Оборудование я написал в первом посте. Вот ссылка Железо
Вот немного к более читабельному виду привел код:
/* ___________________________Include_libraries_______________________________*/
#include "RF_Toggle_LED_Demo.h"
/*_______________________________Define's_____________________________________*/
#define PACKET_LEN (0x05) // PACKET_LEN <= 61
#define RSSI_IDX (PACKET_LEN) // Index of appended RSSI
#define CRC_LQI_IDX (PACKET_LEN+1) // Index of appended LQI, checksum
#define CRC_OK (BIT7) // CRC_OK bit
#define PATABLE_VAL (0x51) // 0 dBm output
/*______________________________Variables_____________________________________*/
extern RF_SETTINGS rfSettings;
unsigned char packetReceived;
unsigned char packetTransmit;
unsigned char RxBuffer[PACKET_LEN+2];
unsigned char RxBufferLength = 0;
const unsigned char TxBuffer[PACKET_LEN]= {0xAA, 0xBB, 0xCC, 0xDD, 0xEE};
unsigned int Ack = 0;
unsigned int Total = 0;
unsigned char transmitting = 0;
unsigned char Time = 0;
unsigned char receiving = 0;
unsigned char cAck[4]={0};
unsigned char cTotal[4]={0};
unsigned char id1[1]={1};
unsigned char id2[1]={2};
unsigned int PacketLen = 10;
unsigned char Packet[10];
/*________________________________Main_Function_______________________________*/
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
// Increase PMMCOREV level to 2 for proper radio operation
SetVCore(2);
ResetRadioCore();
InitRadio();
InitButtonLeds();
ReceiveOn();
receiving = 1;
while (1)
{
TA1CTL = TASSEL_1 + MC_2 + TACLR + TAIE; // SMCLK, contmode, clear TAR
__bis_SR_register( LPM3_bits + GIE );
__no_operation();
if (Time) // Timer count set->transmit
{
P3OUT |= BIT6; // Pulse LED during Transmit
Time = 0;
P1IFG = 0;
ReceiveOff();
receiving = 0;
Transmit( (unsigned char*)TxBuffer, sizeof TxBuffer);
transmitting = 1;
P1IE |= BIT7; // Re-enable button press
}
else if(transmitting)
{
ReceiveOn();
receiving = 1;
}
while (transmitting);
ReceiveOn(); //Perevod v rezhim priema dlya polucheniya otveta
receiving = 1;
PacketMake();
InitUART();
}
}
/*_______________________________Functions____________________________________*/
//******************************************************************************
// @fn PacketMake
// @brief Oformlenie paketa dannyh, dlya peredachi po UART
// @param none
// @return none
// *****************************************************************************
void PacketMake(void)
{
IntToChar (Ack, cAck);
IntToChar (Total, cTotal);
unsigned int idx;
unsigned int idx1;
for (idx=0; idx<1; idx++)
{
Packet[idx]=id1[idx];
}
for (idx=1, idx1=0; idx<5; idx++, idx1++)
{
Packet[idx]=cAck[idx1];
}
for (idx=5, idx1=0; idx<6; idx++, idx1++)
{
Packet[idx]=id2[idx1];
}
for (idx=6, idx1=0; idx<10; idx++, idx1++)
{
Packet[idx]=cTotal[idx1];
}
}
//******************************************************************************
// @fn IntToChar
// @brief Preobrazovanie kolichestva paketov v massiv
// @param unsigned int num Chislo tipa INT
// @param unsigned char *Arr Massiv dannyh Char
// @return none
// *****************************************************************************
void IntToChar (unsigned int num, unsigned char *Arr)
{
unsigned int count = 0;
unsigned int q=num;
while (q!=0)
{
q/=10;
count++;
}
do
{
Arr[count-1]=(num%10);
num/=10;
count--;
}
while (num!=0);
}
//******************************************************************************
// @fn Init UART
// @brief Initialization UART
// @param none
// @return none
// *****************************************************************************
void InitUART(void)
{
PMAPPWD = 0x02D52; // Get write-access to port mapping regs
P3MAP0 = PM_UCA0RXD; // Map UCA0RXD output to P2.6
P3MAP1 = PM_UCA0TXD; // Map UCA0TXD output to P2.7
PMAPPWD = 0; // Lock port mapping registers
P3DIR |= BIT1; // Set P2.7 as TX output
P3SEL |= BIT0 + BIT1; // Select P2.6 & P2.7 to UART function
UCA0CTL1 |= UCSWRST; // **Put state machine in reset**
UCA0CTL1 |= UCSSEL_2; // SMCLK
UCA0CTL1 |= UC7BIT;
UCA0BR0 = 6; // 1MHz 9600 (see User's Guide)
UCA0BR1 = 0; // 1MHz 9600
UCA0MCTL = UCBRS_0 + UCBRF_13 + UCOS16; // Modln UCBRSx=0, UCBRFx=0,
// over sampling
UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
UCA0IE |= UCRXIE+UCTXIE; // Enable USCI_A0 RX interrupt
}
//******************************************************************************
// @fn InitButtonLeds
// @brief Initialization button and LEDs
// @param none
// @return none
// *****************************************************************************
void InitButtonLeds(void)
{
// Set up the button as interruptible
// P1DIR &= ~BIT7;
// P1REN |= BIT7;
// P1IES &= BIT7;
// P1IFG = 0;
// P1OUT |= BIT7;
// P1IE |= BIT7;
// Initialize Port J
PJOUT = 0x00;
PJDIR = 0xFF;
// Set up LEDs
P1OUT &= ~BIT0;
P1DIR |= BIT0;
P3OUT &= ~BIT6;
P3DIR |= BIT6;
}
//******************************************************************************
// @fn InitRadio
// @brief Initialization Radio
// @param none
// @return none
// *****************************************************************************
void InitRadio(void)
{
// Set the High-Power Mode Request Enable bit so LPM3 can be entered
// with active radio enabled
PMMCTL0_H = 0xA5;
PMMCTL0_L |= PMMHPMRE_L;
PMMCTL0_H = 0x00;
WriteRfSettings(&rfSettings);
WriteSinglePATable(PATABLE_VAL);
}
//******************************************************************************
// @fn Transmit
// @brief Transmit the packet of data
// @param unsigned char *buffer Ukazatel na dannye
// @param unsined char length Razmer dannyh
// @return none
// *****************************************************************************
void Transmit(unsigned char *buffer, unsigned char length)
{
RF1AIES |= BIT9;
RF1AIFG &= ~BIT9; // Clear pending interrupts
RF1AIE |= BIT9; // Enable TX end-of-packet interrupt
WriteBurstReg(RF_TXFIFOWR, buffer, length);
Strobe( RF_STX ); // Strobe STX
}
//******************************************************************************
// @fn ReceiveOn
// @brief Vklyuchenie rezhima priema
// @param none
// @return none
// *****************************************************************************
void ReceiveOn(void)
{
RF1AIES |= BIT9; // Falling edge of RFIFG9
RF1AIFG &= ~BIT9; // Clear a pending interrupt
RF1AIE |= BIT9; // Enable the interrupt
// Radio is in IDLE following a TX, so strobe SRX to enter Receive Mode
Strobe( RF_SRX );
}
//******************************************************************************
// @fn ReceiveOff
// @brief Vyklyuchenie rezhima priema
// @param none
// @return none
// *****************************************************************************
void ReceiveOff(void)
{
RF1AIE &= ~BIT9; // Disable RX interrupts
RF1AIFG &= ~BIT9; // Clear pending IFG
// It is possible that ReceiveOff is called while radio is receiving a packet.
// Therefore, it is necessary to flush the RX FIFO after issuing IDLE strobe
// such that the RXFIFO is empty prior to receiving a packet.
Strobe( RF_SIDLE );
Strobe( RF_SFRX );
}
/*__________________________Obrabotchiki_preryvanii___________________________*/
//******************************************************************************
//@name Obrabocthik preryvaniy po UART
//@brief Pri pustom TX bufere peredaet dannye v nego
//******************************************************************************
#pragma vector=USCI_A0_VECTOR
__interrupt void USCI_A0_ISR(void)
{
switch(__even_in_range(UCA0IV,4))
{
case 0:break; // Vector 0 - no interrupt
case 2: // Vector 2 - RXIFG
break;
case 4:
for(int i=0;i<PacketLen;i++)
{
UCA0TXBUF = Packet[i];
while (UCA0STAT & UCBUSY);
}
UCA0IE ^= UCTXIE;
break; // Vector 4 - TXIFG
default: break;
}
}
//******************************************************************************
//@name Timer_A3 Interrupt Vector (TAIV) handler
//@brief Pri perepolnenii ustanavlivaetsya flag Time
//******************************************************************************
#pragma vector=TIMER1_A1_VECTOR
__interrupt void TIMER1_A1_ISR(void)
{
switch(__even_in_range(TA1IV,14))
{
case 0: break; // No interrupt
case 2: break; // CCR1 not used
case 4: break; // CCR2 not used
case 6: break; // reserved
case 8: break; // reserved
case 10: break; // reserved
case 12: break; // reserved
case 14: Time = 1; // overflow
__bic_SR_register_on_exit(LPM3_bits);
break;
default: break;
}
}
//******************************************************************************
//@name Radio Core Interrupt Vector handler
//@brief
//******************************************************************************
#pragma vector=CC1101_VECTOR
__interrupt void CC1101_ISR(void)
{
switch(__even_in_range(RF1AIV,32)) // Prioritizing Radio Core Interrupt
{
case 0: break; // No RF core interrupt pending
case 2: break; // RFIFG0
case 4: break; // RFIFG1
case 6: break; // RFIFG2
case 8: break; // RFIFG3
case 10: break; // RFIFG4
case 12: break; // RFIFG5
case 14: break; // RFIFG6
case 16: break; // RFIFG7
case 18: break; // RFIFG8
case 20: // RFIFG9
if(receiving) // RX end of packet
{
// Read the length byte from the FIFO
RxBufferLength = ReadSingleReg( RXBYTES );
ReadBurstReg(RF_RXFIFORD, RxBuffer, RxBufferLength);
// Stop here to see contents of RxBuffer
__no_operation();
// Check the CRC results
if(RxBuffer[CRC_LQI_IDX] & CRC_OK)
{
P1OUT ^= BIT0; // Toggle LED1
Ack++; //Kolichestvo podtverzhdeniy
}
}
else if(transmitting) // TX end of packet
{
RF1AIE &= ~BIT9; // Disable TX end-of-packet interrupt
P3OUT &= ~BIT6; // Turn off LED after Transmit
transmitting = 0;
Total++; //Obschee kolichestvo peredannyh paketov
}
else while(1); // trap
break;
case 22: break; // RFIFG10
case 24: break; // RFIFG11
case 26: break; // RFIFG12
case 28: break; // RFIFG13
case 30: break; // RFIFG14
case 32: break; // RFIFG15
}
__bic_SR_register_on_exit(LPM3_bits);
}