminum
Beryllium
Brass (70% Cu)
Brass (90% Cu)
Cadmium
Copper
Gold
Iron
Lead
Magnesium
Mu-metal
Nickel
Permalloy
Phosphor-bronze
Silver
Stainless steel
Tin
Zinc

3.538 × 107

5.8 × 106

1.450 × 107

2.41 × 107

1.334 × 107

5.8 × 107

4.06 × 107

9.86 × 107

4.64 × 106

2.204 × 107

1.74 × 106

1.16 × 106

1.74 × 106

5.8 × 106

6.09 × 107

1.16 × 106

8.7 × 106

1.68 × 107

0.61
0.10
0.25
0.42
0.23
1.00
0.70
0.17
0.08
0.38
0.03
0.20
0.03
0.18
1.05
0.02
0.15
0.29

1.28
3.16
2.00
1.54
2.09
1.00
1.20
2.43
3.54
1.62
5.77
2.24
5.77
2.36
0.98
7.87
2.58
1.86
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a p p e N D I X  e

Dielectric Constants and Loss Tangents 
of Common Materials

This is the same as the permittivity of the material relative to the permittivity of a 
vacuum. The dielectric constant of a material is made up of a real ε′r and an imagi-
nary ε″r part, and is given by εr = ε′r + jε″r. The ratio of the imaginary to real parts 
of the relative permittivity is the loss tangent, tanδ. The dielectric constant changes 
with frequency so the magnitude is quoted at two frequencies.

Dielectric Constant Tan δ 

Material 3 GHz  10 GHz 3 GHz 10 GHz

Alumina (99%) ceramic 8.7 9.7–10.3 0.0004

Corning glass 1990 7.99 7.94 0.00199 0.0032

Teflon (PTFE) glass woven fibre 2.1 2.17–2.55 0.0009–0.0022

Fibreglass BK-164 3.88 3.99 0.01 0.0131

Ice (−12°C) 3.20 3.17 0.0009 0.0007

Mica—glass bonded 7.5 0.0020

Plexiglass 2.60 2.59 0.0057 0.0067

Polyethylene 2.32 2.31 0.0050 0.0044

Polystyrene  hydrogenated 2.25 2.25 0.00016 0.00041

Teflon (PTFE) unreinforced 2.1 2.08 0.00015 0.00037

Quartz fused 3.78 0.001

Water (at 25°C) 77 55 0.15 0.54
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a p p e N D I X  F

Conversion Table for dBμV to μV, dBV, 
dBW, dBm, and Watts

To convert decibels relative to microvolts (dBμV) to μV, the following formula 
should be used:

μV = 10(dBμV/10)

To convert the power in milliwatts to power in dBm, the following formula 
is used:

dBm = 10log10(mW)

To convert volts to watts using a characteristic impedance of R, V = PR  
where V is the voltage expressed in volts, P is the power expressed in watts, and 
R is the resistance expressed in ohms.

The relation between dBV and dBW is given by:

20 log10V = 10log10P + 10log10R

The voltage ratio in dBV is given by V = 20log10 (V1/V=) where V1 and V2 are 
measured in volts.

The following table assumes an impedance of 50 ohms.

dBµV Voltage dBV dBW dBm Power

0 1 μV −120 −137 −107 20 fW

1 1.12 μV −119 −136 −106 25.2 fW

2 1.26 μV −118 −135 −105 31.7 fW

3 1.41 μV −117 −134 −104 39.9 fW

4 1.58 μV −116 −133 −103 50.2 fW

5 1.78 μV −115 −132 −102 63.2 fW

6 2 μV −114 −131 −101 79.6 fW

7 2.24 μV −113 −130 −100 100.2 fW

8 2.51 μV −112 −129 −99 126.2 fW

9 2.82 μV −111 −128 −98 0 fW

10 3.16 μV −110 −127 −97 200 fW
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dBµV Voltage dBV dBW dBm Power

11 3.55 μV −109 −126 −96 251.8 fW

12 3.98 μV −108 −125 −95 317 fW

13 4.47 μV −107 −124 −94 399.1 fW

14 5.01 μV −106 −123 −93 502.4 fW

15 5.62 μV −105 −122 −92 632.5 fW

16 6.31 μV −104 −121 −91 796.2 fW

17 7.08 μV −103 −120 −90 1 pW

18 7.94 μV −102 −119 −89 1.26 pW

19 8.91 μV −101 −118 −88 1.59 pW

20 10 μV −100 −117 −87 2 pW

21 11.22 μV −99 −116 −86 2.52 pW

22 12.59 μV −98 −115 −85 3.17 pW

23 14.13 μV −97 −114 −84 3.99 pW

24 15.85 μV −96 −113 −83 5.02 pW

25 17.78 μV −95 −112 −82 6.32 pW

26 20 μV −94 −111 −81 7.96 pW

27 22.4 μV −93 −110 −80 10.02 pW

28 25.1 μV −92 −109 −79 12.62 pW

29 28.2 μV −91 −108 −78 15.89 pW

30 31.6 μV −90 −107 −77 20 pW

31 35.5 μV −89 −106 −76 25.18 pW

32 39.8 μV −88 −105 −75 31.7 pW

33 44.7 μV −87 −104 −74 39.91 pW

34 50.1 μV −86 −103 −73 50.24 pW

35 56.2 μV −85 −102 −72 63.25 pW

36 63.1 μV −84 −101 −71 79.62 pW

37 70.8 μV −83 −100 −70 100.2 pW

38 79.4 μV −82 −99 −69 126.2 pW

39 89.1 μV −81 −98 −68 158.9 pW

40 100 μV −80 −97 −67 200 pW

41 112.2 μV −79 −96 −66 251.8 pW

42 125.9 μV −78 −95 −65 317 pW

43 141.3 μV −77 −94 −64 399.1 pW

44 158.5 μV −76 −93 −63 502.4 pW

45 177.8 μV −75 −92 −62 632.5 pW

46 199.5 μV −74 −91 −61 796.2 pW

47 223.9 μV −73 −90 −60 1 nW

48 251.2 μV −72 −89 −59 1.26 nW

49 281.8 μV −71 −88 −58 1.59 nW

50 316.2 μV −70 −87 −57 2 nW
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dBµV Voltage dBV dBW dBm Power

51 354.8 μV −69 −86 −56 2.52 nW

52 398.1 μV −68 −85 −55 3.17 nW

53 446.7 μV −67 −84 −54 3.99 nW

54 501.2 μV −66 −83 −53 5.02 nW

55 562.3 μV −65 −82 −52 6.32 nW

56 631 μV −64 −81 −51 7.96 nW

57 707.9 μV −63 −80 −50 10.02 nW

58 794.3 μV −62 −79 −49 12.62 nW

59 891.3 μV −61 −78 −48 15.89 nW

60 1 mV −60 −77 −47 20 nW

61 1.12 mV −59 −76 −46 25.18 nW

62 1.26 mV −58 −75 −45 31.7 nW

63 1.41 mV −57 −74 −44 39.91 nW

64 1.58 mV −56 −73 −43 50.24 nW

65 1.78 mV −55 −72 −42 63.25 nW

66 2 mV −54 −71 −41 79.62 nW

67 2.24 mV −53 −70 −40 100.24 nW

68 2.51 mV −52 −69 0 126.19 nW

69 2.82 mV −51 −68 −38 158.87 nW

70 3.16 mV −50 −67 −37 200 nW

71 3.55 mV −49 −66 −36 251.79 nW

72 3.98 mV −48 −65 −35 316.98 nW

73 4.47 mV −47 −64 −34 399.05 nW

74 5.01 mV −46 −63 −33 502.38 nW

75 5.62 mV −45 −62 −32 632.46 nW

76 6.31 mV −44 −61 −31 796.21 nW

77 7.08 mV −43 −60 −30 1 μW

78 7.94 mV −42 −59 −29 1.26 μW

79 8.91 mV −41 −58 −28 1.59 μW

80 10 mV −40 −57 −27 2 μW

81 11.22 mV −39 −56 −26 2.52 μW

82 12.59 mV −38 −55 −25 3.17 μW

83 14.13 mV −37 −54 −24 3.99 μW

84 15.85 mV −36 −53 −23 5.02 μW

85 17.78 mV −35 −52 −22 6.32 μW

86 19.95 mV −34 −51 −21 7.96 μW

87 22.39 mV −33 −50 −20 10.02 μW

88 25.12 mV −16 −49 −19 12.62 μW

89 28.18 mV −31 −48 −18 15.89 μW

90 31.62 mV −30 −47 −17 20 μW
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dBµV Voltage dBV dBW dBm Power

91 35.48 mV −29 −46 −16 25.18 μW

92 39.81 mV −28 −45 −15 31.7 μW

93 44.67 mV −27 −44 −14 39.91 μW

94 50.12 mV −26 −43 −13 50.24 μW

95 56.23 mV −25 −42 −12 63.25 μW

96 63.1 mV −24 −41 −11 79.62 μW

97 70.79 mV −23 −40 −10 100.2 μW

98 79.43 mV −22 −39 −9 126.2 μW

99 89.13 mV −21 −38 −8 158.9 μW

100 100 mV −20 −37 −7 200 μW

101 112.2 mV −19 −36 0 251.8 μW

102 125.9 mV −18 −35 −5 317 μW

103 141.3 mV −17 −34 −4 399.1 μW

104 158.5 mV −16 −33 −3 502.4 μW

105 177.8 mV −15 −32 −2 632.5 μW

106 199.5 mV −14 −31 −1 796.2 μW

107 223.9 mV −13 −30 0 1 mW

108 251.2 mV −12 −29 1 1.26 mW

109 281.8 mV −11 −28 2 1.59 mW

110 316.2 mV −10 −27 3 1 mW

111 354.8 mV −9 −26 4 2.52 mW

112 398.1 mV −8 −25 5 3.17 mW

113 446.7 mV −7 −24 6 3.99 mW

114 501.2 mV −6 −23 7 5.02 mW

115 562.3 mV −5 −22 8 6.32 mW

116 631 mV −4 −21 9 7.96 mW

117 707.9 mV −3 −20 10 10.02 mW

118 794.3 mV −2 −19 11 12.62 mW

119 891.3 mV −1 −18 12 15.89 mW

120 1 V 0 −17 13 20 mW

121 1.12 V 1 −16 14 25.18 mW

122 1.26 V 1 −15 15 31.7 mW

123 1.41 V 3 −14 16 39.91 mW

124 1.58 V 4 −13 17 50.24 mW

125 1.78 V 5 −12 18 63.25 mW

126 2 V 6 −11 19 79.62 mW

127 2.24 V 7 −10 20 100.2 mW

128 2.51 V 4 −9 21 126.2 mW

129 2.82 V 9 −8 22 158.9 mW

130 3.16 V 10 −7 23 200 mW
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dBµV Voltage dBV dBW dBm Power

131 3.55 V 11 −6 24 251.8 mW

132 3.98 V 12 −5 25 317 mW

133 4.47 V 13 −4 26 399.1 mW

134 5.01 V 14 −3 27 502.4 mW

135 5.62 V 15 −2 28 632.5 mW

136 6.31 V 16 −1 29 796.2 mW

137 7.08 V 17 0 30 1 W

138 7.94 V 18 1 31 1.26 W

139 8.91 V 19 2 32 1.59 W

140 10 V 20 3 33 2 W
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a p p e N D I X  G

The Electromagnetic Spectrum

Frequency
DC
0

AC
50/60 Hz

RF microwaves mm
waves infrared Visible

light
Ultra 
violet X-rays

Wavelength

500MHz
5*108Hz

30GHz
3*1010Hz

430THz
43*1013Hz

750THz
75*1013Hz

60PHz
6*1016Hz

50EHz
5*1019Hz

300GHz
3*1011Hz

5000/6000
km

60cm 1cm 1mm 5 nm
5*10-9m

6 pm
6*10-12m

Gamma rays

0.7μm
7*10-7m

0.4μm
4*10-7m

0.3 pm
3*10-13m

30 am
3*10-17m

1000EHz
1021Hz

107EHz
1025Hz

Cosmic rays
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a p p e N D I X  h

Frequency Band Designations

A B C D E F G H I J K L M N

L S C X J K Q V O

I G P L S X K Q V W

ELF VLF LF MF HF VHF UHF SHF EHF
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IEE
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IRR
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1 2 4 8 12 18 27 40 60 90
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3MHz 30MHz 300MHz 1GHz 2GHz 4GHz 8GHz 12GHz 18GHz 27GHz 40GHz 300GHz
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GHz

GHz
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300GHz

MicrowavesRF

300MHz 30GHz
usage

HF VHF UHF L C Q
S X K
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225MHz 400MHz
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2.5GHz 4GHz 6GHz

3.5GHz 7.5GHz

12.5GHz 40GHz

33GHz 50GHz

Aircraft
bands

225MHz
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3MHz 30MHz 300MHz 1GHz 2GHz 4GHz 8GHz 12GHz 18GHz 27GHz 40GHz 300GHz
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GHz

GHz
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300GHz

MicrowavesRF

300MHz 30GHz
usage

HF VHF UHF L C Q
S X K

2MHz 30MHz

225MHz 400MHz

1GHz 3GHz

2.5GHz 4GHz 6GHz

3.5GHz 7.5GHz

12.5GHz 40GHz

33GHz 50GHz

Aircraft
bands

225MHz
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Conversion Between Gain in dB and Gain 
as a Linear Ratio Gain in dBi to Linear 
Gain

To calculate intermediate values of gain in dBi, multiply linear gains. For example, 
for 5.6 dBi, multiply the 5 and 0.6 dBi values, that is, 3.162 ∗ 1.148 = 3.26998.

Gain dBi −10.0 −9.0 −8.0 −7.0 −6.0 −5.0 −4.0 −3.0 −2.0

Linear gain 0.100 0.126 0.158 0.200 0.251 0.316 0.398 0.501 0.631

Gain dBi −1.0 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2

Linear gain 0.794 0.813 0.832 0.851 0.871 0.891 0.912 0.933 0.955

Gain dBi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Linear gain 1.023 1.047 1.072 1.096 1.122 1.148 1.175 1.202 1.230

Gain dBi 1 2 3 4 5 6 7 8 9

Linear gain 1.259 1.585 1.995 2.512 3.162 3.981 5.012 6.310 7.943

Gain dBi 10 20 30 40 50 60 70 80 90

Linear gain 10 100 1000 104 105 106 107 108 109

Linear gain to gain in dBi

Linear gain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gain dBi −10.0 −7.0 −5.2 −4.0 −3.0 −2.2 −1.5 −1.0 −0.5

Linear gain 1 2 3 4 5 6 7 8 9

Gain dBi 0 3.01 4.77 6.02 6.99 7.78 8.45 9.03 9.54

Linear gain 10 20 30 40 50 60 70 80 90

Gain dBi 10.00 13.01 14.77 16.02 16.99 17.78 18.45 19.03 19.54

Linear gain 100 200 300 400 500 600 700 800 900

Gain dBi 20.00 23.01 24.77 26.02 26.99 27.78 28.45 29.03 29.54

Linear gain 1000 2000 3000 4000 5000 6000 7000 8000 9000

Gain dBi 30.00 33.01 34.77 36.02 36.99 37.78 38.45 39.03 39.54

Linear gain 10000 20000 30000 40000 50000 60000 70000 80000 90000

Gain dBi 40.00 43.01 44.77 46.02 46.99 47.78 48.45 49.03 49.54
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a p p e N D I X  J

The Periodic Table Listed Alphabetically 
by Chemical Symbol

Symbol Element Group Atomic Number Atomic Weight

Ac Actinium 3A 89 227.0278

Ag Silver 1B 47 107.868

Al Aluminum 3B 13 26.981

Am Americium 3A 95 243

Ar Argon Gas 18 39.948

As Arsenic 5B 33 74.9216

At Astatine 7B 85 210

Au Gold 1B 79 196.9665

B Boron 3B 5 10.81

Ba Barium 2A 56 137.33

Be Beryllium 2A 4 9.01218

Bi Bismuth 5B 83 208.9804

Bk Berkelium 3A 97 247

Br Bromine 7B 35 79.904

C Carbon 4B 6 12.011

Ca Calcium 2A 20 40.08

Cd Cadmium 2B 48 112.41

Ce Cerium 3A 58 130.12

Cf Californium 3A 98 251

Cl Chlorine 7B 17 35.453

Cm Curium 3A 96 247

Co Cobalt  8 27 58.9332

Cr Chromium 6A 24 51.996

Cs Caesium 1A 55 132.9054

Cu Copper 1B 29 63.54

Dy Dyprosium 3A 66 162.5

Ee Einsteinium 3A 99 252

Er Erbium 3A 68 167.2

Eu Europium 3A 63 151.96

F Fluorine 7B 9 18.9984
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Symbol Element Group Atomic Number Atomic Weight

Fe Iron  8 26 55.84

Fm Fermium 3A 100 257

Fr Francium 1A 87 223

Ga Gallium 3B 31 69.72

Gd Gadolinium 3A 64 157.25

Ge Germanium 4B 32 72.5

H Hydrogen  1 1 1.00794

He Helium  7 2 4.0026

Hf Hafnium 4A 72 178.4

Hg Mercury 2B 80 200.5

Ho Holmium 3A 67 164.9304

I Iodine 7B 53 126.9045

In Indium 3B 49 114.82

Ir Iridium  8 77 192.2

K Potassium 1A 19 39.0983

Kr Krypton Gas 36 83.80

La Lanthanum 3A 57 138.905

Li Lithium 1A 3 6.94

Lr Lawrencium 3A 103 260

Lu Lutetium 3A 71 174.967

Md Mendelevium 3A 101 258

Mg Magnesium 2A 12 24.305

Mn Manganese 7A 25 54.938

Mo Molybdenum 6A 42 95.94

N Nitrogen 5B 7 14.0067

Na Sodium 1A 11 22.98977

Nb Niobium 5A 41 92.9064

Nd Neodynium 3A 60 144.2

Ne Neon Gas 10 20.17

Ni Nickel  8 28 58.69

No Nobelium 3A 102 259

Np Neptunium 3A 93 237.0482

O Oxygen 6B 8 15.999

Os Osmium  8 76 190.2

P Phosphorus 5B 15 30.973

Pa Protactinium 3A 91 231.0359

Pb Lead 4B 82 207.2

Pd Palladium  8 46 106.42

Pm Promethium 3A 61 145

Po Polonium 6B 84 209
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Symbol Element Group Atomic Number Atomic Weight

Pr Praseodymium 3A 59 140.9077

Pt Platinum  8 78 195.0

Pu Plutonium 3A 94 244

Ra Radium 2A 88 226.0254

Rb Rubidium 1A 37 85.467

Rb Rhodium  8 45 102.99055

Re Rhenium 7A 75 186.207

Rn Radon Gas 86 222

Ru Ruthenium  8 44 101.0

S Sulphur 6B 16 32.06

Sb Antimony 5B 51 121.7

Sc Scandium 3A 21 44.9559

Se Selenium 6B 34 78.9

Si Silicon 4B 14 28.085

Sm Samarium 3A 62 150.3

Sn Tin 4B 50 118.6

Sr Strontium 2A 38 87.62

Ta Tantalum 5A 73 180.9479

Tb Terbium 3A 65 158.9254

Te Technetium 7A 43 98

Te Tellurium 6B 52 127.60

Th Thorium 3A 90 232.0381

Ti Titanium 4A 22 47.8

Tl Thallium 3B 81 204.383

Tm Thulium 3A 69 168.9342

U Uranium 3A 92 238.0289

V Vanadium 5A 23 50.9415

W Tungsten 6A 74 183.8

Xe Xenon Gas 54 131.2

Y Yttrium 3A 39 88.9059

Yb Ytterbium 3A 70 173

Zn Zinc 2B 30 65.38

Zr Zirconium 4A 40 91.22
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Magnetic Permeabilities of Common 
Metals

Material
Conductivity  
Relative to Copper

Relative Magnetic 
Permeability

Absolute Permeability 
(H/m)

Aluminum 0.61 1 0.00000126

Beryllium 0.1 1 0.00000126

Brass 0.26 1 0.00000126

Cadmium 0.23 1 0.00000126

Copper 1 1 0.00000126

Gold 0.7 1 0.00000126

Hypernick 0.06 80000 0.10053096

Iron 0.17 1000 0.00125664

Lead 0.08 1 0.00000126

Magnesium 0.38 1 0.00000126

Mu-metal 0.03 80000 0.10053096

Nickel 0.2 1 0.00000126

Permalloy 0.03 80000 0.10053096

Phospher-bronze 0.18 1 0.00000126

Silver 1.05 1 0.00000126

Stainless steel 0.02 1000 0.00125664

Tin 0.15 1 0.00000126

Zinc 0.29 1 0.00000126
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Polarization Matching Matrix
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*Although cross-polarization cannot be detected by perfect antennas, practical antennas have levels of cross-
polar discrimination of the order of −20 dB. Detection is possible at these levels.
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a p p e N D I X  M

Resistivities of Common Materials

Material
Resistivity  
in Ohm/m

Resistivity  
Relative to Copper

Aluminum 2.83 × 10–8 1.64

Beryllium 17.24 × 10–8 10.00

Brass 6.63 × 10–8 3.85

Cadmium 7.50 × 10–8 4.35

Copper 1.72 × 10–8 1.00

Gold 2.46 × 10–8 1.43

Iron 10.14 × 10–8 5.88

Lead 21.55 × 10–8 12.50

Magnesium 4.54 × 10–8 2.63

Nu-metal 57.47 × 10–8 33.33

Nickel 8.62 × 10–8 5.00

Permalloy 57.47 × 10–8 33.33

Phosphor-bronze 9.58 × 10–8 5.56

Silver 1.64 × 10–8 0.95

Stainless steel 86.21 × 10–8 50.00

Tin 11.49 × 10–8 6.67

Zinc 5.95 × 10–8 3.45
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a p p e N D I X  N

Radio Frequency Protection Guides for 
Nonionizing Radiation
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a p p e N D I X  O

List of Symbols

a broadside dimension of  waveguide

 side of triangle

 coefficient of x2 term of a quadratic

 radius of a coil

 expansion coefficient for a planar log spiral antenna

a′ width of the ridge of a ridged waveguide

 expansion coefficient for an equivalent planar log spiral antenna

a1 broadside dimension of  open end of an H-plane sectoral horn

ar unit vector in polar coordinate system

aϕ unit vector in polar coordinate system

aθ unit vector in polar coordinate system

A angle

 number

 length of vector

 area of a loop in m2 or cm2

 height (from apex to opposite side) of one arm of a bowtie antenna

A vector

 vector field

Af antenna correction factor

α current division factor (folded dipole)

 angle between the magnetic field vector due to a single coil and 
the plane

 containing the coil

 flare angle of a triangular dipole (bowtie) antenna in deg

 half-angle of a LPDA

 angle between the radius vector of a spiral and the x-axis

 attenuation factor of a cable

b narrow dimension of  waveguide

 radius of outer conductor of coaxial cable

 radius of loop
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 side of triangle

 coefficient of x term of a quadratic

 effective increase in the height of a top loaded monopole

b1 height of  open end of an E-plane sectoral horn

B angle

 magnetic flux density scalar in tesla (T)

 number

 length of vector

B vector

 magnetic flux density vector in tesla (T) or picotesla (pT)

Bar bandwidth of the active region of a conical log spiral

Bs design bandwidth in hertz (Hz)

Bw bandwidth in hertz (Hz)

β half-angle of a supporting section of a trapezoidal tooth LPDA

 winding or wrap angle of a spiral antenna

c side of triangle

cd cavity diameter for a planar log spiral

C angle

 the constant term of a quadratic

 capacitance in farads (F)

 circumference of a helical antenna

 combined correction term of Mt and Ms in dB

Cmax diameter of the base of the cone of a discone antenna

Cmin diameter of the top of the cone of a discone antenna

Cp correction term to allow for the polarization mismatch, in dB

C(x) Fresnel cosine integral

d diameter of the feed region of a planar log spiral antenna

 distance between horn and metal sheet in Purcell’s method

dA area of a small loop in m2

dl elementary length in meters

dn distance between the nth and (n + 1)th element of a LPDA

D electric flux/displacement density scalar in coulombs per square meter 
(C m–1)

 linear or numeric directivity

 diameter of a circular aperture

 diameter of a helical antenna in meters

 maximum dimension of an aperture antenna

 overall diameter of a planar log spiral antenna
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DdB directivity in dB

 directivity in dB (dB referred to a circularly polarized isotropic source)

DdBi directivity in dBi (dB referred to an isotropic source)

De effective aperture

 diameter of an equivalent reflector antenna

Dm angle in mathematical degrees

Dn angle in navigational degrees

 distance of the nth element from the imaginary apex of a LPDA

 distance of the back of the nth tooth from the imaginary apex of a trap-
ezoidal tooth L P DA

Dn1 normal component of the electric flux density in medium 1, in volts per 
meter (V m–1)

Dn2 normal component of the electric flux density in medium 2, in volts per 
meter (V m–1)

Dt1 tangential component of the electric flux density vector in medium 1, in 
coulombs per square meter (C m–2)

Dt2 tangential component of the electric flux density vector in medium 2, in 
coulombs per square meter (C m–2)

D electric flux/displacement density vector in coulombs per square meter 
(C m–2)

δ skin depth in meters (m)

 angular width of the arm of a spiral antenna

E electric field intensity in volts per meter (V m–1)

Ei incident electric field intensity in volts per meter (V m–1)

Er reflected electric field intensity from the edges of a spiral antenna in 
volts per meter (V m–1)

 electric field intensity in the radial direction, in volts per meter (V m–1)

Eϕ electric field intensity in the azimuth plane, in volts per meter (V m–1)

En1 normal component of the electric field vector in medium 1, in volts per 
meter (V m–1)

En2 normal component of the electric field vector in medium 2, in volts per 
meter (V m–1)

Et1 tangential component of the electric field vector in medium 1, in volts 
per meter (V m–1)

Et2 tangential component of the electric field vector in medium 2, in volts 
per meter (V m–1)

E electric field vector in volts per meter (V m–1)

ε permittivity in farads per meter (F m–1)

ε1 permittivity in medium 1, farads per meter (F m–1)

ε2 permittivity in medium 2, farads per meter (F m–1)
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η efficiency

ηdB efficiency in dB

ηop operating efficiency

f frequency in hertz (Hz)

F frequency in megahertz (MHz)

ϕ magnetic flux in webers (Wb)

 angle in the azimuth plane

 phase difference in radians (rad)

ϕ1 half power beamwidth in the azimuth plane, in degrees

ϕp phase associated with the arm of a spiral antenna, in radians (rad)

g1 gain of horn 1 in dB

g2 gain of horn 2 in dB

g3 gain of horn 3 in dB

gdB gain in dB

gp gain of a pyramid horn in dB

G linear or numeric gain

GdBi gain in decibels referred to isotropic (dBi)

Ge linear or numeric gain of an E-plane sectoral horn

Gh linear or numeric gain of an H-plane sectoral horn

Gp linear or numeric gain of a pyramid horn

h height of antenna

 distance between feed point of a dipole and its center

h effective length/height of a half-wave dipole in meters

heff effective length/height of the monopole in meters

H magnetic field intensity scalar in amperes per meter (A m–1)

 half length of a dipole in meters

H0 amplitude of the magnetic field intensity in amperes per meter (A m–1)

Hϕ magnetic field intensity in the azimuth plane in amperes per meter (A 
m–1)

Hr magnetic field intensity in the radial direction in amperes per meter (A 
m–1)

Ht total or resultant magnetic field intensity vector for a coil, in amperes 
per meter (A m–1)

Hθ magnetic field intensity in the elevation plane in amperes per meter (A 
m–1)

Hn1 normal component of the electric field vector in medium 1, in amperes 
per meter (A m–1)

Hn2 normal component of the electric field vector in medium 2, in amperes 
per meter (A m–1)
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Ht1 tangential component of the magnetic field vector in medium 1, in 
amperes per meter (A m–1)

Ht2 tangential component of the magnetic field vector in medium 2, in 
amperes per meter (A m–1)

H magnetic field intensity vector in amperes per meter (A m–1)

i unit vector along x-axis in rectangular coordinate system

I current in amperes (A)

I1 current in the upper arm of a dipole in amperes (A)

 current along the inner conductor of a coaxial cable in amperes (A)

I2 current in the lower arm of a dipole in amperes (A)

 current along the outer conductor of a coaxial cable in amperes (A)

I3 current along the outside of the outer conductor of a coaxial cable in 
amperes (A)

I(z) current at a distance z along a monopole in amperes (A)

Imax maximum current in a monopole

j square root of −1, imaginary axis of Argand diagram

j unit vector along x-axis in rectangular coordinate system

Jd displacement current density vector in amperes per meter (A m–1)

Js surface current density vector in amperes per meter (A m–1)

k unit vector along x-axis in rectangular coordinate system

k phase constant (= 2π/λ)

 constant that determines the start of a spiral antenna

K2 ratio of the radial distances of the inner and outer edges of the arm of a 
log spiral antenna

k3 constant (log spiral antenna)

l length in m

 physical length of a monopole in meters

 length of a transmission line in meters

le slant length of an E-plane sectoral horn

lh slant length of an H-plane sectoral horn

ln length of the nth element from the imaginary apex of a LPDA

l/d0 length-to-diameter ratio of the element of a LPDA

L length of a turn of a helix antenna

 length of a log spiral antenna

 slant height of the cone for a discone antenna

La inductance of antenna in ohms (Ω)

Le loss in dB due to phase error for an E-plane sectoral horn

Lh loss in dB due to phase error for an H-plane sectoral horn

Lext external inductance of a single turn loop in ohms (Ω)
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λ wavelength in meters

λg guide wavelength in meters

λc wavelength at the cut-off frequency in meters

λH wavelength at the highest operating frequency in meters

λL wavelength at the lowest operating frequency in meters

λ0 free-space wavelength in meters

μ magnetic permeability in  henries per meter (H m–2)

μ1 magnetic permeability in  medium 1, in henries per meter (H m–2)

μ2 magnetic permeability in  medium 2, in henries per meter (H m–2)

Mt magnitude of the correction term applied to the power output of 
the generator

Mm magnitude of the correction term applied to the power measured by the 
power meter

Mt magnitude of the correction term applied to the power measured by the 
receiver, to allow for the mismatch between the receive antenna and 
the receiver

n unit vector normal to a surface

N number of turns of a coil or helical antenna

ω angular frequency in radians per second (rad/s)

P power in watts (W)

P1 power in watts (W)

P2 power in watts watts (W)

Pd magnitude of power density in watts per meter (W m–2)

Pd Poynting’s power flux density vector in watts per meter (W m–2)

Pg power received by (or supplied to) generator in watts (W)

Pm power measured by power meter in watts (W)

 linear polarization mismatch

Pmax maximum power in watts (W)

Pr received power in watts (W)

Pt transmitted power in watts (W)

Prad radiated power in watts (W)

PFloss loss power factor

PFrad radiation power factor

r radial distance from a radiating dipole or loop

r1 radial distance from center of a spiral

r2 radial distance from center of a spiral

R length of position vector

 distance between a horn and its image, in Purcell’s method

R position vector
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Ra radiation resistance of antenna in ohms (Ω)

Re effective resistance of antenna in ohms (Ω)

Rh terminal resistance of a helical antenna in ohms (Ω)

Re real part of a complex number

Rixt internal resistance of a single turn loop in ohms (Ω)

R(kl) function shown in Figure 5.4

r+
15 is electrical radius on the base side (of a conical log spiral) at which the 

magnitude of the near field is 15 dB below the maximum, at the highest 
frequency of operation

r+
3 is electrical radius on the apex side (of a conical log spiral) at which the 

magnitude of the near field is 3 dB below the maximum, at the highest 
frequency of operation

rn distance of the front of the nth tooth from the imaginary apex of a trap-
ezoidal tooth LPDA

Rc cone radius of a conical log spiral antenna

Rr radiation resistance of antenna in ohms (Ω)

ρe virtual perpendicular length of an E-plane sectoral horn

ρh virtual perpendicular length of an H-plane sectoral horn

ρs surface charge density in coulombs per square meter (C m–2)

ψ angle between arrays of LPDAs

 pitch angle of a helical antenna

ψe flare angle in the E-plane of a horn

ψh flare angle in the H-plane of a horn

s disk-to-cone spacing for a discone antenna

sf scaling factor for a LPDA

S surface

 spacing between turns of a helical antenna in m

 voltage standing wave ratio (VSWR)

Sp spacing parameter for a LPDA

S(x) Fresnel sine integral

t time in seconds

Te phase error/deviation in terms of wavelengths for an E-plane sec-
toral horn

Th phase error/deviation in terms of wavelengths for an H-plane sec-
toral horn

Tp thickness parameter of the wire of a loop

θ angle in the elevation plane

 angle between vectors

θ1 half power beamwidth in degrees
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θE half power beamwidth in the E plane, in degrees

θH half power beamwidth in the H plane, in degrees

τg complex reflection coefficient of the generator

τr complex reflection coefficient of the receive antenna

τs complex reflection coefficient of the receiver

τt complex reflection coefficient of the transmit antenna

v velocity of a EM wave in m s–1

v velocity of a EM wave in medium 1, in m s–1

vx velocity in x direction in m s–1

vy velocity in x direction in m s–1

vz velocity in x direction in m s–1

v velocity vector in m s–1

V voltage in volts (V)

Vl voltage across a load in volts (V)

V1 voltage in volts (V)

V2 voltage in volts (V)

Voc open-circuit voltage in volts (V)

w diameter of the feed conductor for a discone antenna

x abscissa, coordinate of rectangular Cartesian system variable

Xa self reactance of antenna in ohms (Ω)

Xe effective reactance of antenna in ohms (Ω)

X(kl) function shown in Figure 5.4

ξ0 intrinsic impedance of a free space wave

y coordinate of rectangular Cartesian system variable

Y0 susceptance of the waveguide of normal height propagating the 
TE10 mode

Y′0 susceptance of the waveguide of reduced height

z coordinate of rectangular Cartesian system

Z input impedance of a shielded single turn loop in ohms (Ω)

Z0 characteristic impedance in ohms (Ω)

 intrinsic impedance of a wave in ohms (Ω)

Za self impedance of antenna in ohms (Ω)

 total impedance of antenna in ohms (Ω)

Zd impedance of a half-wave resonant dipole antenna in ohms (Ω)

Ze radiation impedance of antenna in ohms (Ω)

ZE characteristic impedance of a waveguide propagating a TE mode in 
ohms (Ω)

Zf impedance of the differential mode in ohms (Ω)
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ZH characteristic impedance of a waveguide propagating a TM mode in 
ohms (Ω)

Zin input impedance of a folded dipole antenna in ohms (Ω)

Zint internal impedance of a shielded single turn loop in ohms (Ω)

Zl impedance of a load in ohms (Ω)

Zr impedance of the common mode in ohms (Ω)

Zw characteristic impedance of waveguide in ohms (Ω)

Zλ/4 impedance of half of a resonant half-wave dipole in ohms (Ω)
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A

Absolute gain, 12
Absorber-lined chambers (ALC)

absorbers, 309–14
carbon-loaded foam RAM, 310
combined ferrite and pyramidal absorber, 

312–14
defined, 309
egg-box absorbers, 310–12
flat sheet RAM, 310

Absorption loss
characteristics of, 255
defined, 252–55
with relative conductivity, 257
with relative permeability, 256
skin depth and, 257
source-shield distance and, 255
theoretical, 258
See also Shielding effectiveness

Accurate method
defined, 208
E-plane gain, 210
H-plane gain, 210–11
pyramidal horn, 208
See also Gain calculation

Acronyms and abbreviations, 335–48
Ampere’s law, 65
Anechoic chambers

as fully anechoic room (FAR), 315
overview, 314–15
quiet zone, 315
rectangular chambers, 315–18
tapered chambers, 316, 318

Angles
as argument, 40
convention for, 27–28, 29
cosine formula, 32, 33
defined, 27

sine formula, 32–33
trigonometric functions of, 30, 31

ANSI OATS, 320–21
Antenna correction factor

antenna factor values and, 216–17
BiLog antenna, 131
calibration and, 211–17
conical log spirals, 159, 160
defined, 15–16, 211
double-ridge horns, 182
effective antenna height and, 213
electric field and, 211
equivalent circuit of B/M network and, 215
equivalent circuit of measurement system 

and, 214
intrinsic impedance and, 212
maximum power available and, 215
power density and, 212
power transfer and, 213
power transferred to B/M network and,  

215
receiver resistance and, 212–13

Antennas
aperture size, 15
bandwidth, 13–15
calibration, 185–217
characteristics of, 3–26
far field, 79–81
front-to-back ratio, 13
introduction to, 1–26
main lobe, 8–12
planes of measurement, 4
polarization, 16–20
radiation pattern, 5–8
radiation resistance, 4–5
receiving and transmitting differences, 

86–88
requirements for EMC, 1–3
sidelobes, 12–13

Index
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Antennas (Cont.)
types of, 2–3
See also specific antennas

Antennas (above 1 GHz)
Archimedes spiral, 163–65
band theory and, 139–41
discone antenna, 166–67
double-ridged horns, 168–83
frequency-independent antennas, 139
log spiral, 141–62
microstrip planar spiral, 165–66
overview, 139

Antennas (below 1 MHz)
baluns, 88–89
effective height, 94–95
effective length, 93–94
E-field, 95–101
far fields, 84–85
H-field, 102–9
matching, 92–93
mechanism of radiation, 83–85
near fields, 84–85
operating efficiency, 92
overview, 83
radiation power factor, 89–92
small, 88
wave impedance, 85–86

Antennas (between 1MHz and 1 GHz)
biconical antennas, 119–22
BiLog antenna, 130–31
Cavitenna, 114
discone antenna, 112–14
double-ridged horns, 137
folded dipoles, 115–17
frequency-independent antennas, 124
helical antennas, 132–35
large and resonant loops, 135–37
log-periodic antennas, 124–30
overview, 111
resonant and large dipoles, 114–15
resonant monopoles, 111–12
triangular dipoles, 118–19
Yagi-Uda antenna, 122–24

Antenna theory
boundary conditions, 70–73
far field, 79–81
fields due to radiating dipole, 73–75
Maxwell’s equations, 64–70
overview, 57
power flux density for plane wave, 75–78
radiation resistance, 78–79

scalar and vector fields, 59–64
unit vectors, 57–59
wave impedance for plane wave, 78

Antenna validation factor (AVF), 330
Aperture

circular, 21–22, 24–26
defined, 15
rectangular, 20, 24

Aperture antennas, 79–81
Aperture size

beamwidth from, 22–23
defined, 15
gain from, 23–26

Approximate gain calculation, 209, 211
Archimedes spiral

cavity-backed, 163–65
cavity depth and, 165
defined, 163
feeding arrangements, 164–65
gain variation, 164, 165
illustrated, 163
printed circuit balun, 163, 165
See also Spiral antennas

Argand diagram, 39
Argument, 40
Azimuth plane, 4

B

Baluns, 88–89
Band theory

deterioration in axial ratio and, 140
illustrated, 141
use of, 139

Bandwidth
defined, 13
double-ridged waveguides, 176–77
expression methods, 14
as fraction or multiple of an octave, 15
percentage, 14–15

Beamwidth
from aperture size and shape, 22–23
defined, 8–9
definition of, 9–10
gain from, 20–22
half-power (HPBW), 127, 133–34, 151–52
straight-toothed trapezoidal tooth LP, 129
10-dB, 9, 10
3-dB, 9, 10

Biconical antennas
broadband impedance characteristics, 121
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from coaxial cable, 121
cone half angle, 122
defined, 119
feeding details, 119
of half angle, 121
illustrated, 119
intrinsic impedance, 121
Maxwell’s equations and, 120
radiation pattern, 119

BiLog antenna
antenna correction factors, 131
defined, 130
power requirements, 131
radiation pattern, 130

Boundary conditions
circular waveguides, 299
at interface of two media, 71
normal component of electric field, 72–73
normal component of magnetic field, 73
tangential component of electric field, 

70–71
tangential component of magnetic field, 

71–72
Bowtie antennas, 118–19

C

Calibration
antenna correction factor and, 211–17
calculation of gain and, 196–209
example, 209–11
gain and, 185–96
square Crawford cell, 290

Carbon-loaded foam RAM, 310, 311
Cavitenna, 114
Cavity-backed Archimedes spiral, 163–65
Cavity-backed spiral, 153
Chamber loading factor (CLF), 330
Chamber validation factor (CVF), 329
Characteristic impedance

circular coaxial line, 280
gigahertz TEM (GTEM) cells, 296–97
rectangular cross section coaxial line, 283
TEM transmission lines, 276–77

Circular aperture
with nonuniform illumination, 21–22, 

25–26
with uniform illumination, 21, 25

Circular coaxial lines, 280–82
Circular coaxial TEM cells

continuous-conductor, 285–86

defined, 285
flanged, 287–88
illustrated, 288

Circular polarization, 18, 19
Circular waveguides

attenuation of evanescent modes, 301
boundary conditions, 299
cut-off, 303–4
fundamental mode, 300
modes in, 299–305

Class A equipment, 222–23
Class B equipment, 222–23
Clean time, 264
Coaxial lines

characteristic impedance, 280
circular, 280–82
higher-order modes in, 281
overview, 280
rectangular, 282–83
square, 282–83
See also TEM transmission lines

Combined balun/transformer, 93
Combined ferrite and pyramidal absorbers, 

312–14
Common-mode radiated emissions, 221, 222
Complex numbers

addition of, 40–41
complex conjugate, 42
polar representation of, 41

Computer equipment, classes of, 222–23
Conducted immunity

with bulk current injection, 230
with CDN, 230
common and differential-mode voltages, 

235–36
defined, 229
with electromagnetic clamp, 231
line, using LISN, 234
overview, 229
test methods, 230

Conduction current density, 65
Conductive coupling, 234
Conductivities, of common metals, 353
Conical log spiral, 20–21
Conical log spirals

active region, 156
antenna correction factor, 159, 160
bandwidth, 156–57
defined, 153–54
directivity, 157, 159
excited at apex, 154
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Conical log spirals (Cont.)
with frequency-independent antennas, 156
gain variation and, 159, 160
HPBW, 157–59
illustrated, 154
input impedance, 160–61
phase center, 161–62
radiation characteristics, 157–60
radiation pattern variation, 162
rate of spiral, 155
self-complementary, 158
two-armed, 155

Conjugate matching, 42
Continuous-conductor TEM cell, 285–86
Conversion table, 357–61
Cosine formula, 32, 33
Coupling/decoupling network (CDN), 230, 

236
Crawford cells

defined, 289
rectangular, 291
square, 289–91, 293
See also TEM cells

Cross product
defined, 44
unit vectors, 58–59
of vectors, 44–46

Curl of vector, 62–64
Cut-off frequencies

predicted, commercially available TEM 
cells, 296

predicted, NBS Crawford cells, 296
of rectangular and square cells, 292–95
TE modes, 294

Cut-off waveguides
circular, 303–4
polygonal cross section, 302–3
rectangular, 302–3
square, 302–3
ventilation panels, 300

D

dBm and dBmV relationship, 36
dBμV conversion table, 357–61
Degeneracy, 306
Degradation, 219
Dielectric constants, of common materials, 

355
Differential-mode radiated emissions, 221, 

222

Dimensions
checking formulas for, 55
of commonly used physical quantities, 54
defined, 52

Dipoles
folded, 115–17
large, 114–15
resonant, 114–15
small, 96–97
triangular, 118–19

Direct ESD, 269
Directional antennas

defined, 2
illustrated, 3

Directivity
of antenna, 11
defined, 10, 186
gain versus, 185–86
linear, 20
in physical media, 11

Discone antenna
defined, 112
disk-to-cone spacing, 113
flare angles, 167
in one to two GHz frequency range, 166
physical characteristics, 113
radiation pattern, 113–14
with snap-on N-type connector, 167

Displacement current density, 65–66
Divergence

of magnetic flux density, 69
of vector field, 61–62

Dot product, 44, 45
Double-inductive transformer, 93
Double-ridged horns

antenna correction factor, 182
antennas (above 1 GHz), 168–83
antennas (between 1MHz and 1 GHz), 137
cut-off wavelengths, 179, 180, 181
defined, 177
gain, 182
high powers and, 180
HPBW, 180–83
maximum useable bandwidth, 180, 181
overview, 168
ridge fabrication, 177
waveguide theory and, 168–71

Double-ridged waveguides
bandwidth, 176–77
cut-off frequency, 177
defined, 175



Index 397

equivalent circuit, 178
illustrated, 178

Dual TEM cell (DTC)
defined, 295–96
set-up, 297
use of, 296

DuHammel’s trapezoidal tooth LP, 129

E

Effective gain. See Gain
Effective height

antennas (below 1 MHz), 94–95
defined, 94
use of term, 94–95

Effective length
antennas (below 1 MHz), 93–94
defined, 93–94
top-loaded monopoles, 98–99

E-field antennas
defined, 95
ground plane dependence, 98
parallel element generator, 101
short monopoles, 97–98
small dipole, 96–97
top-loaded monopoles, 98–101

Egg-box absorbers, 310–12
Electrical fast transients (EFT), 231–32
Electric field probe, 291
Electric fields

normal component of, 72–73
shielding effectiveness for, 237
tangential component of, 70–71

Electric flux density, 66
Electric mode reflection loss

characteristics of, 248
defined, 247
at low frequencies, 251
material resistivity and, 251
with relative conductivity, 253, 254
with relative permeability, 253
SE measurements, 263
source-shield distance, 248, 251
theoretical, 252, 254
variation of, 249–50
See also Reflection loss

Electromagnetic interference (EMI)
IEC standards, 223–24
radiated, measuring, 223–28
use of, 219

Electromagnetic spectrum, 363

Electromotive force (EMF), 35, 67
Electrostatic discharge (ESD)

component sensitivity, 268
defined, 219
direct, 269
discovery, 266–67
human, waveform and spectrum for, 268
immunity to, 233
indirect, 269
man-made materials and, 267
models, 269
range of susceptibility, 270
spectrum, 267–68
susceptibility testing, 269–70
variation of voltage magnitude, 267

Elevation plane, 4
Elliptical polarization, 18–19, 20
EMC

antenna requirements for, 1–3
compliance standards, 220
compliance to regulations, 219
engineers, math for, 27–55

EMC measurements
conducted emissions and immunity, 234–36
electrostatic discharge (ESD) and, 266–70
instrumentation, 270–71
introduction to, 219–71
overview, 219–20
radiated emissions, 220–28
radiated susceptibility and immunity, 

228–33
shielding effectiveness and, 220
shielding effectiveness measurement and, 

262–66
shielding effectiveness of solid materials 

and, 236–61
EM field equations. See Maxwell’s equations
EM fields

due to current element, 74–75
due to radiating dipole, 73–75
at large distances from wire antennas, 75

E-plane sectoral horn
defined, 197
efficiency of, 199
gain calculation and, 197–202
gain of, 201–2
illustrated, 198
loss due to phase error, 199–201
maximum gain, 200
normalized gain for, 203
phase deviation and loss in gain and, 197
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E-plane sectoral horn (Cont.)
variation of flare length, 200–201
variation of loss with phase deviation, 199

Equipment under test (EUT)
antenna placement and, 224
in radiated emissions, 221
rotation of, 225, 318
testing, 329–30
verification, 329

Equivalent circuits, 89

F

Faraday’s law, 67
Far field

antennas (below 1 MHz), 84–85
for aperture antennas, 79–81
defined, 79
for wire antennas, 79

FCC radiated electric field limits, 224
First equation, Maxwell’s, 65–67
Flanged coaxial TEM cell, 287–88
Flat sheet RAM, 310, 311
Folded dipoles

from coaxial cable, 116
defined, 115
equivalent circuit, 116, 117
excitation of, 116–17
half-wave, 117
input impedance, 117
physical characteristics, 116
twin wire transmission lines, 116

Fourier analysis, 48, 49
Fourier transforms

defined, 48–50
illustrated, 51
uses of, 50

Fourth equation, Maxwell’s, 69–70
Fraunhofer region, 80
Free space, plane wave in, 85
Free-space field, 332–33
Free space open area test site (FSOATS)

defined, 315, 322
qualification of, 322
theoretical site attenuation factors, 322–23
See also Open area test sites (OATS)

Frequency band designations, 365
Frequency-independent antennas, 124, 139
Fresnel cosine and sine integrals, 201–2, 207
Fresnel zones, 80

Friis transmission formula
correction term, 189–90
defined, 188
multipath effects and, 190
near-field effects and, 190
received power and, 189

Front-to-back ratio, 13
Fully anechoic room (FAR)

absorbers, 315
defined, 315
test volume in, 317

G

Gain
absolute, 12
from aperture size and shape, 23–26
Archimedes spiral, 164, 165
from beamwidth, 20–22
conical log spiral variation, 159, 160
conversion table, 367
defined, 10, 185–86
directivity versus, 185–86
double-ridged horns, 165, 182
of E-plane sectoral horn, 201–2
of H-plane sectoral horn, 206–7
linear, 367
overview, 186
relative, 11–12
Yagi-Uda antenna variation, 159

Gain calculation
E-plane sectoral horn, 197–202
H-plane sectoral horn, 202–7
overview, 196–97
in pyramidal horn, 207–9

Gain measurement
Friis transmission formula, 187–90
Purcell’s method, 191
space attenuation versus distance and,  

188
three-antenna method, 195–96
two-antenna method, 187, 195

Gauss’ theorem, 68–69
Gigahertz TEM (GTEM) cells

characteristic impedance, 296–97
defined, 296
illustrated, 299
RF absorbers, 299
schematic, 298
septum, 298
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Gradients
of scalar fields, 59–61
writing, 60

Ground plane dependence, E-field antennas, 
98

Guided wave SE measurements, 265

H

Half-power (HPBW)
conical log spirals, 157–59
double-ridged horns, 180–83
helical antennas, 133–34
slot planar log spiral, 151, 152

Helical antennas
cavity-backed helices, 132, 134
characteristics of, 133
circumference, 134–35
conductors, 132
defined, 132
HPBW, 133–34
mode patterns, 133
radiation pattern, 135
VSWR, 133

Helmholtz coils, 102–4
H-field antennas

Helmholtz coils, 102–4
overview, 102
simple multiturn loop probe, 108–9
single-turn shielded loops, 106–7
small magnetic loops, 104–5

Honeycomb air vents, 304–5
H-plane sectoral horn

defined, 202
dielectric loading of, 203
gain of, 206–7
illustrated, 204
loss due to phase error, 203–6
maximum gain, 205
normalized gain for, 207
overview, 202–3
variation of flare length, 205–6
variation of loss with phase deviation,  

205
virtual flare length, 206

I

IEC/EN 61000-4-3, 228
Immunity

conducted arrangement using bulk current 
injection, 230

conducted arrangement using CDN, 230
conducted arrangement using 

electromagnetic clamp, 231
to conducted radiated interference, 229–31
to electrical fast transients (EFT), 231–32
to electrostatic discharges, 233
magnetic field, 231
to radiated electric field strength, 229
testing, 331

Indirect ESD, 269
Inductance-capacitance-resistance (ICR) 

network, 4
Input impedance

conical log spirals, 160–61
folded dipoles, 117
slot planar log spiral, 147

Instrumentation
measuring receivers, 270
spectrum analyzers, 271

International Electrotechnical Commission 
(IEC)

degradation definition, 219
immunity to radiated electric field strength, 

229
susceptibility definition, 228
test levels, 228

Inverse trigonometric functions, 32–33
Isotropic antennas, 2

J

Jacobian elliptical functions, 283

K

Kandoian antenna, 112–14, 166–67

L

Large dipoles, 114–15
Large loops, 135–37
Linear gain, 367
Linear polarization, 17
Line conductive emissions, 235
Logarithms

in multiplication of numbers, 34
natural, 34
rule, 34–35
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Log-periodic antennas
defined, 124
design bandwidth, 128
frequencies, 127
half-power beamwidths (HPBW), 127
log-periodic dipole array (LPDA), 124, 125, 

127, 129
number of elements, 128
optimum scaling factor, 127
properties of, 126
radiation pattern, 125
range of spacing parameters, 127–28
spacing parameter, 125, 126, 128
trapezoidal tooth, 129–30

Log-periodic dipole array (LPDA), 124, 125, 
127, 129

Log spirals
arms, 145
cavity-backed spiral, 153
changing current with time and, 141–42
conical, 153–62
loosely wound, 145
modes of radiation, 145–46
planar, 143
planar log spirals, 146–47
radiation pattern, 145
rate of change of radius vector, 144
rotation of radiation pattern, 146
slot planar, 147–53
types of, 141
velocity vectors, 143
width of conductors, 144
See also Spiral antennas

Loss tangents, of common materials, 355

M
Magnetic field intensity, 66
Magnetic fields

immunity, 231
normal component of, 72–73
tangential component of, 71–72

Magnetic flux density, 69–70
Magnetic mode reflection loss

defined, 239
dependence of Rh, 246–47
overview, 239–40
with permeability, 240–42
relative conductivity, 244–46
with relative permeability and relative 

conductivity, 242–44, 245–47
SE measurements, 262

with source-shield distance, 242–44
theoretical, 241
See also Reflection loss

Main lobe
beamwidth, 8–10
boresight directivity/gain, 10–12
defined, 8
illustrated, 9

Matching antennas, 92–93
Math, for EMC engineers

angles, 27–28
Fourier analysis and transforms, 48–50, 51
fundamental units and dimensions, 52–55
overview, 27
parameters, 50–52
powers, indices, and logarithms, 33–36
real and complex numbers, 36–42
scalars and vectors, 42–48
trigonometry, 28–33

Maxwell, James Clerk, 62, 65
Maxwell’s equations

defined, 64
in deriving component fields, 74–75
as EM field equations, 65
first equation, 65–67
fourth equation, 69–70
overview, 64–65
second equation, 67–68
third equation, 68–69

Measuring receivers, 270
Metals

conductivities of, 353
magnetic permeabilities of, 373

Microstrip planar spiral, 165–66
MIL-STD 461, 229
Minimum sweep time, 331–32
Mirror method. See Purcell’s method
Mode stirrers, 306–7
Modulus, 39
Monopoles

radiation pattern for, 99
resonant, 111–12
short, 97–98
top-loaded, 98–101

Multipath effects, 190
Multiple reflection loss, 257–58

N
Natural logarithms, 34
Navigation, angle convention for, 28
Near-field effects, 190
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Near fields, 84–85
Normal component

of electric field, 72–73
of magnetic field, 72–73

Numbers
complex, 40–42
multiplication of, 34–35
real, 36–40

O

Omnidirectional antennas
defined, 2
illustrated, 3

Open area test sites (OATS)
ANSI, 320–21
attenuation factor, 321
covered, 318
defined, 318
ellipse size, 319
FCC set-up for site attenuation, 320
first Fresnel ellipse, 319–20
freedom from obstructions, 321
free-space (FSOATS), 322–23
geometrical optical model, 227
in measurement of radiated emissions, 221, 

226–28
minimum size of ground plane, 320
NSA measurement, 322
size and shape of, 319
uncovered, 318

Operating efficiency, 92

P

Parallel element E-field generator, 101
Parallelogram rule, 42, 43
Parallel plate cells, 287
Parallel plate transmission lines, 278–79
Parallel stripline cells

defined, 283
illustrated, 284
in MIL-STD 461G, 285
with trellis, 285
See also TEM cells

Parameters
mathematical definition of, 50–52
used by engineers, 52, 53

Percentage bandwidth, 14–15
Periodic table (alphabetically by symbol), 

369–71

Permeability, 240–42
Phase center

conical log spirals, 161–62
defined, 161

Phasors
addition of waveforms with, 47
defined, 46
use of vectors as, 46–48

Planar log spirals
current attenuation, 143
defined, 146
illustrated, 147
slot, 147
variation of radiation pattern, 153

Plane wave reflection loss
characteristics of, 252
defined, 252

Plane waves
in free space, 85
power flux density for, 75–78
wave impedance for, 78

Plane wave SE measurements
clean time, 264
guided wave, 265–66
rectangular TEM cell for, 266
time domain free-space, 264

Polarization
circular, 18, 19
defined, 16–20
elliptical, 18–19, 20
linear, 17
sense of, 19

Polarization matching matrix, 375
Polar plots, 7–8
Polygonal cross section cut-off waveguides, 

302–3
Position vectors, 42
Power density

antenna correction factor and, 212
average, 77
radiation resistance and, 79

Power flux density
defined, 75–78
illustrated, 76
magnitude, 76
for plane wave, 75–78
TEM waves, 274–75

Powers, indices, and logarithms, 33–36
Poynting’s power flux vector, 55
Purcell’s method

defined, 191–92
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Purcell’s method (Cont.)
illustrated, 192
measured results, 194
measurement set-up, 192
procedural steps, 193
reflection coefficient magnitude, 194
sheet, 192–93
single-frequency measurements, 193
See also Gain measurement

Pyramid absorber, 310–12
Pyramidal horn

accurate gain calculation, 208
approximate method, 209
gain in, 207–9
semi-accurate gain calculation, 208–9

Q

Quadratic functions, 37, 38
Quiet zone, 315

R

Radiated emissions
CISPR 32/EN 55022 radiated electric field 

limits, 225, 226
CISPR 32/EN 55032 radiated limits, 226, 

227, 228
classes of computer equipment, 222–23
common-mode, 221, 222
differential-mode, 221, 222
FCC electric field limits, 224
free-space facilities, 227
free-space field, 332–33
measurement of, 221–22, 331–33
measuring radiated EMI and, 223–28
minimum dwell time, 332
minimum sweep time, 331–32
overview, 220–21
ray diagram for measurement, 227

Radiation pattern
backlobe, 14
biconical antennas, 119
BiLog antenna, 130
conical log spirals, 162
defined, 5
discone antenna, 113–14
helical antennas, 135
large dipoles, 115
log-periodic dipole array (LPDA), 125

log spirals, 145, 146
measurement of, 5–6
for monopoles, 99
peculiarity, 5
plotting, 6
polar plots, 7–8
rectangular/Cartesian plots, 6–7
resonant dipoles, 115
resonant monopole, 112
showing sidelobe levels, 12
slot planar log spiral, 151
Yagi-Uda antenna, 123

Radiation power factor
antennas (below 1 MHz), 89–92
defined, 89
operating efficiency, 92

Radiation resistance
of current element, 78
defined, 4, 78
power density and, 79
tuning circuits, 5

Radio frequency protection guides, 379
RAM (radar absorbing material)

carbon-loaded foam, 310, 311
combined ferrite and pyramidal, 312–14
defined, 309
flat sheet, 310, 311
overview, 310
pyramid, 310–12
reflectivity of, 314

Real numbers, 36–40
Receiving antennas

current distribution on, 87
transmitting antenna differences, 86–88

Reciprocal trigonometric functions, 28
Rectangular aperture, 20, 24
Rectangular/Cartesian plots, 6–7
Rectangular chambers

defined, 315
FAR, 315, 317
FSOATS, 315
illustrated, 316
location of antenna position, 317
site validation, 316
See also Anechoic chambers

Rectangular coaxial lines, 282–83
Rectangular Crawford cell

cut-off frequency of, 292–95
defined, 291

Rectangular horn, 21, 23–24
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Rectangular waveguides
attenuation of modes, 175
cut-off, 302–3
cutoff frequencies, 174
designations, 175, 176
dimensions, 174, 176
electric field modes, 171–72
frequencies and choosing, 172
magnetic field modes, 172
modes in, 171–75
propagation of modes, 173

Reflection loss
electric mode, 247–51
illustrated, 239
magnetic mode, 239–47
multiple, 257–58
plane wave, 252, 253–54
types of, 238
wave incident type and, 238
See also Shielding effectiveness

Relative conductivity, 244–46
Relative gain, 11–12
Resistivities, of common materials, 377
Resonant cavities

defined, 305
degeneracy, 306
formulation, 305–6
mode stirrers, 306–7
TE modes, 308

Resonant dipoles, 114–15
Resonant loops, 135–36
Resonant monopoles, 111–12
Reverberation chambers

advantages of, 324
antenna validation factor (AVF), 330
chamber loading factor (CLF), 330
chamber validation factor (CVF), 329
defined, 323
frequency of operation, 323
immunity testing, 331
layout, 325
paddle stirrer illustration, 325
performance definition, 326
requirements, 326–27
side elevation view, 326
standard deviation of E field, 327
stirrer dimension, 324
stirrer rotation, 324
suitability, 324–25
testing and EUT and, 329–30

validation frequency, 328–29
validation procedure, 327–29

S

Scalar fields
gradient of, 59–61
spatial rates of change, 59

Scalar product, 44, 45
Scalars, 42
Scientific constants, 351
Scientific prefixes, preferred, 349
Screened rooms, 307–9
Second equation, Maxwell’s, 67–68
Self-impedance, 4
Semi-accurate gain calculation, 208–9, 211
Shielded rooms

absorber-lined chambers (ALCs), 309–14
anechoic chambers, 314–18
screened, 307–9
types of, 307
unlined shielded, 307–9
use of, 307

Shielded single-turn loops, 106–7
Shielding effectiveness

absorption loss, 252–57
defined, 220
dependencies, 236
for electric field, 237
E-mode measurements, 263
grounding and, 236
guided wave SE measurements, 265
H-mode measurements, 262
measurement of, 262–66
multiple reflection loss, 257–58
plane wave measurements, 263–66
reflection loss, 238–52
of solid materials, 236–61
total, 258–61
ventilation holes, 266

Short monopoles, 97–98
Sidelobes

defined, 12
illustrated, 12
levels, 12–13
position, 13

Simple multiturn loop probe, 108–9
Single-turn loop, 136
Single-turn shielded loops, 106–7
SI units, 52, 53, 55
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Slot planar log spiral
arm length of the spiral, 148–49
feeding arrangements, 148, 150–53
figure of merit, 150
HPBW, 151, 152
input impedance, 147
radiation pattern, 151

Small antennas, below 1 Mhz, 88
Small dipoles, 96–97
Small magnetic loops, 104–5
Source-shield distance, 242–44
Spectrum analyzers, 271
Spiral antennas

Archimedes spiral, 163–65
band theory and, 139–41
behavior, 139–40
log spiral, 141–62
microstrip planar spiral, 165–66
resultant electric field from, 142

Square coaxial lines, 282–83
Square Crawford cell

calibration, 290
cut-off frequency of, 292–95
defined, 289
illustrated, 293
use of, 290

Square cut-off waveguides, 302–3
Square root, 38
Stokes’ theorem, 66, 68
Straight-toothed trapezoidal tooth LP, 129
Stripline cells. See Parallel stripline cells
Susceptance, 40–41
Susceptibility

defined, 228
ESD, 269–70
measurement of, 229

Symbols, list of, 381–89

T

Tangential component
of electric field, 70–71
of magnetic field, 71–72

Tapered chambers, 316, 318
TEM cells

circular coaxial, 285–88
continuous-conductor, 285–86
cut-off frequency of, 292–95
defined, 283
dual (DTC), 295–96, 297

flanged coaxial, 287–88
gigahertz (GTEM), 296–99
illustrated, 286
parallel stripline, 283–85
rectangular Crawford, 291
square Crawford, 289–91, 293
validation points for, 292

TE modes, 171–72
TEMPEST standards, 228
TEM transmission lines

balanced, equivalent circuit, 278
characteristic impedance, 276–77
coaxial, 280–83
conductors, 276
parallel plate, 278–79
wave propagation in, 277

TEM waves
defined, 273
existence of, 283
in free space, 276
overview, 273
power flux density, 274–75
propagation, 273, 277, 279
transmission lines that support, 276–83
wave impedance, 275–76

Test levels, 228
Third equation, Maxwell’s, 68–69
Three-antenna method, 195–96
TM modes, 172
Top-loaded monopoles

defined, 98
effective length, 98–99
types of, 100

Total antenna impedance, 91
Total shielding effectiveness

defined, 258
E-mode, relative permeability and relative 

conductivity, 259
H-mode, relative permeability and relative 

conductivity, 259
plane wave, relative permeability and 

relative conductivity, 260
theoretical, 260–61

Transmitting antennas
current distribution on, 87
receiving antenna differences, 86–88
top-loaded monopoles, 99

Trapezoidal tooth log-periodic antenna, 
129–30

Triangle rule, 42–43
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Triangular dipoles, 118–19
Trigonometric functions

of angle, 30, 31
defined, 28
inverse, 32–33
reciprocal, 28
variations of, 28, 31

Trigonometric identities, 32
Trigonometry, 31
Tuning circuits, 4, 5
Two-antenna method, 187, 195

U

Units, fundamental, 52, 53
Unit vectors

cross product, 58–59
defined, 57
illustrated, 58
use of vectors as, 57

Unlined shielded rooms, 307–9

V

Vector fields
divergence of, 61–62
spatial rates of change, 59

Vector product, 44, 45
Vectors

addition, 42–43
cross product of, 44–46
curl of, 62–64
dot product of, 44, 45
multiplication, 44–45
parallelogram rule, 42, 43
phasors, 46–48
position, 42

subtraction, 42–43
triangle rule, 42–43
unit, 57–59
velocity, 143

Velocity vectors, 143
Ventilation holes, 266
Ventilation panels, 300–305

W

Waveguides
circular, 299–305
double-ridged, 175–77
rectangular, modes in, 171–75
square, modes in, 171–75
types of, 168
wave propagation in, 168, 169

Waveguide theory, 168–71
Wave impedance

antennas (below 1 MHz), 85–86
for plane wave, 78
TEM waves, 275–76
variations with distance from source, 86

Wire antennas
EM fields at large distances from, 75
far field for, 79

Y

Yagi-Uda antenna
defined, 122
gains, 123
illustrated, 123
measured and computed results comparison, 

124
radiation pattern, 123
uniform array, 123
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